JP2017189743A - Method and device for treating wastewater containing organic deoxidizer and suspended matter - Google Patents

Method and device for treating wastewater containing organic deoxidizer and suspended matter Download PDF

Info

Publication number
JP2017189743A
JP2017189743A JP2016080367A JP2016080367A JP2017189743A JP 2017189743 A JP2017189743 A JP 2017189743A JP 2016080367 A JP2016080367 A JP 2016080367A JP 2016080367 A JP2016080367 A JP 2016080367A JP 2017189743 A JP2017189743 A JP 2017189743A
Authority
JP
Japan
Prior art keywords
solid
liquid separation
wastewater
mixing
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016080367A
Other languages
Japanese (ja)
Other versions
JP6650817B2 (en
Inventor
鳥羽 裕一郎
Yuichiro Toba
裕一郎 鳥羽
臨太郎 前田
Rintaro Maeda
臨太郎 前田
裕 津田
Yutaka Tsuda
裕 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016080367A priority Critical patent/JP6650817B2/en
Publication of JP2017189743A publication Critical patent/JP2017189743A/en
Application granted granted Critical
Publication of JP6650817B2 publication Critical patent/JP6650817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce COD, while reducing the amount of generation of sludge, in the treatment of wastewater containing an organic deoxidizer and suspended matter.SOLUTION: A method for treating wastewater containing an organic deoxidizer and suspended matter includes: a mixture step for mixing a wastewater containing the organic deoxidizer and the suspended matter, an inorganic flocculant, and an oxidizer in a mixture tank 14, and a solid-liquid separation step for applying solid-liquid separation to the wastewater discharged from the mixture tank 14, with a filter 18.SELECTED DRAWING: Figure 1

Description

本発明は、有機脱酸素剤及び懸濁物質を含有する排水の処理方法及び処理装置の技術に関する。   The present invention relates to a method for treating wastewater containing an organic oxygen scavenger and suspended substances and a technique for a treatment apparatus.

ボイラー等を有する工場から排出される排水には、水中の溶存酸素による腐食を防止するための脱酸素剤、及び懸濁物質の安定化や硬度スケールの防止などの目的で使用されるスケール防止剤を含有する場合が少なくない。   For wastewater discharged from factories with boilers, etc., oxygen scavengers to prevent corrosion due to dissolved oxygen in the water, and scale inhibitors used to stabilize suspended substances and prevent hardness scales In many cases, it contains.

脱酸素剤としては有機脱酸素剤等が挙げられ、例えば、タンニン酸などの植物由来ポリフェノールやオキシカルボン酸、エリソルビン酸、アスコルビン酸又はこれらの塩などが用いられている。また、スケール防止剤としては、例えば、アクリル酸系水溶性ポリマー等が挙げられる。これらの物質はCOD源となる。また、タンニン酸などの植物由来ポリフェノールやオキシカルボン酸などは、排水を着色し、濁りと合わせ色度(見かけ色度)として現れる。   Examples of the oxygen scavenger include organic oxygen scavengers. For example, plant-derived polyphenols such as tannic acid, oxycarboxylic acid, erythorbic acid, ascorbic acid, or salts thereof are used. Examples of the scale inhibitor include acrylic acid-based water-soluble polymers. These substances are COD sources. In addition, plant-derived polyphenols such as tannic acid and oxycarboxylic acids color waste water and appear as chromaticity (apparent chromaticity) when combined with turbidity.

排水のCODMnは排水規制項目であるため、CODMnを規制値以下まで低減する必要がある。また、排水の色度についての規制はないが、見た目が悪く、放流先の水環境保全上低減されるべき項目である。 Since COD Mn of waste water is a waste water regulation item, it is necessary to reduce COD Mn to a regulation value or less. Moreover, although there is no regulation about the chromaticity of the drainage, it looks bad and should be reduced in order to preserve the water environment at the discharge destination.

従来、粒状活性炭を充填した充填層に排水を通水して、CODMnを低減する方法があるが、十分にCOD成分を吸着できず、また、色度も十分に低減できない。さらに、活性炭は早期に破過するため、頻繁に交換しなければならず、ランニングコストも高いという問題がある。 Conventionally, there is a method of reducing COD Mn by passing drainage water through a packed bed filled with granular activated carbon, but it is not possible to sufficiently adsorb COD components, and chromaticity cannot be sufficiently reduced. Furthermore, since activated carbon breaks through early, there is a problem that it must be replaced frequently and the running cost is high.

そこで、例えば、特許文献1〜3には、脱酸素剤、スケール防止剤等を含む排水に対して、有機凝結剤、無機凝集剤、活性炭を添加混合した後、凝集沈殿を行い、脱酸素剤、スケール防止剤等を除去・低減する方法が提案されている。   Thus, for example, in Patent Documents 1 to 3, after adding and mixing an organic coagulant, an inorganic flocculant, and activated carbon to wastewater containing an oxygen scavenger, a scale inhibitor, etc., coagulation precipitation is performed, and the oxygen scavenger A method for removing / reducing scale inhibitors and the like has been proposed.

特開2004−81939号公報JP 2004-81939 A 特開2006−7208号公報JP 2006-7208 A 特開2009−297600号公報JP 2009-297600 A

特許文献1〜3の方法は、脱酸素剤、スケール防止剤の成分によっては、その成分を不溶化し固液分離で除去することができるが、有機脱酸素剤又はアクリル酸系水溶性ポリマーを主要成分とする場合には、不溶化し難いという問題がある。また、不溶化できる場合でも下記の課題がある。   In the methods of Patent Documents 1 to 3, depending on the components of the oxygen absorber and the scale inhibitor, the components can be insolubilized and removed by solid-liquid separation. When used as a component, there is a problem that it is difficult to insolubilize. Even when insolubilization is possible, there are the following problems.

(1)添加した有機凝結剤は凝集後不溶化するとともに、無機凝集剤の添加量も多量となるため、汚泥発生量が多量となる。(2)排水中の有機脱酸素剤又はスケール防止剤量が変動する等して、余剰の有機凝結剤が処理水に残留すると、それがCOD源になり、処理水のCODMnが低減しない。 (1) The added organic coagulant is insolubilized after agglomeration, and the amount of inorganic flocculant added is large, so that the amount of sludge generated is large. (2) If excess organic coagulant remains in the treated water due to fluctuations in the amount of the organic oxygen scavenger or scale inhibitor in the wastewater, it becomes a COD source, and the COD Mn of the treated water does not decrease.

そこで、本発明の目的は、有機脱酸素剤及び懸濁物質を含む排水処理において、汚泥発生量を抑えながらCODMnを低減すること、特に着色した排水に対しては色度の低減も可能となる排水の処理方法及び処理装置を提供することである。 Therefore, an object of the present invention is to reduce COD Mn while suppressing sludge generation in wastewater treatment containing an organic oxygen scavenger and suspended substances, and in particular, it is possible to reduce chromaticity for colored wastewater. It is providing the wastewater processing method and processing apparatus which become.

本実施形態の一態様は、有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤と、酸化剤とを混合する混合工程と、前記混合工程から排出される排水を固液分離する固液分離工程と、を備える有機脱酸素剤及び懸濁物質を含有する排水の処理方法である。   One aspect of this embodiment is a solid-liquid separation of a wastewater containing an organic oxygen scavenger and a suspended substance, a mixing step of mixing an inorganic flocculant, and an oxidizing agent, and a wastewater discharged from the mixing step. And a solid-liquid separation step. A method for treating waste water containing an organic oxygen scavenger and suspended substances.

本実施形態の一態様は、有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤とを混合する第1混合工程と、前記第1混合工程から排出される排水を固液分離する第1固液分離工程と、前記第1固液分離工程から排出される排水と、酸化剤とを混合する第2混合工程と、前記第2混合工程から排出される排水を固液分離する第2固液分離工程と、を備える有機脱酸素剤及び懸濁物質を含有する排水の処理方法である。   One aspect of the present embodiment is a solid-liquid separation of a waste water containing an organic oxygen scavenger and a suspended substance, a first mixing step of mixing an inorganic flocculant, and a waste water discharged from the first mixing step. A first solid-liquid separation step; a second mixing step for mixing the waste water discharged from the first solid-liquid separation step; and an oxidizing agent; and a second solid-liquid separation for the waste water discharged from the second mixing step. A solid-liquid separation step, and an organic oxygen scavenger and a wastewater treatment method containing suspended solids.

前記排水の処理方法において、前記固液分離工程及び前記第2固液分離工程の固液分離はろ過処理であることが好ましい。   In the wastewater treatment method, the solid-liquid separation in the solid-liquid separation step and the second solid-liquid separation step is preferably a filtration treatment.

前記排水の処理方法において、前記無機凝集剤は、アルミニウム塩、第二鉄塩のうち少なくともいずれか一方を含み、前記酸化剤は次亜塩素酸ナトリウム溶液を含むことが好ましい。   In the wastewater treatment method, it is preferable that the inorganic flocculant includes at least one of an aluminum salt and a ferric salt, and the oxidizing agent includes a sodium hypochlorite solution.

本実施形態の一態様は、有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤と、酸化剤とを混合する混合手段と、前記混合手段から排出される排水を固液分離する固液分離手段と、を備える有機脱酸素剤及び懸濁物質を含有する排水の処理装置である。   One aspect of the present embodiment is a solid-liquid separation of a wastewater containing an organic oxygen scavenger and a suspended substance, a mixing means for mixing an inorganic flocculant, and an oxidizing agent, and a wastewater discharged from the mixing means. An apparatus for treating waste water containing an organic oxygen scavenger and a suspended substance.

