JP6565268B2 - Method and apparatus for treating inorganic carbon-containing water - Google Patents

Method and apparatus for treating inorganic carbon-containing water Download PDF

Info

Publication number
JP6565268B2
JP6565268B2 JP2015069364A JP2015069364A JP6565268B2 JP 6565268 B2 JP6565268 B2 JP 6565268B2 JP 2015069364 A JP2015069364 A JP 2015069364A JP 2015069364 A JP2015069364 A JP 2015069364A JP 6565268 B2 JP6565268 B2 JP 6565268B2
Authority
JP
Japan
Prior art keywords
water
inorganic
inorganic carbon
flocculant
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015069364A
Other languages
Japanese (ja)
Other versions
JP2016187790A (en
Inventor
景二郎 多田
景二郎 多田
育野 望
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015069364A priority Critical patent/JP6565268B2/en
Publication of JP2016187790A publication Critical patent/JP2016187790A/en
Application granted granted Critical
Publication of JP6565268B2 publication Critical patent/JP6565268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無機炭素を50mg/L以上含み、無機炭素による凝集阻害の問題のある無機炭素含有水を効率的に凝集処理して固液分離する方法と装置に関する。   The present invention relates to a method and apparatus for efficiently aggregating inorganic carbon-containing water containing inorganic carbon in an amount of 50 mg / L or more and having a problem of agglomeration inhibition due to inorganic carbon to solid-liquid separation.

被処理水に含まれる有機炭素や濁質を除去するには、沈殿槽や濾過器、除濁膜で固液分離処理することが一般的である。また、この際、固液分離効率を高めるために、固液分離に先立ち凝集処理が一般的に行われる。   In order to remove organic carbon and turbidity contained in the water to be treated, it is common to perform a solid-liquid separation treatment using a precipitation tank, a filter, or a turbidity removal membrane. At this time, in order to increase the solid-liquid separation efficiency, agglomeration is generally performed prior to the solid-liquid separation.

従来、凝集処理薬品(凝集剤)としては、鉄塩やアルミニウム塩といった無機凝集剤が代表的である。   Conventionally, as the aggregating chemical (aggregating agent), inorganic aggregating agents such as iron salts and aluminum salts are typical.

しかしながら、水中に無機炭素を多く含む場合、凝集pH領域であるpH5.5〜8.5では、無機炭素由来の炭酸イオンが無機凝集剤と濁質ないしは有機物との反応を阻害し、凝集不良を引き起こす。   However, when a lot of inorganic carbon is contained in water, in the aggregation pH range of pH 5.5 to 8.5, the carbonate ion derived from inorganic carbon inhibits the reaction between the inorganic flocculant and the turbidity or organic matter, resulting in poor aggregation. cause.

一般的な日本国内の河川水、湖水の無機炭素濃度は10mg/L前後であり、無機凝集剤を阻害するには至らない。また、一般的な工場排水でも無機炭素濃度は50mg/Lを超えないため、上記の無機炭素による凝集不良が問題になることはない。
しかし、工場排水には、製造過程で添加される薬品や特有の工程によっては、無機炭素濃度が50mg/L以上に上昇したものがある。
Generally, the inorganic carbon concentration in river water and lake water in Japan is around 10 mg / L, and does not inhibit the inorganic flocculant. Moreover, since the concentration of inorganic carbon does not exceed 50 mg / L even in general factory effluent, the above-mentioned poor aggregation due to inorganic carbon does not become a problem.
However, some industrial wastewaters have an inorganic carbon concentration increased to 50 mg / L or more depending on chemicals added during the manufacturing process and specific processes.

通常の排水処理では、凝集不良を改善するためには、凝集剤を大量に添加する方法が一般的だが、汚泥が大量に発生するなどの問題がある。また、無機炭素を多く含む排水に、このように凝集剤を大量に添加しても、本来除去すべき有機炭素や濁質の除去性が悪化し、例えば沈殿槽や濾過器で除去し得なくなる。
後段で除去できなかった濁質や有機炭素などは、これを系外に排出する際に環境汚染を引き起こす要因となる。また、例えば沈殿槽や濾過器の後段に除濁膜や逆浸透(RO)膜がある場合、それらの汚染にも繋がる。
後段の濾過器等で除去し得ない有機炭素などを低減する方法として、オゾン処理なども提案されているが、電力コストがかかるため、前段の凝集、固液分離処理で極力有機炭素濃度を低減することが効果的である。
In ordinary wastewater treatment, a method of adding a large amount of a flocculant is common to improve agglomeration failure, but there is a problem that a large amount of sludge is generated. Moreover, even if a large amount of a flocculant is added to wastewater containing a large amount of inorganic carbon, the organic carbon and turbidity that should be removed are deteriorated and cannot be removed by, for example, a precipitation tank or a filter. .
Turbidity, organic carbon, etc. that could not be removed in the latter stage cause environmental pollution when discharged outside the system. Further, for example, when there is a turbidity removal membrane or a reverse osmosis (RO) membrane in the subsequent stage of the settling tank or the filter, it also leads to contamination thereof.
Ozone treatment is also proposed as a method to reduce organic carbon that cannot be removed by a subsequent filter, etc., but it costs power, so the organic carbon concentration is reduced as much as possible by coagulation and solid-liquid separation treatment in the previous stage. It is effective to do.

従来、排水中の有機炭素や濁質の除去効率を高めるために、無機凝集剤と共にカチオン性有機凝集剤と併用することは公知であり、例えば、特許文献1には、製紙工場排水等の排水に、水溶性カチオン系重合体を添加混合した後、無機凝集剤を添加混合し、次いで、アニオン系高分子凝集剤を添加して凝集処理する方法が提案されている。
特許文献2には、アニオン系染料廃水に、極限粘度が0.4〜1.4のポリジアリルジメチルアンモニウムクロライドと無機凝集剤を添加して所定のpHで凝集処理する方法が提案されている。
また、特許文献3には、カチオン性有機凝集剤と無機凝集剤とを混合してなる凝集剤組成物が提案されている。
Conventionally, it is known to use together with an inorganic flocculant and a cationic organic flocculant in order to increase the removal efficiency of organic carbon and turbidity in wastewater. For example, Patent Document 1 discloses wastewater such as paper mill wastewater. In addition, a method has been proposed in which a water-soluble cationic polymer is added and mixed, then an inorganic flocculant is added and mixed, and then an anionic polymer flocculant is added to perform an agglomeration treatment.
Patent Document 2 proposes a method in which polydiallyldimethylammonium chloride having an intrinsic viscosity of 0.4 to 1.4 and an inorganic flocculant are added to an anionic dye wastewater and agglomerated at a predetermined pH.
Patent Document 3 proposes a flocculant composition obtained by mixing a cationic organic flocculant and an inorganic flocculant.

