JP2022159814A - Method and apparatus for treating manganese-containing water - Google Patents

Method and apparatus for treating manganese-containing water Download PDF

Info

Publication number
JP2022159814A
JP2022159814A JP2021064236A JP2021064236A JP2022159814A JP 2022159814 A JP2022159814 A JP 2022159814A JP 2021064236 A JP2021064236 A JP 2021064236A JP 2021064236 A JP2021064236 A JP 2021064236A JP 2022159814 A JP2022159814 A JP 2022159814A
Authority
JP
Japan
Prior art keywords
manganese
sludge
tank
treated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021064236A
Other languages
Japanese (ja)
Inventor
康充 大木
Yasumitsu Oki
哲 清水
Satoru Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2021064236A priority Critical patent/JP2022159814A/en
Publication of JP2022159814A publication Critical patent/JP2022159814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

To provide a method and an apparatus for treating manganese-containing water capable of efficiently removing manganese ions from water to be treated.SOLUTION: A method for treating manganese-containing water that includes a step in which manganese-containing water to be treated is introduced into a reaction tank in which sludge that contains active manganese oxide is present, and reacted with manganese ions to obtain inactive manganese oxide; a step in which the inactive manganese oxide-containing sludge is subjected to flocculation treatment by introducing the sludge into a flocculation tank to which a flocculant is added; a step in which the flocculated sludge is subjected to sedimentation and separation by introducing it into a sedimentation tank to obtain treated water; a step in which a part of the separated sludge is introduced into a manganese regeneration tank to oxidize the inactive manganese oxide in the sludge; and a step in which the oxidized sludge is returned to the reaction tank, wherein the oxidation of the inactive manganese oxide is performed by aeration in the manganese regeneration tank.SELECTED DRAWING: Figure 1

Description

本発明は、マンガン含有水の処理方法に係り、詳しくは、効率よくマンガンイオンを除去処理することができるマンガン含有水の処理方法法及び処理装置に関する。 TECHNICAL FIELD The present invention relates to a method for treating manganese-containing water, and more particularly to a method and apparatus for treating manganese-containing water capable of efficiently removing manganese ions.

マンガンは地球上に豊富に存在し、マンガンを含有している水源としては表流水、地下水、坑排水が代表的である。被処理水中にマンガンイオンが含まれている水源は様々な問題を生じる。表流水中にマンガンイオンの状態にて含まれている場合には、被処理水を配管にて移送する過程でマンガンイオンが酸化され、二酸化マンガンとなる。一度、二酸化マンガンになると二酸化マンガンはマンガンイオンの酸化触媒となるため、マンガンイオンの酸化を促進し、配管内にスケールとして付着し配管閉塞が生じる。また、マンガンイオンが表流水中に存在、あるいはマンガンを含んだ被処理水を環境中に放流した場合などには、空気中の酸素あるいは微生物によって二酸化マンガンに酸化される。二酸化マンガンは黒色であるため、川床が黒色化する。 Manganese is abundantly present on the earth, and representative water sources containing manganese are surface water, groundwater, and pit drainage. A water source containing manganese ions in the water to be treated causes various problems. When manganese ions are contained in the surface water, the manganese ions are oxidized to manganese dioxide in the process of transporting the water to be treated through piping. Once converted to manganese dioxide, manganese dioxide serves as an oxidation catalyst for manganese ions, which promotes the oxidation of manganese ions, deposits as scale in the piping, and clogs the piping. Manganese ions are oxidized to manganese dioxide by oxygen in the air or microorganisms when manganese ions are present in surface water or when manganese-containing water to be treated is discharged into the environment. Since manganese dioxide is black, the riverbed becomes black.

被処理水中のマンガンイオンの除去方法としては、接触濾過法や凝集沈殿法などが行われている。 As a method for removing manganese ions from water to be treated, a contact filtration method, a coagulation sedimentation method, and the like are performed.

接触濾過法では、マンガン砂を充填した接触濾過塔内にマンガンイオンを含んだ被処理水を通水すると共に酸化剤(次亜塩素酸等)を添加することで、触媒反応によりマンガン砂表面で連続的にマンガンイオンを酸化処理し、濾過塔内で固液分離を行う。 In the contact filtration method, water to be treated containing manganese ions is passed through a contact filtration tower filled with manganese sand, and an oxidizing agent (hypochlorous acid, etc.) is added to cause a catalytic reaction on the surface of the manganese sand. Manganese ions are continuously oxidized, and solid-liquid separation is performed in the filtration tower.

凝集沈殿法では、処理時のpHを高アルカリ域に設定することで、マンガンイオンを水酸化マンガンとして不溶化するか、あるいは、塩化第二鉄等の無機凝集剤を添加し、鉄の水酸化物にマンガンイオンを吸着させ不溶化し、不溶化物を沈殿槽にて固液分離し除去する。 In the coagulation-sedimentation method, by setting the pH at the time of treatment to a high alkaline range, manganese ions are insolubilized as manganese hydroxide, or an inorganic coagulant such as ferric chloride is added to produce iron hydroxide. Manganese ions are adsorbed on it to make it insoluble, and the insolubilized matter is removed by solid-liquid separation in a sedimentation tank.

特許文献1には、マンガン等の重金属含有排水に二酸化マンガン粉末を添加し、中性領域にて撹拌し、マンガンイオン等の重金属イオンを二酸化マンガンに吸着させ、その後沈降分離する方法が記載されている。この特許文献1には、沈降分離した、2価マンガンイオン吸着二酸化マンガン含有汚泥を、消石灰などのアルカリ剤によりpH7.0前後とした後、強撹拌して空気で酸化処理して二酸化マンガン含有汚泥とし、これを上記二酸化マンガン粉末として再利用することが記載されている。 Patent Document 1 describes a method of adding manganese dioxide powder to waste water containing heavy metals such as manganese, stirring in a neutral region, adsorbing heavy metal ions such as manganese ions to manganese dioxide, and then sedimentation and separation. there is In this patent document 1, after sedimentation and separation, the sludge containing manganese dioxide adsorbed with bivalent manganese ions is adjusted to about pH 7.0 with an alkaline agent such as slaked lime, and then strongly stirred and oxidized with air to obtain the sludge containing manganese dioxide. and to reuse it as the manganese dioxide powder.