本実施形態の一態様は、有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤とを混合する第1混合手段と、前記第1混合手段から排出される排水を固液分離する第1固液分離手段と、前記第1固液分離手段から排出される排水と、酸化剤とを混合する第2混合手段と、前記第2混合手段から排出される排水を固液分離する第2固液分離手段と、を備える有機脱酸素剤及び懸濁物質を含有する排水の処理装置である。   One aspect of the present embodiment is a solid-liquid separation of the waste water containing the organic oxygen scavenger and the suspended substance, the first mixing means for mixing the inorganic flocculant, and the waste water discharged from the first mixing means. The first solid-liquid separation means, the waste water discharged from the first solid-liquid separation means, the second mixing means for mixing the oxidant, and the second solid-liquid separation of the waste water discharged from the second mixing means. An apparatus for treating waste water containing an organic oxygen scavenger and suspended substances.

前記排水の処理装置において、前記固液分離手段及び前記第2固液分離手段は、ろ過器であることが好ましい。   In the wastewater treatment apparatus, it is preferable that the solid-liquid separation means and the second solid-liquid separation means are filters.

前記排水の処理装置において、前記無機凝集剤は、アルミニウム塩、第二鉄塩のうち少なくともいずれか一方を含み、前記酸化剤は次亜塩素酸ナトリウム溶液を含むことが好ましい。   In the wastewater treatment apparatus, it is preferable that the inorganic flocculant includes at least one of an aluminum salt and a ferric salt, and the oxidizing agent includes a sodium hypochlorite solution.

本発明によれば、有機脱酸素剤及び懸濁物質を含む排水処理において、汚泥発生量を抑えながらCODMnを低減することが可能となる。特に着色した排水に対しては色度の低減も可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to reduce COD Mn , suppressing the sludge generation amount in the waste water treatment containing an organic oxygen absorber and a suspended substance. In particular, chromaticity can be reduced for colored wastewater.

本実施形態に係る排水処理装置の概略構成図である。It is a schematic block diagram of the waste water treatment equipment concerning this embodiment. 本実施形態に係る排水処理装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the waste water treatment equipment which concerns on this embodiment. 本実施形態に係る排水処理装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the waste water treatment equipment which concerns on this embodiment. 本実施形態に係る排水処理装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the waste water treatment equipment which concerns on this embodiment.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る排水処理装置の概略構成図である。図1に示す排水処理装置1は、原水槽10、原水ポンプ12、混合槽14、ろ材16を充填したろ過器18を備えている。混合槽14には、撹拌機20及びpH計22が設置されている。   FIG. 1 is a schematic configuration diagram of a wastewater treatment apparatus according to the present embodiment. The wastewater treatment apparatus 1 shown in FIG. 1 includes a raw water tank 10, a raw water pump 12, a mixing tank 14, and a filter 18 filled with a filter medium 16. In the mixing tank 14, a stirrer 20 and a pH meter 22 are installed.

図1に示す排水処理装置1は、排水流入ライン24a,24b、処理水排出ライン26、酸化剤添加ライン28、無機凝集剤添加ライン30、pH調整剤添加ライン32を備えている。排水流入ライン24aには、原水ポンプ12が設置されている。   The waste water treatment apparatus 1 shown in FIG. 1 includes waste water inflow lines 24a and 24b, a treated water discharge line 26, an oxidant addition line 28, an inorganic flocculant addition line 30, and a pH adjuster addition line 32. The raw water pump 12 is installed in the drainage inflow line 24a.

排水流入ライン24aの一端は原水槽10の排水出口に接続され、他端は混合槽14の排水入口に接続されている。また、排水流入ライン24bの一端は混合槽14の排水出口に接続され、他端はろ過器18の排水入口に接続されている。処理水排出ライン26はろ過器18の処理水出口に接続されている。   One end of the drainage inflow line 24 a is connected to the drainage outlet of the raw water tank 10, and the other end is connected to the drainage inlet of the mixing tank 14. One end of the drainage inflow line 24 b is connected to the drainage outlet of the mixing tank 14, and the other end is connected to the drainage inlet of the filter 18. The treated water discharge line 26 is connected to the treated water outlet of the filter 18.

原水槽10には、酸化剤添加ライン28、無機凝集剤添加ライン30、pH調整剤添加ライン32が接続されている。図1の排水処理装置1では、例えば、不図示の酸化剤添加装置から酸化剤添加ライン28に酸化剤が送液され、不図示の無機凝集剤添加装置から無機凝集剤添加ライン30に無機凝集剤が送液され、不図示のpH調整剤添加装置からpH調整剤添加ライン32にpH調整剤が送液されるように構成されている。なお、各添加装置を設置せず、作業者等により各薬剤を各ラインに送液してもよい。   An oxidant addition line 28, an inorganic flocculant addition line 30, and a pH adjuster addition line 32 are connected to the raw water tank 10. In the wastewater treatment apparatus 1 of FIG. 1, for example, an oxidant is fed from an oxidant addition device (not shown) to an oxidant addition line 28, and inorganic flocculation is performed from an inorganic flocculant addition device (not shown) to an inorganic flocculant addition line 30. The agent is fed, and the pH adjuster is sent from a pH adjuster addition device (not shown) to the pH adjuster addition line 32. In addition, you may send each chemical | medical agent to each line by an operator etc., without installing each addition apparatus.

処理対象となる排水は、有機脱酸素剤及び懸濁物質を含有する排水であり、具体的には、ボイラー排水、冷却塔排水、めっき業等から排出されるめっき水洗排水等が挙げられる。有機脱酸素剤は、例えば、タンニン酸などの植物由来ポリフェノールやオキシカルボン酸、エリソルビン酸、アスコルビン酸又はこれらの塩等が挙げられる。懸濁物質は、例えば、ポリフェノールと鉄等との化合物や酸化鉄等が挙げられる。ポリフェノールと鉄等との化合物は、例えば、縮合型タンニンや加水分解型タンニン等のタンニン酸と鉄等との化合物等が挙げられる。また、処理対象となる排水は、アクリル酸系水溶性ポリマー等のスケール防止剤等を含んでも良く、アクリル酸系水溶性ポリマーは、例えば、アクリル酸、アクリルアミドメチルプロパンスルホン酸、N−置換アクリルアミドのターポリマー等が挙げられる。   The wastewater to be treated is wastewater containing an organic oxygen scavenger and suspended substances, and specific examples include boiler wastewater, cooling tower wastewater, plating washing wastewater discharged from the plating industry, and the like. Examples of the organic oxygen scavenger include plant-derived polyphenols such as tannic acid, oxycarboxylic acid, erythorbic acid, ascorbic acid, or salts thereof. Examples of the suspended substance include a compound of polyphenol and iron, iron oxide, and the like. Examples of the compound of polyphenol and iron include a compound of tannic acid such as condensed tannin and hydrolyzed tannin and iron. The wastewater to be treated may contain a scale inhibitor such as an acrylic acid-based water-soluble polymer, and the acrylic acid-based water-soluble polymer is, for example, acrylic acid, acrylamidomethylpropane sulfonic acid, or N-substituted acrylamide. A terpolymer etc. are mentioned.

図1に示す排水処理装置1の動作の一例を説明する。   An example of the operation of the waste water treatment apparatus 1 shown in FIG. 1 will be described.

有機脱酸素剤及び懸濁物質を含む排水は一旦原水槽10に貯留される。そして、原水ポンプ12が稼働され、原水槽10内の排水が排水流入ライン24aから混合槽14に供給される。この際、酸化剤添加ライン28及び無機凝集剤添加ライン30から混合槽14に酸化剤及び凝集剤が添加される。また、必要に応じて、pH調整剤添加ライン32から混合槽14にpH調整剤が添加される。   The waste water containing the organic oxygen scavenger and suspended substances is once stored in the raw water tank 10. And the raw | natural water pump 12 is operated and the waste_water | drain in the raw | natural water tank 10 is supplied to the mixing tank 14 from the waste_water | drain inflow line 24a. At this time, the oxidizing agent and the flocculant are added to the mixing tank 14 from the oxidizing agent addition line 28 and the inorganic flocculant addition line 30. Moreover, a pH adjuster is added to the mixing tank 14 from the pH adjuster addition line 32 as needed.

混合槽14では、撹拌機20により、有機脱酸素剤及び懸濁物質を含む排水と、酸化剤と、無機凝集剤とが混合される(混合工程)。この際、懸濁物質の一部(特に、比較的大きな粒径を有する懸濁物質)は、無機凝集剤と結合して、粗大化し、後段のろ過器18のろ材16で捕捉され易い形態となる。また、懸濁物質の一部、有機脱酸素剤、スケール防止剤等が酸化剤により酸化分解され、排水のCODMnが低減される。本実施形態では、排水中にタンニン酸などの植物由来ポリフェノール、オキシカルボン酸等の着色成分により排水が着色している場合であっても、それらの着色成分は酸化剤により酸化分解されるため、排水は脱色され、色度が低減される。 In the mixing tank 14, the stirrer 20 mixes the waste water containing the organic oxygen scavenger and the suspended substance, the oxidizing agent, and the inorganic flocculant (mixing step). At this time, a part of the suspended substance (particularly suspended substance having a relatively large particle size) is combined with the inorganic flocculant to become coarse, and is easily captured by the filter medium 16 of the subsequent filter 18. Become. In addition, part of the suspended matter, organic oxygen scavenger, scale inhibitor, and the like are oxidatively decomposed by the oxidizing agent, and COD Mn in the waste water is reduced. In the present embodiment, even if the wastewater is colored with a coloring component such as tannic acid or other plant-derived polyphenol or oxycarboxylic acid in the wastewater, since these coloring components are oxidatively decomposed by the oxidizing agent, The drainage is decolorized and the chromaticity is reduced.