しかし、従来技術は、いずれも、排水中の有機炭素や濁質の除去率を向上させるために、無機凝集剤と共にカチオン性有機凝集剤を併用するものであり、無機炭素による凝集阻害に着目した凝集処理技術は提案されていない。   However, all of the conventional techniques use a cationic organic flocculant together with an inorganic flocculant in order to improve the removal rate of organic carbon and turbidity in wastewater, and focused on aggregation inhibition by inorganic carbon. No agglomeration technique has been proposed.

特開2011−131167号公報JP 2011-131167 A 特開平6−126286号公報JP-A-6-126286 特開昭59−82911号公報JP 59-82911 A

本発明は、無機炭素を50mg/L以上含み、無機炭素による凝集阻害の問題のある無機炭素含有水を効率的に凝集処理して固液分離する方法と装置を提供することを課題とする。   An object of the present invention is to provide a method and an apparatus for efficiently coagulating inorganic carbon-containing water containing inorganic carbon in an amount of 50 mg / L or more and having a problem of aggregation inhibition due to inorganic carbon to solid-liquid separation.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、無機炭素含有水に、無機凝集剤とカチオン基を有する有機凝結剤とを併用して添加することにより、好ましくは所定のコロイド当量のカチオン基を有する有機凝結剤を用いることにより、無機炭素含有水を効率的に凝集処理し、有機炭素や濁質を高度に除去することができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors preferably added a combination of an inorganic flocculant and an organic coagulant having a cationic group to inorganic carbon-containing water. It has been found that by using an organic coagulant having a colloidal equivalent cationic group, inorganic carbon-containing water can be efficiently coagulated and organic carbon and turbidity can be removed to a high degree.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 無機炭素50mg/L以上を含む被処理水に、無機凝集剤とカチオン基を有する有機凝結剤とを添加して凝集処理した後、固液分離することを特徴とする無機炭素含有水の処理方法。 [1] Inorganic carbon-containing water characterized by solid-liquid separation after adding an inorganic flocculant and an organic coagulant having a cationic group to water to be treated containing 50 mg / L or more of inorganic carbon and aggregating it. Processing method.

[2] [1]において、前記被処理水にカチオン基を有する有機凝結剤を添加した後、無機凝集剤を添加して凝集処理することを特徴とする無機炭素含有水の処理方法。 [2] A method for treating inorganic carbon-containing water according to [1], wherein an organic coagulant having a cationic group is added to the water to be treated, and then an inorganic flocculant is added to perform the coagulation treatment.

[3] [1]又は[2]において、前記カチオン基を有する有機凝結剤のコロイド当量が1meq/g以上であることを特徴とする無機炭素含有水の処理方法。 [3] The method for treating inorganic carbon-containing water according to [1] or [2], wherein the organic coagulant having the cationic group has a colloid equivalent of 1 meq / g or more.

[4] [1]ないし[3]のいずれかにおいて、前記被処理水の無機炭素濃度に応じて、前記カチオン基を有する有機凝結剤の添加量を制御することを特徴とする無機炭素含有水の処理方法。 [4] The inorganic carbon-containing water according to any one of [1] to [3], wherein the amount of the organic coagulant having a cationic group is controlled according to the inorganic carbon concentration of the water to be treated. Processing method.

[5] [1]ないし[4]のいずれかにおいて、更に、アニオン基を有する有機凝集剤を前記被処理水に添加して凝集処理することを特徴とする無機炭素含有水の処理方法。 [5] The method for treating inorganic carbon-containing water according to any one of [1] to [4], further comprising adding an organic flocculant having an anion group to the water to be treated for aggregation treatment.

[6] [1]ないし[5]のいずれかにおいて、前記固液分離で得られた分離水を除濁膜または逆浸透膜分離処理することを特徴とする無機炭素含有水の処理方法。 [6] The method for treating inorganic carbon-containing water according to any one of [1] to [5], wherein the separated water obtained by the solid-liquid separation is subjected to a turbidity membrane or reverse osmosis membrane separation treatment.

[7] 無機炭素50mg/L以上を含む被処理水を凝集処理した後固液分離する無機炭素含有水の処理装置であって、該被処理水に無機凝集剤とカチオン基を有する有機凝結剤を添加して凝集処理する凝集処理手段と、凝集処理水を固液分離する固液分離手段とを有することを特徴とする無機炭素含有水の処理装置。 [7] A treatment apparatus for inorganic carbon-containing water that coagulates and treats water to be treated containing 50 mg / L or more of inorganic carbon and then solid-liquid separates the organic coagulant having an inorganic flocculant and a cationic group in the water to be treated. An apparatus for treating inorganic carbon-containing water, characterized by comprising a coagulation treatment means for performing coagulation treatment by adding water and a solid-liquid separation means for solid-liquid separation of the coagulation treated water.

[8] [7]において、前記凝集処理手段は、前記被処理水にカチオン基を有する有機凝結剤を添加した後無機凝集剤を添加して凝集処理する手段であることを特徴とする無機炭素含有水の処理装置。 [8] In the inorganic carbon according to [7], the aggregation treatment means is a means for adding an organic coagulant having a cationic group to the water to be treated and then adding an inorganic flocculant to perform the aggregation treatment. Water treatment equipment.

[9] [7]又は[8]において、前記カチオン基を有する有機凝結剤のコロイド当量が1meq/g以上であることを特徴とする無機炭素含有水の処理装置。 [9] An apparatus for treating inorganic carbon-containing water according to [7] or [8], wherein the organic coagulant having the cationic group has a colloid equivalent of 1 meq / g or more.

[10] [7]ないし[9]のいずれかにおいて、前記被処理水の無機炭素濃度を測定する無機炭素濃度測定手段と、この測定値に基づいて、前記カチオン基を有する有機凝結剤の添加量を制御する制御手段とを有することを特徴とする無機炭素含有水の処理装置。 [10] In any one of [7] to [9], the inorganic carbon concentration measuring means for measuring the inorganic carbon concentration of the water to be treated, and the addition of the organic coagulant having the cationic group based on the measured value And a control means for controlling the amount of the inorganic carbon-containing water treatment apparatus.