特開昭62-53789号公報JP-A-62-53789

上記の接触濾過法は、次亜塩素酸、さらし粉といった塩素系酸化剤を使用し、マンガン処理を行うのが一般的であるが、この方法では処理水中に塩素が残留することが多く、残留塩素の管理が必要となり運転管理の面から容易ではない。また、マンガン砂表面で被処理水中のマンガンイオンが酸化し堆積するため、接触濾過塔内の濾材間の間隙が小さくなり、閉塞が生じ通水が不可能となる。そのため、定期的に接触濾過塔内のマンガン砂を交換する必要があり、メンテナンスの負担となる。また、被処理水中に濁質や鉄が高濃度で含まれている場合には、前段に濁質成分を除去する凝集沈殿処理または加圧浮上処理が必要となり、処理システムが大がかりで複雑になる。 In the above contact filtration method, chlorine-based oxidizing agents such as hypochlorous acid and bleaching powder are generally used to treat manganese. It is not easy from the aspect of operation management. In addition, since manganese ions in the water to be treated are oxidized and deposited on the surface of the manganese sand, the gaps between the filter media in the contact filtration tower become smaller and clogged, making water flow impossible. Therefore, it is necessary to periodically replace the manganese sand in the contact filtration tower, which becomes a burden of maintenance. In addition, if the water to be treated contains high concentrations of turbidity and iron, a coagulating sedimentation treatment or pressure flotation treatment to remove the turbidity components is required in the previous stage, making the treatment system large and complicated. .

凝集沈殿法にてマンガンイオンを処理するためには、アルカリ剤にて処理水pHを10以上とする。このアルカリ剤としては、一般的には安価である消石灰が使われる。そのため、被処理水が炭酸イオンあるいは硫酸イオンを含有している場合には、炭酸カルシウムや硫酸カルシウムが析出し汚泥発生量が増加する。これにより、汚泥を産業廃棄物として処分するための費用が増加するため、ランニングコストが著しく増加する。また、凝集沈殿法では、沈殿槽での固液分離後に、排水のpHを中性域まで低下させる必要があり、硫酸や塩酸といった酸添加設備と中和槽の常設が必要となる。 In order to treat manganese ions by the coagulation sedimentation method, the pH of the treated water is adjusted to 10 or higher with an alkaline agent. Slaked lime, which is generally inexpensive, is used as this alkaline agent. Therefore, when the water to be treated contains carbonate ions or sulfate ions, calcium carbonate or calcium sulfate precipitates, increasing the amount of sludge generated. As a result, the cost of disposing of the sludge as industrial waste increases, resulting in a significant increase in running costs. In addition, in the coagulation sedimentation method, after solid-liquid separation in the sedimentation tank, it is necessary to lower the pH of the wastewater to a neutral range, and it is necessary to permanently install an acid addition facility such as sulfuric acid or hydrochloric acid and a neutralization tank.

特許文献1の方法では、沈殿した二酸化マンガン含有汚泥を回収し、消石灰にてpH7前後にて中和した後、強撹拌を行うことで2価マンガンイオンを酸化させるが、特許文献1の方法(中性域での強撹拌)では、2価マンガンイオンは十分には酸化されないため、排水中のマンガンイオン除去効率に劣る。 In the method of Patent Document 1, the precipitated manganese dioxide-containing sludge is recovered, neutralized with slaked lime at around pH 7, and then vigorously stirred to oxidize the divalent manganese ions. Strong stirring in a neutral region) does not sufficiently oxidize divalent manganese ions, resulting in inferior manganese ion removal efficiency in waste water.

本発明は、被処理水中のマンガンイオンを効率的に除去することができるマンガン含有水の処理方法及び処理装置を提供することを課題とする。 An object of the present invention is to provide a method and apparatus for treating manganese-containing water that can efficiently remove manganese ions in the water to be treated.

本発明では、MnO・HOを活性マンガン酸化物、MnO・MnO・HOを不活性マンガン酸化物と称する。 In the present invention, MnO 2 .H 2 O is called active manganese oxide, and MnO 2 .MnO.H 2 O is called inactive manganese oxide.

本発明のマンガン含有水の処理方法は、マンガンイオン含有被処理水を、活性マンガン酸化物含有汚泥を存在させた反応槽に導入してマンガンイオンと反応させて不活性マンガン酸化物を得、次に凝集剤が添加される凝集槽に該不活性マンガン酸化物を含む汚泥を導入して凝集処理し、次に凝集汚泥を沈殿槽に導入して沈降分離して処理水を得ると共に、分離した汚泥の一部をマンガン再生槽に導入して、該汚泥中の不活性マンガン酸化物を酸化し、酸化された汚泥を反応槽に返送する水処理方法において、該マンガン再生槽において曝気を行うことにより不活性マンガン酸化物を酸化することを特徴とする。 In the method for treating manganese-containing water of the present invention, manganese ion-containing water to be treated is introduced into a reaction tank in which active manganese oxide-containing sludge is present, reacted with manganese ions to obtain inert manganese oxide, and then The sludge containing the inert manganese oxide is introduced into a flocculation tank in which a flocculant is added to flocculate, and then the flocculated sludge is introduced into a sedimentation tank and sedimentation is separated to obtain treated water, and the sludge is separated. In a water treatment method in which part of sludge is introduced into a manganese regeneration tank to oxidize inert manganese oxides in the sludge and the oxidized sludge is returned to the reaction tank, aeration is performed in the manganese regeneration tank. characterized by oxidizing inert manganese oxide by

