KR101370246B1 - Purifing apparatus of acid mine drainage - Google Patents

Purifing apparatus of acid mine drainage Download PDF

Info

Publication number
KR101370246B1
KR101370246B1 KR1020120044988A KR20120044988A KR101370246B1 KR 101370246 B1 KR101370246 B1 KR 101370246B1 KR 1020120044988 A KR1020120044988 A KR 1020120044988A KR 20120044988 A KR20120044988 A KR 20120044988A KR 101370246 B1 KR101370246 B1 KR 101370246B1
Authority
KR
South Korea
Prior art keywords
tank
acid mine
sludge
ions
primary
Prior art date
Application number
KR1020120044988A
Other languages
Korean (ko)
Other versions
KR20130121620A (en
Inventor
곽덕수
Original Assignee
곽덕수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 곽덕수 filed Critical 곽덕수
Priority to KR1020120044988A priority Critical patent/KR101370246B1/en
Publication of KR20130121620A publication Critical patent/KR20130121620A/en
Application granted granted Critical
Publication of KR101370246B1 publication Critical patent/KR101370246B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Abstract

알칼리제 약품을 소량 사용하면서 알칼리성 처리수를 중화할 필요없이 바로 방류가 가능하도록 하는 산성 광산 폐수의 정화장치가 개시된다. 정화장치는, 철이온이 포함된 산성 광산 폐수에 공기 또는 오존을 공급하여 철이온을 산화시키고, 알칼리제가 공급되는 산화조; 철이온이 산화된 산성 광산 폐수에 폴리머를 공급하여 플록을 형성시키는 응집조; 플록을 침전시켜 슬러지를 생성하고 상등수를 외부로 배출하는 침전조; 및 슬러지를 농축시키고 상등수를 외부로 배출하는 농축조; 를 포함하며, 농축된 농축슬러지 중 일부를 산화조로 이송시킨다. 이에 의하면 산화조에서 pH를 종래에 비하여 낮게 운전하고, 생성된 농축슬러지 중 일부를 흡착제 및 촉매제로 재활용하여 철이온의 제거효율을 향상시키고 전체 슬러지 발생량을 감소시킴은 물론 방류되는 처리수의 중화를 위한 설비와 약품비용을 절감할 수 있다.Disclosed is an acid mine wastewater purifier that allows for immediate discharge without the necessity of neutralizing the alkaline treated water while using a small amount of alkaline chemicals. The purifying apparatus includes: an oxidizing tank for supplying air or ozone to acid mine wastewater containing iron ions to oxidize iron ions and supplying an alkaline agent; An agglomeration tank for supplying a polymer to acid mine wastewater in which iron ions are oxidized to form flocs; A settling tank which precipitates the floc to produce sludge and discharge the supernatant to the outside; And a concentration tank for concentrating the sludge and discharging the supernatant to the outside. It includes, and transfers some of the concentrated concentrated sludge to the oxidation tank. According to this method, the pH of the oxidizing tank is lower than that of the related art, and some of the produced sludge is recycled as an adsorbent and a catalyst to improve the removal efficiency of iron ions, reduce the total sludge generation, and neutralize the discharged treated water. Can reduce the cost of equipment and chemicals.

Description

산성 광산 배수의 정화장치{PURIFING APPARATUS OF ACID MINE DRAINAGE}Purification of acid mine drainage {PURIFING APPARATUS OF ACID MINE DRAINAGE}

본 발명은 산성 광산 배수의 정화장치에 관한 것으로, 더욱 상세하게는 알칼리제 약품을 소량 사용하면서 알칼리성 처리수를 중화할 필요없이 바로 방류가 가능하도록 하는 산성 광산 배수의 정화장치에 관한 것이다.The present invention relates to an apparatus for purifying acid mine drainage, and more particularly, to an apparatus for purifying acid mine drainage, which enables to discharge immediately without using neutral chemicals and neutralizing alkaline treated water.

산성 광산 배수(Acid Mine Drainage, 이하 'AMD'라 함)는 휴, 폐광의 갱내에서 발생하여 주변의 암석층을 통과함에 따라 pH가 낮으며 철이온 및 망간이온을 비롯하여 많은 금속이온이 함께 배출되는 배수를 의미한다. 특히 AMD에 포함된 철이온이 배출됨으로써 하천 바닥의 황하현상(Yellow Boy)이 발생되며, 수생태계 파괴는 물론 인간의 생활환경에 막대한 악영향을 끼지게 된다.Acid Mine Drainage (hereinafter referred to as 'AMD') occurs in the mine shafts of hues and abandoned mines, and has a low pH as it passes through the surrounding rock layers and drains many metal ions, including iron and manganese ions. Means. In particular, the discharge of iron ions contained in AMD causes yellow river phenomena on the bottom of the river, which can cause not only destruction of aquatic ecosystems but also enormous adverse effects on human living environments.

