JP2016128142A - Rejection rate improving method of semipermeable membrane - Google Patents

Rejection rate improving method of semipermeable membrane Download PDF

Info

Publication number
JP2016128142A
JP2016128142A JP2015002858A JP2015002858A JP2016128142A JP 2016128142 A JP2016128142 A JP 2016128142A JP 2015002858 A JP2015002858 A JP 2015002858A JP 2015002858 A JP2015002858 A JP 2015002858A JP 2016128142 A JP2016128142 A JP 2016128142A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
improving
rejection rate
rejection
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015002858A
Other languages
Japanese (ja)
Inventor
杉田 和弥
Kazuya Sugita
和弥 杉田
谷口 雅英
Masahide Taniguchi
雅英 谷口
寛生 高畠
Hiroo Takahata
寛生 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015002858A priority Critical patent/JP2016128142A/en
Publication of JP2016128142A publication Critical patent/JP2016128142A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rejection rate improving method of a semipermeable membrane capable of improving the rejection rate of the semipermeable membrane such as a nano filtration membrane, a reverse osmosis membrane and the like and to provide a water treatment method using the semipermeable membrane treated by the rejection rate improving method.SOLUTION: In a rejection rate improving method of a semipermeable membrane where a rejection rate improving agent and the semipermeable membrane are contacted, a cleaning agent or a germicidal agent and the rejection rate improving agent are simultaneously contacted or continuously contacted.SELECTED DRAWING: Figure 3

Description

本発明は、海水や、塩分を含む河川水、地下水、湖水、廃水処理水などの原水を用いて、低濃度の透過水を得るために用いられる半透膜の性能向上に関するものであり、さらに詳しくは、半透膜の阻止率を向上させることができる阻止率向上方法に関する。   The present invention relates to the improvement of the performance of a semipermeable membrane used for obtaining low-concentration permeated water using raw water such as seawater, salt-containing river water, groundwater, lake water, wastewater treated water, and the like. Specifically, the present invention relates to a rejection rate improving method that can improve the rejection rate of a semipermeable membrane.

近年、水資源の枯渇が深刻になりつつあり、これまで利用されてこなかった水資源の活用が検討され、とくに、もっとも身近でそのままでは利用できなかった海水から飲料水を製造する技術、いわゆる“海水淡水化”、さらには、下廃水を浄化し、処理水を淡水化する再利用技術が注目されてきている。海水淡水化は、従来、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に実用化されてきているが、熱源が豊富でない中東以外の地域ではエネルギー効率の高い逆浸透法が採用され、最近では、逆浸透法の技術進歩による信頼性の向上やコストダウンが進み、中東を含む多くの地域において、逆浸透法海水淡水化プラントが建設され、世界的な展開を見せつつある。下廃水再利用は、内陸や海岸沿いの都市部や工業地域で、淡水言がないようなところや排水規制のために放流量が制約されているようなところに適用され始めている。とくに、水源が乏しい島国のシンガポールでは、国内で発生する下水を処理後、海に放流せずに貯留し、逆浸透膜で飲料できるレベルの水にまで再生し、水不足に対応している。
海水淡水化や下廃水再利用に適用される逆浸透法は、塩分などの溶質を含んだ水を浸透圧以上の圧力をもって半透膜を透過させることで、脱塩された水を製造するものでできる。この技術は例えば海水、かん水、有害物を含んだ水から飲料水を得ることも可能であるし、また、工業用超純水の製造、排水処理、有価物の回収などにも用いられてきた。
逆浸透膜による淡水化装置を安定運転させるためには、取水する原水水質に応じた前処理が必要である。前処理が不十分だと、逆浸透膜を劣化させたりファウリング(膜面汚れ)させ、安定運転が困難になりやすい。とくに、逆浸透膜を劣化させる化学物質が逆浸透膜に侵入した場合、洗浄によっても回復不能な致命的な状況に陥る可能性がある。すなわち、逆浸透膜の機能層(逆浸透機能を発現する部分)が分解し、水と溶質の分離性能、言い換えると、溶質の阻止性能が低下する。海水淡水化や下廃水再利用などの用途に逆浸透膜を用いる場合、このような逆浸透膜の機能層の分解を100%生じないようにすることは非常に難しく、とくに、逆浸透膜の主流であるポリアミドは、酸化劣化を生じやすい(非特許文献1)。また、ある程度の耐久性は有するものの強い酸やアルカリにさらされた場合も、機能層の分解が起こりやすい。このような分解が起こった場合、水処理用逆浸透膜として一般的なアニオン荷電を有する半透膜の場合、アニオン荷電による荷電排除効果によって阻止可能な無機電解質の分離除去よりも、中性分子の除去への悪影響が大きく、特に中性分子の阻止率が悪くなる。具体的には、中性領域で解離していないシリカやホウ素、糖類などの水質悪化が著しくなる。必要な阻止性能を失った逆浸透膜は、通常、新品と交換しなければならなくなるため、当然処理コストの増加につながる。
In recent years, the depletion of water resources has become serious, and the utilization of water resources that have not been used has been studied. In particular, a technology for producing drinking water from seawater that was most familiar and could not be used as it is, the so-called “ Seawater desalination ”, as well as recycling technology that purifies sewage wastewater and desalinates the treated water, have attracted attention. Seawater desalination has been put to practical use mainly in the Middle East region, where water resources are extremely small and oil heat resources are extremely abundant, but regions other than the Middle East where heat sources are not abundant. Has adopted the energy-efficient reverse osmosis method, and recently, the reverse osmosis method has improved its reliability and cost, and reverse osmosis seawater desalination plants have been constructed in many regions including the Middle East. , Showing global development. Wastewater reuse is beginning to be applied in inland and coastal urban areas and industrial areas where there is no freshwater or where discharge is restricted due to drainage regulations. In particular, in Singapore, an island country where water sources are scarce, sewage generated in the country is treated and stored without being released into the sea, and is reclaimed to a level that can be drunk with a reverse osmosis membrane to cope with water shortages.
The reverse osmosis method applied to seawater desalination and reuse of sewage wastewater produces desalted water by allowing water containing salt and other solutes to permeate the semipermeable membrane at a pressure higher than the osmotic pressure. You can do it. This technology can be used to obtain drinking water from, for example, seawater, brine, and water containing harmful substances, and has also been used in the production of industrial ultrapure water, wastewater treatment, and recovery of valuable resources. .
In order to stably operate a desalination apparatus using a reverse osmosis membrane, pretreatment according to the quality of the raw water to be taken is necessary. If the pretreatment is insufficient, the reverse osmosis membrane is deteriorated or fouled (soil on the membrane surface), and stable operation tends to be difficult. In particular, when a chemical substance that degrades the reverse osmosis membrane enters the reverse osmosis membrane, there is a possibility that a fatal situation that cannot be recovered even by washing may occur. That is, the functional layer of the reverse osmosis membrane (the part that develops the reverse osmosis function) is decomposed, and the separation performance of water and solute, in other words, the solute blocking performance is lowered. When using reverse osmosis membranes for applications such as seawater desalination and reuse of sewage wastewater, it is very difficult to prevent 100% degradation of the functional layer of such reverse osmosis membranes. The mainstream polyamide is susceptible to oxidative degradation (Non-Patent Document 1). In addition, the functional layer is likely to be decomposed even when exposed to strong acid or alkali although having some degree of durability. In the case of such decomposition, in the case of a semipermeable membrane having a general anionic charge as a reverse osmosis membrane for water treatment, neutral molecules can be separated rather than separating and removing inorganic electrolytes that can be blocked by the charge exclusion effect due to anion charge. This has a great adverse effect on the removal of the water, and in particular, the neutral molecule blocking rate becomes worse. Specifically, the water quality of silica, boron, saccharides and the like that are not dissociated in the neutral region is significantly deteriorated. A reverse osmosis membrane that has lost the necessary blocking performance usually has to be replaced with a new one, which naturally increases processing costs.

このため、長年にわたって、逆浸透膜の阻止性能を回復させる技術の開発が進められており、ビニル系ポリマを接触、反応させる方法(特許文献1、2)、ポリエチレングリコールを逆浸透膜に接触させて阻止率、特に非イオン性溶質に対する阻止率を向上させる方法(特許文献3、4)、透過流束が増加したアニオン荷電を有する逆浸透膜に対し、ノニオン系界面活性剤を膜面に接触させる方法(特許文献5)、酸化還元電位が300mV以上であるヨウ素及び/またはヨウ素化合物を接触させる方法(特許文献6)、燐酸、亜燐酸、硫酸等の強鉱酸水溶液と接触させて昇温した後、加水分解性タンニン酸などの阻止性能向上剤に接触させる方法(特許文献6)など、数々の逆浸透膜の阻止性能回復方法やそのための回復剤が提案されている。また、これらの阻止性能回復処理は、様々な技術課題を抱えている。
すなわち、逆浸透膜の種類や状態(汚れ、劣化)、水温などの処理環境、処理を実施するときの条件(処理液の温度、濃度、処理時間など)によって阻止性能向上処理効果が変わったり、阻止性能向上処理の副作用とも言える透水性能低下も変化する。また、阻止率向上後の長期性能持続効果などもまちまちであり、阻止性能向上処理後の造水運転において水質が不十分であったり、運転圧力が不足したり、困難を伴う場合が少なくない。
これは、2000年代になってから急速に建設され稼働開始している大型の海水淡水化や下水再利用プラントでは、逆浸透膜を多数使用していることや海水など自然環境中の原水を処理するため、たとえ前処理をしても、季節、潮の満ち引き、赤潮その他、天候や自然環境の影響を受けながら逆浸透膜の運転がなされる、逆浸透膜の状態も同じプラントの中でも様々である。また、阻止性能向上処理のためには、一旦通常の造水処理を停止した後、薬液洗浄ラインを通して、運転時の被処理原水に変えて阻止性能向上剤に置き換えるため、稼働率が低下する、手間が煩雑である、また、処理終了後に、再度、被処理原水を通水して通常運転条件で阻止性能や透水性能も測定しなければ最終的な効果が判らないなど、多くの問題を抱えている。これらの問題に対し、逆浸透膜の状態の違いによる処理効果への影響を解決するためには、例えば、特許文献8に例示されるように、逆浸透膜を薬液洗浄した後に阻止性能向上処理を施す技術が一般的に適用されている。また、特許文献9に示すように高温水で洗浄してから阻止性能向上剤に接触させるといった前処理も提案されている。また、阻止性能向上処理の効果を判断する方法としては、阻止性能向上剤に標識となる物質を添加し、透過水中の標識物質の濃度を検出することによって処理効果を確認する方法(特許文献10)が提案されている。
阻止率向上処理が飽和に達し、それ以上無駄な回復処理時間を要することがないように、阻止性能向上剤の供給濃度と排出濃度を監視して、処理の終了を判定する方法も提案されている(特許文献11)。
しかし、これらの方法では、阻止性能向上処理中での性能を知ることによる相対的な処理効果しか判らず、実際の運転環境での性能を把握することは困難であるし、そもそも、処理効率やその効果を制御することは困難であり、現場でのトライアンドエラーに頼っていることが多かった。
For this reason, for many years, the development of technology for recovering the blocking performance of reverse osmosis membranes has been promoted. Methods for contacting and reacting vinyl polymers (Patent Documents 1 and 2), contacting polyethylene glycol with reverse osmosis membranes. To improve the rejection rate, especially the rejection rate against nonionic solutes (Patent Documents 3 and 4), and contact the nonionic surfactant with the membrane surface against a reverse osmosis membrane having anion charge with increased permeation flux (Patent Document 5), contact with iodine and / or iodine compound having an oxidation-reduction potential of 300 mV or more (Patent Document 6), contact with strong mineral acid aqueous solution such as phosphoric acid, phosphorous acid, sulfuric acid, etc. After that, a number of methods for recovering the blocking performance of reverse osmosis membranes, such as a method of contacting with a blocking performance improver such as hydrolyzable tannic acid (Patent Document 6), and a recovery agent therefor have been proposed. . In addition, these blocking performance recovery processes have various technical problems.
That is, the prevention performance improvement treatment effect changes depending on the type and state of the reverse osmosis membrane (dirt, deterioration), the processing environment such as the water temperature, and the conditions when the treatment is performed (temperature, concentration, treatment time, etc. of the treatment liquid) The decrease in water permeability, which can be said to be a side effect of the prevention performance improvement process, also changes. Moreover, the long-term performance sustaining effect after improvement of the rejection rate varies, and there are many cases where water quality is insufficient, operation pressure is insufficient, or difficulty is involved in the water production operation after the improvement of the rejection performance.
This is because large-scale seawater desalination and sewage reuse plants that have been rapidly constructed and started in the 2000s use a large number of reverse osmosis membranes and treat raw water in the natural environment such as seawater. Therefore, even if pretreatment is performed, the reverse osmosis membrane is operated under the influence of the weather, natural environment, etc., even in the same plant. It is. In addition, for the prevention performance improvement treatment, after stopping the normal fresh water treatment, it is replaced with the prevention performance improver instead of the raw water to be treated at the time of operation through the chemical cleaning line, so the operation rate decreases. There are many problems such as troublesomeness, and after the treatment is completed, the final effect cannot be understood unless the treated raw water is passed again and the blocking performance and permeability performance are measured under normal operating conditions. ing. In order to solve the influence on the processing effect due to the difference in the state of the reverse osmosis membrane with respect to these problems, for example, as exemplified in Patent Document 8, after the reverse osmosis membrane is washed with a chemical solution, the inhibition performance improvement treatment is performed. The technology to apply is generally applied. In addition, as shown in Patent Document 9, a pretreatment has been proposed in which the substrate is washed with high-temperature water and then brought into contact with a blocking performance improver. Further, as a method for judging the effect of the blocking performance improving treatment, a method of confirming the processing effect by adding a substance to be labeled to the blocking performance improving agent and detecting the concentration of the labeled substance in the permeated water (Patent Document 10). ) Has been proposed.
A method has also been proposed for determining the end of the process by monitoring the supply concentration and the discharge concentration of the blocking performance improver so that the blocking rate improvement process reaches saturation and no more useless recovery processing time is required. (Patent Document 11).
However, with these methods, only the relative processing effect due to knowing the performance during the prevention performance improvement processing can be known, and it is difficult to grasp the performance in the actual driving environment. It was difficult to control the effect and often relied on on-site trial and error.