本発明のマンガン含有水の処理装置は、活性マンガン酸化物含有汚泥を存在させた反応槽であって、マンガンイオン含有被処理水が導入され、活性マンガン酸化物とマンガンイオンとを反応させて不活性マンガン酸化物を生成させる反応槽と、凝集剤添加手段を備えており、該反応槽から不活性マンガン酸化物を含む汚泥が導入されて凝集処理が行われる凝集槽と、該凝集槽から凝集汚泥の一部が導入され、凝集汚泥を沈降分離して処理水と汚泥とに分離するための沈殿槽と、汚泥中の不活性マンガン酸化物を酸化するための曝気手段を備えており、該沈殿槽で分離された汚泥の一部が導入されるマンガン再生槽と、該マンガン再生槽で酸化された汚泥を前記反応槽に返送する返送手段とを有する。 The manganese-containing water treatment apparatus of the present invention is a reaction tank in which active manganese oxide-containing sludge is present. A reaction tank for generating active manganese oxide and a means for adding a flocculating agent. A part of the sludge is introduced, the sedimentation tank for sedimentation and separation of the flocculated sludge to separate the treated water and sludge, and an aeration means for oxidizing the inert manganese oxide in the sludge are provided. It has a manganese regeneration tank into which part of the sludge separated in the sedimentation tank is introduced, and return means for returning the sludge oxidized in the manganese regeneration tank to the reaction tank.

本発明の一態様では、前記マンガン再生槽のpHが9以上である。 In one aspect of the present invention, the pH of the manganese regeneration tank is 9 or higher.

本発明の一態様では、前記マンガン再生槽の水理学的滞留時間が30分以上である。 In one aspect of the present invention, the manganese regeneration tank has a hydraulic retention time of 30 minutes or longer.

本発明の一態様では、前記マンガン再生槽のDO濃度が1mg/L以上である。 In one aspect of the present invention, the manganese regeneration tank has a DO concentration of 1 mg/L or more.

本発明の一態様では、前記反応槽における返送汚泥流量に対する被処理水流量の比(被処理水流量/返送汚泥流量)が2~50となるように、返送汚泥流量及び/又は被処理水流量を調整する。 In one aspect of the present invention, the return sludge flow rate and/or the treated water flow rate are such that the ratio of the treated water flow rate to the returned sludge flow rate in the reaction tank (treated water flow rate/returned sludge flow rate) is 2 to 50 to adjust.

本発明の一態様では、前記反応槽に無機凝集剤を添加する。 In one aspect of the present invention, an inorganic flocculant is added to the reaction vessel.

本発明の一態様では、前記反応槽における、被処理水中のマンガン負荷に対する汚泥中マンガン酸化物の負荷の比Rが10(g-Mn/g-Mn)以上である。 In one aspect of the present invention, the ratio R of the manganese oxide load in the sludge to the manganese load in the water to be treated in the reaction tank is 10 (g-Mn/g-Mn) or more.

本発明では、被処理水中の2価マンガンイオンは、次式(1)に従って活性マンガン酸化物と反応して不活性マンガン酸化物となる。
Mn2++MnO・HO→MnO・MnO・HO+2H …(1)
In the present invention, divalent manganese ions in the water to be treated react with active manganese oxides according to the following formula (1) to form inactive manganese oxides.
Mn2 ++ MnO2.H2O→MnO2.MnO.H2O+2H+ ( 1 )

本発明では、マンガンイオンを含んだ被処理水と活性マンガン酸化物を含んだ汚泥とを反応槽にて接触混合させ、活性マンガン酸化物に2価マンガンイオンを吸着させる。その後、凝集槽にて高分子凝集剤を添加することで、フロックを粗大化し、沈殿槽にてマンガン酸化物を含んだ汚泥を沈降分離および回収する。この回収したマンガン酸化物をマンガン再生槽にて酸化剤等の薬品を用いず、酸素含有ガスの曝気により酸化する。 In the present invention, water to be treated containing manganese ions and sludge containing active manganese oxides are brought into contact with each other in a reaction tank to cause the active manganese oxides to adsorb divalent manganese ions. After that, flocs are coarsened by adding a polymer flocculant in a flocculation tank, and sludge containing manganese oxide is sedimented, separated and recovered in a sedimentation tank. The recovered manganese oxide is oxidized by aeration with an oxygen-containing gas in a manganese regeneration tank without using chemicals such as oxidizing agents.

本発明は、このようにマンガン再生槽において曝気により不活性マンガン酸化物中のMnOの酸化を行うものであり、塩素等の酸化剤薬品を必要としないため、後段での酸化剤の残留を気にする必要がなく、従来処理よりも運転管理が容易となる。 The present invention oxidizes MnO in inert manganese oxide by aeration in the manganese regeneration tank in this way, and does not require oxidizing agents such as chlorine. There is no need to do so, and operation management is easier than with conventional processing.

また、反応槽及び凝集槽では中性域での処理が可能であって、後段に酸およびアルカリの添加設備およびpH調整槽が不要であるため、省スペース化が可能であり、経済面からも水処理設備の運用コスト、設備コストを抑えられる。本発明は、上記効果を有しつつも、安定して被処理水中のマンガンイオンを除去することが可能である。 In addition, the reaction tank and the coagulation tank can be treated in a neutral region, and there is no need for acid and alkali addition equipment and pH adjustment tanks in the latter stage, so space can be saved and economically. Operation cost and equipment cost of water treatment equipment can be reduced. INDUSTRIAL APPLICABILITY The present invention can stably remove manganese ions in water to be treated while having the above effects.

実施の形態に係るマンガン含有水の処理方法を示すフローである。1 is a flow showing a method for treating manganese-containing water according to an embodiment.

本発明の実施の形態を図面にもとづいて説明する。なお、これらの実施形態は一例を示すものであり、本発明を限定するものではない。 An embodiment of the present invention will be described based on the drawings. In addition, these embodiments show an example, and do not limit the present invention.