混合槽14内で所定時間混合された排水は、排水流入ライン24bからろ過器18に供給され、固液分離される(固液分離工程)。具体的には、排水がろ過器18内のろ材16を通過する過程で、懸濁物質等がろ材16に捕捉される。また、排水中の無機凝集剤の存在により、ろ材16表面での凝集反応が促進され、ろ材16表面への懸濁物質の捕捉が進行すると、排水中の溶解成分(有機脱酸素剤やスケール防止剤等)の一部もろ材16に捕捉される。そして、ろ過器18により固液分離された排水が、処理水として処理水排出ライン26から系外へ排出される。   The wastewater mixed in the mixing tank 14 for a predetermined time is supplied to the filter 18 from the wastewater inflow line 24b and is subjected to solid-liquid separation (solid-liquid separation step). Specifically, suspended substances and the like are captured by the filter medium 16 in the process in which the wastewater passes through the filter medium 16 in the filter 18. Moreover, when the aggregation reaction on the surface of the filter medium 16 is promoted by the presence of the inorganic flocculant in the waste water, and the trapping of suspended substances on the surface of the filter medium 16 proceeds, dissolved components (organic oxygen scavenger and scale prevention in the waste water). Part of the agent or the like is captured by the filter medium 16. And the waste_water | drain isolate | separated by the filter 18 is discharged | emitted out of the system from the treated water discharge line 26 as treated water.

本実施形態では、酸化剤の添加により、有機脱酸素剤、スケール防止剤等の溶解成分を酸化して、CODMnを低減し、酸化剤で酸化しきれないがCODMnには寄与する不溶物だけをろ過等で除去するため、排水処理中の汚泥発生量が抑えられる。 In this embodiment, by adding an oxidizing agent, dissolved components such as an organic oxygen scavenger and a scale inhibitor are oxidized to reduce COD Mn, which cannot be completely oxidized by the oxidizing agent, but insoluble matter that contributes to COD Mn . Since only the water is removed by filtration or the like, the amount of sludge generated during wastewater treatment can be suppressed.

図2は、本実施形態に係る排水処理装置の他の一例を示す概略構成図である。図2に示す排水処理装置2において、図1に示す排水処理装置1と同様の構成については同一の符号を付している。図2に示す排水処理装置2は、原水槽10、原水ポンプ12、第1ラインミキサー14a、ろ材16を充填した第1ろ過器18a、第2ラインミキサー14b、ろ材16を充填した第2ろ過器18bを備えている。   FIG. 2 is a schematic configuration diagram illustrating another example of the waste water treatment apparatus according to the present embodiment. In the waste water treatment apparatus 2 shown in FIG. 2, the same code | symbol is attached | subjected about the structure similar to the waste water treatment apparatus 1 shown in FIG. The waste water treatment apparatus 2 shown in FIG. 2 includes a raw water tank 10, a raw water pump 12, a first line mixer 14a, a first filter 18a filled with a filter medium 16, a second line mixer 14b, and a second filter filled with a filter medium 16. 18b.

図2に示す排水処理装置2は、排水流入ライン24a,24b,24c,24d、処理水排出ライン26、酸化剤添加ライン28、無機凝集剤添加ライン30、pH調整剤添加ライン32を備えている。排水流入ライン24aには、原水ポンプ12が設置されている。排水流入ライン24bには、pH計22が設置されている。   The waste water treatment apparatus 2 shown in FIG. 2 includes waste water inflow lines 24a, 24b, 24c, and 24d, a treated water discharge line 26, an oxidant addition line 28, an inorganic flocculant addition line 30, and a pH adjuster addition line 32. . The raw water pump 12 is installed in the drainage inflow line 24a. A pH meter 22 is installed in the drainage inflow line 24b.

排水流入ライン24aの一端は原水槽10の排水出口に接続され、他端は第1ラインミキサー14aの排水入口に接続されている。また、排水流入ライン24bの一端は第1ラインミキサー14aの排水出口に接続され、他端は第1ろ過器18aの排水入口に接続されている。また、排水流入ライン24cの一端は第1ろ過器18aの排水出口に接続され、他端は第2ラインミキサー14bの排水入口に接続されている。排水流入ライン24dの一端は第2ラインミキサー14bの排水出口に接続され、他端は、第2ろ過器18bの排水入口に接続されている。処理水排出ライン26は第2ろ過器18bの処理水出口に接続されている。   One end of the drainage inflow line 24a is connected to the drainage outlet of the raw water tank 10, and the other end is connected to the drainage inlet of the first line mixer 14a. One end of the drainage inflow line 24b is connected to the drainage outlet of the first line mixer 14a, and the other end is connected to the drainage inlet of the first filter 18a. One end of the drainage inflow line 24c is connected to the drainage outlet of the first filter 18a, and the other end is connected to the drainage inlet of the second line mixer 14b. One end of the drainage inflow line 24d is connected to the drainage outlet of the second line mixer 14b, and the other end is connected to the drainage inlet of the second filter 18b. The treated water discharge line 26 is connected to the treated water outlet of the second filter 18b.

排水流入ライン24aには、無機凝集剤添加ライン30、pH調整剤添加ライン32が接続されている。排水流入ライン24cには、酸化剤添加ライン28が接続されている。   An inorganic flocculant addition line 30 and a pH adjuster addition line 32 are connected to the drainage inflow line 24a. An oxidant addition line 28 is connected to the drainage inflow line 24c.

図2に示す排水処理装置2の動作の一例を説明する。   An example of operation | movement of the waste water treatment apparatus 2 shown in FIG. 2 is demonstrated.

有機脱酸素剤及び懸濁物質を含む排水は一端原水槽10に貯留される。そして、原水ポンプ12が稼働され、原水槽10内の排水が排水流入ライン24aから第1ラインミキサー14aに供給される。この際に、無機凝集剤添加ライン30から第1ラインミキサー14aに凝集剤が供給される。また、必要に応じて、pH調整剤添加ライン32から第1ラインミキサー14aにpH調整剤が供給される。   The wastewater containing the organic oxygen scavenger and the suspended substance is stored in the raw water tank 10 once. And the raw | natural water pump 12 is operated and the waste_water | drain in the raw | natural water tank 10 is supplied to the 1st line mixer 14a from the waste_water | drain inflow line 24a. At this time, the flocculant is supplied from the inorganic flocculant addition line 30 to the first line mixer 14a. Moreover, a pH adjuster is supplied to the 1st line mixer 14a from the pH adjuster addition line 32 as needed.

第1ラインミキサー14aでは、有機脱酸素剤及び懸濁物質を含む排水と、無機凝集剤とが混合される(第1混合工程)。この際、懸濁物質の一部(特に、比較的大きな粒径を有する懸濁物質)は、無機凝集剤と結合して、粗大化し、後段のろ材16で捕捉され易い形態となる。   In the first line mixer 14a, the waste water containing the organic oxygen scavenger and the suspended substance and the inorganic flocculant are mixed (first mixing step). At this time, a part of the suspended substance (particularly, the suspended substance having a relatively large particle size) is combined with the inorganic flocculant to be coarsened and is easily captured by the subsequent filter medium 16.

第1ラインミキサー14aを通過した排水は、排水流入ライン24bから第1ろ過器18aに供給され、固液分離される(第1固液分離工程)。具体的には、排水が第1ろ過器18a内のろ材16を通過する過程で、懸濁物質がろ材16に捕捉される。また、排水中の無機凝集剤の存在により、ろ材16表面での凝集反応が促進され、ろ材16表面への懸濁物質の捕捉が進行すると、排水中の溶解成分(有機脱酸素剤やスケール防止剤等)の一部もろ材16に捕捉される。   The waste water that has passed through the first line mixer 14a is supplied from the waste water inflow line 24b to the first filter 18a and is subjected to solid-liquid separation (first solid-liquid separation step). Specifically, suspended substances are captured by the filter medium 16 in the process in which the wastewater passes through the filter medium 16 in the first filter 18a. Moreover, when the aggregation reaction on the surface of the filter medium 16 is promoted by the presence of the inorganic flocculant in the waste water, and the trapping of suspended substances on the surface of the filter medium 16 proceeds, dissolved components (organic oxygen scavenger and scale prevention in the waste water). Part of the agent or the like is captured by the filter medium 16.

第1ろ過器18aにより固液分離された排水は、排水流入ライン24cから第2ラインミキサー14bに供給される。この際に、酸化剤添加ライン28から第2ラインミキサー14bに酸化剤が供給され、排水と酸化剤とが混合される(第2混合工程)。第2ラインミキサー14bを通過した排水は、排水流入ライン24dから第2ろ過器18bに供給され、固液分離される(第2固液分離工程)。   The wastewater separated by solid and liquid by the first filter 18a is supplied from the wastewater inflow line 24c to the second line mixer 14b. At this time, the oxidizing agent is supplied from the oxidizing agent addition line 28 to the second line mixer 14b, and the waste water and the oxidizing agent are mixed (second mixing step). The wastewater that has passed through the second line mixer 14b is supplied from the wastewater inflow line 24d to the second filter 18b and is subjected to solid-liquid separation (second solid-liquid separation step).

第2ラインミキサー14bや第2ろ過器18b内では、排水中の懸濁物質の一部、有機脱酸素剤、スケール防止剤等が酸化剤により酸化分解され、排水のCODMnが低減される。また、着色した排水は脱色され、色度が低減される。また、第2ろ過器18b内では、排水中に残存している懸濁物質、排水中の溶解成分の一部がろ材16により捕捉される。また、排水中に無機凝集剤が残存していれば、酸化された溶解成分(有機脱酸素剤やスケール防止剤)の一部が凝集、不溶化され、第2ろ過器18bのろ材16に捕捉される。但し、酸化剤で酸化しきれないがCODMnには寄与する不溶物だけをろ過等で除去するため、排水処理中の汚泥発生量が抑えられる。 In the second line mixer 14b and the second filter 18b, part of suspended substances in the waste water, organic oxygen scavenger, scale inhibitor and the like are oxidized and decomposed by the oxidizing agent, and COD Mn in the waste water is reduced. Moreover, the colored waste water is decolored and chromaticity is reduced. Further, in the second filter 18b, suspended substances remaining in the waste water and a part of the dissolved components in the waste water are captured by the filter medium 16. Further, if the inorganic flocculant remains in the waste water, a part of the oxidized dissolved component (organic oxygen scavenger and scale inhibitor) is aggregated and insolubilized and captured by the filter medium 16 of the second filter 18b. The However, since only insoluble matter that cannot be oxidized by the oxidizing agent but contributes to COD Mn is removed by filtration or the like, the amount of sludge generated during waste water treatment can be suppressed.