特開昭55−114306号公報JP 55-114306 A 特開昭59−30123号公報JP 59-30123 A 特開2007−289922号公報JP 2007-289922 A 特開2008−132421号公報JP 2008-132421 A 特開2008−86945号公報JP 2008-86945 A 特開2011−161435号公報JP 2011-161435 A 特開平2−68102号公報JP-A-2-68102 特開2008−36522号公報JP 2008-36522 A 特開2009−22888号公報JP 2009-22888 A 特開2008−155123号公報JP 2008-155123 A 特開2008−183488号公報JP 2008-183488 A

植村忠廣ら、複合逆浸透膜の退園組成と塩素劣化による膜構造、膜分離特性の変化、日本海水学会誌、第57巻、第3号(2003)Tadahiro Uemura, et al., Discharge Composition of Composite Reverse Osmosis Membrane and Membrane Structure and Membrane Separation Characteristics due to Chlorine Degradation, Journal of the Seawater Society of Japan, Vol.

本発明は、ナノろ過膜や逆浸透膜などの半透膜に対し、半透膜の阻止性能、特に非イオン性物質の阻止性能を向上させることができる阻止性能向上方法、ならびにこの阻止率向上方法によって処理された半透膜、エレメント、さらに阻止性能向上させた半透膜を用いた水処理方法を提供することを目的とする。   The present invention relates to a method for improving the blocking performance of a semipermeable membrane, such as a nanofiltration membrane or a reverse osmosis membrane, in particular, a blocking performance improving method capable of improving the blocking performance of a nonionic substance, and an improvement in the blocking rate. It is an object of the present invention to provide a water treatment method using a semipermeable membrane treated by the method, an element, and a semipermeable membrane with improved blocking performance.

かかる課題を解決するための本発明は、以下の構成からなる。
(1)阻止率向上剤を含有する液体と半透膜を接触させる阻止率向上方法において、洗浄剤あるいは殺菌剤と阻止率向上剤を同時に接触させる、または、連続して接触させることを特徴とする半透膜の阻止率向上方法。
(2)洗浄剤がpH3以下および/またはpH11以上の水溶液である(1)に記載の半透膜の阻止率向上方法。
(3)洗浄剤がpH12以上のアルカリ水溶液である(1)または(2)に記載の半透膜の阻止率向上方法。
(4)殺菌剤がハロゲン含有化合物である(1)〜(3)に記載の半透膜の阻止率向上方法
(5)半透膜を洗浄剤あるいは殺菌剤と接触させた後に阻止率向上剤と接触させることを特徴とする(1)〜(4)に記載の半透膜の阻止率向上方法。
(6)阻止率向上剤を含有する液体を半透膜に接触させることにより半透膜の阻止性能を向上させる方法において、半透膜の初期の純水透過係数Aに対して、洗浄剤あるいは殺菌剤を接触させた後の純水透過係数A1との比A1/Aが0.8倍〜2.0倍の範囲内に有り、さらに、阻止率向上剤と接触させた後の純水透過係数A2と初期の純水透過係数Aとの比A2/Aが0.6倍〜1.9倍の範囲内であることを特徴とする(1)〜(5)に記載の半透膜の阻止率向上方法。
(7)A1/Aが1.0倍から1.8倍の範囲内に有り、A2/Aが0.8〜1.7倍の範囲内であることを特徴とする(1)〜(6)に記載の半透膜の阻止率向上方法。
(8)阻止率向上剤を含有する液体を半透膜の1次側および/または2次側から接触させることを特徴とする(1)〜(7)に記載の半透膜の阻止率向上方法。
(9)半透膜を有する半透膜ユニットが段階的に配置され、被処理液が各ユニットに直接供給できる構成において、特定のユニットにのみ阻止率向上剤を含有する液体を供給して阻止率を向上させる(1)〜(8)に記載の半透膜の阻止率向上方法。
(10)前記阻止率向上剤の重量平均分子量が、6,000以上100,000以下であることを特徴とする(1)〜(9)のいずれかに記載の半透膜の阻止率向上方法。
(11)前記阻止率向上剤が、ポリアルキレングリコール鎖を有する阻止率向上剤であることを特徴とする(1)〜(10)に記載の半透膜の阻止率向上方法。
(12)前記ポリアルキレングリコール鎖を有する阻止率向上剤が、ポリエチレングリコールを主成分とする阻止率向上剤であることを特徴とする(1)〜(11)に記載の半透膜の阻止率向上方法。
(13)前記半透膜が、複合半透膜であることを特徴とする(1)〜(12)に記載の半透膜の阻止率向上方法。
(14)前記半透膜が、ポリアミドを主成分とする半透膜であることを特徴とする(1)〜(13)のいずれかに記載の半透膜の阻止率向上方法。
(15)(1)〜(14)のいずれかに記載の阻止率向上方法によって阻止率を向上させた複合半透膜を使用して水処理を行うことを特徴とする水処理方法。
The present invention for solving this problem has the following configuration.
(1) A method for improving a rejection rate in which a liquid containing a rejection rate improver and a semipermeable membrane are brought into contact with each other, wherein the cleaning agent or the bactericidal agent and the rejection rate improver are contacted simultaneously or continuously. To improve the rejection of a semipermeable membrane.
(2) The method for improving the rejection of a semipermeable membrane according to (1), wherein the cleaning agent is an aqueous solution having a pH of 3 or less and / or a pH of 11 or more.
(3) The method for improving the rejection of a semipermeable membrane according to (1) or (2), wherein the cleaning agent is an alkaline aqueous solution having a pH of 12 or more.
(4) The method for improving the rejection rate of the semipermeable membrane according to (1) to (3), wherein the bactericidal agent is a halogen-containing compound. (5) The rejection rate improving agent after contacting the semipermeable membrane with a cleaning agent or a bactericidal agent. The method for improving the rejection rate of the semipermeable membrane according to any one of (1) to (4), wherein the method is contacted with the semipermeable membrane.
(6) In a method for improving the blocking performance of a semipermeable membrane by bringing a liquid containing a blocking rate improver into contact with the semipermeable membrane, a cleaning agent or an initial pure water permeability coefficient A of the semipermeable membrane The ratio A1 / A to the pure water permeation coefficient A1 after contact with the bactericidal agent is in the range of 0.8 to 2.0 times, and further, the pure water permeation after contact with the blocking rate improver The ratio A2 / A between the coefficient A2 and the initial pure water permeability coefficient A is in the range of 0.6 times to 1.9 times. The semipermeable membrane according to any one of (1) to (5), How to improve rejection rate.
(7) A1 / A is in the range of 1.0 to 1.8 times, and A2 / A is in the range of 0.8 to 1.7 times (1) to (6 ) The method for improving the rejection rate of the semipermeable membrane according to the above.
(8) A liquid containing a blocking rate improver is brought into contact with the semipermeable membrane from the primary side and / or the secondary side, and the blocking rate of the semipermeable membrane according to (1) to (7) is improved. Method.
(9) In a configuration in which semipermeable membrane units having a semipermeable membrane are arranged in stages, and the liquid to be treated can be directly supplied to each unit, the liquid containing the inhibition rate improver is supplied only to the specific unit and blocked. The method for improving the rejection rate of the semipermeable membrane according to any one of (1) to (8), wherein the rate is improved.
(10) The method for improving the rejection rate of a semipermeable membrane according to any one of (1) to (9), wherein the rejection rate improver has a weight average molecular weight of 6,000 to 100,000. .
(11) The method for improving the rejection of a semipermeable membrane according to any one of (1) to (10), wherein the rejection improvement agent is a rejection improvement agent having a polyalkylene glycol chain.
(12) The rejection rate of the semipermeable membrane according to any one of (1) to (11), wherein the rejection rate improver having a polyalkylene glycol chain is a rejection rate improver mainly composed of polyethylene glycol. How to improve.
(13) The semipermeable membrane improving method according to (1) to (12), wherein the semipermeable membrane is a composite semipermeable membrane.
(14) The semipermeable membrane improvement method according to any one of (1) to (13), wherein the semipermeable membrane is a semipermeable membrane containing polyamide as a main component.
(15) A water treatment method, wherein water treatment is performed using a composite semipermeable membrane whose rejection rate is improved by the rejection rate improving method according to any one of (1) to (14).

本発明の阻止率向上方法によれば、海水淡水化や下水再利用のような造水装置において、ナノ濾過膜や逆浸透膜の阻止性能低下によって透過水水質が悪化した場合に半透膜の透水性能の低下を最小限に抑えながら阻止性能を改善させ、無機電解質や中性分子などの除去対象物質の水質を効率的に改善させることができる。   According to the rejection rate improving method of the present invention, in a fresh water generator such as seawater desalination and sewage reuse, when the permeated water quality deteriorates due to a decrease in the blocking performance of the nanofiltration membrane or reverse osmosis membrane, It is possible to improve the blocking performance while minimizing the deterioration of the water permeability, and to efficiently improve the water quality of the removal target substances such as inorganic electrolytes and neutral molecules.