이러한 AMD를 처리하기 위해서는 물리화학적인 방법과 자연 정화방법의 2가지가 있다. 자연정화 방법은 광산배수의 오염농도가 높지 않을 때 사용하는 방법이며 물리화학적 처리방법은 AMD의 농도가 심각할 경우 이용하는 방법이다. There are two ways to treat AMD, physicochemical and natural purification. The natural purification method is used when the pollution concentration of mine drainage is not high, and the physicochemical treatment method is used when the concentration of AMD is serious.

종래의 물리화학적 처리방법은 철이온의 제거에 목표를 두고 pH를 9.5 이상으로 운전하여 불용성 침전물로 제거하는 방법이 주를 이루고 있다. 그러나 pH를 9.5 이상으로 운전을 하게 되면 중화 약품 소요량이 많게 되고 처리수를 방류할 경우에는 산성용액을 이용하여 다시 중화시킬 필요가 있어 중화에 필요한 시설비용과 약품비용이 추가로 발생하는 문제점이 있었다.The conventional physicochemical treatment method is mainly aimed at the removal of iron ions, and the main method is to remove the insoluble precipitate by operating the pH above 9.5. However, if the pH is operated above 9.5, the amount of neutralization chemicals is increased, and when the treated water is discharged, it is necessary to neutralize it again using acidic solution, which causes additional cost of facility and chemicals required for neutralization. .

상수도 시설기준에 의한 정수처리에 의한 철이온 제거방법으로 산화법과 접촉법이 제시되고 있다. Oxidation and contact methods have been proposed as methods for removing iron ions by water treatment according to water supply standards.

산화법에 의한 철의 제거는 Fe2+를 염소, 이산화염소(ClO2), 과망간산칼륨(KMnO4) 등의 산화제로 석출시켜 응집에 의해 석출 입자를 플록화 시킨 후 응집침전이나 모래여과에 의해 분리하는 방법이다. 그러나 산화법에 의한 경우 산화제 약품 투입설비가 요구되고, 산화에 따른 알칼리도가 소모되어 알칼리 중화제의 약품 비용 및 산화제 약품 비용이 들게 되며, 여과에 의한 역세 설비 및 여과장치 등의 설치비용이 발생되는 문제점이 있었다.Iron removal by oxidizing method precipitates Fe 2+ with oxidizing agents such as chlorine, chlorine dioxide (ClO 2 ) and potassium permanganate (KMnO 4 ) to flocculate the precipitated particles by coagulation, and then separates them by coagulation sedimentation or sand filtration. That's how. However, the oxidizing method requires an oxidant chemical input facility, alkalinity due to oxidation is consumed, and the chemical cost of the alkali neutralizer and the oxidant chemical cost are incurred, and the installation cost of the backwashing facility and the filtering device by filtration is generated. there was.

그리고 접촉법은 Fe2+를 이온상태로 그대로 접촉제에 흡착시켜 흡착된 철을 산화제로 산화하고 자기촉매에 의해 분리하는 방법으로서, 촉매 반응조 구성설비가 요구되며 접촉제의 유지관리에 따른 어려움이 있었다.In addition, the contact method is a method in which Fe 2+ is adsorbed on a contact as it is in an ionic state to oxidize adsorbed iron with an oxidant and separate by a self-catalyst. .

한편 Al3+ 이온을 함유한 AMD는 불용성 침전물의 응집범위가 pH 5.2로서 Fe+2이온이 완전한 불용성 침전물을 형성하는 pH 9.5 이상에서는 알루미늄 수산화염(Al(OH)4 -)의 형태로 다시 용출되어 처리수 내 부유물질(Suspended solids, SS)이 증가하고, 알칼리제 약품비용이 증가하는 문제점이 있었다.On the other hand, AMD containing Al 3+ ions elutes again in the form of aluminum hydroxide (Al (OH) 4 ) above pH 9.5 where the aggregation range of insoluble precipitate is pH 5.2 and Fe +2 ions form a completely insoluble precipitate. As a result, suspended solids (SS) in treated water increased, and the cost of alkali chemicals increased.