図1は実施の形態に係るマンガン含有水の処理方法を示すフローであって、反応槽1、凝集槽2、沈殿槽3、マンガン再生槽4が設置されている。反応槽1には、無機凝集剤の添加手段6と、pH調整剤の添加手段としてのアルカリ添加手段8bと酸剤添加手段9とが設けられている。凝集槽2には、ポリマー凝集剤の添加手段7が設けられている。 FIG. 1 is a flow showing a method for treating manganese-containing water according to an embodiment, in which a reaction tank 1, a coagulation tank 2, a sedimentation tank 3, and a manganese regeneration tank 4 are installed. The reaction tank 1 is provided with an inorganic flocculant adding means 6, an alkali adding means 8b and an acid agent adding means 9 as means for adding a pH adjuster. The flocculation tank 2 is provided with means 7 for adding a polymer flocculant.

マンガン再生槽4には、散気装置5とアルカリ剤添加手段8aとが設けられている。アルカリ剤の移送配管が8aと8bに分岐している。 The manganese regeneration tank 4 is provided with an air diffuser 5 and an alkali agent addition means 8a. A transfer pipe for the alkaline agent is branched into 8a and 8b.

被処理水はマンガンイオンMn2+を含むものであり、表流水、地下水、坑排水などが例示されるが、これらに限定されない。 The water to be treated contains manganese ions Mn 2+ and is exemplified by, but not limited to, surface water, groundwater, and mine drainage.

反応槽1に対し、マンガンイオンを含んだ被処理水が導入されると共に、配管11を経て、マンガン再生槽4にて再生された固形状の活性マンガン酸化物を含む汚泥が導入され、pH6以上の中性域~低アルカリ性域にて接触混合され、マンガンイオンが活性マンガン酸化物に吸着される。反応槽pHはpHが高い方がマンガンイオン除去の観点から良いため、pH7~10(特にpH8~9)程度が好ましい。この反応における化学反応式は前記(1)式の通りである。反応によって生成した不活性マンガン酸化物はマンガンイオンを吸着することはない。 To the reaction tank 1, water to be treated containing manganese ions is introduced, and sludge containing solid active manganese oxide regenerated in the manganese regeneration tank 4 is introduced through the pipe 11, and the pH is 6 or more. are contact-mixed in a neutral to low alkaline range, and manganese ions are adsorbed on the active manganese oxide. The pH of the reaction tank is preferably about pH 7 to 10 (particularly pH 8 to 9), since a higher pH is better from the viewpoint of removing manganese ions. The chemical reaction formula for this reaction is as shown in formula (1) above. The inert manganese oxide produced by the reaction does not adsorb manganese ions.

反応槽1におけるpH調整には、アルカリ剤としては、水酸化ナトリウムあるいは消石灰、酸剤としては、塩酸あるいは硫酸があげられる。これらは水溶液又はスラリーとして供給される。 For adjusting the pH in the reaction tank 1, sodium hydroxide or slaked lime can be used as an alkaline agent, and hydrochloric acid or sulfuric acid can be used as an acid agent. These are supplied as aqueous solutions or slurries.

反応槽1に、塩化第二鉄やポリ硫酸第二鉄などの鉄塩や、ポリ塩化アルミ、硫酸バンドなどのアルミ塩等の無機凝集剤を添加することで、微細なマンガン酸化物の荷電中和が行われ、沈殿槽3でのマンガン酸化物の回収が容易となる。被処理水中にマンガン以外の重金属イオンを含有している場合には、無機凝集剤として塩化第二鉄やポリ硫酸第二鉄等の鉄系の無機凝集剤の使用が好ましい。 By adding inorganic flocculants such as iron salts such as ferric chloride and ferric sulfate polysulfate, and aluminum salts such as polyaluminum chloride and aluminum sulfate to the reaction tank 1, fine manganese oxides are charged. Summation is performed, and recovery of manganese oxides in the sedimentation tank 3 is facilitated. When the water to be treated contains heavy metal ions other than manganese, it is preferable to use an iron-based inorganic coagulant such as ferric chloride or ferric polysulfate as the inorganic coagulant.

反応槽1への返送汚泥流量に対する被処理水流量の比(被処理水流量/返送汚泥流量)が2~50となるように、返送汚泥流量及び/又は被処理水流量を調整することが好ましい。 It is preferable to adjust the return sludge flow rate and/or the treated water flow rate so that the ratio of the treated water flow rate to the returned sludge flow rate to the reaction tank 1 (treated water flow rate/returned sludge flow rate) is 2 to 50. .

反応槽1のマンガン酸化物濃度は、好ましくは20~4,000mg-Mg/L特に50~300mg-Mg/Lである。被処理水マンガン負荷に対する返送汚泥由来のマンガン負荷の比をRとすると、Rは10g-Mn/g-Mn以上、特に20g-Mn/g-Mn以上、例えば20~100g-Mn/g-Mnが好ましい。 The manganese oxide concentration in the reaction tank 1 is preferably 20-4,000 mg-Mg/L, particularly 50-300 mg-Mg/L. When the ratio of the manganese load derived from the return sludge to the manganese load of the water to be treated is R, R is 10 g-Mn/g-Mn or more, particularly 20 g-Mn/g-Mn or more, for example 20 to 100 g-Mn/g-Mn. is preferred.

マンガンイオンを吸着した不活性マンガン酸化物を含む反応処理液は、反応槽1から凝集槽2に流入し、高分子(ポリマー)凝集剤が添加され、これにより不活性マンガン酸化物のフロックが粗大化する。高分子凝集剤の添加量は1mg/L~10mg/Lが好ましい。高分子凝集剤の種類は、アニオン性高分子凝集剤が好ましいが、これに限定するものではなく、カチオンあるいはノニオン性の高分子凝集剤を用いてもよい。 A reaction treatment liquid containing inert manganese oxides adsorbed with manganese ions flows from a reaction tank 1 into a flocculation tank 2 and is added with a polymer flocculating agent to coarsen flocs of the inert manganese oxides. become The amount of polymer flocculant added is preferably 1 mg/L to 10 mg/L. The type of polymer flocculant is preferably an anionic polymer flocculant, but is not limited to this, and a cationic or nonionic polymer flocculant may be used.