[11] [1]ないし[4]のいずれかにおいて、前記凝集処理手段は、前記被処理水に更にアニオン基を有する有機凝集剤を添加して凝集処理する手段であることを特徴とする無機炭素含有水の処理装置。 [11] In any one of [1] to [4], the aggregating treatment means is a means for aggregating by further adding an organic flocculant having an anion group to the water to be treated. Carbon-containing water treatment equipment.

[12] [7]ないし[11]のいずれかにおいて、前記固液分離手段で得られた分離水が導入される除濁膜または逆浸透膜分離手段を有することを特徴とする無機炭素含有水の処理装置。 [12] The inorganic carbon-containing water according to any one of [7] to [11], comprising a turbidity membrane or reverse osmosis membrane separation means into which the separated water obtained by the solid-liquid separation means is introduced. Processing equipment.

本発明によれば、無機炭素を50mg/L以上含み、無機炭素による凝集阻害の問題のある無機炭素含有水を効率的に凝集処理して水中の有機炭素や濁質を高度に固液分離することができる。
本発明によれば、無機炭素による凝集阻害を防止して濁質や有機炭素を高度に除去することができるため、固液分離水にこれらが残留することによる、後段の除濁膜やRO膜等の膜汚染を防止することができ、膜の洗浄頻度を低減することができる。また、オゾン処理等の後段の処理装置の負荷を軽減して処理コストを低減することができる。
According to the present invention, inorganic carbon-containing water containing inorganic carbon in an amount of 50 mg / L or more and having a problem of aggregation inhibition due to inorganic carbon is efficiently agglomerated to highly solid-liquid-separate organic carbon and turbidity in water. be able to.
According to the present invention, turbidity and organic carbon can be removed to a high degree by preventing the inhibition of aggregation by inorganic carbon. Film contamination such as the above can be prevented, and the frequency of cleaning the film can be reduced. Moreover, the processing cost can be reduced by reducing the load on the subsequent processing apparatus such as ozone treatment.

本発明の無機炭素含有水の処理装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the processing apparatus of the inorganic carbon containing water of this invention.

以下に、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<メカニズム>
カチオン基を有する有機凝結剤(以下、「カチオン性有機凝結剤」と称す場合がある。)と無機凝集剤とを併用添加する本発明による凝集性の向上効果のメカニズムは、以下の通りである。
<Mechanism>
The mechanism of the coagulation-improving effect according to the present invention in which an organic coagulant having a cationic group (hereinafter sometimes referred to as “cationic organic coagulant”) and an inorganic coagulant are added together is as follows. .

カチオン性有機凝結剤を添加するのみでは、被処理水中の濁質や有機炭素を十分に凝集処理することができない。
無機凝集剤を添加することで、濁質や有機炭素を凝集処理することができるが、前述の通り、無機炭素濃度の高い被処理水の場合、無機炭素由来の炭酸イオンが無機凝集剤と濁質や有機炭素との反応を阻害する。
このような被処理水にカチオン性有機凝結剤を添加すると、水中の無機炭素とカチオン性有機凝結剤とが反応することで、無機炭素による凝集阻害を抑制し、無機凝集剤と濁質や有機炭素との反応性を向上させることができる。
Only by adding a cationic organic coagulant, turbidity and organic carbon in the water to be treated cannot be sufficiently coagulated.
By adding an inorganic flocculant, turbidity and organic carbon can be agglomerated, but as described above, in the case of water to be treated with a high inorganic carbon concentration, carbonate ions derived from inorganic carbon and turbidity with the inorganic flocculant. Impedes reaction with quality and organic carbon.
When a cationic organic coagulant is added to such water to be treated, the inorganic carbon in the water reacts with the cationic organic coagulant to suppress aggregation inhibition by the inorganic carbon, and the inorganic coagulant and turbid or organic The reactivity with carbon can be improved.

本発明においては、カチオン性有機凝結剤と無機凝集剤との併用で良好な凝集効果を得ることができるが、更にアニオン基を有する有機凝集剤(以下、「アニオン性有機凝集剤」と称す場合がある。)を併用してもよく、アニオン性有機凝集剤の併用で、凝集フロックを粗大化させて、固液分離水の水質をより良好なものとすることができる。   In the present invention, a combination of a cationic organic coagulant and an inorganic flocculant can provide a good flocculation effect. However, an organic flocculant having an anionic group (hereinafter referred to as “anionic organic flocculant”) In combination with an anionic organic flocculant, the aggregate flocs can be coarsened to improve the quality of the solid-liquid separation water.

<被処理水>
本発明において処理する被処理水は、無機炭素濃度が50mg/L以上で、無機炭素による無機凝集剤の凝集阻害が起こり易い水である。
このような無機炭素濃度の多い被処理水が発生する要因は定かではないが、工場等に特有の工程が存在している場合が想定される。
これらの水のSS濃度は10mg/L以上である場合が多く、電気伝導率は100mS/m以上である。なお、通常河川水や湖水を水源として凝集、沈殿、濾過処理等をする場合、無機炭素濃度は10mg/L前後であり、2mg/L以下の場合もある。
<Treatment water>
The water to be treated in the present invention is water that has an inorganic carbon concentration of 50 mg / L or more and easily inhibits the aggregation of the inorganic flocculant by inorganic carbon.
The cause of the generation of water to be treated with such a high inorganic carbon concentration is not clear, but it is assumed that there are processes unique to factories and the like.
The SS concentration of these waters is often 10 mg / L or more, and the electrical conductivity is 100 mS / m or more. In addition, when performing agglomeration, precipitation, filtration treatment, etc., usually using river water or lake water as a water source, the inorganic carbon concentration is around 10 mg / L, and may be 2 mg / L or less.