酸化剤は懸濁物質によっても消費されるため、排水の懸濁物質濃度が高い場合には、図2の排水処理装置2のように、排水と凝集剤を混合し、後段のろ過器で懸濁物質を除去した後、懸濁物質を除去した排水と酸化剤とを混合して、排水中の有機脱酸素剤を酸化する処理方法の方が、排水のCODMnを効率的に低減させることができる。一方、排水の懸濁物質濃度が低い場合には、懸濁物質による酸化剤の消費量が少ないため、図1の排水処理装置1のように、酸化剤と凝集剤を同時に排水と混合し、後段のろ過器で固液分離する処理方法の方が簡便で好ましい。例えば、排水の懸濁物質濃度が15mg/L未満の場合、図1の排水処理装置1による排水処理を実施することが好ましく、排水の懸濁物質濃度が15mg/L以上の場合、図2の排水処理装置2による排水処理を実施することが好ましい。 Since the oxidizing agent is also consumed by suspended solids, when the concentration of suspended solids in the wastewater is high, the wastewater and the flocculant are mixed and suspended by a subsequent filter as in the wastewater treatment device 2 of FIG. After removing suspended substances, the treatment method of mixing the wastewater from which suspended substances are removed and the oxidizing agent to oxidize the organic oxygen scavenger in the wastewater can reduce COD Mn in the wastewater more efficiently. Can do. On the other hand, when the concentration of suspended solids in the wastewater is low, the amount of oxidant consumed by the suspended solids is small. Therefore, as in the wastewater treatment apparatus 1 in FIG. A method of solid-liquid separation with a subsequent filter is simple and preferred. For example, when the suspended solid concentration in the wastewater is less than 15 mg / L, it is preferable to carry out the wastewater treatment by the wastewater treatment apparatus 1 in FIG. 1, and in the case where the suspended solid concentration in the wastewater is 15 mg / L or more, It is preferable to carry out wastewater treatment by the wastewater treatment device 2.

本実施形態の排水処理装置は、排水の懸濁物質濃度を測定し、排水の懸濁物質濃度に基づいて、当該排水を図1に示す排水処理装置に送液したり、図2に示す排水処理装置に送液したりする切り替えシステムを備えても良い。また、図1の排水処理装置1であれば、排水の懸濁物質濃度を測定し、排水の懸濁物質濃度が所定値以上の場合には、酸化剤を添加せずに排水と凝集剤とを混合して、固液分離した後、固液分離した処理水を混合槽14に返送して、当該処理水と酸化剤を混合して、再度固液分離する処理方法でもよい。   The wastewater treatment apparatus of this embodiment measures the suspended solid concentration of wastewater, and sends the wastewater to the wastewater treatment apparatus shown in FIG. 1 based on the suspended solid concentration of wastewater, or the wastewater shown in FIG. You may provide the switching system which sends a liquid to a processing apparatus. In the case of the wastewater treatment apparatus 1 shown in FIG. 1, the concentration of suspended solids in wastewater is measured. If the concentration of suspended solids in the wastewater is equal to or greater than a predetermined value, After the solids and liquids are mixed, the treated water that has undergone solid-liquid separation is returned to the mixing tank 14, the treated water and the oxidizing agent are mixed, and the solid-liquid separation may be performed again.

以下に、各処理における条件及び変形例等について説明する。   Hereinafter, conditions and modifications of each process will be described.

<混合工程、第1混合工程、第2混合工程>
混合工程、第2混合工程で使用する酸化剤は、有機脱酸素剤を酸化分解することができるものであれば特に制限されるものではないが、例えば、次亜塩素酸ナトリウム、オゾン含有水、二酸化塩素溶液等が挙げられる。これらの中では、取扱いが容易で安価な点等から、次亜塩素酸ナトリウムが好ましい。なお、次亜塩素酸ナトリウムを使用する場合には、処理水中の残留塩素濃度が3mgCl/L未満となるように、排水に添加されることが望ましい。
<Mixing step, first mixing step, second mixing step>
The oxidizing agent used in the mixing step and the second mixing step is not particularly limited as long as it can oxidatively decompose the organic oxygen scavenger. For example, sodium hypochlorite, ozone-containing water, A chlorine dioxide solution etc. are mentioned. Among these, sodium hypochlorite is preferable because it is easy to handle and inexpensive. In the case of using sodium hypochlorite, as the residual chlorine concentration in the treated water is less than 3mgCl 2 / L, it is desirable to be added to the wastewater.

酸化剤の添加量は、排水中の有機脱酸素剤の濃度にもよるが、例えば、排水のCODMnの1〜10倍の範囲が好ましい。特に、酸化剤として次亜塩素酸ナトリウム溶液を使用する場合、有効成分である次亜塩素酸ナトリウムの添加量は、排水のCODMnの1〜3倍の範囲がより好ましい。次亜塩素酸ナトリウム溶液の添加量が、排水のCODMnの1倍未満であると、有機脱酸素剤を十分に酸化できない場合があり、また、3倍を超えると、添加量の増量に対して処理水のCODMnの低減度合が小さく、薬品コストが多大となる場合がある。 The amount of the oxidant added depends on the concentration of the organic oxygen scavenger in the waste water, but is preferably in the range of 1 to 10 times the COD Mn of the waste water, for example. In particular, when a sodium hypochlorite solution is used as the oxidizing agent, the amount of sodium hypochlorite that is an active ingredient is more preferably in the range of 1 to 3 times the COD Mn of the waste water. If the amount of sodium hypochlorite solution added is less than 1 times the amount of COD Mn in the wastewater, the organic oxygen scavenger may not be fully oxidized. Therefore, the degree of reduction of COD Mn in the treated water is small, and the chemical cost may be great.

混合工程、第1混合工程で使用する無機凝集剤は、従来公知の無機凝集剤等であり、好ましくは、塩化第二鉄溶液または硫酸第二鉄溶液の第二鉄塩溶液、ポリ塩化アルミニウム溶液または硫酸アルミニウム溶液などのアルミニウム塩溶液のうち少なくともいずれか一方を含むことが好ましい。無機凝集剤添加後は、懸濁物質の荷電中和を効率よく行うため、直ちに撹拌・混合されることが望ましい。   The inorganic flocculant used in the mixing step and the first mixing step is a conventionally known inorganic flocculant, preferably a ferric chloride solution or a ferric salt solution of a ferric sulfate solution, a polyaluminum chloride solution. Or it is preferable to contain at least any one among aluminum salt solutions, such as an aluminum sulfate solution. After the addition of the inorganic flocculant, it is desirable to immediately stir and mix in order to efficiently perform charge neutralization of the suspended substance.

無機凝集剤の添加量は、排水中の懸濁物質の量にもよるが、例えば、0.01〜0.05の範囲が好ましく、0.02〜0.04の範囲がより好ましい。無機凝集剤の添加量が0.01未満であると、懸濁物質の凝集性が低下する場合があり、0.05を超えると、ろ過器の閉塞が早まる場合がある。   Although the amount of the inorganic flocculant added depends on the amount of suspended substances in the waste water, for example, a range of 0.01 to 0.05 is preferable, and a range of 0.02 to 0.04 is more preferable. When the added amount of the inorganic flocculant is less than 0.01, the flocculating property of the suspended substance may be lowered, and when it exceeds 0.05, the filter may be clogged earlier.

混合工程、第1混合工程、第2混合工程において使用する混合装置は、撹拌機を備える混合槽でもよいし、ラインミキサーでもよいし、その他の混合装置でもよい。   The mixing device used in the mixing step, the first mixing step, and the second mixing step may be a mixing tank equipped with a stirrer, a line mixer, or other mixing device.

混合工程でのpHは6.0〜8.0の範囲に調整されることが好ましい。pHが6.0未満となると、酸化剤がガス化して(例えば次亜塩素酸が塩素ガスとなって)、水から揮散しやすくなり、pH8.0超では酸化剤の酸化力が低減し、CODMnの低減効果が小さくなる、或いは放流に際してpHを下げなければならないなどの不都合がある。 The pH in the mixing step is preferably adjusted to a range of 6.0 to 8.0. When the pH is less than 6.0, the oxidizing agent is gasified (for example, hypochlorous acid becomes chlorine gas) and is easily volatilized from water. When the pH exceeds 8.0, the oxidizing power of the oxidizing agent is reduced. There are inconveniences such as the effect of reducing COD Mn is reduced, or the pH must be lowered during discharge.

第1混合工程でのpHは5.0〜7.0の範囲に調整されることが好ましく、特に第二鉄塩を凝集剤として使用する場合は5.0〜6.5の範囲に調整される好ましい。pHを上記範囲とすることで、排水中の有機脱酸素剤等の溶解性成分の除去効果を高めることが可能となる。   The pH in the first mixing step is preferably adjusted to a range of 5.0 to 7.0, and in particular when ferric salt is used as a flocculant, the pH is adjusted to a range of 5.0 to 6.5. It is preferable. By making pH into the said range, it becomes possible to raise the removal effect of soluble components, such as an organic oxygen absorber in waste_water | drain.

第2混合工程でのpHは6.0〜8.0の範囲に調整されることが好ましい。pHが6.0未満となると、酸化剤がガス化して(例えば次亜塩素酸が塩素ガスとなって)、水から揮散しやすくなり、pHが8.0超では酸化剤の酸化力が低減し、CODMnの低減効果が小さくなる、或いは放流に際してpHを下げなければならないなどの不都合がある。図2に示す排水処理装置2では、例えば、排水流入ライン24cにpH調整剤添加ラインを設置して、pH調整を行うことが望ましい。 The pH in the second mixing step is preferably adjusted to a range of 6.0 to 8.0. When the pH is less than 6.0, the oxidizing agent is gasified (for example, hypochlorous acid becomes chlorine gas) and is easily volatilized from water. When the pH is above 8.0, the oxidizing power of the oxidizing agent is reduced. However, there is a disadvantage that the effect of reducing COD Mn is reduced, or the pH must be lowered during discharge. In the waste water treatment apparatus 2 shown in FIG. 2, for example, it is desirable to perform pH adjustment by installing a pH adjusting agent addition line in the waste water inflow line 24 c.