粗大化した不活性マンガン酸化物を含む凝集処理液は沈殿槽3に導かれ、沈殿槽3にて不活性マンガン酸化物を含有した汚泥と処理水とに沈降分離される。分離された処理水は槽外排出され、後段の濾過処理などを経て最終処理水として系外排出される。処理水のマンガン濃度が0.2mg/L以下となることが好ましい。 The coagulation treatment liquid containing coarsened inert manganese oxides is introduced to the sedimentation tank 3, where it is sedimented and separated into sludge containing the inert manganese oxides and treated water. The separated treated water is discharged outside the tank, and is discharged outside the system as the final treated water after being subjected to subsequent filtration and the like. It is preferable that the manganese concentration of the treated water is 0.2 mg/L or less.

沈殿槽3に堆積して濃縮された不活性マンガン酸化物を含んだ汚泥の一部は沈殿槽3の下部から引き抜かれ、一部は余剰分として引き抜き配管10aを通じて系外排出され、残部は汚泥返送管10bを通ってマンガン再生槽4に輸送される。 Part of the sludge containing inert manganese oxide deposited and concentrated in the sedimentation tank 3 is withdrawn from the lower part of the sedimentation tank 3, and part of it is discharged outside the system through the withdrawal pipe 10a as a surplus, and the remainder is sludge. It is transported to the manganese regeneration tank 4 through the return pipe 10b.

マンガン再生槽4は、散気装置5による曝気を長時間(水理学的滞留時間にて30分以上)確保できる槽容積を有する。 The manganese regeneration tank 4 has a tank volume that can ensure aeration by the air diffuser 5 for a long time (30 minutes or more in terms of hydraulic retention time).

マンガン再生槽4では、アルカリ剤を用いて好ましくはpH9以上に調整する。マンガン再生槽4におけるpHは9~12特に10~12程度がより好ましい。アルカリ剤としては、水酸化ナトリウムおよび消石灰が挙げられるが、被処理水に他重金属イオンを含む場合は、局所的なpH上昇による汚泥の溶解を避けるために、水酸化ナトリウムに比べ、比較的溶けにくい消石灰を用いることが、pHコントロールの観点から好ましい。 In the manganese regeneration tank 4, the pH is preferably adjusted to 9 or more using an alkaline agent. The pH in the manganese regeneration tank 4 is preferably about 9-12, more preferably about 10-12. Alkali agents include sodium hydroxide and slaked lime, but if the water to be treated contains other heavy metal ions, it should be relatively soluble compared to sodium hydroxide in order to avoid dissolution of sludge due to a local pH rise. From the viewpoint of pH control, it is preferable to use slaked lime which is difficult to dissolve.

マンガン再生槽4では、酸素溶解手段として散気装置5(ブロワから散気管を通じて空気を供給する)を用いて長時間曝気する。空気曝気により、マンガンイオンを吸着した不活性マンガン酸化物が酸化されて、活性マンガン酸化物に再生される。マンガン再生槽4のDO濃度としては1mg/L以上、特に2mg/L以上、例えば2~7.0mg/Lが好ましく、水理学的平均滞留時間(HRT)は30分以上、例えば30~60分が好ましい。 In the manganese regeneration tank 4, aeration is performed for a long time using an air diffuser 5 (air is supplied from a blower through an air diffuser pipe) as an oxygen dissolving means. Air aeration oxidizes the inactive manganese oxide that has adsorbed manganese ions to regenerate active manganese oxide. The DO concentration in the manganese regeneration tank 4 is preferably 1 mg/L or more, particularly 2 mg/L or more, for example 2 to 7.0 mg/L, and the hydraulic mean retention time (HRT) is 30 minutes or more, for example 30 to 60 minutes. is preferred.

マンガン再生槽4のマンガン酸化物の濃度は、好ましくは1,000~20,000mg-Mn/L特に1,000~4,000mg-Mn/Lである。 The manganese oxide concentration in the manganese regeneration tank 4 is preferably 1,000 to 20,000 mg-Mn/L, particularly 1,000 to 4,000 mg-Mn/L.

再生した活性マンガン酸化物は再び反応槽1に導入され、被処理水中のマンガンイオンを吸着して除去する。このようにして低コストにて安定して被処理水中のマンガンイオンを除去することが可能である。 The regenerated active manganese oxide is again introduced into the reaction tank 1 and adsorbs and removes manganese ions in the water to be treated. In this manner, manganese ions in the water to be treated can be stably removed at low cost.

本発明では、マンガン酸化物含有汚泥を循環しているため、被処理水中に他の重金属イオンを含む、あるいは塩化第二鉄等の無機凝集剤を添加する場合には、マンガン酸化物を除く水酸化鉄等の他の析出汚泥の濃縮性が改善され、系外排出される汚泥の水分量が低くなり汚泥処分費が低減できることが見込まれる。 In the present invention, since the manganese oxide-containing sludge is circulated, when the water to be treated contains other heavy metal ions or an inorganic flocculant such as ferric chloride is added, water excluding manganese oxides It is expected that the concentration of other precipitated sludge such as iron oxide will be improved, the water content of the sludge that is discharged outside the system will be reduced, and the sludge disposal cost will be reduced.

なお、本発明装置の立ち上げ(運転開始)に際しては、反応槽1にマンガン酸化物を収容しておく。このマンガン酸化物としては、自然由来で析出したマンガン泥や、あるいは市販品(1級)の二酸化マンガンなどを使用することができる。 Manganese oxide is stored in the reaction tank 1 when the apparatus of the present invention is started up (started to operate). As the manganese oxide, naturally occurring manganese mud or commercially available manganese dioxide (first grade) can be used.