<カチオン性有機凝結剤>
カチオン性有機凝結剤としては、特に制限はなく、従来より使用されているものまたはこれらと類似のものが使用でき、例えばポリエチレンイミン、ジシアンジアミド−ホルマリン縮合物、アルキレンポリアミン−アルキレンジハライド縮合物、ポリジメチルジアリルアンモニウム塩、ポリアクリルアミドのマンニッヒ変性物、ポリアクリルアミドのホフマン分解物、エピハロヒドリシ−アミン縮合物、カチオン化デンプン、カチオン化グアガム、キトサン、アミノアルキル(メタ)アクリレート(三級、四級化物も含む)の単独重合体またはアクリルアミドもしくは他のモノマーとの共重合体などが例示できるが、特に、エピハロヒドリシ−アミン縮合物、ポリエチレンイミン、ジシアンジアミド−ホルマリン縮合物、アルキレンポリアミン−アルキレンジハライド縮合物、ポリジメチルジアリルアンモニウム塩が好ましい。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
<Cationic organic coagulant>
The cationic organic coagulant is not particularly limited, and those conventionally used or similar can be used. For example, polyethyleneimine, dicyandiamide-formalin condensate, alkylene polyamine-alkylene dihalide condensate, poly Dimethyldiallylammonium salt, polyacrylamide Mannich modified product, polyacrylamide Hofmann degradation product, epihalohydric-amine condensate, cationized starch, cationized guar gum, chitosan, aminoalkyl (meth) acrylate (including tertiary and quaternized products) ) Homopolymers or copolymers with acrylamide or other monomers, and in particular, epihalohydric-amine condensates, polyethyleneimines, dicyandiamide-formalin condensates, alkylenepolyamides, etc. - alkylene dihalide condensates, polydimethyl diallyl ammonium salts are preferred. These may use only 1 type and may mix and use 2 or more types.

カチオン性有機凝結剤としては、カチオン基による無機炭素との反応性の高いものが好ましく、コロイド当量が1meq/g以上、特に5meq/g以上であるものを用いることが、無機凝集剤にカチオン性有機凝結剤を併用することによる凝集性の向上効果に優れる点において好ましい。カチオン性有機凝結剤のコロイド当量の上限については特に制限はないが、通常20meq/g以下である。   As the cationic organic coagulant, those having high reactivity with inorganic carbon due to a cation group are preferable, and those having a colloidal equivalent of 1 meq / g or more, particularly 5 meq / g or more are used as the inorganic flocculant. The organic coagulant is preferred in that it is excellent in the effect of improving the cohesiveness due to the combined use. Although there is no restriction | limiting in particular about the upper limit of the colloid equivalent of a cationic organic coagulant, Usually, it is 20 meq / g or less.

被処理水へのカチオン性有機凝結剤の添加量は、被処理水の水質、カチオン性有機凝結剤の種類等によっても異なるが、2〜30mg/L、特に5〜10mg/L程度とすることが好ましい。カチオン性有機凝結剤の添加量が少な過ぎると、カチオン性有機凝結剤を添加することによる凝集性の改善効果を十分に得ることができず、多過ぎると、例えば、後段に膜処理がある場合に、それ自体が汚染される可能性がある。   The amount of the cationic organic coagulant added to the water to be treated varies depending on the quality of the water to be treated and the type of the cationic organic coagulant, but should be 2 to 30 mg / L, particularly about 5 to 10 mg / L. Is preferred. If the amount of the cationic organic coagulant added is too small, the effect of improving the cohesiveness by adding the cationic organic coagulant cannot be obtained sufficiently. In addition, it can become contaminated.

カチオン性有機凝結剤は、特に、被処理水中の無機炭素濃度に応じてその添加量を制御することが、カチオン性有機凝結剤の過不足を防止して良好な凝集効果を得る上で好ましい。従って、被処理水の無機炭素濃度をGE製Sievers900などで測定し、その測定結果に基づいて、カチオン性有機凝結剤を薬注制御することが好ましい。この場合、カチオン性有機凝結剤は、被処理水の無機炭素濃度(mg/L)に対して、1〜5重量%程度の添加量(mg/L)となるように薬注制御することが好ましい。なお、被処理水の無機炭素濃度は、連続的に計測してもよく、間欠的に計測してもよい。   In particular, it is preferable to control the addition amount of the cationic organic coagulant in accordance with the inorganic carbon concentration in the water to be treated in order to prevent the cationic organic coagulant from being excessive or insufficient and to obtain a good coagulation effect. Therefore, it is preferable to measure the inorganic carbon concentration of the water to be treated with GE Sievers 900 or the like, and to control the injection of the cationic organic coagulant based on the measurement result. In this case, the cationic organic coagulant can be controlled so as to have an addition amount (mg / L) of about 1 to 5% by weight with respect to the inorganic carbon concentration (mg / L) of the water to be treated. preferable. In addition, the inorganic carbon concentration of to-be-processed water may be measured continuously and may be measured intermittently.

<無機凝集剤>
無機凝集剤としては、アルミニウム系ないし鉄系の無機凝集剤を用いることができる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。具体的には、アルミニウム系無機凝集剤としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、塩化アルミニウムが例示できる。また、鉄系無機凝集剤としては、塩化第二鉄、塩化第一鉄、硫酸第一鉄、硫酸第二鉄、ポリ硫酸鉄等が例示できる。
<Inorganic flocculant>
As the inorganic flocculant, aluminum-based or iron-based inorganic flocculants can be used. These may use only 1 type and may mix and use 2 or more types. Specifically, examples of the aluminum-based inorganic flocculant include aluminum sulfate (sulfate band), polyaluminum chloride (PAC), and aluminum chloride. Examples of the iron-based inorganic flocculant include ferric chloride, ferrous chloride, ferrous sulfate, ferric sulfate, and polyiron sulfate.

被処理水への無機凝集剤の添加量は、被処理水の水質、無機凝集剤の種類等によっても異なるが、50〜500mg/L、特に100〜300mg/L程度とすることが好ましい。無機凝集剤の添加量が少な過ぎると、被処理水中の濁質や有機炭素を十分に凝集処理して良好な水質の固液分離水を得ることができないが、本発明はカチオン性有機凝結剤を併用することで、無機凝集剤の必要添加量を低減するものであり、無機凝集剤の添加量を過度に多くすることは、汚泥発生量の増加につながり、また薬剤コストの面でも好ましくない。   The amount of the inorganic flocculant added to the water to be treated varies depending on the quality of the water to be treated, the type of the inorganic flocculant, etc., but is preferably about 50 to 500 mg / L, particularly about 100 to 300 mg / L. If the amount of the inorganic flocculant added is too small, turbidity and organic carbon in the water to be treated cannot be sufficiently agglomerated to obtain solid water-liquid separated water with good water quality, but the present invention is a cationic organic coagulant. In combination, the required amount of the inorganic flocculant is reduced, and excessive addition of the inorganic flocculant leads to an increase in the amount of sludge generated, and is not preferable in terms of chemical cost. .