混合工程、第1混合工程、第2混合工程でのpH調整は、例えば、pH計22により測定されたpH値に基づいて、pH調整剤の添加量を調整することにより行われる。混合槽14を用いる場合、pH計22は混合槽14内に設置されることが好ましく、ラインミキサー(14a,14b)を用いる場合、pH計22はラインミキサー(14a,14b)の後段の排水流入ライン(24b、24d)又はろ過器(18a,18b)内に設置されることが好ましい。pH調整剤としては、硫酸、塩酸等の酸溶液、水酸化ナトリウム等のアルカリ溶液が挙げられる。   The pH adjustment in the mixing step, the first mixing step, and the second mixing step is performed, for example, by adjusting the addition amount of the pH adjusting agent based on the pH value measured by the pH meter 22. In the case of using the mixing tank 14, the pH meter 22 is preferably installed in the mixing tank 14, and in the case of using the line mixer (14a, 14b), the pH meter 22 is inflow of drainage downstream of the line mixer (14a, 14b). It is preferably installed in the line (24b, 24d) or the filter (18a, 18b). Examples of the pH adjuster include acid solutions such as sulfuric acid and hydrochloric acid, and alkali solutions such as sodium hydroxide.

<固液分離工程、第1固液分離工程、第2固液分離工程>
固液分離工程、第1固液分離工程、第2固液分離工程での排水の固液分離は、ろ過処理に限定されるものではなく、例えば、沈殿処理、微細気泡による浮上分離処理等が挙げられる。特に、固液分離工程、第2固液分離工程での排水の固液分離は、懸濁物質の除去率等の点で、ろ過処理が好ましい。また、第1固液分離工程での排水の固液分離は、省エネルギー等の点で、ろ過処理、又は沈殿処理が好ましい。ろ過処理は、砂ろ過器に排水を通過させて、懸濁物質等の不純物を除去する砂ろ過処理の他に、例えば、膜ろ過器に排水を通過させて、懸濁物質等の不純物を除去する膜ろ過処理等が挙げられる。これらの中では、ろ材閉塞時の回復の容易さ等の点で砂ろ過器による砂ろ過処理が好ましい。
<Solid-liquid separation step, first solid-liquid separation step, second solid-liquid separation step>
The solid-liquid separation of the waste water in the solid-liquid separation step, the first solid-liquid separation step, and the second solid-liquid separation step is not limited to the filtration treatment. For example, the precipitation treatment, the floating separation treatment with fine bubbles, etc. Can be mentioned. In particular, the solid-liquid separation of the waste water in the solid-liquid separation step and the second solid-liquid separation step is preferably a filtration treatment in terms of the removal rate of suspended substances. Moreover, the solid-liquid separation of the waste water in the first solid-liquid separation step is preferably a filtration treatment or a precipitation treatment in terms of energy saving. In addition to the sand filtration process that removes impurities such as suspended substances by passing wastewater through a sand filter, the filtration process removes impurities such as suspended substances by passing the wastewater through a membrane filter, for example. And membrane filtration treatment. Among these, sand filtration using a sand filter is preferable in terms of ease of recovery when the filter medium is blocked.

砂ろ過器は、例えば、ケイ砂、アンスラサイト、マンガン砂などのろ材を充填した塔等から構成される。砂ろ過器を用いる場合、排水とろ材との接触時間が充分に確保できるろ材量及び通水速度にすることが好ましい。排水とろ材との接触時間は、例えば10分以上が好ましい。砂ろ過器のろ過方式は、例えば、重力式、圧力式等が挙げられる。膜ろ過器は、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)等のろ材を設置した膜モジュール等から構成される。膜ろ過器のろ過方式は、例えば、クロスフローろ過方式、全量ろ過方式等が挙げられる。   A sand filter is comprised from the tower etc. which were filled with filter media, such as quartz sand, anthracite, and manganese sand, for example. When using a sand filter, it is preferable to use a filter medium amount and a water flow rate that can ensure a sufficient contact time between the drainage and the filter medium. The contact time between the drainage and the filter medium is preferably 10 minutes or more, for example. Examples of the filtration method of the sand filter include a gravity method and a pressure method. A membrane filter is comprised from the membrane module etc. which installed filter media, such as a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane), for example. Examples of the filtration method of the membrane filter include a cross flow filtration method and a total filtration method.

固液分離工程、第1固液分離工程、第2固液分離工程での排水の固液分離にろ過器を使用する場合は、例えば、定期的又はろ材の充填層前後の差圧が所定値まで上昇した際に、ろ過器を処理水で逆洗し(逆洗工程)、ろ過器の閉塞を抑制することが好ましい。以下に、ろ過器を逆洗するシステムを備える排水処理装置の構成を例示する。   When a filter is used for solid-liquid separation of waste water in the solid-liquid separation process, the first solid-liquid separation process, and the second solid-liquid separation process, for example, the differential pressure before and after the packed bed of the filter medium is a predetermined value. It is preferable that the filter is backwashed with treated water (backwashing process) to prevent the filter from being blocked. Below, the structure of the waste water treatment equipment provided with the system which backwashes a filter is illustrated.

図3は、本実施形態に係る排水処理装置の他の一例を示す概略構成図である。図3の排水処理装置3において、図1の排水処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図3の排水処理装置3は、ろ過器18を逆洗する逆洗システムを備えている。逆洗システムは、逆洗ブロワ34、空気流入ライン36、逆洗ポンプ38、逆洗排水ライン40a,40b、処理水貯留槽42、逆洗排水貯留槽44を備えている。   FIG. 3 is a schematic configuration diagram illustrating another example of the waste water treatment apparatus according to the present embodiment. In the waste water treatment apparatus 3 of FIG. 3, the same components as those of the waste water treatment apparatus 1 of FIG. The waste water treatment apparatus 3 of FIG. 3 includes a backwash system that backwashes the filter 18. The backwash system includes a backwash blower 34, an air inflow line 36, a backwash pump 38, backwash drainage lines 40a and 40b, a treated water storage tank 42, and a backwash drainage storage tank 44.

空気流入ライン36の一端は逆洗ブロワ34に接続され、他端はろ材16より下方のろ過器18の下部に配置されている。また、逆洗排水ライン40aの一端は処理水貯留槽42に接続され、他端は処理水排出ライン26に接続されている。逆洗排水ライン40aには逆洗ポンプ38が設置されている。逆洗排水ライン40bの一端はろ過器18の上部出口に接続され、他端は逆洗排水貯留槽44に接続されている。   One end of the air inflow line 36 is connected to the backwash blower 34, and the other end is disposed below the filter 18 below the filter medium 16. One end of the backwash drainage line 40 a is connected to the treated water storage tank 42, and the other end is connected to the treated water discharge line 26. A backwash pump 38 is installed in the backwash drainage line 40a. One end of the backwash drainage line 40 b is connected to the upper outlet of the filter 18, and the other end is connected to the backwash drainage storage tank 44.

図3の排水処理装置3では、例えば、逆洗ブロワ34が稼働され、空気が空気流入ライン36からろ過器18の下部に導入される。また、逆洗ポンプ38が稼働され、処理水貯留槽42内の処理水が逆洗排水ライン40a、処理水排出ライン26を通して、ろ過器18の下部に導入される。ろ過器18の下部に導入された空気及び処理水は上向流となって、ろ材16を通過する。この際、ろ材16に捕捉された懸濁物質等が除去される。懸濁物質等を含んだ処理水は逆洗排水ライン40bを通り、逆洗排水貯留槽44に供給される。   In the waste water treatment apparatus 3 of FIG. 3, for example, the backwash blower 34 is operated, and air is introduced from the air inflow line 36 to the lower part of the filter 18. Further, the backwash pump 38 is operated, and the treated water in the treated water storage tank 42 is introduced into the lower portion of the filter 18 through the backwash drainage line 40 a and the treated water discharge line 26. The air and treated water introduced into the lower part of the filter 18 become an upward flow and pass through the filter medium 16. At this time, suspended substances and the like captured by the filter medium 16 are removed. The treated water containing suspended substances and the like passes through the backwash drainage line 40 b and is supplied to the backwash drainage storage tank 44.

図4は、本実施形態に係る排水処理装置の他の一例を示す概略構成図である。図4の排水処理装置4において、図2の排水処理装置2と同様の構成については同一の符号を付し、その説明を省略する。図4の排水処理装置4は、逆洗ブロワ34、空気流入ライン36、逆洗ポンプ38、逆洗排水ライン40a,40b、処理水貯留槽42、逆洗排水貯留槽44から構成される逆洗システムを備えている。図4の排水処理装置4では、第2ろ過器18bを逆洗するための逆洗システムのみを図示している。第1ろ過器18aを逆洗するための逆洗システムの図示は省略するが、例えば、図4に示す逆洗システムと同様の構成の逆洗システムが取り付けられる。   FIG. 4 is a schematic configuration diagram illustrating another example of the waste water treatment apparatus according to the present embodiment. In the waste water treatment apparatus 4 of FIG. 4, the same code | symbol is attached | subjected about the structure similar to the waste water treatment apparatus 2 of FIG. 2, and the description is abbreviate | omitted. 4 includes a backwash blower 34, an air inflow line 36, a backwash pump 38, backwash drainage lines 40a and 40b, a treated water storage tank 42, and a backwash drainage storage tank 44. Has a system. In the waste water treatment apparatus 4 of FIG. 4, only the backwashing system for backwashing the 2nd filter 18b is shown in figure. Although illustration of the backwashing system for backwashing the 1st filter 18a is abbreviate | omitted, for example, the backwashing system of the structure similar to the backwashing system shown in FIG. 4 is attached.