被処理水として、硫酸マンガンを純水に溶解させることにより、水温25℃、pH7.0~7.5、マンガンイオン濃度2.5mg/Lの模擬排水を調製して用いた。図1に示す処理フローによりマンガンイオンの除去を連続的に行った。 As the water to be treated, manganese sulfate was dissolved in pure water to prepare simulated waste water having a water temperature of 25° C., a pH of 7.0 to 7.5, and a manganese ion concentration of 2.5 mg/L. Manganese ions were continuously removed according to the processing flow shown in FIG.

反応槽1のpHは8.0に設定し、被処理水マンガン負荷に対する返送汚泥中マンガン負荷の比は40(g-Mn/g-Mn)とした。反応槽1に塩化鉄(III)を50mg/Lとなるように添加した。凝集槽2では高分子凝集剤としてアニオンポリマー凝集剤(栗田工業株式会社製「クリフロック))を1mg/Lとなるように添加した。pH調整剤として硫酸および消石灰を用いた。沈殿槽3の上澄水のマンガン濃度を測定し、処理水Mn濃度とした。 The pH of the reaction tank 1 was set to 8.0, and the ratio of the manganese load in the returned sludge to the manganese load in the water to be treated was set to 40 (g-Mn/g-Mn). Iron (III) chloride was added to reaction tank 1 so as to be 50 mg/L. In the flocculation tank 2, an anionic polymer flocculant (“Cliff Rock” manufactured by Kurita Water Industries Ltd.) was added as a polymer flocculant so as to be 1 mg/L.Sulfuric acid and slaked lime were used as pH adjusters. The manganese concentration of the supernatant water was measured and taken as the treated water Mn concentration.

[実施例1-1~1-5(マンガン再生槽pHの比較)]
<実験条件>
マンガン再生槽4のpHをpH9.0、9.5、10.0、10.5、又は11.0に設定し、pH以外の他の条件は表1の通り略同一にして、実験を行った。処理水Mn濃度の測定結果を表1に示す。
[Examples 1-1 to 1-5 (comparison of manganese regeneration tank pH)]
<Experimental conditions>
The pH of the manganese regeneration tank 4 was set to pH 9.0, 9.5, 10.0, 10.5, or 11.0, and the conditions other than pH were substantially the same as shown in Table 1, and experiments were conducted. rice field. Table 1 shows the measurement results of the treated water Mn concentration.

Figure 2022159814000002
Figure 2022159814000002

<考察>
表1に示した通り、マンガン再生槽のpHが9以上であれば処理水Mn濃度は十分に低減され、また、pHが高くなるにつれて処理水Mn濃度がより低下すること、pH10以上になると処理水Mn濃度の値が同程度になりやや頭打ちになることが認められた。
<Discussion>
As shown in Table 1, if the pH of the manganese regeneration tank is 9 or higher, the treated water Mn concentration is sufficiently reduced, and as the pH increases, the treated water Mn concentration decreases further. It was recognized that the values of the water Mn concentration became almost the same and leveled off a little.

[実施例2-1~2-3(槽平均滞留時間の比較)]
<実験条件>
実施例1-4において、マンガン再生槽4における槽平均滞留時間(HRT)を40分、30分、又は20分とし、HRT以外の他の条件は同一にして実験を行った。処理水Mn濃度の測定結果を表2に示す。
[Examples 2-1 to 2-3 (comparison of average residence time in tank)]
<Experimental conditions>
In Examples 1-4, experiments were conducted under the same conditions other than the HRT, with the tank mean residence time (HRT) in the manganese regeneration tank 4 set at 40 minutes, 30 minutes, or 20 minutes. Table 2 shows the measurement results of the treated water Mn concentration.

Figure 2022159814000003
Figure 2022159814000003

<考察>
マンガン再生槽のHRTが短くなることで、処理水Mn濃度の値が高くなる傾向が認められた。HRTは40分と30分で大きな違いはなかったが、30分と20分では20分の方が処理水Mn濃度は明確に悪化した。これにより、マンガン再生槽のHRTは30分以上が好ましいことが認められた。
<Discussion>
As the HRT of the manganese regeneration tank became shorter, the treated water tended to have a higher Mn concentration. There was no significant difference between 40 minutes and 30 minutes of HRT, but the Mn concentration in the treated water clearly deteriorated between 30 minutes and 20 minutes. From this, it was confirmed that the HRT of the manganese regeneration tank is preferably 30 minutes or more.

ただし、実施例1と処理水質を比較すると、処理水Mn濃度はマンガン再生槽におけるHRTよりも、マンガン再生槽pHの方がよりマンガン処理には影響が大きいことが認められた。 However, when comparing the quality of the treated water with that of Example 1, it was found that the pH of the treated water had a greater effect on manganese treatment than the HRT in the manganese regeneration tank.

[実施例3-1~3-5(マンガン再生槽DO濃度の比較)]
<実験条件>
実施例1-4において、マンガン再生槽4における空気吹込み量を変化させて、マンガン再生槽内のDO濃度を0.52、1.05、2.10、3.90、又は7.20mg/Lとし、DO濃度以外の他の条件は同一にして実験を行った。なお、液面からの空気中酸素の溶け込みを抑えるために、マンガン再生槽4に窒素ガスを封入した。処理水Mn濃度の測定結果を表3に示す。
[Examples 3-1 to 3-5 (comparison of manganese regeneration tank DO concentration)]
<Experimental conditions>
In Example 1-4, the DO concentration in the manganese regeneration tank was changed to 0.52, 1.05, 2.10, 3.90, or 7.20 mg/ The experiment was carried out under the same conditions except for the DO concentration. Nitrogen gas was sealed in the manganese regeneration tank 4 in order to suppress the dissolution of oxygen in the air from the liquid surface. Table 3 shows the measurement results of the treated water Mn concentration.

Figure 2022159814000004
Figure 2022159814000004

<考察>
表3に示す通り、DO濃度が0.52mg/Lの条件では、DO濃度が1.05mg/L以上の条件と比較して、処理水Mn濃度が高くなった。このことから、マンガン再生槽におけるDO濃度は1mg/L以上の運転が好ましいことが認められた。
<Discussion>
As shown in Table 3, the Mn concentration in the treated water was higher under the DO concentration of 0.52 mg/L than under the DO concentration of 1.05 mg/L or higher. From this, it was confirmed that the operation with a DO concentration of 1 mg/L or more in the manganese regeneration tank is preferable.