本発明に係る半透膜阻止率向上方法を適用可能な半透膜分離装置のプロセスフローの一例である。It is an example of the process flow of the semipermeable membrane separation apparatus which can apply the semipermeable membrane rejection improving method which concerns on this invention. 本発明に係る半透膜阻止率向上方法を半透膜ユニットを多段に配置して適用可能な半透膜分離装置のプロセスフローの一例である。It is an example of the process flow of the semipermeable membrane separation apparatus which can apply the semipermeable membrane rejection improving method according to the present invention by arranging semipermeable membrane units in multiple stages. 本発明に係る半透膜阻止率向上方法を適用した半透膜分離装置のプロセスフローの一例である。It is an example of the process flow of the semipermeable membrane separation apparatus to which the semipermeable membrane rejection improving method according to the present invention is applied. 本発明に係る半透膜阻止率向上方法を2次側からの接触が適用可能な半透膜分離装置のプロセスフローの一例である。It is an example of the process flow of the semipermeable membrane separation apparatus which can apply the contact from a secondary side to the semipermeable membrane rejection improving method which concerns on this invention. 本発明に係る半透膜阻止率向上方法を特定の半透膜ユニットに適用可能な半透膜分離装置のプロセスフローの一例である。It is an example of the process flow of the semipermeable membrane separation apparatus which can apply the semipermeable membrane rejection improving method which concerns on this invention to a specific semipermeable membrane unit.

以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
本発明の半透膜の阻止率向上方法は、半透膜を用いた半透膜分離装置に適用可能であり、その一例を図1に示す。図1に示す半透膜分離装置は、原水1が、原水槽2に一旦貯留された後、原水供給ポンプ3で前処理ユニット4に送液されて前処理されることで前処理水を得る。該前処理水は、中間水槽5、前処理水供給ポンプ6、保安フィルター7を経て、昇圧ポンプ8で昇圧された後、半透膜モジュールからなる半透膜ユニット9で処理することで、原水1より塩濃度が低い透過水10と塩濃度が高い濃縮水11とに分離される。透過水10は透過水貯留タンク12に貯留させ、濃縮水11は排出される。一般的には透過水を生産水として活用することが多いが、濃縮水を生産水として有価物回収などに用いても良い。
本発明を適用する原水、用途は、特に限定されるものではなく、河川水や地下水の除濁、脱塩、海水やかん水の淡水化、下水や排水の再利用など、様々な目的に適用可能である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these.
The method for improving the rejection rate of a semipermeable membrane of the present invention is applicable to a semipermeable membrane separation apparatus using a semipermeable membrane, and an example thereof is shown in FIG. The semipermeable membrane separation apparatus shown in FIG. 1 obtains pretreated water after raw water 1 is once stored in the raw water tank 2 and then sent to the pretreatment unit 4 by the raw water supply pump 3 and pretreated. . The pretreated water passes through the intermediate water tank 5, the pretreated water supply pump 6, and the safety filter 7, and after being pressurized by the booster pump 8, is treated by the semipermeable membrane unit 9 including a semipermeable membrane module. 1 is separated into permeated water 10 having a lower salt concentration than 1 and concentrated water 11 having a higher salt concentration. The permeated water 10 is stored in the permeated water storage tank 12, and the concentrated water 11 is discharged. In general, permeated water is often used as production water, but concentrated water may be used as production water for recovering valuable materials.
The raw water and application to which the present invention is applied are not particularly limited, and can be applied to various purposes such as turbidity and desalination of river water and groundwater, desalination of seawater and brine, and reuse of sewage and wastewater. It is.

前処理ユニット4は、主に原水1に含まれる固形分を除去する目的で適用される。具体的には、cm〜mm単位のスクリーン、サブミリ〜マイクロメートルレベルの高精度の固液分離が可能な砂ろ過、繊維フィルター、不織布フィルター、砂ろ過、さらに精度が高い、精密ろ過膜、限外ろ過膜などを原水水質に応じて用いることができ、沈降分離、浮上分離など、種々の前処理プロセスを挙げることが出来る。またその適用に、凝集剤、吸着剤、殺菌剤、pH調整などの薬剤の併用も差し支えない。原水中に有機物が非常に多い場合は、生物処理やラグーンなどで有機物をあらかじめ分解しておくことも好ましい実施態様である。逆に、固形分や有機物濃度が非常に小さく清澄な原水の場合には、前処理ユニット4を省略することも可能である。
前処理ユニット4から得られる前処理水は、維持管理を容易にするために中間水槽5に一旦貯留することが好ましいが、敷地面積低減や原水供給ポンプ3圧力の有効活用などを目的として中間水槽5を省略することも可能である。
The pretreatment unit 4 is mainly applied for the purpose of removing the solid content contained in the raw water 1. Specifically, screens in units of cm to mm, sand filtration capable of high-precision solid-liquid separation on the submillimeter to micrometer level, fiber filters, non-woven fabric filters, sand filtration, high precision, precision filtration membranes, ultra-fine A filtration membrane or the like can be used depending on the quality of raw water, and various pretreatment processes such as sedimentation separation and flotation separation can be exemplified. In addition, a coagulant, an adsorbent, a bactericide, and a drug such as pH adjustment may be used in combination. In the case where the organic material is very much in the raw water, it is also a preferred embodiment to decompose the organic material in advance by biological treatment or lagoon. Conversely, in the case of clear raw water having a very small solid content and organic substance concentration, the pretreatment unit 4 can be omitted.
The pretreated water obtained from the pretreatment unit 4 is preferably temporarily stored in the intermediate water tank 5 in order to facilitate maintenance, but the intermediate water tank is used for the purpose of reducing the site area and effectively utilizing the pressure of the raw water supply pump 3. 5 can be omitted.

前処理供給ポンプ6は、所定量の前処理水を昇圧ポンプ8を介して半透膜ユニット9に供給できれば特に限定されず、市販のポンプを用いることができる。昇圧ポンプ8も同様に、半透膜ユニット9において、被処理水から処理水を分離することができるだけの圧力を付加できるものであれば特に限定されず、市販のポンプを用いることができる。これらのポンプとして、例えば、プランジャー式、渦巻き式、マグネット式など必要とする出力、特性に応じ適宜選択し、用いることができる。
半透膜ユニット9は、1以上の半透膜エレメントを収容した筒状圧力容器を備えており、供給された前処理水の一部が半透膜エレメントに備えられている半透膜を透過することによって、半透膜を透過した水である透過水10と透過しなかった水である濃縮水11とを得ることができる構造である。半透膜ユニット9は、1以上の該筒状圧力容器を備えており、複数の場合には、直列、並列に備えることができる。1以上の筒状圧力容器を並列に設置し、同一の供給水を半透膜処理するものを一つの半透膜ユニットとしたとき、該半透膜ユニットを多段に設置することも可能である。例えば、図1のように2段に半透膜ユニットを設置し、まず半透膜ユニット9aにて前処理水を処理して透過水10aと濃縮水11aとを得て、該濃縮水11aを次の半透膜ユニット9bにてさらに処理して透過水10bと濃縮水11bとを得る濃縮水2段法としてもよい。また、図3のように濃縮水11bをさらにもう一段の半透膜ユニットで処理する濃縮水3段法や、透過水10を供給水としてさらに別の半透膜ユニットで処理する透過水2段法を用いて良い。これらの構成は、原水水質、要求生産水質(透過水質)、水温などの環境条件、造水コストなどを鑑みて、適宜決定することができる。 阻止率向上処理を行う場合には、接触処理前や接触処理を行いながら半透膜表面の膜汚染物質を事前に取り除く事によってより持続性が高い回復効果を得ることができる。膜汚染物質を取り除く方法としては一般的にこれらの膜の洗浄薬品として用いられる薬品を洗浄剤として使用したり、微生物が膜面に付着するバイオファウリングでは殺菌剤の使用も効果的である。
膜表面の汚染物質を除去するための洗浄剤とは膜面に付着している物質を化学的に溶解、分解させる機能や物理的に剥がしやすくする機能を有するものが使用できるが、このとき、半透膜へ影響を与えない、あるいは最小限にする必要がある。
膜表面に付着した鉄やマンガンなどの金属類はクエン酸、シュウ酸、塩酸、硫酸等の酸性溶液を洗浄剤として使用すると洗浄効果があり、pHを3以下で使用することで洗浄効果を高めることができる。
また、有機物や微生物が膜表面に付着している場合には苛性ソーダやエチレンジアミン四酢酸四ナトリウム、リン酸系化合物などなどのアルカリ溶液を洗浄剤として使用することでに洗浄が効果的であり、pHを11以上で使用することで洗浄効果を高めることができる。さらに、付着物の剥離や加水分解等による除去効果を上げるためにpHを12以上で使用することで洗浄効果を高めることができる。
殺菌剤とは半透膜表面に付着した微生物による汚染物質の除去に効果があり、特に微生物の種類によっては粘性のある細胞外ポリマーの生成による水量低下を引き起こす場合があるので、微生物が半透膜表面に多く存在する場合には殺菌剤の使用が効果的である。
殺菌剤としては、次亜塩素酸ナトリウムや次亜臭素酸ナトリウム、二酸化塩素、クロラミン等の無機ハロゲン系酸化剤、過酸化水素、過マンガン酸カリウム等の酸素系酸化剤、DBNPA(2,2−ジブロモニトリロプロピオンアミド)、イソチアゾリン化合物等の有機化合物酸化剤等を使用することができる。なかでも、安全性や環境への影響等を考慮すると無機ハロゲン系酸化剤や有機化合物酸化剤を好適に使用することができる。
これらの洗浄剤あるいは殺菌剤は、それぞれの薬品を用いて単独に洗浄する方法でも、複数の薬品を交互に用いて洗浄する方法で用いてもよい。
The pretreatment supply pump 6 is not particularly limited as long as a predetermined amount of pretreatment water can be supplied to the semipermeable membrane unit 9 via the booster pump 8, and a commercially available pump can be used. Similarly, the booster pump 8 is not particularly limited as long as it can apply a pressure sufficient to separate the treated water from the treated water in the semipermeable membrane unit 9, and a commercially available pump can be used. As these pumps, for example, a plunger type, a spiral type, a magnet type and the like can be appropriately selected and used according to the required output and characteristics.
The semipermeable membrane unit 9 includes a cylindrical pressure vessel that houses one or more semipermeable membrane elements, and a part of the supplied pretreatment water permeates the semipermeable membrane provided in the semipermeable membrane element. By doing this, it is a structure which can obtain the permeated water 10 which is the water which permeated the semipermeable membrane, and the concentrated water 11 which is the water which did not permeate. The semipermeable membrane unit 9 includes one or more cylindrical pressure vessels, and in a plurality of cases, the semipermeable membrane unit 9 can be provided in series or in parallel. When one or more cylindrical pressure vessels are installed in parallel and the same supply water is treated as a semipermeable membrane unit, it is possible to install the semipermeable membrane units in multiple stages. . For example, as shown in FIG. 1, semi-permeable membrane units are installed in two stages. First, pre-treated water is treated in the semi-permeable membrane unit 9a to obtain permeated water 10a and concentrated water 11a. Further processing in the next semipermeable membrane unit 9b may be a concentrated water two-stage method in which permeated water 10b and concentrated water 11b are obtained. Further, as shown in FIG. 3, the concentrated water three-stage method in which the concentrated water 11b is further treated with another semi-permeable membrane unit, or the permeated water two-stage in which the permeated water 10 is treated as a supply water with another semi-permeable membrane unit. The method may be used. These configurations can be appropriately determined in view of raw water quality, required production water quality (permeated water quality), environmental conditions such as water temperature, water production cost, and the like. When the rejection improvement process is performed, a more sustainable recovery effect can be obtained by removing in advance the membrane contaminants on the semipermeable membrane surface before or during the contact process. As a method for removing membrane contaminants, a chemical generally used as a cleaning chemical for these membranes is used as a cleaning agent. In biofouling in which microorganisms adhere to the membrane surface, the use of a bactericide is also effective.
A cleaning agent for removing contaminants on the membrane surface can be used that has a function of chemically dissolving and decomposing substances adhering to the membrane surface and a function of making it physically easy to peel off. The semipermeable membrane should not be affected or minimized.
Metals such as iron and manganese adhering to the film surface have a cleaning effect when an acidic solution such as citric acid, oxalic acid, hydrochloric acid, sulfuric acid, etc. is used as a cleaning agent, and the cleaning effect is enhanced by using a pH of 3 or less. be able to.
Also, when organic matter or microorganisms are attached to the membrane surface, cleaning is effective by using an alkaline solution such as caustic soda, tetrasodium ethylenediaminetetraacetate, phosphoric acid compound, etc. as a cleaning agent. The cleaning effect can be enhanced by using 11 or more. Furthermore, the cleaning effect can be enhanced by using a pH of 12 or more in order to increase the removal effect by peeling or hydrolysis of deposits.
Bactericides are effective in removing contaminants by microorganisms adhering to the surface of the semipermeable membrane, and in particular, depending on the type of microorganism, it may cause a decrease in the amount of water due to the formation of a viscous extracellular polymer. Use of a disinfectant is effective when a large amount is present on the film surface.
Disinfectants include inorganic halogen-based oxidants such as sodium hypochlorite, sodium hypobromite, chlorine dioxide and chloramine, oxygen-based oxidants such as hydrogen peroxide and potassium permanganate, DBNPA (2,2- Organic compound oxidizing agents such as dibromonitrilopropionamide) and isothiazoline compounds can be used. Of these, inorganic halogen oxidants and organic compound oxidizers can be suitably used in consideration of safety and environmental impact.
These cleaning agents or disinfectants may be used either by a single cleaning method using respective chemicals or by a cleaning method using a plurality of chemicals alternately.