空気流入ライン36の一端は逆洗ブロワ34に接続され、他端はろ材16より下方の第2ろ過器18bの下部に配置されている。また、逆洗排水ライン40aの一端は処理水貯留槽42に接続され、他端は処理水排出ライン26に接続されている。逆洗排水ライン40aには逆洗ポンプ38が設置されている。逆洗排水ライン40bの一端は第2ろ過器18bの上部出口に接続され、他端は逆洗排水貯留槽44に接続されている。   One end of the air inflow line 36 is connected to the backwash blower 34, and the other end is disposed below the second filter 18 b below the filter medium 16. One end of the backwash drainage line 40 a is connected to the treated water storage tank 42, and the other end is connected to the treated water discharge line 26. A backwash pump 38 is installed in the backwash drainage line 40a. One end of the backwash drainage line 40 b is connected to the upper outlet of the second filter 18 b, and the other end is connected to the backwash drainage storage tank 44.

図4に示す逆洗システムにより第2ろ過器18bの逆洗が行われる。また、不図示の逆洗システムにより、第1ろ過器18aの逆洗も行われる。   Backwashing of the second filter 18b is performed by the backwashing system shown in FIG. Moreover, the backwashing of the 1st filter 18a is also performed by the backwashing system not shown.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1−1、実施例1−2、比較例1−1、比較例1−2、比較例1−3)
表1に示す水質で、有機脱酸素剤(ポリフェノール)及びアクリル酸ターポリマーを含むボイラーからのブロー水(ボイラー排水)を処理対象の原水として使用した。
(Example 1-1, Example 1-2, Comparative example 1-1, Comparative example 1-2, Comparative example 1-3)
Blow water (boiler drainage) from a boiler containing an organic oxygen scavenger (polyphenol) and an acrylic acid terpolymer with the water quality shown in Table 1 was used as raw water to be treated.

Figure 2017189743
Figure 2017189743

図3に示す排水処理装置を使用して、上記原水の処理を行った。実施例及び比較例の装置仕様を表2に示す。   The raw water was treated using the waste water treatment apparatus shown in FIG. Table 2 shows the apparatus specifications of Examples and Comparative Examples.

Figure 2017189743
Figure 2017189743

実施例1−1〜1−2では、図3の処理装置に原水を流量90L/hで通水した。実施例1−1では混合槽に塩化第二鉄溶液を1mgFe/L、次亜塩素酸ナトリウム溶液を60mgNaClO/L添加し、実施例1−2では塩化第二鉄溶液を1mgFe/L、次亜塩素酸ナトリウム溶液を90mgNaClO/L添加した。混合槽での反応pHはいずれも6.2とした。   In Examples 1-1 to 1-2, raw water was passed through the treatment apparatus of FIG. 3 at a flow rate of 90 L / h. In Example 1-1, 1 mg Fe / L of ferric chloride solution and 60 mg NaClO / L of sodium hypochlorite solution were added to the mixing tank, and in Example 1-2, 1 mg Fe / L of hypochlorous acid solution and hypochlorous acid were added. 90 mg NaClO / L sodium chlorate solution was added. The reaction pH in the mixing tank was 6.2.

比較例1−1〜1−3では、図3の装置に原水を流量90L/hで通水した。比較例1−1では混合槽に次亜塩素酸ナトリウム溶液のみを90mgNaClO/L添加し、比較例1−2では塩化第二鉄溶液のみを1mgFe/L添加し、比較例1−3では塩化第二鉄溶液1mgFe/Lと、有機凝結剤としてのポリジメチルジアリルアンモニウムクロライド1%水量液(以下、DADMAC)を2500mg/L添加した。混合槽での反応pHは各比較例とも6.2とした。   In Comparative Examples 1-1 to 1-3, raw water was passed through the apparatus of FIG. 3 at a flow rate of 90 L / h. In Comparative Example 1-1, only 90 mg NaClO / L of sodium hypochlorite solution was added to the mixing tank. In Comparative Example 1-2, only 1 mg Fe / L of ferric chloride solution was added. In Comparative Example 1-3, 1 mg Fe / L of a ferric solution and 2500 mg / L of a 1% aqueous solution of polydimethyldiallylammonium chloride (hereinafter referred to as DADMAC) as an organic coagulant were added. The reaction pH in the mixing tank was 6.2 in each comparative example.

実施例(1−1〜1−2)及び比較例(1−1〜1−3)いずれも、通水開始から5時間後、処理水を採取し、処理水のpH、CODMn、懸濁物質濃度(SS)、色度(見かけ色度)、残留塩素濃度を測定した。pH、CODMn、懸濁物質濃度はJIS0102に規定される方法により測定した。なお、CODMnの測定において残留塩素がある場合は、亜硫酸ナトリウムを添加して残留塩素を0.3mg/L以下に低減後、CODMnを測定した。見かけ色度は、ろ紙等でろ過せず、上水試験方法(2011年度)に基づいて測定した。実施例(1−1,1−2)、比較例(1−1〜1−3)の処理水の水質結果を表3にまとめた。 In each of the examples (1-1 to 1-2) and the comparative examples (1-1 to 1-3), the treated water was collected after 5 hours from the start of water flow, and the pH of the treated water, COD Mn , suspension The substance concentration (SS), chromaticity (apparent chromaticity), and residual chlorine concentration were measured. The pH, COD Mn , and suspended substance concentration were measured by the methods specified in JIS0102. When there was residual chlorine in the measurement of COD Mn , sodium sulfite was added to reduce the residual chlorine to 0.3 mg / L or less, and then COD Mn was measured. The apparent chromaticity was measured based on the water test method (2011) without filtering with filter paper or the like. Table 3 summarizes the water quality results of the treated water of Examples (1-1, 1-2) and Comparative Examples (1-1 to 1-3).

また、実施例(1−1〜1−2)及び比較例(1−1〜1−3)いずれも、通水から24時間後、空気逆洗及び処理水による水逆洗を行った。逆洗排水をすべて捕集し、その逆洗排水中の懸濁物質濃度(汚泥濃度)、24時間通水で発生した懸濁物質量(汚泥発生量)を求めた。実施例(1−1,1−2)、比較例(1−1〜1−3)の逆洗排水の懸濁物質濃度及び懸濁物質量(汚泥発生量)を表3にまとめた。   In addition, in all of Examples (1-1 to 1-2) and Comparative Examples (1-1 to 1-3), air backwashing and water backwashing with treated water were performed 24 hours after passing water. All the backwash wastewater was collected, and the suspended matter concentration (sludge concentration) in the backwash wastewater and the amount of suspended matter (sludge generation amount) generated by passing water for 24 hours were determined. Table 3 summarizes the suspended matter concentration and the amount of suspended matter (sludge generation amount) in the backwash waste water of Examples (1-1, 1-2) and Comparative Examples (1-1 to 1-3).

また、実施例(1−1,1−2)及び比較例(1−1〜1−3)いずれも、通水開始から4.5時間の時点で、ろ材の充填層より上の水を採取し、懸濁物質濃度を測定した。これをろ過器上部の懸濁物質濃度として表3にまとめた。   In addition, in all of the examples (1-1, 1-2) and the comparative examples (1-1 to 1-3), water above the filter medium packed bed was collected at 4.5 hours from the start of water flow. The suspended substance concentration was measured. This is summarized in Table 3 as the suspended matter concentration at the top of the filter.

Figure 2017189743
Figure 2017189743

(実施例1−1、実施例1−2の結果)
次亜塩素酸ナトリウム及び塩化第二鉄を添加混合後、ろ過した実施例1−1及び1−2の処理水の水質について、次亜塩素酸ナトリウム添加量が比較的少ない実施例1−1はCODMnが18mg/L、見かけ色度が59度であった。また、次亜塩素酸ナトリウム添加量が多い実施例1−2は、実施例1−1より良好な水質となり、CODMnが14mg/L、見かけ色度が36度であった。ろ過器上部での懸濁物質濃度はそれぞれ12、13mg/Lであった。また、逆洗排水の懸濁物質濃度は580〜620mg/Lであり、逆洗排水の懸濁物質量(汚泥発生量)は26〜28g/45Lであった。
(Results of Example 1-1 and Example 1-2)
Regarding the water quality of the treated water of Examples 1-1 and 1-2, after adding and mixing sodium hypochlorite and ferric chloride, Example 1-1 in which the amount of sodium hypochlorite added is relatively small is: COD Mn was 18 mg / L, and apparent chromaticity was 59 degrees. Moreover, Example 1-2 with much sodium hypochlorite addition amount became water quality better than Example 1-1, COD Mn was 14 mg / L, and apparent chromaticity was 36 degree | times. The suspended solid concentrations at the top of the filter were 12, 13 mg / L, respectively. The suspended matter concentration in the backwash wastewater was 580 to 620 mg / L, and the suspended matter amount (sludge generation amount) in the backwash wastewater was 26 to 28 g / 45 L.