[実施例4-1~4-4(被処理水マンガン負荷に対する反応槽内1マンガン負荷の比較)]
<実験条件>
実施例1-4において、沈殿槽からマンガン再生槽への返送汚泥中の汚泥の濃縮度合いを変化させ、反応槽1に導入する汚泥中のマンガン濃度を変化させて、反応槽内1のマンガン濃度を10~120mg-Mg/Lの範囲で変化させることにより、被処理水マンガン負荷に対する返送汚泥由来のマンガン負荷の比Rを5、10、20、41で変化させた。R以外の条件は同一とした。処理水Mn濃度の測定結果を表4に示す。
[Examples 4-1 to 4-4 (comparison of 1 manganese load in reaction tank with respect to manganese load in treated water)]
<Experimental conditions>
In Example 1-4, the concentration of sludge in the sludge returned from the sedimentation tank to the manganese regeneration tank was changed, and the manganese concentration in the sludge introduced into the reaction tank 1 was changed to change the manganese concentration in the reaction tank 1. was changed in the range of 10 to 120 mg-Mg/L, the ratio R of the manganese load derived from the return sludge to the manganese load of the water to be treated was varied between 5, 10, 20 and 41. Conditions other than R were the same. Table 4 shows the measurement results of the Mn concentration in the treated water.

Figure 2022159814000005
Figure 2022159814000005

<考察>
表4に示す通り、Rが10以上では処理水Mn濃度は0.2mg/L以下であったが、Rが5では処理水Mn濃度は0.2mg/L以下にならなかった。このことから、原水に対して必要以上のマンガン酸化物を反応槽1に送り込む必要があることがわかった。Rとしては10(g-Mn/g-Mn)以上がマンガン除去には好ましいことが認められた。
<Discussion>
As shown in Table 4, when R was 10 or more, the Mn concentration in the treated water was 0.2 mg/L or less, but when R was 5, the Mn concentration in the treated water did not become 0.2 mg/L or less. From this, it was found that it was necessary to feed manganese oxides into the reaction tank 1 more than necessary with respect to the raw water. It was found that R of 10 (g-Mn/g-Mn) or more is preferable for manganese removal.

1 反応槽
2 凝集槽
3 沈殿槽
4 再生槽
5 散気装置
REFERENCE SIGNS LIST 1 reaction tank 2 coagulation tank 3 sedimentation tank 4 regeneration tank 5 air diffuser

Claims (14)