本発明に用いる阻止率向上剤は、半透膜に付着して半透膜の阻止率を向上させる機能を有する成分であれば特に限定しないが、ビニル系ポリマやポリアルキレングリコール鎖を有する化合物類が代表的である。ビニル系ポリマとしては、ポリ酢酸ビニル、ポリビニルアルコール、酢酸ビニル−エチレン共重合体、ボリピエルアルコール、酢酸ビニル−エチレン共重合体、塩化ビニル共重合体、スチレン−酢酸ビニル共重合体、Nビニルピロリドン−酢酸ビニル共重合体などを例示することができる。また、ポリアルキレングリコール鎖としては、例えば、ポリエチレングリコール鎖、ポリプロピレングリコール鎖、ポリトリメチレングリコール鎖、ポリテトラメチレングリコール鎖などを挙げることができる。これらのグリコール鎖は、例えば、エチレンオキシド、プロピレンオキシド、オキセタン、テトラヒドロフランなどの開環重合により形成することができる。さらに、本発明に適用する阻止率向上剤は、他の溶質を含有することが求められるが、その成分として、半透膜の性能に影響を与える酸化剤や濁質、膜に吸着し、性能低下を生じさせるような界面活性剤などの化合物、有機溶剤や油分等の成分が含まれていないことに留意する必要があるが、とくに限定されるものではない。   The blocking rate improver used in the present invention is not particularly limited as long as it is a component having a function of adhering to the semipermeable membrane and improving the blocking rate of the semipermeable membrane, but compounds having a vinyl polymer or a polyalkylene glycol chain are used. Is representative. Examples of vinyl polymers include polyvinyl acetate, polyvinyl alcohol, vinyl acetate-ethylene copolymer, Bolipier alcohol, vinyl acetate-ethylene copolymer, vinyl chloride copolymer, styrene-vinyl acetate copolymer, N-vinylpyrrolidone. -A vinyl acetate copolymer etc. can be illustrated. Examples of the polyalkylene glycol chain include a polyethylene glycol chain, a polypropylene glycol chain, a polytrimethylene glycol chain, and a polytetramethylene glycol chain. These glycol chains can be formed by, for example, ring-opening polymerization of ethylene oxide, propylene oxide, oxetane, tetrahydrofuran or the like. Furthermore, the rejection rate improver applied to the present invention is required to contain other solutes, but as its components, it adsorbs to oxidants and turbids that affect the performance of the semipermeable membrane, and the performance. It should be noted that components such as surfactants, organic solvents and oils that cause a decrease are not included, but there is no particular limitation.

本発明のポリアルキレングリコール鎖を有する化合物として、ポリアルキレングリコール鎖にイオン性基が導入された化合物や非イオン性の官能基が導入された化合物を用いることができる。イオン性基として、例えばスルホ基、カルボキシ基、ホスホ基、アミノ基、第4級アンモニウム基などを挙げることができる。これらのイオン性基を導入することにより、アニオン性やカチオン性の特性を有する水溶性の高分子化合物が得られる。
非イオン性の官能基としてアルキル基やフェニル基、エステル等が好ましく、ポリオキシエチレンアルキル(またはアルケニル)エーテル、ポリオキシエチレンアルキル(またはアルケニル)フェニルエーテル、ポリオキシエチレン脂肪酸エステル等を使用することができる。
本発明におけるポリアルキレングリコール鎖としては、とくに、ポリエチレングリコール鎖であることが好ましい。ポリエチレングリコール鎖を有する化合物は、水溶性が大きいので阻止率向上剤として取り扱いやすく、複合膜表面に対する親和性が高いので、処理後の経時的な性能低下が少ない。
また、本発明に用いる阻止率向上剤は、重量平均分子量が6,000以上100,000以下であり、より好ましくは7,500 〜50,000 である。阻止率向上剤の重量平均分子量が6,000未満であると、半透膜の阻止率が十分に向上せず、処理後の定着性も低くなるおそれがある。重量平均分子量を100,000以内に抑えることで、極端な透過流束低下を抑制すると共に、水への良好な溶解性を維持し、簡便な取り扱いを行うことができる。この効果は、特に阻止率向上剤がポリアルキレングリコール鎖を有する阻止率向上剤であるときに顕著である。なお、重量平均分子量は、阻止率向上剤を有する化合物の水溶液をゲルパーミエーションクロマトグラフィー(GPC)により分析し、得られたクロマトグラムからポリエチレンオキシド標準品の分子量に換算することにより求めることができる。
As the compound having a polyalkylene glycol chain of the present invention, a compound having an ionic group introduced into the polyalkylene glycol chain or a compound having a nonionic functional group introduced can be used. Examples of the ionic group include a sulfo group, a carboxy group, a phospho group, an amino group, and a quaternary ammonium group. By introducing these ionic groups, a water-soluble polymer compound having anionic or cationic characteristics can be obtained.
As the nonionic functional group, an alkyl group, a phenyl group, an ester, or the like is preferable, and polyoxyethylene alkyl (or alkenyl) ether, polyoxyethylene alkyl (or alkenyl) phenyl ether, polyoxyethylene fatty acid ester, or the like may be used. it can.
The polyalkylene glycol chain in the present invention is particularly preferably a polyethylene glycol chain. Since the compound having a polyethylene glycol chain is highly water-soluble, it is easy to handle as a blocking rate improver and has a high affinity for the composite membrane surface, so that there is little deterioration in performance over time after treatment.
Further, the blocking rate improver used in the present invention has a weight average molecular weight of 6,000 to 100,000, more preferably 7,500 to 50,000. If the weight average molecular weight of the blocking rate improver is less than 6,000, the blocking rate of the semipermeable membrane is not sufficiently improved, and the fixability after processing may be lowered. By suppressing the weight average molecular weight to within 100,000, it is possible to suppress extreme permeation flux reduction and maintain good solubility in water and perform simple handling. This effect is particularly remarkable when the rejection rate improver is a rejection rate improver having a polyalkylene glycol chain. In addition, a weight average molecular weight can be calculated | required by analyzing the aqueous solution of the compound which has a rejection rate improving agent by gel permeation chromatography (GPC), and converting into the molecular weight of a polyethylene oxide standard product from the obtained chromatogram. .

阻止率向上剤の濃度は、その組成や環境条件等から適宜定めれば良いが、10〜1000mg/Lであることが好ましく、10〜500mg/Lであることがより好ましい。阻止率向上剤の濃度が低過ぎる場合には、阻止率回復効果が低くなる恐れがあり、1000mg/Lを超えるほどに高過ぎる濃度では半透膜表面に付着されない状態で過剰に膜面に残り、必要以上の透過流束低下を引き起こす可能性がある。   The concentration of the rejection improving agent may be appropriately determined from the composition, environmental conditions, and the like, but is preferably 10 to 1000 mg / L, and more preferably 10 to 500 mg / L. If the concentration of the blocking rate improver is too low, the blocking rate recovery effect may be reduced. If the concentration is too high to exceed 1000 mg / L, it will remain excessively on the membrane surface without being attached to the semipermeable membrane surface. This may cause a decrease in permeation flux more than necessary.

阻止率向上剤と半透膜との接触方法は特に限定されないが、半透膜ユニットに阻止率向上剤を含有する液体を通水するとこで半透膜メント接触させる方法や、半透膜を阻止率向上剤をが乳する液体に浸漬させて接触させる方法等が挙げられる。   The contact method between the blocking rate improver and the semipermeable membrane is not particularly limited, but when a liquid containing the blocking rate improving agent is passed through the semipermeable membrane unit, Examples of the method include a method in which a blocking rate improver is immersed in a milking liquid and brought into contact therewith.

阻止率向上剤の接触方法の具体的な一例を図3を用いて説明する。   A specific example of the contact method of the blocking rate improver will be described with reference to FIG.

まず、各半透膜ユニット9からの透過水10を調整タンク13に貯める。洗浄剤あるいは殺菌剤と阻止率向上剤を同時に接触させる場合には、洗浄剤あるいは殺菌剤タンク14から洗浄剤や殺菌剤を、阻止率向上剤タンク15から阻止率向上剤を調整タンク13に送液し、所定の濃度やpHになるように撹拌して調整、作成する。ここで、透過水10の代わりに原水1や前処理ユニット4によって処理された中間水槽内の前処理水を利用しても良い。これにより、透過水を生産水として活用する場合には、透過水の消費が抑えられるため、回収率が向上することとなる。特に前処理水を利用する場合には、固形分除去された後であるため、半透膜エレメント内の流路閉塞懸念が少なく、好ましい。
前処理水供給ポンプ6および昇圧ポンプ8を停止して被処理水の供給を停止し、半透膜ユニットおよび配管内の原水(前処理水)、透過水および濃縮水を排水する。そして、調整された洗浄剤あるいは殺菌剤と阻止率向上剤の混合液を、調整液供給ポンプ16を用いて半透膜ユニット9への給水ラインを通して、半透膜ユニット9の一次側に供給し、膜透過させることで透過水と濃縮水を得る。透過水と濃縮水を調整タンク13に還流させることで調整液を循環しながら半透膜に接触させ、半透膜の阻止率を向上させる。
First, the permeated water 10 from each semipermeable membrane unit 9 is stored in the adjustment tank 13. When the cleaning agent or sterilizing agent and the blocking rate improver are brought into contact with each other at the same time, the cleaning agent or sterilizing agent is sent from the cleaning agent or sterilizing agent tank 14 and the blocking rate improving agent is sent from the blocking rate improving agent tank 15 to the adjustment tank 13. Liquid is prepared and adjusted and prepared by stirring to a predetermined concentration and pH. Here, instead of the permeated water 10, pretreated water in the intermediate water tank treated by the raw water 1 or the pretreatment unit 4 may be used. Thereby, when using permeated water as production water, since the consumption of permeated water is suppressed, the recovery rate is improved. In particular, when pretreated water is used, since it is after the solid content has been removed, there is little concern about blockage of the flow channel in the semipermeable membrane element, which is preferable.
The pretreated water supply pump 6 and the booster pump 8 are stopped to stop the supply of water to be treated, and the raw water (pretreated water), permeated water and concentrated water in the semipermeable membrane unit and the piping are drained. Then, the adjusted cleaning agent or the mixed liquid of the sterilizing agent and the rejection rate improving agent is supplied to the primary side of the semipermeable membrane unit 9 through the water supply line to the semipermeable membrane unit 9 using the adjusting solution supply pump 16. Permeated water and concentrated water are obtained by permeating through a membrane. By recirculating the permeated water and the concentrated water to the adjustment tank 13, the adjustment liquid is brought into contact with the semipermeable membrane while circulating, thereby improving the rejection of the semipermeable membrane.