(比較例1−1〜1−3の結果)
次亜塩素酸ナトリウムのみを添加した比較例1−1は、処理水のCODMnが22mg/L、見かけ色度が62度であった。比較例1−1は、実施例1−2と同じ次亜塩素酸ナトリウム添加量だが、CODMn、見かけ色度、懸濁物質濃度のいずれも高い値となった。CODMn及び見かけ色度が高くなった原因は、凝集剤が無いことで懸濁物質が処理水に多く漏出したためであると考えられる。また、塩化第二鉄のみを添加した比較例1−2では、処理水のCODMnが32mg/L、見かけ色度が138度であり、実施例(1−1、1−2)と比較すると非常に高い値であった。また、塩化第二鉄とDADMACを添加した比較例1−3は、処理水のCODMnが19mg/Lであり実施例(1−1、1−2)に近い値であったが、見かけ色度が83度で実施例(1−1、1−2)より高い値であった。また、比較例1−3のろ過器上部での懸濁物質濃度、逆洗排水の懸濁物質濃度は、実施例(1−1、1−2)より高く、さらに逆洗排水の懸濁物質量(汚泥発生量)は、実施例1−2の2.6倍であった。
(Results of Comparative Examples 1-1 to 1-3)
In Comparative Example 1-1 in which only sodium hypochlorite was added, the COD Mn of the treated water was 22 mg / L, and the apparent chromaticity was 62 degrees. In Comparative Example 1-1, the same amount of sodium hypochlorite was added as in Example 1-2, but COD Mn , apparent chromaticity, and suspended substance concentration all had high values. The reason why COD Mn and the apparent chromaticity are high is considered to be that a large amount of suspended substances leaked into the treated water due to the absence of the flocculant. Moreover, in the comparative example 1-2 which added only ferric chloride, COD Mn of treated water is 32 mg / L and an apparent chromaticity is 138 degree | times, Comparing with an Example (1-1, 1-2). It was very high. In Comparative Example 1-3 in which ferric chloride and DADMAC were added, COD Mn of the treated water was 19 mg / L, which was a value close to Example (1-1, 1-2). The degree was 83 degrees, which was higher than the examples (1-1, 1-2). Moreover, the suspended substance density | concentration in the upper part of the filter of Comparative Example 1-3, and the suspended substance density | concentration of backwash waste_water | drain are higher than an Example (1-1, 1-2), and also the suspended matter of backwash waste_water | drain The amount (sludge generation amount) was 2.6 times that of Example 1-2.

以上のように、実施例(1−1、1−2)は比較例(1−1〜1−2)よりも処理水質は良好であり、また、DADMACを使用した比較例1−3よりも汚泥発生量が減少する結果が得られた。これにより、次亜塩素酸ナトリウム及び塩化第二鉄を添加混合後、ろ過した実施例の有効性が確認できたと言える。   As described above, the treated water quality of Examples (1-1, 1-2) is better than Comparative Examples (1-1 to 1-2), and more than Comparative Example 1-3 using DADMAC. The result that the sludge generation amount decreased was obtained. Thereby, it can be said that the effectiveness of the filtered example was confirmed after sodium hypochlorite and ferric chloride were added and mixed.

(実施例2−1、実施例2−2)
表4に示す水質(表1に示す水質より懸濁物質が多い)で、有機脱酸素剤(ポリフェノール)及びアクリル酸ターポリマーを含むボイラーからのブロー水(ボイラー排水)を処理対象の原水として使用した。
(Example 2-1 and Example 2-2)
Blow water (boiler wastewater) from a boiler containing the organic oxygen absorber (polyphenol) and acrylic acid terpolymer is used as the raw water to be treated with the water quality shown in Table 4 (having more suspended matter than the water quality shown in Table 1) did.

Figure 2017189743
Figure 2017189743

図4に示す排水処理装置を使用して、上記原水の処理を行った。装置仕様を表5に示す。   The raw water was treated using the waste water treatment apparatus shown in FIG. Table 5 shows the device specifications.

Figure 2017189743
Figure 2017189743

実施例2−1では、図4の排水処理装置に原水を流量90L/hで通水した。但し、実施例2−1では、原水に、塩化第二鉄溶液を2mgFe/L、次亜塩素酸ナトリウム溶液を65mgNaClO/L添加し、1段目の混合器で混合後、1段目のろ過器でろ過するのみの処理方法を実施した(2段目の混合器及びろ過器は使用していない)。そして、通水開始から5時間後、1段目のろ過器から排出された処理水を採取し、処理水のpH、CODMn、懸濁物質濃度(SS)、色度(見かけ色度)を測定した。また、通水から24時間後、1段目のろ過器に対して空気逆洗及び処理水による水逆洗を行った。逆洗排水(90L)をすべて捕集し、その逆洗排水中の懸濁物質濃度(汚泥濃度)、24時間通水で発生した懸濁物質量(汚泥発生量)を求めた。これらの結果を表6にまとめた。 In Example 2-1, raw water was passed through the waste water treatment apparatus of FIG. 4 at a flow rate of 90 L / h. However, in Example 2-1, 2 mg Fe / L of ferric chloride solution and 65 mg NaClO / L of sodium hypochlorite solution were added to the raw water, mixed in the first stage mixer, and then filtered in the first stage. The processing method of only filtering with a filter was carried out (the second-stage mixer and filter were not used). Then, 5 hours after the start of water flow, the treated water discharged from the first-stage filter is collected, and the pH, COD Mn , suspended substance concentration (SS), and chromaticity (apparent chromaticity) of the treated water are measured. It was measured. In addition, 24 hours after passing water, the first-stage filter was subjected to air backwash and water backwash with treated water. All the backwash wastewater (90 L) was collected, and the suspended matter concentration (sludge concentration) in the backwash wastewater and the amount of suspended matter (sludge generation amount) generated by passing water for 24 hours were determined. These results are summarized in Table 6.

実施例2−2では、図4の排水処理装置に原水を流量90L/hで通水した。また、原水に塩化第二鉄溶液を2mgFe/L添加して、1段目の混合器で混合後、1段目のろ過器でろ過し、そのろ過水(中間処理水)に次亜塩素酸ナトリウム溶液を65mgNaClO/L添加して、2段目の混合器で混合後、2段目のろ過器でろ過した。通水開始から5時間後、1段目のろ過器から排出される中間処理水及び2段目のろ過器から排出される最終処理水を採取し、中間処理水及び最終処理水のpH、CODMn、懸濁物質濃度(SS)、色度(見かけ色度)、残留塩素濃度を測定した。また、通水から24時間後、1段目及び2段目のろ過器に対して空気逆洗及び最終処理水による水逆洗を行った。逆洗排水(90L)をすべて捕集し、その逆洗排水中の懸濁物質濃度(汚泥濃度)、24時間通水で発生した懸濁物質量(汚泥発生量)を求めた。これらの結果を表6にまとめた。 In Example 2-2, raw water was passed through the waste water treatment apparatus of FIG. 4 at a flow rate of 90 L / h. Also, 2 mg Fe / L of ferric chloride solution is added to the raw water, mixed in the first stage mixer, filtered through the first stage filter, and hypochlorous acid is added to the filtered water (intermediate treated water). The sodium solution was added with 65 mg NaClO / L, mixed with the second-stage mixer, and then filtered with the second-stage filter. Five hours after the start of water flow, the intermediate treated water discharged from the first-stage filter and the final treated water discharged from the second-stage filter are collected, and the pH, COD of the intermediate treated water and the final treated water are collected. Mn , suspended substance concentration (SS), chromaticity (apparent chromaticity), and residual chlorine concentration were measured. In addition, 24 hours after passing water, the first-stage and second-stage filters were subjected to air backwash and water backwash with final treated water. All the backwash wastewater (90 L) was collected, and the suspended matter concentration (sludge concentration) in the backwash wastewater and the amount of suspended matter (sludge generation amount) generated by passing water for 24 hours were determined. These results are summarized in Table 6.

(比較例2)
比較例2では、図4の排水処理装置に原水を流量90L/hで通水した。また、原水に次亜塩素酸ナトリウム溶液を65mgNaClO/L添加して、1段目の混合器で混合後、1段目のろ過器でろ過し、そのろ過水(中間処理水)に塩化第二鉄を2mgFe/L添加して、2段目の混合器で混合後、2段目のろ過器でろ過した。通水開始から5時間後、1段目のろ過器から排出される中間処理水及び2段目のろ過器から排出される最終処理水を採取し、中間処理水及び最終処理水のpH、CODMn、懸濁物質濃度(SS)、色度(見かけ色度)、残留塩素濃度を測定した。また、通水から24時間後、1段目及び2段目のろ過器に対して空気逆洗及び最終処理水による水逆洗を行った。逆洗排水(90L)をすべて捕集し、その逆洗排水中の懸濁物質濃度(汚泥濃度)、24時間通水で発生した懸濁物質量(汚泥発生量)を求めた。これらの結果を表6にまとめた。
(Comparative Example 2)
In Comparative Example 2, raw water was passed through the waste water treatment apparatus of FIG. 4 at a flow rate of 90 L / h. In addition, 65 mg NaClO / L of sodium hypochlorite solution is added to the raw water, mixed in the first-stage mixer, filtered through the first-stage filter, and the filtered water (intermediate treated water) is added with second chloride. Iron was added in an amount of 2 mg Fe / L, mixed with a second-stage mixer, and then filtered with a second-stage filter. Five hours after the start of water flow, the intermediate treated water discharged from the first-stage filter and the final treated water discharged from the second-stage filter are collected, and the pH, COD of the intermediate treated water and the final treated water are collected. Mn , suspended substance concentration (SS), chromaticity (apparent chromaticity), and residual chlorine concentration were measured. In addition, 24 hours after passing water, the first-stage and second-stage filters were subjected to air backwash and water backwash with final treated water. All the backwash wastewater (90 L) was collected, and the suspended matter concentration (sludge concentration) in the backwash wastewater and the amount of suspended matter (sludge generation amount) generated by passing water for 24 hours were determined. These results are summarized in Table 6.

Figure 2017189743
Figure 2017189743

(実施例2−1、実施例2−2の結果)
次亜塩素酸ナトリウムと塩化第二鉄を同時に添加混合してろ過した実施例2−1において、処理水質は、CODMnが17mg/L、見かけ色度が38度であった。塩化第二鉄を添加混合して、ろ過した後、次亜塩素酸ナトリウムを添加混合して、ろ過した実際例2−2は、実施例2−1より処理水質が良好となり、CODMnが12mg/L、見かけ色度が23度であった。すなわち、原水の懸濁物質濃度が高い場合には、実施例2−1の処理方法より、実施例2−2の処理方法を実施した方が良好な処理水質が得られることがわかった。実施例2−1、実施例2−2の逆洗排水中の懸濁物質濃度は600〜610mg/Lであり、逆洗排水中の懸濁物質量(汚泥発生量)は54〜55g/90Lであった。
(Results of Example 2-1 and Example 2-2)
In Example 2-1, in which sodium hypochlorite and ferric chloride were added and mixed at the same time and filtered, the treated water had a COD Mn of 17 mg / L and an apparent chromaticity of 38 degrees. After adding and mixing ferric chloride and filtering, sodium hypochlorite was added and mixed and filtered. In Example 2-2, the treated water quality was better than in Example 2-1, and COD Mn was 12 mg. / L, apparent chromaticity was 23 degrees. That is, when the concentration of suspended solids in raw water was high, it was found that better treated water quality was obtained by performing the treatment method of Example 2-2 than the treatment method of Example 2-1. The suspended substance concentration in the backwash wastewater of Example 2-1 and Example 2-2 is 600 to 610 mg / L, and the suspended solid amount (sludge generation amount) in the backwash wastewater is 54 to 55 g / 90 L. Met.