<アニオン性有機凝集剤>
アニオン性有機凝集剤としては、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、部分スルホメチル化ポリアクリルアミド、ポリ(2−アクリルアミド)−2−メチルプロパン硫酸塩などの1種又は2種以上を使用することができる。
<Anionic organic flocculant>
As an anionic organic flocculant, 1 type (s) or 2 or more types, such as sodium polyacrylate, a polyacrylamide partial hydrolyzate, a partial sulfomethylation polyacrylamide, a poly (2-acrylamide) 2-methylpropane sulfate, are used. be able to.

アニオン性有機凝集剤を併用する場合、その添加量は被処理水の水質や用いるアニオン性有機凝集剤の種類によっても異なるが、通常0.1〜5mg/L程度である。   When an anionic organic flocculant is used in combination, the amount added varies depending on the quality of the water to be treated and the type of anionic organic flocculant used, but is usually about 0.1 to 5 mg / L.

<凝集処理>
無機炭素を含有する被処理水にカチオン性有機凝結剤と無機凝集剤とを添加して凝集処理する際、カチオン性有機凝結剤と無機凝集剤とは同時に添加しても別々に添加してもよいが、カチオン性有機凝結剤の添加による無機炭素に起因する無機凝集剤の凝集阻害を防止する観点から、予めカチオン性有機凝結剤を添加した後、無機凝集剤を添加して凝集処理することが好ましい。この場合、被処理水にカチオン性有機凝結剤を添加して1〜20分程度撹拌して凝集処理した後、無機凝集剤を添加して3〜20分程度撹拌して凝集処理することが好ましい。
<Aggregation treatment>
When a cationic organic coagulant and an inorganic flocculant are added to the water to be treated containing inorganic carbon for coagulation treatment, the cationic organic coagulant and the inorganic flocculant may be added simultaneously or separately. Although it is good, from the viewpoint of preventing the aggregation of the inorganic flocculant caused by inorganic carbon due to the addition of the cationic organic coagulant, after adding the cationic organic coagulant in advance, the inorganic flocculant is added and the coagulation treatment is performed. Is preferred. In this case, after adding a cationic organic coagulant to the water to be treated and stirring for about 1 to 20 minutes, it is preferable to add an inorganic flocculant and stir for about 3 to 20 minutes for aggregation. .

アニオン性有機凝集剤を併用する場合、アニオン性有機凝集剤は、無機凝集剤添加後に添加することが好ましい。   When an anionic organic flocculant is used in combination, the anionic organic flocculant is preferably added after the inorganic flocculant is added.

凝集処理時のpHは、用いる無機凝集剤に応じた好適なpHであることが好ましく、アルミニウム系無機凝集剤であれば、pH5.8〜7.0程度、鉄系無機凝集剤であればpH5.8〜7.5程度にそれぞれ必要に応じて酸又はアルカリを添加してpH調製することが好ましい。但し、本処理方法であれば、特段のpH調整を行うことなく処理をすることが可能である。   The pH during the flocculation treatment is preferably a suitable pH according to the inorganic flocculant to be used. If it is an aluminum-based inorganic flocculant, the pH is about 5.8 to 7.0, and if it is an iron-based inorganic flocculant, the pH is 5 It is preferable to adjust the pH by adding acid or alkali to about 8 to 7.5 as necessary. However, with this treatment method, it is possible to carry out the treatment without special pH adjustment.

<固液分離>
凝集処理後の固液分離手段としては特に制限はなく、沈殿槽、加圧浮上槽、膜分離装置、濾過器等を用いることができる。
<Solid-liquid separation>
The solid-liquid separation means after the coagulation treatment is not particularly limited, and a precipitation tank, a pressure levitation tank, a membrane separation device, a filter and the like can be used.

<後段処理>
固液分離手段の後段、特に、固液分離手段として沈殿槽を用いた場合は、固液分離水のSSをより高度に除去するために、後段に濾過器や除濁膜装置等を設けてもよい。また、逆浸透(RO)膜分離装置を設けて脱塩処理を行ったり、オゾン処理で残留有機物を処理してもよい。この場合において、本発明によれば、凝集性の改善で、濁質や有機炭素が十分に低減された良好な水質の固液分離水を得ることができるため、これらの後段の処理手段の処理コストを削減すると共に安定運転を行うことが可能となる。
<Post-processing>
In the latter stage of the solid-liquid separation means, particularly when a precipitation tank is used as the solid-liquid separation means, a filter, a turbidity membrane device, etc. are provided in the latter stage in order to remove the solid-liquid separation water SS to a higher degree. Also good. Moreover, a reverse osmosis (RO) membrane separation apparatus may be provided to perform a desalting treatment or to treat residual organic substances by ozone treatment. In this case, according to the present invention, it is possible to obtain solid water-liquid separated water having a good water quality in which turbidity and organic carbon are sufficiently reduced by improving the cohesiveness. It is possible to reduce costs and perform stable operation.

<無機炭素含有水の処理装置>
以下、図1を参照して本発明の無機炭素含有水の処理装置を説明する。
図1は、本発明の無機炭素含有水の処理装置の実施の形態の一例を示す系統図である。
<Inorganic carbon-containing water treatment device>
Hereinafter, the treatment apparatus for inorganic carbon-containing water of the present invention will be described with reference to FIG.
FIG. 1 is a system diagram showing an example of an embodiment of an apparatus for treating inorganic carbon-containing water according to the present invention.

原水槽1内の原水は、配管11より第1凝集槽2に送給される過程でカチオン性有機凝結剤が添加された後、第1凝集槽2で所定時間凝集処理される。
第1凝集槽2の凝集処理水は、配管12より第2凝集槽3に送給される過程で無機凝集剤が添加された後、第2凝集槽3で所定時間凝集処理される。
第2凝集槽3の凝集処理水は、配管13を経て沈殿槽3に送給される過程でアニオン性有機凝集剤が添加された後、沈殿槽4で固液分離される。
沈殿槽4の分離水は、配管14より除濁膜装置5に送給されて更に除濁処理された後、配管15よりRO膜分離装置6に送給されRO膜分離処理され、透過水が処理水として配管16より系外へ排出される。
The raw water in the raw water tank 1 is coagulated for a predetermined time in the first coagulation tank 2 after the cationic organic coagulant is added in the process of being fed to the first coagulation tank 2 from the pipe 11.
The aggregating water in the first aggregating tank 2 is agglomerated in the second aggregating tank 3 for a predetermined time after the inorganic aggregating agent is added in the process of being fed to the second aggregating tank 3 from the pipe 12.
The agglomerated water in the second aggregating tank 3 is subjected to solid-liquid separation in the precipitation tank 4 after the anionic organic flocculant is added in the process of being fed to the precipitation tank 3 via the pipe 13.
The separation water in the settling tank 4 is supplied to the turbidity membrane device 5 through the pipe 14 and further turbidized, and then supplied to the RO membrane separation device 6 through the pipe 15 and subjected to the RO membrane separation treatment. It is discharged out of the system from the pipe 16 as treated water.