阻止率向上剤を含んだ調整液を半透膜に接触処理するときの圧力は特に制限はなく、複合半透膜に被処理水を通水するときの圧力以下(10MPa以下)であることが好ましく、あるいは、薬品洗浄設備で運転される圧力以下(1MPa以下)であることがより好ましい。
調整液を半透膜に接触処理するときには、透過流束が0.01〜2m/日の範囲で行うと半透膜の内部にまで阻止率向上剤が接触できるため処理効果が高まり好ましい。透過流束が0.01m/日以下では処理効果が低く、2m/日以上では過剰な運転圧力により半透膜がダメージを受けてしまう可能性がある。
なお、透過流束とは単位時間および単位面積あたり半透膜を透過した水量のことであり、既知面積の半透膜を透過する水の量を電磁流量計やフロート式流量計などの流量計や、電子天秤などの重量測定器にて測定し、下記式により計算される。
There is no restriction | limiting in particular when the adjustment liquid containing a rejection rate improving agent is contact-processed to a semipermeable membrane, It should be below the pressure (10 Mpa or less) when water to be processed is passed through a composite semipermeable membrane. Or it is more preferable that it is below the pressure (1 MPa or less) which operate | moves with a chemical cleaning equipment.
When the adjustment liquid is contacted with the semipermeable membrane, it is preferable that the permeation flux is in the range of 0.01 to 2 m / day, since the blocking rate improver can be brought into contact with the inside of the semipermeable membrane. If the permeation flux is 0.01 m / day or less, the treatment effect is low, and if it is 2 m / day or more, the semipermeable membrane may be damaged by excessive operating pressure.
The permeation flux is the amount of water that permeates the semipermeable membrane per unit time and unit area. The amount of water that permeates the semipermeable membrane of a known area is measured by a flow meter such as an electromagnetic flow meter or a float type flow meter. Or a weight measuring instrument such as an electronic balance, and calculated by the following formula.

透過流束 = 透過水量 / (膜面積 × 採取時間)
また、阻止率向上剤を含んだ調整液を通水する時間は、0.1〜24時間が好ましく、0.25〜3時間であることがより好ましい。通水時間が短すぎると反応が不十分となる懸念があり、ある一定の時間通水すると反応がそれ以上進まなくなるので、長く通水するのも効率が悪くなる。
阻止率向上剤を含む調整液を通水する際に半透膜ユニットから透過される透過水の流量を測定することで、阻止率向上処理の経時変化を確認することができる。処理中の温度や圧力、濃度が一定であれば透過水量の変化で処理効果を判断する目安となるため、過剰な接触処理による透過水量の低下を防止する上で有効である。さらに、処理効果の確認には透過水量一定条件での処理では運転圧力の変化を確認しても良く、阻止率向上剤を含む調整駅内に指標物質を添加し、透過水中の指標物質の濃度変化を測定することで処理効果を判断することも可能である。
さらに、洗浄剤あるいは殺菌剤での処理を行ってから阻止率向上剤との処理を行うことで阻止率向上効果を高めることも可能である。この場合には、まず、各半透膜ユニット9からの透過水10を調整タンク13に貯める。その後、洗浄剤あるいは殺菌剤タンク14から洗浄剤や殺菌剤を調整タンク13に送液し、所定の濃度やpHになるように撹拌して調整、作成する。前処理水供給ポンプ6および昇圧ポンプ8を停止して被処理水の供給を停止し、半透膜ユニットおよび配管内の原水(前処理水)、透過水および濃縮水を排水する。そして、調整された洗浄剤あるいは殺菌剤を含んだ調整液を、調整液供給ポンプ16を用いて半透膜ユニット9への給水ラインを通して、半透膜ユニット9の一次側に供給し、膜透過させることで透過水と濃縮水を得る。
Permeation flux = Permeated water amount / (Membrane area × Sampling time)
Moreover, 0.1-24 hours are preferable and, as for the time which passes the adjustment liquid containing a rejection rate improving agent, it is more preferable that it is 0.25-3 hours. If the water passage time is too short, there is a concern that the reaction will be insufficient, and if the water passes for a certain period of time, the reaction will not proceed any further.
By measuring the flow rate of the permeated water permeated from the semipermeable membrane unit when the adjustment liquid containing the rejection rate improving agent is passed, it is possible to confirm the change over time in the rejection rate improving process. If the temperature, pressure, and concentration during the treatment are constant, the treatment effect can be determined based on the change in the amount of permeated water, which is effective in preventing a decrease in the amount of permeated water due to excessive contact treatment. Furthermore, in confirming the treatment effect, changes in the operating pressure may be confirmed in the treatment with a constant amount of permeate, and an indicator substance is added to the adjustment station containing the rejection rate improver, and the concentration of the indicator substance in the permeate is increased. It is also possible to determine the processing effect by measuring the change.
Furthermore, it is also possible to enhance the effect of improving the rejection rate by performing the treatment with the cleaning agent or the bactericide and then the treatment with the rejection rate improving agent. In this case, first, the permeated water 10 from each semipermeable membrane unit 9 is stored in the adjustment tank 13. Thereafter, the cleaning agent or the sterilizing agent is fed from the cleaning agent or the sterilizing agent tank 14 to the adjustment tank 13, and is adjusted and prepared by stirring so as to obtain a predetermined concentration or pH. The pretreated water supply pump 6 and the booster pump 8 are stopped to stop the supply of water to be treated, and the raw water (pretreated water), permeated water and concentrated water in the semipermeable membrane unit and the piping are drained. And the adjustment liquid containing the adjusted cleaning agent or bactericidal agent is supplied to the primary side of the semipermeable membrane unit 9 through the water supply line to the semipermeable membrane unit 9 using the adjustment liquid supply pump 16, and the membrane permeation. To obtain permeated water and concentrated water.

洗浄、殺菌処理時間は0.1〜24時間が好ましい。処理時間が短すぎると付着物の除去効果が低くなり、処理時間が長すぎると効率が悪くなると共に膜への影響が大きくなる。洗浄、殺菌する場合、調整液を常時循環で接触させても良く、循環と浸漬を繰り返すことも処理効果を高めることもできる。   The washing and sterilization time is preferably 0.1 to 24 hours. If the treatment time is too short, the effect of removing the deposits is lowered, and if the treatment time is too long, the efficiency is lowered and the influence on the film is increased. In the case of washing and sterilizing, the adjustment liquid may be constantly contacted by circulation, and the circulation and immersion can be repeated or the treatment effect can be enhanced.

洗浄、殺菌処理終了後、半透膜ユニット、調整タンクおよび配管内の液を排水し、その後、再度透過水10を調整タンク13に貯め、阻止率向上剤タンク15から阻止率向上剤を調整タンク13に送液し、所定の濃度になるように撹拌して調整、作成する。調整液供給ポンプ16を用いて半透膜ユニット9への給水ラインを通して、半透膜ユニット9の一次側に供給し、膜透過させることで透過水と濃縮水を得る。透過水と濃縮水を調整タンク13に還流させることで調整液を循環しながら半透膜に接触させ、半透膜の阻止率を向上させる。処理するときの圧力や透過流束、処理時間は洗浄剤あるいは殺菌剤との混合液を接触させるときと同様の条件で実施することができる。   After the cleaning and sterilization processing, the liquid in the semipermeable membrane unit, the adjustment tank and the piping is drained, and then the permeated water 10 is stored again in the adjustment tank 13, and the inhibition rate improver is adjusted from the inhibition rate improver tank 15 to the adjustment tank. The solution is fed to No. 13 and adjusted and prepared by stirring to a predetermined concentration. Through the water supply line to the semipermeable membrane unit 9 using the adjustment liquid supply pump 16, the semipermeable membrane unit 9 is supplied to the primary side and permeated through the membrane to obtain permeated water and concentrated water. By recirculating the permeated water and the concentrated water to the adjustment tank 13, the adjustment liquid is brought into contact with the semipermeable membrane while circulating, thereby improving the rejection of the semipermeable membrane. The pressure, permeation flux, and treatment time for the treatment can be carried out under the same conditions as in the case of bringing the mixed solution with the cleaning agent or the bactericidal agent into contact.

本発明の阻止率向上方法では、半透膜の初期の純水透過係数Aに対して、洗浄剤あるいは殺菌剤を接触させた後の純水透過係数A1との比A1/Aが0.8倍〜2.0倍の範囲内に有り、さらに、阻止率向上剤と接触させた後の純水透過係数A2と初期の純水透過係数Aとの比A2/Aが0.6倍〜1.9倍の範囲内にすることが好ましい。さらに好ましくはA1/Aが1.0倍〜1.8倍の範囲内であり、A2/Aが0.8倍〜1.7倍の範囲内である。A1/Aが大きすぎると半透膜自体の性能低下が大きすぎるため、阻止率向上処理の効果が得られ難くなり、A1/Aが小さすぎると膜面付着物の影響によりこの場合も阻止率向上効果が小さくなってしまう。さらにA2/Aが大きすぎる場合にはプラント全体の水量が出すぎるため、運転圧力低下による透過水質悪化が大きく、A2/Aが小さすぎる場合には阻止率向上処理による水量低下が大きく、運転圧力増大による運転コストの増加につながってしまう。
ここで、純水透過係数は、下記の方法によって求めることができる。
In the rejection rate improving method of the present invention, the ratio A1 / A of the initial pure water permeability coefficient A of the semipermeable membrane to the pure water permeability coefficient A1 after contact with a cleaning agent or a disinfectant is 0.8. The ratio A2 / A between the pure water permeability coefficient A2 after contact with the rejection rate improver and the initial pure water permeability coefficient A is 0.6 times to 1 It is preferable to be within a range of .9 times. More preferably, A1 / A is in the range of 1.0 times to 1.8 times, and A2 / A is in the range of 0.8 times to 1.7 times. If A1 / A is too large, the performance degradation of the semipermeable membrane itself is too great, and it is difficult to obtain the effect of improving the rejection rate. If A1 / A is too small, the rejection rate is also affected in this case due to the influence of the film surface deposits. The improvement effect will be reduced. Furthermore, when A2 / A is too large, the amount of water in the whole plant is too large, so the permeated water quality is greatly deteriorated due to a decrease in operating pressure, and when A2 / A is too small, the decrease in the amount of water due to the rejection improvement process is large. This will lead to an increase in operating costs due to the increase.
Here, the pure water permeability coefficient can be obtained by the following method.