(比較例2の結果)
次亜塩素酸ナトリウムと塩化第二鉄の添加順序を実施例2−2とは逆の順序で添加した比較例2において、最終処理水の水質は、CODMnが20mg/L、見かけ色度が51度であった。なお、最終処理水のCODMnは中間処理水(23mg/L)より低下したものの、見かけ色度は中間処理水(45度)より上昇した。色度上昇の原因は、中間処理水に添加した塩化第二鉄の鉄が2段目のろ過器から漏出したためであると考えられる。また、比較例2の次亜塩素酸ナトリウム添加量は実施例2−2よりも多いが、最終処理水のCODMnは実施例2−2よりも高くなった。
(Results of Comparative Example 2)
In Comparative Example 2 in which the addition order of sodium hypochlorite and ferric chloride was added in the reverse order of Example 2-2, the water quality of the final treated water was 20 mg / L COD Mn and the apparent chromaticity was It was 51 degrees. Although the COD Mn of the final treated water was lower than that of the intermediate treated water (23 mg / L), the apparent chromaticity was higher than that of the intermediate treated water (45 degrees). The cause of the increase in chromaticity is considered to be that ferric chloride iron added to the intermediate treated water leaked from the second-stage filter. Moreover, although the sodium hypochlorite addition amount of the comparative example 2 was larger than Example 2-2, COD Mn of the final treated water became higher than Example 2-2.

1〜4 排水処理装置、10 原水槽、12 原水ポンプ、14 混合槽、14a 第1ラインミキサー、14b 第2ラインミキサー、16 ろ材、18,18a,18b ろ過器、20 撹拌機、22 pH計、24a,24b,24c,24d 排水流入ライン、26 処理水排出ライン、28 酸化剤添加ライン、30 無機凝集剤添加ライン、32 pH調整剤添加ライン、34 逆洗ブロワ、36 空気流入ライン、38 逆洗ポンプ、40a,40b 逆洗排水ライン、42 処理水貯留槽、44 逆洗排水貯留槽。   1-4 Wastewater treatment device, 10 raw water tank, 12 raw water pump, 14 mixing tank, 14a 1st line mixer, 14b 2nd line mixer, 16 filter medium, 18, 18a, 18b filter, 20 stirrer, 22 pH meter, 24a, 24b, 24c, 24d Wastewater inflow line, 26 Treated water discharge line, 28 Oxidant addition line, 30 Inorganic flocculant addition line, 32 pH adjuster addition line, 34 Backwash blower, 36 Air inflow line, 38 Backwash Pump, 40a, 40b Backwash drainage line, 42 treated water storage tank, 44 backwash drainage storage tank.

Claims (8)

有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤と、酸化剤とを混合する混合工程と、
前記混合工程から排出される排水を固液分離する固液分離工程と、を備えることを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理方法。
A mixing step of mixing the wastewater containing the organic oxygen scavenger and the suspended solids, the inorganic flocculant, and the oxidizing agent;
And a solid-liquid separation step of solid-liquid separation of the waste water discharged from the mixing step. A method for treating waste water containing an organic oxygen scavenger and a suspended substance.
有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤とを混合する第1混合工程と、
前記第1混合工程から排出される排水を固液分離する第1固液分離工程と、
前記第1固液分離工程から排出される排水と、酸化剤とを混合する第2混合工程と、
前記第2混合工程から排出される排水を固液分離する第2固液分離工程と、を備えることを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理方法。
A first mixing step of mixing an organic oxygen scavenger and waste water containing suspended solids with an inorganic flocculant;
A first solid-liquid separation step for solid-liquid separation of the waste water discharged from the first mixing step;
A second mixing step of mixing waste water discharged from the first solid-liquid separation step and an oxidizing agent;
And a second solid-liquid separation step for solid-liquid separation of the wastewater discharged from the second mixing step. A method for treating wastewater containing an organic oxygen scavenger and a suspended substance.
請求項1又は2に記載の排水の処理方法であって、前記固液分離工程及び前記第2固液分離工程の固液分離はろ過処理であることを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理方法。   3. The method for treating wastewater according to claim 1 or 2, wherein the solid-liquid separation in the solid-liquid separation step and the second solid-liquid separation step is a filtration treatment. A method for treating wastewater containing substances. 請求項1〜3のいずれか1項に記載の排水の処理方法であって、前記無機凝集剤は、アルミニウム塩、第二鉄塩のうち少なくともいずれか一方を含み、前記酸化剤は次亜塩素酸ナトリウム溶液を含むことを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理方法。   The wastewater treatment method according to any one of claims 1 to 3, wherein the inorganic flocculant includes at least one of an aluminum salt and a ferric salt, and the oxidizing agent is hypochlorous acid. A method for treating wastewater containing an organic oxygen scavenger and suspended solids, comprising an acid sodium solution. 有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤と、酸化剤とを混合する混合手段と、
前記混合手段から排出される排水を固液分離する固液分離手段と、を備えることを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理装置。
A mixing means for mixing the waste water containing the organic oxygen scavenger and the suspended solids, the inorganic flocculant, and the oxidizing agent;
And a solid-liquid separation means for solid-liquid separation of the wastewater discharged from the mixing means. A wastewater treatment apparatus containing an organic oxygen scavenger and a suspended substance.
有機脱酸素剤及び懸濁物質を含有する排水と、無機凝集剤とを混合する第1混合手段と、
前記第1混合手段から排出される排水を固液分離する第1固液分離手段と、
前記第1固液分離手段から排出される排水と、酸化剤とを混合する第2混合手段と、
前記第2混合手段から排出される排水を固液分離する第2固液分離手段と、を備えることを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理装置。
A first mixing means for mixing the waste water containing the organic oxygen scavenger and the suspended substance and the inorganic flocculant;
First solid-liquid separation means for solid-liquid separation of waste water discharged from the first mixing means;
A second mixing means for mixing waste water discharged from the first solid-liquid separation means and an oxidizing agent;
And a second solid-liquid separation means for solid-liquid separation of the wastewater discharged from the second mixing means. A wastewater treatment apparatus containing an organic oxygen scavenger and a suspended substance.
請求項5又は6に記載の排水の処理装置であって、前記固液分離手段及び前記第2固液分離手段は、ろ過器であることを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理装置。   The wastewater treatment apparatus according to claim 5 or 6, wherein the solid-liquid separation means and the second solid-liquid separation means are filters, and contain an organic oxygen scavenger and a suspended substance. Wastewater treatment equipment. 請求項5〜7のいずれか1項に記載の排水の処理装置であって、前記無機凝集剤は、アルミニウム塩、第二鉄塩のうち少なくともいずれか一方を含み、前記酸化剤は次亜塩素酸ナトリウム溶液を含むことを特徴とする有機脱酸素剤及び懸濁物質を含有する排水の処理装置。

The wastewater treatment apparatus according to any one of claims 5 to 7, wherein the inorganic flocculant includes at least one of an aluminum salt and a ferric salt, and the oxidizing agent is hypochlorous acid. A wastewater treatment apparatus containing an organic oxygen scavenger and a suspended substance, characterized by comprising an acid sodium solution.

JP2016080367A 2016-04-13 2016-04-13 Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter Active JP6650817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080367A JP6650817B2 (en) 2016-04-13 2016-04-13 Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080367A JP6650817B2 (en) 2016-04-13 2016-04-13 Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter

Publications (2)

Publication Number Publication Date
JP2017189743A true JP2017189743A (en) 2017-10-19
JP6650817B2 JP6650817B2 (en) 2020-02-19

Family

ID=60086314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080367A Active JP6650817B2 (en) 2016-04-13 2016-04-13 Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter

Country Status (1)

Country Link
JP (1) JP6650817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927883A (en) * 2022-12-13 2023-04-07 核工业北京化工冶金研究院 Method for separating and recovering beryllium element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927883A (en) * 2022-12-13 2023-04-07 核工业北京化工冶金研究院 Method for separating and recovering beryllium element

Also Published As

Publication number Publication date
JP6650817B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US6613230B2 (en) Method for simultaneous removal of arsenic and fluoride from aqueous solutions
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP2003300069A (en) Fresh water generating method and fresh water generator
JP2005288442A (en) Method for washing membrane module
JP2022159814A (en) Method and apparatus for treating manganese-containing water
JP2008229418A (en) Method and apparatus for industrial water treatment
JP2003170007A (en) Coagulant for waste water treatment for car-washing
JP5609174B2 (en) Water treatment system
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP6359257B2 (en) Method and apparatus for treating manganese-containing water
JP2009072769A (en) Sewage treatment system
JP4761447B2 (en) Method and apparatus for treating manganese-containing water
JP4940250B2 (en) Water treatment method and water treatment system
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP2006122795A (en) Wastewater treatment method
RU2222371C1 (en) The improvements brought in filtration using membranes
JP6662558B2 (en) Water treatment method and water treatment device
Toran et al. Membrane-based processes to obtain high-quality water from brewery wastewater
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
JP4576760B2 (en) Circulating cooling water treatment method
JP2011183245A (en) Method and apparatus for producing ultrapure water
JP7481117B2 (en) Water Treatment Methods
JP5211432B2 (en) Method for treating water containing suspended matter and chromaticity components
JP2006263553A (en) Method for treating anionic organic material-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R150 Certificate of patent or registration of utility model

Ref document number: 6650817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250