なお、図1は本発明の無機炭素含有水の処理装置の一例を示すものであって、本発明は何ら図示のものに限定されるものではない。
カチオン性有機凝結剤や無機凝集剤は配管注入ではなく、凝集槽に添加してもよく、更にアニオン性有機凝集剤を添加して凝集処理するための凝集槽を設けてもよい。
FIG. 1 shows an example of the treatment apparatus for inorganic carbon-containing water of the present invention, and the present invention is not limited to the illustrated one.
The cationic organic coagulant and the inorganic coagulant may be added to the coagulation tank instead of pipe injection, and an anionic organic coagulant may be added and a coagulation tank for coagulation treatment may be provided.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[凝集処理剤]
以下の実施例及び比較例において用いた凝集処理剤は以下の通りである。
無機凝集剤:塩化第二鉄(昭和化学工業社製)
カチオン性有機凝結剤A:エピクロルヒドリン−ジメチルアミン縮合物、コロイド当量6.5meq/g
カチオン性有機凝結剤B:ポリジメチルジアリルアンモニウムクロライド、コロイド当量0.5meq/g
アニオン性有機凝集剤:アクリル酸ナトリウムとアクリルアミドとの共重合体
[Aggregating agent]
The aggregation treatment agents used in the following examples and comparative examples are as follows.
Inorganic flocculant: Ferric chloride (manufactured by Showa Chemical Industry Co., Ltd.)
Cationic organic coagulant A: epichlorohydrin-dimethylamine condensate, colloid equivalent 6.5 meq / g
Cationic organic coagulant B: polydimethyldiallylammonium chloride, colloidal equivalent 0.5 meq / g
Anionic organic flocculant: copolymer of sodium acrylate and acrylamide

[原水]
下記の実施例及び比較例で凝集処理に供した原水は、A工場の排水(無機炭素濃度55〜250mg/L)を生物処理して得られる下記水質のものである。生物処理を施しても無機炭素濃度は変化しない。
[Raw water]
The raw water subjected to the flocculation treatment in the following Examples and Comparative Examples is of the following water quality obtained by biological treatment of the wastewater (inorganic carbon concentration 55 to 250 mg / L) of the A factory. Inorganic carbon concentration does not change even after biological treatment.

[凝集性能の評価]
以下の実施例及び比較例においては、凝集槽と沈殿槽と除濁膜装置がこの順で連結された水処理装置を用い、7日間連続処理を行って、以下の評価項目で凝集性能を評価した。
[Evaluation of aggregation performance]
In the following Examples and Comparative Examples, using a water treatment apparatus in which a coagulation tank, a precipitation tank, and a turbidity removing film apparatus are connected in this order, continuous treatment is performed for 7 days, and the aggregation performance is evaluated using the following evaluation items. did.

固液分離水の濁度:沈殿槽の分離水を採取して濁度(NTU)を濁度計で測定した。
沈殿汚泥量比:沈殿槽で分離された汚泥量を計量し、実施例1の場合を1として、相対評価した。
濾過水SDI:沈殿槽の分離水を採取し、No.5A濾紙で濾過して得られた濾過水のSDIをASTM D4189−95(2002)に則り測定した。
MF膜差圧上昇速度:沈殿槽の後段の除濁膜(旭化成社製 孔径0.1μmのPVDF製MF膜)装置に、沈殿槽の分離水を、流量2m/m/dayで連続通水したときの供給水側と処理水側の圧力を計測し、差圧の上昇速度(kPa/day)を算出した。
Turbidity of solid-liquid separation water: The separation water of the precipitation tank was collected and turbidity (NTU) was measured with a turbidimeter.
Sediment sludge ratio: The amount of sludge separated in the sedimentation tank was weighed, and relative evaluation was made with the case of Example 1 being 1.
Filtered water SDI: The separated water collected in the settling tank was collected. The SDI of filtered water obtained by filtering with 5A filter paper was measured according to ASTM D4189-95 (2002).
MF membrane differential pressure increase rate: Separation water in the sedimentation tank is continuously passed through the turbidity membrane (PVDF MF membrane with a pore size of 0.1 μm manufactured by Asahi Kasei Co., Ltd.) in the latter stage of the precipitation tank at a flow rate of 2 m 3 / m 2 / day The pressure on the supply water side and the treated water side when water was measured was measured, and the rate of increase in differential pressure (kPa / day) was calculated.

[実施例1]
凝集槽にカチオン性有機凝結剤A5mg/Lと無機凝集剤200mg/Lを添加してpHを調整せず、10分間凝集処理した後、沈殿槽、除濁膜装置に通水した。
[Example 1]
The cationic organic coagulant A 5 mg / L and the inorganic coagulant 200 mg / L were added to the coagulation tank, and the pH was not adjusted. After coagulation treatment for 10 minutes, water was passed through the precipitation tank and the turbidity removal membrane device.

[実施例2]
凝集槽を2槽設け、第1凝集槽でカチオン性有機凝結剤A5mg/Lを添加して5分間凝集処理した後、第2凝集槽で無機凝集剤を200mg/L添加して10分間凝集処理したこと以外は、実施例1と同様に行った。
[Example 2]
Two agglomeration tanks are provided. After adding 5 mg / L of the cationic organic coagulant A in the first agglomeration tank and aggregating for 5 minutes, adding 200 mg / L of inorganic aggregating agent in the second agglomeration tank and aggregating for 10 minutes Except that, the same procedure as in Example 1 was performed.