Jv=A(ΔP−π(Cm)) ・・・(1)
Js=B(Cm−Cp) ・・・(2)
(Cm−Cp)/(Cf−Cp)=exp(Jv/k) ・・・(3)
Cp=Js/Jv ・・・(4)
A=α×A25×μ25/μ ・・・(5)
B=β×B25×μ25/μ×(273.15+T)/(298.15) ・・・(6)
Cf :供給水濃度 [mg/l]
Cm :膜面濃度 [mg/l]
Cp :透過水濃度 [mg/l]
Js :溶質透過流束 [kg/m2/s]
Jv :純水透過流束 [m3/m2/s]
k :物質移動係数 [m/s]
A :純水透過係数 [m3/m2/Pa/s]
A25 :25℃での純水透過係数 [m3/m2/Pa/s」
B :溶質透過係数 [m/s]
B25 :25℃での溶質透過係数 [m3/m2/Pa/s]
T :温度 [℃]
α :運転条件による変動係数 [−]
β :運転条件による変動係数 [−]
ΔP :運転圧力 [Pa]
μ :粘度 [Pa・s]
μ25 :25℃での粘度 [Pa・s]
π :浸透圧 [Pa]
すなわち、Jv、Cf、Cp、Tを実測し、k、その他の物性値を(1)〜(4)に代入することによって実測条件での純水透過係数Aと溶質透過係数Bを求めることができる。さらに、予め得られているα、βに基づけば、25℃における純水透過係数A25と溶質透過係数B25を、(5)〜(6)から求めることができ、さらには、(5)〜(6)を用いて任意の温度Tの純水透過係数と溶質透過係数も得ることができる。また、半透膜エレメントの性能を算出する場合は、半透膜エレメントの長さ方向に物質収支を計算しながら数値積分することによって求めることができる。この計算方法の詳細は、非特許文献(M.Taniguchiら、Behavior of a reverse osmosis plant adopting a brine conversion、ジャーナル・オブ・メンブレン・サイエンス、183、p249−257(2000))に示されている。
Jv = A (ΔP−π (Cm)) (1)
Js = B (Cm−Cp) (2)
(Cm−Cp) / (Cf−Cp) = exp (Jv / k) (3)
Cp = Js / Jv (4)
A = α × A25 × μ25 / μ (5)
B = β × B25 × μ25 / μ × (273.15 + T) / (298.15) (6)
Cf: Supply water concentration [mg / l]
Cm: film surface concentration [mg / l]
Cp: Permeated water concentration [mg / l]
Js: Solute permeation flux [kg / m2 / s]
Jv: Pure water permeation flux [m3 / m2 / s]
k: Mass transfer coefficient [m / s]
A: Pure water permeability coefficient [m3 / m2 / Pa / s]
A25: Pure water permeability coefficient at 25 ° C. [m3 / m2 / Pa / s]
B: Solute permeability coefficient [m / s]
B25: Solute permeability coefficient at 25 ° C. [m3 / m2 / Pa / s]
T: Temperature [° C]
α: Coefficient of variation due to operating conditions [-]
β: Coefficient of variation due to operating conditions [-]
ΔP: Operating pressure [Pa]
μ: Viscosity [Pa · s]
μ25: Viscosity at 25 ° C. [Pa · s]
π: Osmotic pressure [Pa]
That is, Jv, Cf, Cp, and T are measured, and k and other physical property values are substituted into (1) to (4) to obtain the pure water permeability coefficient A and the solute permeability coefficient B under the measured conditions. it can. Furthermore, based on α and β obtained in advance, the pure water permeability coefficient A25 and the solute permeability coefficient B25 at 25 ° C. can be obtained from (5) to (6), and further, (5) to ( Using 6), the pure water permeability coefficient and solute permeability coefficient at an arbitrary temperature T can also be obtained. Moreover, when calculating the performance of a semipermeable membrane element, it can obtain | require by carrying out numerical integration, calculating a material balance in the length direction of a semipermeable membrane element. Details of this calculation method are shown in non-patent literature (M. Taniguchi et al., Behavior of a reverse osmosis plant adopting a brine conversion, Journal of Membrane Science, 183, p249-257 (2000)).

阻止率向上剤による接触処理は半透膜の1次側および/または2次側から接触させることで効果を高めることができる。2次側から接触させる方法として図4を用いて説明する。半透膜ユニット9からの透過水ライン10を調整タンク13と接続する際に、調整タンク13下部にラインを接続して、透過水を貯める構成にする。このとき調整タンク13を半透膜ユニットの高さから2m以上5m以下の高さに設置することで、半透膜ユニット9内への調整タンク内の液の流入が可能となる。つまり、1次側からの阻止率向上剤の接触時には調整タンク内で作成した阻止率向上剤含有液が調整液供給ポンプ16による半透膜ユニット9に送液され、透過水と濃縮水が調整タンク13に戻ることで循環処理するが、このとき調整供給ポンプ16の運転を停止することで、調整タンク13内の液が2次側から半透膜ユニット9に流入し2次側からの阻止率向上処理が可能となる。   The effect of the contact treatment with the blocking rate improving agent can be enhanced by bringing the semi-permeable membrane into contact with the primary side and / or the secondary side. A method of contacting from the secondary side will be described with reference to FIG. When the permeate line 10 from the semipermeable membrane unit 9 is connected to the adjustment tank 13, the line is connected to the lower part of the adjustment tank 13 to store the permeate. At this time, by installing the adjustment tank 13 at a height of 2 m or more and 5 m or less from the height of the semipermeable membrane unit, the liquid in the adjustment tank can flow into the semipermeable membrane unit 9. That is, at the time of contact of the blocking rate improver from the primary side, the blocking rate improving agent-containing liquid created in the adjustment tank is sent to the semipermeable membrane unit 9 by the adjusting solution supply pump 16 to adjust the permeated water and concentrated water. Circulation processing is performed by returning to the tank 13, but at this time, by stopping the operation of the adjustment supply pump 16, the liquid in the adjustment tank 13 flows into the semipermeable membrane unit 9 from the secondary side and is blocked from the secondary side. Rate improvement processing becomes possible.

阻止率向上剤との接触処理中の調整液供給ポンプ16の停止は数回繰り返すことで阻止率向上効果を高めることができる。   Stopping the adjustment liquid supply pump 16 during the contact treatment with the blocking rate improving agent can be repeated several times to increase the blocking rate improving effect.

また、図5のように、半透膜を有する半透膜ユニットが複数段並列に配置され、かつ、段階的に配置された構成の場合、格段の半透膜ユニットの透過水質を確認し、水質の悪い段の半透膜ユニットを選択的に阻止率向上処理することもできる。   In addition, as shown in FIG. 5, when the semipermeable membrane unit having the semipermeable membrane is arranged in a plurality of stages in parallel, and in the case of the configuration arranged in stages, the permeated water quality of the exceptional semipermeable membrane unit is confirmed, A semipermeable membrane unit having a poor water quality can be selectively treated to improve the rejection.

例えば第1段の半透膜ユニット9a1〜9a3のみ阻止率向上処理をする場合、バルブV1、V3、V6、Va1〜Va4を開け、バルブV2、V4、V5、V7、Vb3、Vc2を閉めることで選択的な通水が可能となる。   For example, when only the first-stage semipermeable membrane units 9a1 to 9a3 are to improve the rejection rate, open valves V1, V3, V6, Va1 to Va4 and close valves V2, V4, V5, V7, Vb3, and Vc2. Selective water flow is possible.

さらに、第2段の半透膜ユニット9b1、9b2のみ阻止率向上処理をする場合、バルブV2、V3、V4、V5、V7、Vb1〜Vb3を開け、バルブV1、V6、V8、Va1〜Va4、Vc1、Vc2を閉めることで第2段のみへの選択的な通水が可能となる。   Furthermore, when only the second-stage semipermeable membrane units 9b1 and 9b2 are subjected to the rejection improvement process, the valves V2, V3, V4, V5, V7, Vb1 to Vb3 are opened, and the valves V1, V6, V8, Va1 to Va4, By closing Vc1 and Vc2, it is possible to selectively pass water only to the second stage.

本発明の半透膜の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜の上に別の素材で形成された非常に薄い分離機能層を有する複合半透膜を用いることができる。
この中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れた性能を有する、ポリアミドを分離機能層とした複合逆浸透膜、あるいはナノ濾過膜が好ましい。特に、海水を原水とするような場合には、複合半透膜に浸透圧以上の圧力をかける必要があり、実質的には少なくとも5MPaの操作圧力が負荷されることが多い。この圧力に対して、高い透水性と阻止性能を維持するためにはポリアミドを分離機能層とし、それを微多孔性膜や不織布からなる支持体で保持する構造のものが適している。また、ポリアミド半透膜としては、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの分離機能層を有してなる複合半透膜が適している。
本発明では半透膜を実際に使用するために形態化した半透膜エレメントとして使用することができる。半透膜の膜形態が平膜の場合は、スパイラル、チューブラー、プレート・アンド・フレームのモジュールに組み込んで使用することができるが、スパイラル形状を用いる場合、供給水の流路材、透過水の流路材などの部材が当該モジュールに組み込まれており、特に、高濃度用、高圧用に設計された複合半透膜エレメントとして好ましく用いられる。
For the material of the semipermeable membrane of the present invention, a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer can be used. The membrane structure was formed of another material on an asymmetric membrane having a dense layer on at least one side of the membrane and having fine pores with gradually increasing pore diameters from the dense layer to the inside of the membrane or the other side. A composite semipermeable membrane having a very thin separation functional layer can be used.
Among these, a composite reverse osmosis membrane having a high pressure resistance, high water permeability, and high solute removal performance, and having excellent performance and using polyamide as a separation functional layer, or a nanofiltration membrane is preferable. In particular, when seawater is used as raw water, it is necessary to apply a pressure higher than the osmotic pressure to the composite semipermeable membrane, and an operating pressure of at least 5 MPa is often applied in practice. In order to maintain high water permeability and blocking performance against this pressure, a structure in which polyamide is used as a separation functional layer and is held by a support made of a microporous membrane or a nonwoven fabric is suitable. As the polyamide semipermeable membrane, a composite semipermeable membrane having a separation functional layer of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide is suitable.
In the present invention, the semipermeable membrane can be used as a semipermeable membrane element shaped for practical use. When the semipermeable membrane is a flat membrane, it can be used by incorporating it into a spiral, tubular, or plate-and-frame module. Such a channel material is incorporated in the module, and is particularly preferably used as a composite semipermeable membrane element designed for high concentration and high pressure.

また、本発明の阻止率向上方法は、同じ水処理設備で同じ半透膜に対して、繰り返し効果のある阻止率の改善を実施できることから、定期的に本発明の処理方法を実施することで、長期間、一定の除去率を維持することができる。特に、膜の荷電による排除効果がある無機電解質よりも非荷電物質除去率の改善効果が大きい。非荷電物質としては、例えば非電解質有機物質や中性領域では乖離していない物質(例えばホウ素やシリカ)などが挙げられる。これらは、海水や地下水に多く含まれることから、これらの原水を処理する造水プラントに本発明の方法を適用することでより安定な運転を継続することが可能となる。   In addition, since the rejection rate improving method of the present invention can improve the rejection rate with repetitive effects on the same semipermeable membrane in the same water treatment facility, the treatment method of the present invention is periodically implemented. A constant removal rate can be maintained for a long time. In particular, the effect of improving the removal rate of uncharged substances is greater than that of inorganic electrolytes that have an effect of eliminating membrane charges. Examples of the non-charged substance include non-electrolyte organic substances and substances that are not separated in the neutral region (for example, boron and silica). Since these are contained in a large amount in seawater and groundwater, it is possible to continue more stable operation by applying the method of the present invention to a desalination plant for treating these raw waters.

さらに、本発明の阻止率向上処理によって、半透膜からの溶媒と溶質の両方の透過を抑制することができるため、特に半透膜が劣化して透過流束が増加している場合には、阻止率の回復だけでなく、透過流束の低下により設計値通りの造水量を維持するための過度な運転圧力低下による透過水の水質悪化を防止することができる。   Further, the rejection improvement process of the present invention can suppress the permeation of both the solvent and the solute from the semipermeable membrane. Therefore, particularly when the semipermeable membrane is deteriorated and the permeation flux is increased. In addition to recovery of the rejection rate, it is possible to prevent deterioration of the quality of the permeated water due to an excessive decrease in the operating pressure for maintaining the amount of water produced as designed by reducing the permeation flux.

以上のような阻止性能向上方法によって処理した半透膜を使用した水処理方法は、透過水質の悪化を防止し、長期間良好な透過水質が得られ、ひいては、半透膜の寿命を延ばし、造水コスト低減に大きく貢献することができる。   The water treatment method using the semipermeable membrane treated by the method for improving the blocking performance as described above prevents the deterioration of the permeated water quality, obtains a good permeated water quality for a long time, and thus extends the life of the semipermeable membrane, This can greatly contribute to the reduction of water production costs.

以下に実施例をあげて本発明をさらに詳細に説明する。なお、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited by these Examples.