マンガンイオン含有被処理水を、活性マンガン酸化物含有汚泥を存在させた反応槽に導入してマンガンイオンと反応させて不活性マンガン酸化物を得、次に
凝集剤が添加される凝集槽に該不活性マンガン酸化物を含む汚泥を導入して凝集処理し、次に
凝集汚泥を沈殿槽に導入して沈降分離して処理水を得ると共に、分離した汚泥の一部をマンガン再生槽に導入して、該汚泥中の不活性マンガン酸化物を酸化し、酸化された汚泥を反応槽に返送する水処理方法において、
該マンガン再生槽において曝気を行うことにより不活性マンガン酸化物を酸化することを特徴とするマンガン含有水の処理方法。
Manganese ion-containing water to be treated is introduced into a reaction tank in which activated manganese oxide-containing sludge is present, reacted with manganese ions to obtain inert manganese oxides, and then introduced into a coagulation tank where a coagulant is added. Sludge containing inert manganese oxide is introduced and coagulated, then the coagulated sludge is introduced into a sedimentation tank and sedimentation is separated to obtain treated water, and part of the separated sludge is introduced into a manganese regeneration tank. and oxidizing the inert manganese oxide in the sludge, and returning the oxidized sludge to the reaction tank,
A method for treating manganese-containing water, comprising oxidizing inactive manganese oxides by aeration in the manganese regeneration tank.
前記マンガン再生槽のpHが9以上である請求項1のマンガン含有水の処理方法。 2. The method for treating manganese-containing water according to claim 1, wherein the manganese regeneration tank has a pH of 9 or higher. 前記マンガン再生槽の水理学的滞留時間が30分以上である請求項1又は2のマンガン含有水の処理方法。 3. The method for treating manganese-containing water according to claim 1, wherein the manganese regeneration tank has a hydraulic retention time of 30 minutes or longer. 前記マンガン再生槽のDO濃度が1mg/L以上である請求項1~3のいずれか1項のマンガン含有水の処理方法。 The method for treating manganese-containing water according to any one of claims 1 to 3, wherein the manganese regeneration tank has a DO concentration of 1 mg/L or more. 前記反応槽における返送汚泥流量に対する被処理水流量の比(被処理水流量/返送汚泥流量)が2~50となるように、返送汚泥流量及び/又は被処理水流量を調整する請求項1~4のいずれか1項のマンガン含有水の処理方法。 The return sludge flow rate and/or the treated water flow rate are adjusted so that the ratio of the treated water flow rate to the returned sludge flow rate in the reaction tank (treated water flow rate/returned sludge flow rate) is 2 to 50. 5. The method for treating manganese-containing water according to any one of 4. 前記反応槽に無機凝集剤を添加する請求項1~5のいずれか1項のマンガン含有水の処理方法。 The method for treating manganese-containing water according to any one of claims 1 to 5, wherein an inorganic flocculant is added to the reaction tank. 前記反応槽における、被処理水中のマンガン負荷に対する汚泥中マンガン酸化物の負荷の比Rが10(g-Mn/g-Mn)以上である請求項1~6のいずれか1項のマンガン含有水の処理方法。 Manganese-containing water according to any one of claims 1 to 6, wherein the ratio R of the manganese oxide load in the sludge to the manganese load in the water to be treated in the reaction tank is 10 (g-Mn/g-Mn) or more. How to handle. 活性マンガン酸化物含有汚泥を存在させた反応槽であって、マンガンイオン含有被処理水が導入され、活性マンガン酸化物とマンガンイオンとを反応させて不活性マンガン酸化物を生成させる反応槽と、
凝集剤添加手段を備えており、該反応槽から不活性マンガン酸化物を含む汚泥が導入されて凝集処理が行われる凝集槽と、
該凝集槽から凝集汚泥の一部が導入され、凝集汚泥を沈降分離して処理水と汚泥とに分離するための沈殿槽と、
汚泥中の不活性マンガン酸化物を酸化するための曝気手段を備えており、該沈殿槽で分離された汚泥の一部が導入されるマンガン再生槽と、
該マンガン再生槽で酸化された汚泥を前記反応槽に返送する返送手段と
を有するマンガン含有水の処理装置。
a reaction tank containing sludge containing active manganese oxide, into which water to be treated containing manganese ions is introduced and in which active manganese oxides and manganese ions are reacted to form inactive manganese oxides;
A flocculation tank having a flocculant addition means, in which sludge containing inert manganese oxide is introduced from the reaction tank and flocculation treatment is performed;
A sedimentation tank for introducing a part of the flocculated sludge from the flocculation tank and sedimenting and separating the flocculated sludge into treated water and sludge;
a manganese regeneration tank equipped with aeration means for oxidizing inert manganese oxides in the sludge, into which part of the sludge separated in the sedimentation tank is introduced;
and a means for returning sludge oxidized in the manganese regeneration tank to the reaction tank.
前記マンガン再生槽は、該マンガン再生槽内のpHを9以上に調整するためのpH調整手段を有する請求項8のマンガン含有水の処理装置。 9. The apparatus for treating manganese-containing water according to claim 8, wherein said manganese regeneration tank has pH adjusting means for adjusting the pH in said manganese regeneration tank to 9 or higher. 前記マンガン再生槽は、水理学的滞留時間が30分以上である請求項8又は9のマンガン含有水の処理装置。 10. The apparatus for treating manganese-containing water according to claim 8 or 9, wherein said manganese regeneration tank has a hydraulic retention time of 30 minutes or more. 前記マンガン再生槽のDO濃度が1mg/L以上である請求項8~10のいずれか1項のマンガン含有水の処理装置。 11. The apparatus for treating manganese-containing water according to any one of claims 8 to 10, wherein the manganese regeneration tank has a DO concentration of 1 mg/L or more. 前記反応槽における返送汚泥流量に対する被処理水流量の比(被処理水流量/返送汚泥流量)が2~50となるように、返送汚泥流量及び/又は被処理水流量を調整する流量調整手段を有する請求項8~11のいずれか1項のマンガン含有水の処理装置。 Flow rate adjusting means for adjusting the flow rate of the returned sludge and/or the flow rate of the water to be treated so that the ratio of the flow rate of the water to be treated to the flow rate of the returned sludge in the reaction tank (flow rate of treated water/flow rate of returned sludge) is 2 to 50. Manganese-containing water treatment equipment according to any one of claims 8 to 11. 前記反応槽は無機凝集剤添加手段を有する請求項8~12のいずれか1項のマンガン含有水の処理装置。 13. The apparatus for treating manganese-containing water according to any one of claims 8 to 12, wherein said reaction tank has means for adding an inorganic coagulant. 前記反応槽における、被処理水中のマンガン負荷に対する汚泥中マンガン酸化物の負荷の比Rが10(g-Mn/g-Mn)以上である請求項8~13のいずれか1項のマンガン含有水の処理装置。
Manganese-containing water according to any one of claims 8 to 13, wherein the ratio R of the manganese oxide load in the sludge to the manganese load in the water to be treated in the reaction tank is 10 (g-Mn/g-Mn) or more. processing equipment.
JP2021064236A 2021-04-05 2021-04-05 Method and apparatus for treating manganese-containing water Pending JP2022159814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021064236A JP2022159814A (en) 2021-04-05 2021-04-05 Method and apparatus for treating manganese-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021064236A JP2022159814A (en) 2021-04-05 2021-04-05 Method and apparatus for treating manganese-containing water

Publications (1)

Publication Number Publication Date
JP2022159814A true JP2022159814A (en) 2022-10-18

Family

ID=83641354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021064236A Pending JP2022159814A (en) 2021-04-05 2021-04-05 Method and apparatus for treating manganese-containing water

Country Status (1)

Country Link
JP (1) JP2022159814A (en)

Similar Documents

Publication Publication Date Title
JP5828969B2 (en) Coal gasification wastewater treatment system and coal gasification wastewater treatment method
JP5215578B2 (en) Water treatment method and water treatment apparatus
US11377374B2 (en) System and process for treating water
JP3790383B2 (en) Treatment method of flue gas desulfurization waste water
JP2007130518A (en) Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
JP4662059B2 (en) Purification process for steel manufacturing wastewater
JP2002316173A (en) Method for treating wastewater containing arsenic and hydrogen peroxide
KR101370246B1 (en) Purifing apparatus of acid mine drainage
JP4761447B2 (en) Method and apparatus for treating manganese-containing water
JP5118572B2 (en) Sewage treatment method
JP4940250B2 (en) Water treatment method and water treatment system
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JP2002030352A (en) Method for recovering valuable metal from metal- containing waste water
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP2022159814A (en) Method and apparatus for treating manganese-containing water
JP6078345B2 (en) Wastewater treatment method and apparatus
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JP6187507B2 (en) Waste liquid treatment method and waste liquid treatment system
JP6623288B2 (en) Method and apparatus for treating wastewater containing hydrogen sulfide
JP2007038196A (en) Metal etching wastewater treatment method
JP2000301160A (en) Method for treating oil-containing wastewater containing surfactant
JP4598415B2 (en) Organic arsenic compound processing method
JPS6339307B2 (en)
JP2008142683A (en) Water treatment method
JP7240577B2 (en) Method for treating etching wastewater containing copper ions and water-soluble organic substances