[実施例3]
実施例2において、1時間に1回、原水の無機炭素濃度をGE製Sievers900により測定し、無機炭素濃度(mg/L)に対して10重量%となるように、カチオン性有機凝結剤Aの添加量(mg/L)を制御して添加したこと以外は実施例2と同様に行った。
[Example 3]
In Example 2, the inorganic carbon concentration of the raw water was measured with a GE Sievers 900 once an hour, so that the cationic organic coagulant A was 10% by weight with respect to the inorganic carbon concentration (mg / L). The same operation as in Example 2 was conducted except that the addition amount (mg / L) was controlled.

[実施例4]
実施例2において、第2凝集槽の流出水にアニオン性有機凝集剤を2mg/L添加したこと以外は実施例2と同様に行った。
[Example 4]
In Example 2, it carried out like Example 2 except having added 2 mg / L of anionic organic flocculants to the effluent of the 2nd flocculent tank.

[実施例5]
実施例3において、カチオン性有機凝結剤Aの代りにカチオン性有機凝結剤Bを用いたこと以外は実施例3と同様に行った。
[Example 5]
In Example 3, it carried out like Example 3 except having used the cationic organic coagulant B instead of the cationic organic coagulant A.

[比較例1]
実施例1において、カチオン性有機凝結剤Aも無機凝集剤も添加しなかったこと以外は実施例1と同様に行った。
[Comparative Example 1]
In Example 1, it carried out like Example 1 except having added neither the cationic organic coagulant A nor an inorganic flocculant.

[比較例2]
実施例1において、カチオン性有機凝結剤Aを添加しなかったこと以外は実施例1と同様に行った。
[Comparative Example 2]
In Example 1, it carried out like Example 1 except not having added cationic organic coagulant A.

[比較例3]
実施例1において、カチオン性有機凝結剤Aを添加せず、無機凝集剤添加量を2倍の400mg/Lとしたこと以外は実施例1と同様に行った。
[Comparative Example 3]
Example 1 was carried out in the same manner as Example 1 except that the cationic organic coagulant A was not added and the inorganic flocculant addition amount was doubled to 400 mg / L.

実施例1〜5及び比較例1〜3の結果を表1に示す。   Table 1 shows the results of Examples 1 to 5 and Comparative Examples 1 to 3.

Figure 0006565268
Figure 0006565268

表1より次のことが分かる。
凝集剤を用いていない比較例1や、無機凝集剤のみで凝集処理した比較例2では、固液分離水の濁度が高い。
無機凝集剤添加量を2倍とした比較例3では、固液分離水濁度や、濾過水のSDIは、良好な値であったが、汚泥量が実施例1の約1.89倍となった。
Table 1 shows the following.
In Comparative Example 1 in which no flocculant is used and in Comparative Example 2 in which flocculation treatment is performed using only the inorganic flocculant, the turbidity of the solid-liquid separated water is high.
In Comparative Example 3 in which the amount of inorganic flocculant added was double, the solid-liquid separation water turbidity and the SDI of filtered water were good values, but the amount of sludge was about 1.89 times that of Example 1. became.

これに対して、カチオン性有機凝結剤と無機凝集剤とを併用した実施例1〜5では良好な結果が得られた。
特に、カチオン性有機凝結剤を添加した後無機凝集剤を添加した実施例2では、実施例1に比べて固液分離水の濁度が低く、濾過水のSDI値も低い値を示し、MF膜の差圧上昇速度も低下した。
原水の無機炭素濃度に応じてカチオン性有機凝結剤添加量を制御した実施例3では、実施例2よりも更に固液分離水の濁度が低く、変動幅も小さくなり、濾過水のSDI、MF膜の差圧上昇速度も更に改善された。
更に、アニオン性有機凝集剤を添加した実施例4では、凝集フロックが大きくなり、固液分離水濁度が低減した。
実施例5は、コロイド当量が低いカチオン性有機凝結剤を用いたものであり、固液分離水の濁度や濾過水SDI、MF膜の差圧上昇速度が他の実施例に比べて劣るものの、比較例1,2に比べて良好な結果が得られ、比較例3に比べて汚泥量を少なくすることができる。
On the other hand, the favorable result was obtained in Examples 1-5 which used together the cationic organic coagulant and the inorganic flocculant.
In particular, in Example 2 in which an inorganic flocculant was added after adding a cationic organic coagulant, the turbidity of solid-liquid separated water was lower than that in Example 1, and the SDI value of filtered water was also low. The rate of increase in the differential pressure of the membrane also decreased.
In Example 3 where the addition amount of the cationic organic coagulant was controlled according to the inorganic carbon concentration of the raw water, the turbidity of the solid-liquid separated water was lower than that of Example 2, and the fluctuation range was smaller. The differential pressure increase rate of the MF membrane was further improved.
Furthermore, in Example 4 to which the anionic organic flocculant was added, the flocs flocs increased and the solid-liquid separation water turbidity decreased.
Example 5 uses a cationic organic coagulant having a low colloidal equivalent, and the turbidity of solid-liquid separation water and the rate of increase in the differential pressure of filtered water SDI and MF membrane are inferior to those of other examples. Favorable results are obtained as compared with Comparative Examples 1 and 2, and the amount of sludge can be reduced as compared with Comparative Example 3.

1 原水槽
2 第1凝集槽
3 第2凝集槽
4 沈殿槽
5 除濁膜装置
6 RO膜分離装置
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 1st flocculation tank 3 2nd flocculation tank 4 sedimentation tank 5 Turbidity removal membrane apparatus 6 RO membrane separation apparatus

Claims (9)