[実施例1]
製造された時の初期性能として32,000mg/L−NaCl、25℃、pH7の水溶液を5.5MPa、回収率15%で循環加圧運転したときのNaCl除去率が99.8%、造水量が30m/日、ホウ素除去率が91%である芳香族逆浸透膜エレメントを準備した。このときの純水透過係数Aは3.6×10−9kg/m/Pa/sであった。
この逆浸透膜エレメントを、実際のプラントで半年間運転させたところ、NaCl除去率が99.0%、造水量が28m/日、ホウ素除去率が85%に低下した。このときの純水透過係数A’は3.3×10−9kg/m/Pa/sであった。
この性能低下した逆浸透膜エレメントに対し、苛性ソーダでpH12に調整したアルカリ洗浄剤を3時間循環し洗浄処理を行った。この時の性能は初期性能測定時と同様の条件でNaCl除去率が98.6%、造水量が32m/日、ホウ素除去率が84%であり、純水透過係数A1は3.8×10−9kg/m/Pa/sであった。
[Example 1]
The initial performance when manufactured was 32,000 mg / L-NaCl, 25 ° C., pH 7 aqueous solution at 5.5 MPa, recovery rate was 15%, and the NaCl removal rate was 99.8% when the circulating pressure operation was performed. Was 30 m 3 / day, and a boron removal rate of 91% was prepared as an aromatic reverse osmosis membrane element. The pure water permeability coefficient A at this time was 3.6 × 10 −9 kg / m 2 / Pa / s.
When this reverse osmosis membrane element was operated in an actual plant for half a year, the NaCl removal rate was reduced to 99.0%, the amount of water produced was 28 m 3 / day, and the boron removal rate was reduced to 85%. The pure water permeability coefficient A ′ at this time was 3.3 × 10 −9 kg / m 2 / Pa / s.
The reverse osmosis membrane element whose performance was deteriorated was washed by circulating an alkaline detergent adjusted to pH 12 with caustic soda for 3 hours. As for the performance at this time, the NaCl removal rate was 98.6%, the amount of fresh water produced was 32 m 3 / day, the boron removal rate was 84% under the same conditions as the initial performance measurement, and the pure water permeability coefficient A1 was 3.8 × It was 10 −9 kg / m 2 / Pa / s.

この洗浄処理後の逆浸透膜エレメントを、重量平均分子量8,000のポリエチレングリコールの15mg/L水溶液を使用して、1時間、0.45MPaでの加圧循環により阻止率向上処理を行った。このときの処理時の透過流束は0.3m/日であった。この阻止率向上処理させた後の逆浸透膜エレメントについて、同様の性能測定を行ったところ、NaCl除去率が99.3%、造水量が23m/日、ホウ素除去率が91%となり、純水透過係数A2は2.7×10−9kg/m/Pa/sであった。このとき、A1/Aは1.06であり、A2/Aは0.82であった。
[実施例2]
実施例1と同様に半年間運転したエレメントを使用して、苛性ソーダでpH10に調整したアルカリ洗浄剤を3時間循環し洗浄処理を行った。この時の性能はNaCl除去率が98.9%、造水量が29m/日、ホウ素除去率が85%であり、純水透過係数A1は3.4×10−9kg/m/Pa/sであった。
The reverse osmosis membrane element after this washing treatment was subjected to a treatment for improving the rejection rate by pressure circulation at 0.45 MPa for 1 hour using a 15 mg / L aqueous solution of polyethylene glycol having a weight average molecular weight of 8,000. The permeation flux during the treatment at this time was 0.3 m / day. The reverse osmosis membrane element after the treatment for improving the rejection rate was subjected to the same performance measurement. As a result, the NaCl removal rate was 99.3%, the water production was 23 m 3 / day, and the boron removal rate was 91%. The water permeability coefficient A2 was 2.7 × 10 −9 kg / m 2 / Pa / s. At this time, A1 / A was 1.06 and A2 / A was 0.82.
[Example 2]
Using an element operated for half a year in the same manner as in Example 1, an alkaline detergent adjusted to pH 10 with caustic soda was circulated for 3 hours to carry out a washing treatment. As for the performance at this time, the NaCl removal rate was 98.9%, the amount of water produced was 29 m 3 / day, the boron removal rate was 85%, and the pure water permeability coefficient A1 was 3.4 × 10 −9 kg / m 2 / Pa. / S.

この洗浄処理後の逆浸透膜エレメントを、実施例1と同様の条件で阻止率向上処理させたところ、NaCl除去率が99.4%、造水量が20m/日、ホウ素除去率が91%となり、純水透過係数A2は2.4×10−9kg/m/Pa/sであった。このとき、A1/Aは0.94であり、A2/Aは0.67であろ水量低下は大きいものの阻止率向上効果は十分認められた。
[比較例1]実施例1と同様に半年間運転したエレメントを使用して、洗浄処理および殺菌処理をせずに実施例1と同様の条件で阻止率向上処理を行った。このとき、NaCl除去率は99.2%、造水量が25m/日、ホウ素除去率が87%であり十分な阻止率向上効果を発揮することはできなかった。
[実施例3]
実施例1と同様に半年間運転したエレメントを使用して、DBNPAを100mg/Lに調整した殺菌剤溶液を3時間循環し洗浄処理を行った。この時の性能はNaCl除去率が98.8%、造水量が30m/日、ホウ素除去率が85%であり、純水透過係数A1は3.6×10−9kg/m/Pa/sであった。
The reverse osmosis membrane element after this washing treatment was subjected to a treatment for improving the rejection rate under the same conditions as in Example 1. As a result, the NaCl removal rate was 99.4%, the amount of water produced was 20 m 3 / day, and the boron removal rate was 91%. The pure water permeability coefficient A2 was 2.4 × 10 −9 kg / m 2 / Pa / s. At this time, A1 / A was 0.94, A2 / A was 0.67, and although the decrease in the amount of filtered water was large, the effect of improving the rejection rate was sufficiently recognized.
[Comparative Example 1] Using the element operated for half a year in the same manner as in Example 1, the blocking rate improving process was performed under the same conditions as in Example 1 without performing the cleaning process and the sterilizing process. At this time, the NaCl removal rate was 99.2%, the amount of water produced was 25 m 3 / day, and the boron removal rate was 87%, and a sufficient inhibition rate improvement effect could not be exhibited.
[Example 3]
Using the element operated for half a year in the same manner as in Example 1, a bactericide solution prepared by adjusting DBNPA to 100 mg / L was circulated for 3 hours for washing treatment. As for the performance at this time, the NaCl removal rate was 98.8%, the amount of water produced was 30 m 3 / day, the boron removal rate was 85%, and the pure water permeability coefficient A1 was 3.6 × 10 −9 kg / m 2 / Pa. / S.

この洗浄処理後の逆浸透膜エレメントを、実施例1と同様の条件で阻止率向上処理させたところ、NaCl除去率が99.3%、造水量が22m/日、ホウ素除去率が90%となり、純水透過係数A2は2.6×10−9kg/m/Pa/sであった。このとき、A1/Aは1.00であり、A2/Aは0.79であった。
[実施例4]
実施例1と同様に半年間運転したエレメントを、重量平均分子量8,000のポリエチレングリコールの15mg/L水溶液を苛性ソーダでpHを12に調整した水溶液を使用して、1時間、0.45MPaでの加圧循環により阻止率向上処理を行った。このときの処理時の透過流束は0.3m/日であった。この阻止率向上処理させた後の逆浸透膜エレメントについて、同様の性能測定を行ったところ、NaCl除去率が99.2%、造水量が22m/日、ホウ素除去率が90%となった。
[実施例5]
実施例1と同様の条件で洗浄処理を行った逆浸透膜エレメントを、調整タンクを半透膜ユニットの高さから2mの高さに設置して、実施例1と同様の条件で阻止率向上処理させた。このとき、30分に1回循環を停止して、調整タンク内の水溶液が半透膜ユニットの2次側から流入するようにした。このときのNaCl除去率は99.4%、造水量が22m/日、ホウ素除去率が91%となり、純水透過係数A2は2.6×10−9kg/m/Pa/sであった。このとき、A1/Aは1.06であり、A2/Aは0.79であった。
[実施例5]
初期性能が実施例1と同じ逆浸透膜エレメントを図5に示す配置になるように設置し、1つの半透膜ユニットには1本の逆浸透膜エレメントを用いた。原水としてUF膜による前処理を施した海水を用い、温度25℃、供給流量200m/日、トータル回収率30%の条件で半年間運転を行った。このときの装置全体のTDS除去率は99.3%、ホウ素除去率が89%であったのに対し、第1段からの透過水のTDS除去率は98.7%、ホウ素除去率は86%と除去性能が高いはずの第1段の除去率の悪化が大きくなっていた。このため、第1段のみ通水可能なラインに切り替え、実施例1と同じ条件で第1段の洗浄処理と阻止率向上処理を実施した。実施後の装置全体のTDS除去率は99.4%、ホウ素除去率が90%で、第1段からの透過水のTDS除去率は99.2%、ホウ素除去率は89%に向上していた。
When the reverse osmosis membrane element after this washing treatment was subjected to a treatment for improving the rejection rate under the same conditions as in Example 1, the NaCl removal rate was 99.3%, the amount of water produced was 22 m 3 / day, and the boron removal rate was 90%. Thus, the pure water permeability coefficient A2 was 2.6 × 10 −9 kg / m 2 / Pa / s. At this time, A1 / A was 1.00 and A2 / A was 0.79.
[Example 4]
The element operated for half a year in the same manner as in Example 1 was prepared by using a 15 mg / L aqueous solution of polyethylene glycol having a weight average molecular weight of 8,000, adjusted to pH 12 with caustic soda for 1 hour at 0.45 MPa. A rejection improvement process was performed by pressure circulation. The permeation flux during the treatment at this time was 0.3 m / day. The reverse osmosis membrane element after the treatment for improving the rejection rate was subjected to the same performance measurement. As a result, the NaCl removal rate was 99.2%, the water production was 22 m 3 / day, and the boron removal rate was 90%. .
[Example 5]
A reverse osmosis membrane element that has been washed under the same conditions as in Example 1 is installed with a regulating tank at a height of 2 m from the height of the semipermeable membrane unit, and the rejection rate is improved under the same conditions as in Example 1. It was processed. At this time, the circulation was stopped once every 30 minutes so that the aqueous solution in the adjustment tank flows from the secondary side of the semipermeable membrane unit. The NaCl removal rate at this time was 99.4%, the amount of water produced was 22 m 3 / day, the boron removal rate was 91%, and the pure water permeability coefficient A2 was 2.6 × 10 −9 kg / m 2 / Pa / s. there were. At this time, A1 / A was 1.06 and A2 / A was 0.79.
[Example 5]
A reverse osmosis membrane element having the same initial performance as that of Example 1 was installed so as to have the arrangement shown in FIG. 5, and one reverse osmosis membrane element was used for one semipermeable membrane unit. Seawater pretreated with a UF membrane was used as raw water, and the operation was performed for six months under conditions of a temperature of 25 ° C., a supply flow rate of 200 m 3 / day, and a total recovery rate of 30%. At this time, the TDS removal rate of the entire apparatus was 99.3% and the boron removal rate was 89%, whereas the TDS removal rate of the permeated water from the first stage was 98.7% and the boron removal rate was 86. %, The deterioration of the removal rate of the first stage, which should have high removal performance, was large. For this reason, it switched to the line which can permeate | transmit only the 1st stage, and implemented the 1st stage washing process and the rejection improvement process on the same conditions as Example 1. The TDS removal rate of the entire apparatus after implementation is 99.4%, the boron removal rate is 90%, the TDS removal rate of the permeated water from the first stage is 99.2%, and the boron removal rate is improved to 89%. It was.

実施例、比較例の結果を表1、表2に示す。   The results of Examples and Comparative Examples are shown in Tables 1 and 2.