無機炭素50mg/L以上を含む被処理水に、無機凝集剤と、コロイド当量が1meq/g以上であるカチオン基を有する有機凝結剤とを添加して、pH5.5〜8.5で凝集処理した後、固液分離することを特徴とする無機炭素含有水の処理方法。   An inorganic flocculant and an organic coagulant having a cationic group with a colloidal equivalent of 1 meq / g or more are added to water to be treated containing 50 mg / L or more of inorganic carbon, and the flocculant is treated at a pH of 5.5 to 8.5. Then, the method for treating inorganic carbon-containing water is characterized in that solid-liquid separation is performed. 請求項1において、前記被処理水に前記カチオン基を有する有機凝結剤を添加した後、無機凝集剤を添加して凝集処理することを特徴とする無機炭素含有水の処理方法。   The method for treating inorganic carbon-containing water according to claim 1, wherein an organic coagulant having the cationic group is added to the water to be treated, and then an inorganic flocculant is added to perform an aggregation treatment. 請求項1又は2において、前記被処理水の無機炭素濃度に応じて、前記カチオン基を有する有機凝結剤の添加量を制御することを特徴とする無機炭素含有水の処理方法。   The method for treating inorganic carbon-containing water according to claim 1 or 2, wherein the amount of the organic coagulant having a cationic group is controlled according to the inorganic carbon concentration of the water to be treated. 請求項1ないし3のいずれか1項において、更に、アニオン基を有する有機凝集剤を前記被処理水に添加して凝集処理することを特徴とする無機炭素含有水の処理方法。   The method for treating inorganic carbon-containing water according to any one of claims 1 to 3, further comprising adding an organic flocculant having an anion group to the water to be treated for agglomeration treatment. 請求項1ないし4のいずれか1項において、前記固液分離で得られた分離水を除濁膜または逆浸透膜分離処理することを特徴とする無機炭素含有水の処理方法。   5. The method for treating inorganic carbon-containing water according to claim 1, wherein the separated water obtained by the solid-liquid separation is subjected to a turbidity membrane or reverse osmosis membrane separation treatment. 無機炭素50mg/L以上を含む被処理水に、無機凝集剤と、コロイド当量が1meq/g以上であるカチオン基を有する有機凝結剤を添加して、pH5.5〜8.5で凝集処理する凝集処理手段と、凝集処理水を固液分離する固液分離手段とを有する無機炭素含有水の処理装置であって、
前記被処理水の無機炭素濃度を測定する無機炭素濃度測定手段と、この測定値に基づいて、前記カチオン基を有する有機凝結剤の添加量を制御する制御手段とを有することを特徴とする無機炭素含有水の処理装置
An inorganic flocculant and an organic coagulant having a cationic group with a colloidal equivalent of 1 meq / g or more are added to water to be treated containing 50 mg / L or more of inorganic carbon, and agglomeration is performed at pH 5.5 to 8.5. a flocculation treatment unit, a processing device for a continuously machine the carbon-containing water that have a and solid-liquid separation means for solid-liquid separation aggregation process water,
An inorganic carbon concentration measuring means for measuring the inorganic carbon concentration of the water to be treated, and a control means for controlling the addition amount of the organic coagulant having the cationic group based on the measured value Carbon-containing water treatment equipment .
請求項6において、前記凝集処理手段は、前記被処理水に前記カチオン基を有する有機凝結剤を添加した後無機凝集剤を添加して凝集処理する手段であることを特徴とする無機炭素含有水の処理装置。   7. The inorganic carbon-containing water according to claim 6, wherein the flocculation treatment means is a means for adding the organic coagulant having the cationic group to the water to be treated and then adding an inorganic flocculant to perform the flocculation treatment. Processing equipment. 請求項6又は7において、前記凝集処理手段は、前記被処理水に更にアニオン基を有する有機凝集剤を添加して凝集処理する手段であることを特徴とする無機炭素含有水の処理装置。 According to claim 6 or 7, wherein the aggregation processing means, the processing apparatus of inorganic carbon-containing water, wherein the a means for flocculation treatment by adding an organic flocculant having a further anionic groups to the water to be treated. 請求項6ないしのいずれか1項において、前記固液分離手段で得られた分離水が導入される除濁膜または逆浸透膜分離手段を有することを特徴とする無機炭素含有水の処理装置。 The apparatus for treating inorganic carbon-containing water according to any one of claims 6 to 8 , further comprising a turbidity removal membrane or reverse osmosis membrane separation means into which the separated water obtained by the solid-liquid separation means is introduced. .
JP2015069364A 2015-03-30 2015-03-30 Method and apparatus for treating inorganic carbon-containing water Active JP6565268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069364A JP6565268B2 (en) 2015-03-30 2015-03-30 Method and apparatus for treating inorganic carbon-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069364A JP6565268B2 (en) 2015-03-30 2015-03-30 Method and apparatus for treating inorganic carbon-containing water

Publications (2)

Publication Number Publication Date
JP2016187790A JP2016187790A (en) 2016-11-04
JP6565268B2 true JP6565268B2 (en) 2019-08-28

Family

ID=57240177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069364A Active JP6565268B2 (en) 2015-03-30 2015-03-30 Method and apparatus for treating inorganic carbon-containing water

Country Status (1)

Country Link
JP (1) JP6565268B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798867B2 (en) * 2016-12-15 2020-12-09 オルガノ株式会社 Wastewater treatment method and wastewater treatment equipment
JP7199215B2 (en) * 2018-12-18 2023-01-05 オルガノ株式会社 water treatment method
JP7247921B2 (en) * 2020-02-21 2023-03-29 Jfeスチール株式会社 How to treat collected dust

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225360A (en) * 1975-08-18 1977-02-25 Toyo Umpanki Co Ltd Apparatus for automatically attaching or detaching fluid pressure cond uit
JP2012187467A (en) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd Membrane separation method and membrane separator
JP2013202452A (en) * 2012-03-27 2013-10-07 Kurita Water Ind Ltd Water treatment method

Also Published As

Publication number Publication date
JP2016187790A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
Matilainen et al. Natural organic matter removal by coagulation during drinking water treatment: A review
JP5218731B2 (en) Water treatment method and water treatment apparatus
JP5364298B2 (en) Dispersant-containing water treatment method
JP2009195775A (en) Flocculation and sedimentation treatment method
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
JP2020006332A (en) Water treatment apparatus and water treatment method
JP2012196614A (en) Method and system for wastewater treatment
JP7311951B2 (en) Water treatment method and water treatment equipment
JP6738492B2 (en) Water treatment method and water treatment device
JP2009154095A (en) Water treatment method
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP2010131469A (en) Membrane separation method
JP6744526B2 (en) Wastewater treatment method and wastewater treatment agent
JP6687056B2 (en) Water treatment method and water treatment device
JP2012187467A (en) Membrane separation method and membrane separator
JP2010158615A (en) Water treating method and water treating system
JP2008006382A (en) Method of treating oil-containing waste water
WO2018173328A1 (en) Service water treatment method
JP6657720B2 (en) Steam power plant wastewater recovery method and device
TWI771476B (en) Processing device and processing method for silica-containing water
KR20210051405A (en) Method for treating waste water containing calcium ion
JP5874360B2 (en) Method and apparatus for flocculation treatment of silt-containing water
JP2009142761A (en) Water treatment method
JP2021065803A (en) Treatment method of fluorine-containing wastewater
JP6648579B2 (en) How to remove calcium from highly alkaline water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6565268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150