Figure 2016128142
Figure 2016128142

Figure 2016128142
Figure 2016128142

本発明の阻止率向上方法は、使用により性能が低下した複合半透膜に対して、膜を使用している場所で簡便かつ安全にその性能を回復させることができる。そして、本発明では、非電解質有機物質やシリカやホウ素などの中性領域では乖離していない低分子量物質などの阻止率向上に特に効果があり、複合半透膜を長期にわたって繰り返し使用する場合に有用である。 The method for improving the rejection rate of the present invention can easily and safely restore the performance of the composite semipermeable membrane whose performance has been lowered by use at a place where the membrane is used. The present invention is particularly effective in improving the rejection rate of non-electrolyte organic substances and low molecular weight substances that do not deviate in neutral regions such as silica and boron, and is used when a composite semipermeable membrane is used repeatedly over a long period of time. Useful.

1:原水
2:原水槽
3:原水供給ポンプ
4:前処理ユニット
5:中間水槽
6:前処理水供給ポンプ
7:保安フィルター
8:昇圧ポンプ
9:半透膜ユニット
10:透過水
11:濃縮水
12:透過水貯留タンク
13:調整タンク
14:洗浄剤または殺菌剤タンク
15:阻止率向上剤タンク
16:調整液供給ポンプ
V1、V2・・・、Va1、Vb1・・・:バルブ
1: Raw water 2: Raw water tank 3: Raw water supply pump 4: Pretreatment unit 5: Intermediate water tank 6: Pretreatment water supply pump 7: Security filter 8: Booster pump 9: Semipermeable membrane unit 10: Permeated water 11: Concentrated water 12: Permeate storage tank 13: Adjustment tank 14: Cleaning agent or disinfectant tank 15: Rejection rate improver tank 16: Adjustment liquid supply pump
V1, V2 ..., Va1, Vb1 ...: Valve

Claims (15)

阻止率向上剤を含有する液体と半透膜を接触させる阻止率向上方法において、洗浄剤あるいは殺菌剤と阻止率向上剤を同時に接触させる、または、連続して接触させることを特徴とする半透膜の阻止率向上方法。 A method for improving a rejection rate in which a liquid containing a rejection rate improver and a semipermeable membrane are brought into contact with each other, wherein a cleaning agent or a disinfectant and a rejection rate improving agent are simultaneously contacted or continuously contacted. A method for improving the rejection of a film. 洗浄剤がpH3以下またはpH11以上の水溶液である請求項1に記載の半透膜の阻止率向上方法。 The method for improving the rejection of a semipermeable membrane according to claim 1, wherein the cleaning agent is an aqueous solution having a pH of 3 or less or a pH of 11 or more. 洗浄剤がpH12以上のアルカリ水溶液である請求項1または2に記載の半透膜の阻止率向上方法。 The method for improving the rejection of a semipermeable membrane according to claim 1 or 2, wherein the cleaning agent is an alkaline aqueous solution having a pH of 12 or more. 殺菌剤がハロゲン含有化合物である請求項1〜3のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection of a semipermeable membrane according to any one of claims 1 to 3, wherein the bactericide is a halogen-containing compound. 半透膜を洗浄剤あるいは殺菌剤と接触させた後に阻止率向上剤と接触させることを特徴とする請求項1〜4のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection rate of a semipermeable membrane according to any one of claims 1 to 4, wherein the semipermeable membrane is brought into contact with a cleaning agent or a disinfectant and then contacted with a rejection rate improving agent. 阻止率向上剤を含有する液体を半透膜に接触させることにより半透膜の阻止性能を向上させる方法において、半透膜の初期の純水透過係数Aに対して、洗浄剤あるいは殺菌剤を接触させた後の純水透過係数A1との比A1/Aが0.8倍〜2.0倍の範囲内に有り、さらに、阻止率向上剤と接触させた後の純水透過係数A2と初期の純水透過係数Aとの比A2/Aが0.6倍〜1.9倍の範囲内であることを特徴とする請求項1〜5のいずれかに記載の半透膜の阻止率向上方法。 In a method for improving the blocking performance of a semipermeable membrane by bringing a liquid containing a blocking rate improving agent into contact with the semipermeable membrane, a cleaning agent or a disinfectant is added to the initial pure water permeability coefficient A of the semipermeable membrane. The ratio A1 / A to the pure water permeability coefficient A1 after contact is in the range of 0.8 times to 2.0 times, and further, the pure water permeability coefficient A2 after being brought into contact with the rejection improving agent The ratio A2 / A to the initial pure water permeability coefficient A is in the range of 0.6 times to 1.9 times, and the rejection rate of the semipermeable membrane according to any one of claims 1 to 5 How to improve. A1/Aが1.0倍から1.8倍の範囲内に有り、A2/Aが0.8〜1.7倍の範囲内であることを特徴とする請求項1〜6のいずれかに記載の半透膜の阻止率向上方法。 A1 / A is in the range of 1.0 to 1.8 times, and A2 / A is in the range of 0.8 to 1.7 times. The method for improving the rejection rate of the semipermeable membrane as described. 阻止率向上剤を含有する液体を半透膜の1次側および/または2次側から接触させることを特徴とする請求項1〜7のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection rate of a semipermeable membrane according to any one of claims 1 to 7, wherein a liquid containing a rejection rate improving agent is contacted from the primary side and / or the secondary side of the semipermeable membrane. 半透膜を有する半透膜ユニットが段階的に配置され、被処理液が各ユニットに直接供給できる構成において、特定のユニットにのみ阻止率向上剤を含有する液体を供給して阻止率を向上させる請求項1〜8のいずれかに記載の半透膜の阻止率向上方法。 In a configuration in which semipermeable membrane units with semipermeable membranes are arranged in stages and the liquid to be treated can be supplied directly to each unit, liquid containing a rejection rate improver is supplied only to specific units to improve the rejection rate The method for improving the rejection of a semipermeable membrane according to any one of claims 1 to 8. 前記阻止率向上剤の重量平均分子量が、6,000以上100,000以下であることを特徴とする請求項1〜9のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection rate of a semipermeable membrane according to any one of claims 1 to 9, wherein the rejection rate improver has a weight average molecular weight of 6,000 or more and 100,000 or less. 前記阻止率向上剤が、ポリアルキレングリコール鎖を有する阻止率向上剤であることを特徴とする請求項1〜10のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection rate of a semipermeable membrane according to any one of claims 1 to 10, wherein the rejection rate improving agent is a rejection rate improving agent having a polyalkylene glycol chain. 前記ポリアルキレングリコール鎖を有する阻止率向上剤が、ポリエチレングリコールを主成分とする阻止率向上剤であることを特徴とする請求項1〜11のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection rate of a semipermeable membrane according to any one of claims 1 to 11, wherein the rejection rate improver having a polyalkylene glycol chain is a rejection rate improver mainly composed of polyethylene glycol. . 前記半透膜が、複合半透膜であることを特徴とする請求項1〜12のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection of a semipermeable membrane according to any one of claims 1 to 12, wherein the semipermeable membrane is a composite semipermeable membrane. 前記半透膜が、ポリアミドを主成分とする半透膜であることを特徴とする請求項1〜13のいずれかに記載の半透膜の阻止率向上方法。 The method for improving the rejection of a semipermeable membrane according to any one of claims 1 to 13, wherein the semipermeable membrane is a semipermeable membrane containing polyamide as a main component. 請求項1〜14のいずれかに記載の阻止率向上方法によって阻止率を向上させた複合半透膜を使用して水処理を行うことを特徴とする水処理方法。   The water treatment method characterized by performing a water treatment using the composite semipermeable membrane which improved the rejection rate by the rejection rate improvement method in any one of Claims 1-14.
JP2015002858A 2015-01-09 2015-01-09 Rejection rate improving method of semipermeable membrane Pending JP2016128142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002858A JP2016128142A (en) 2015-01-09 2015-01-09 Rejection rate improving method of semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002858A JP2016128142A (en) 2015-01-09 2015-01-09 Rejection rate improving method of semipermeable membrane

Publications (1)

Publication Number Publication Date
JP2016128142A true JP2016128142A (en) 2016-07-14

Family

ID=56383889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002858A Pending JP2016128142A (en) 2015-01-09 2015-01-09 Rejection rate improving method of semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2016128142A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122267A (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method of treating uncharged material-containing water
JP2018187572A (en) * 2017-05-09 2018-11-29 オルガノ株式会社 Operation method for reverse osmosis membrane and reverse osmosis membrane device
CN114319306A (en) * 2021-12-15 2022-04-12 天津大学 Bionic drainage method for reinforcing soft soil foundation
CN114673136A (en) * 2022-03-31 2022-06-28 中国科学院西北生态环境资源研究院 Permeable water absorbing pile
TWI786081B (en) * 2017-02-02 2022-12-11 日商奧璐佳瑙股份有限公司 Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method for processing water containing non-charged substance
WO2023276781A1 (en) * 2021-06-30 2023-01-05 三菱重工業株式会社 Method for restoring desalination performance of reverse osmosis membrane and device for restoring desalination performance of reverse osmosis membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122267A (en) * 2017-02-02 2018-08-09 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method of treating uncharged material-containing water
TWI786081B (en) * 2017-02-02 2022-12-11 日商奧璐佳瑙股份有限公司 Method for modifying reverse osmosis membrane, reverse osmosis membrane, and method for processing water containing non-charged substance
JP2018187572A (en) * 2017-05-09 2018-11-29 オルガノ株式会社 Operation method for reverse osmosis membrane and reverse osmosis membrane device
JP7144922B2 (en) 2017-05-09 2022-09-30 オルガノ株式会社 Reverse osmosis membrane operation method and reverse osmosis membrane device
WO2023276781A1 (en) * 2021-06-30 2023-01-05 三菱重工業株式会社 Method for restoring desalination performance of reverse osmosis membrane and device for restoring desalination performance of reverse osmosis membrane
JP2023006398A (en) * 2021-06-30 2023-01-18 三菱重工業株式会社 Desalting performance recovery method of reverse osmosis membrane
JP7254309B2 (en) 2021-06-30 2023-04-10 三菱重工業株式会社 Method for recovering desalination performance of reverse osmosis membrane
CN114319306A (en) * 2021-12-15 2022-04-12 天津大学 Bionic drainage method for reinforcing soft soil foundation
CN114673136A (en) * 2022-03-31 2022-06-28 中国科学院西北生态环境资源研究院 Permeable water absorbing pile

Similar Documents

Publication Publication Date Title
Warsinger et al. A review of polymeric membranes and processes for potable water reuse
Jamaly et al. A short review on reverse osmosis pretreatment technologies
JP2016128142A (en) Rejection rate improving method of semipermeable membrane
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
JP5286785B2 (en) Fresh water production method
Chen et al. Membrane separation: basics and applications
EP3225595B1 (en) Water production method
JP6194887B2 (en) Fresh water production method
Xu et al. Comparison of approaches to minimize fouling of a UF ceramic membrane in filtration of seawater
JP6648695B2 (en) Operating method of semipermeable membrane separation device
Pellegrin et al. Membrane processes
JP6658510B2 (en) Method for improving blocking performance of semipermeable membrane, semipermeable membrane, semipermeable membrane fresh water generator
WO2016111370A1 (en) Water treatment method
JP2011104504A (en) Washing method of water treatment facility
Im et al. Possibility assessment of ultrafiltration membrane pre-treatment efficiency for brackish water reverse osmosis-based wastewater reuse: Lab and demonstration
Bunani et al. Application of nanofiltration for reuse of wastewater
Cohen et al. Water Reclamation, Remediation, and Cleaner Production with Nanofiltration
Nave et al. Introductory chapter: Osmotically driven membrane processes
JP7354744B2 (en) Wastewater utilization system
JP2005034723A (en) Method for modifying reverse osmosis membrane and regenerated separation membrane
Curcio et al. Membranes for desalination
Pellegrin et al. Membrane processes
Pellegrin et al. Membrane processes
Lim et al. Treatment of RO concentrate for enhanced water recovery from wastewater treatment plant effluent
JP2015016448A (en) Rejection rate improving method of composite semipermeable membrane