상술한 배경 기술의 문제점을 해결하기 위하여 철이온이 함유된 산성 광산 배수에 공급하는 알칼리제 약품을 많이 사용하지 않으면서, 알칼리성 처리수를 중화할 필요없이 바로 방류가 가능하도록 하는 산성 광산 배수의 정화장치를 제공함에 그 목적이 있다.In order to solve the above-mentioned problems of the background art, the acid mine drainage purification device is capable of being immediately discharged without the need for neutralizing the alkaline treatment water without using much alkali chemicals supplied to the acid mine drainage containing iron ions. The purpose is to provide.

또한 본 발명은 알루미늄이온이 함유된 산성 광산 배수에 대하여 알루미늄이온을 제거하는 1차 공정과, 상술한 철이온을 제거하기 위한 2차 공정을 거치게 함으로써 처리효율의 향상은 물론 약품 비용을 절감할 수 있는 산성 광산 배수의 정화장치를 제공함에 다른 목적이 있다.In addition, the present invention by the first step of removing the aluminum ions for the acid mine drainage containing aluminum ions, and the secondary process for removing the above-described iron ions can improve treatment efficiency and reduce the cost of drugs Another object is to provide a purification system for acid mine drainage.

상술한 과제를 해결하기 위한 본 발명의 산성 광산 폐수를 정화시키는 정화장치에 있어서, 철이온이 포함된 산성 광산 폐수에 공기 또는 오존을 공급하여 철이온을 산화시키고, 알칼리제가 공급되는 산화조; 상기 철이온이 산화된 산성 광산 폐수에 폴리머를 공급하여 플록을 형성시키는 응집조; 상기 플록을 침전시켜 슬러지를 생성하고 상등수를 외부로 배출하는 침전조; 및 상기 슬러지를 농축시키고 상등수를 외부로 배출하는 농축조; 를 포함하고, 상기 농축된 슬러지 중 일부를 상기 산화조로 이송시키는 것을 특징으로 한다.An apparatus for purifying acid mine wastewater of the present invention for solving the above problems, comprising: an oxidizing tank for supplying air or ozone to an acid mine waste water containing iron ions to oxidize iron ions and supplying an alkali agent; An agglomeration tank for supplying a polymer to the acid mine wastewater in which the iron ions are oxidized to form a floc; A settling tank which precipitates the floc to produce sludge and discharges the supernatant to the outside; And a concentration tank for concentrating the sludge and discharging the supernatant to the outside. It includes, characterized in that for transporting some of the concentrated sludge to the oxidation tank.

바람직하게, 상기 알칼리제는, 상기 산화조가 pH 7.5 ~ 8.5에서 운전되도록 공급된다.Preferably, the alkaline agent is supplied such that the oxidizing tank is operated at pH 7.5 to 8.5.

바람직하게, 상기 산화조로 이송되는 농축슬러지는, 50,000mg/L ~ 300,000mg/L의 농도를 갖고, 상기 산화조에 유입되는 상기 산성 광산 폐수의 5~10중량%가 이송된다.Preferably, the concentrated sludge to be transferred to the oxidizing tank has a concentration of 50,000 mg / L to 300,000 mg / L, and 5 to 10% by weight of the acidic mine wastewater flowing into the oxidizing tank is conveyed.

바람직하게, 상기 산화조로 공급되기 전 알루미늄이온을 함유하는 산성 광산 폐수에 알칼리제가 공급되는 1차반응조; 상기 알루미늄이온이 산화된 상기 산성 광산 폐수로부터 1차슬러지를 생성하고 처리수를 상기 산화조로 공급하는 1차침전조; 상기 1차슬러지를 농축시켜 외부로 배출하고 상등수를 상기 산화조로 공급하는 1차농축조; 를 더 포함한다. 이때, 상기 1차반응조에 공급되는 알칼리제는, 상기 1차반응조가 pH 5.2 ~ 6.5 에서 운전되도록 공급된다.Preferably, the primary reaction tank is supplied with an alkali chemicals to the acid mine wastewater containing aluminum ions before being supplied to the oxidation tank; A primary sedimentation tank for generating primary sludge from the acid mine wastewater in which the aluminum ions are oxidized and supplying treated water to the oxidation tank; A primary concentration tank for concentrating the primary sludge and discharging it to the outside and supplying supernatant water to the oxidation tank; . At this time, the alkali agent supplied to the primary reaction tank is supplied such that the primary reaction tank is operated at pH 5.2 to 6.5.

본 발명의 산성 광산 배수의 정화장치에 의하면 다음과 같은 효과가 있다.According to the purification apparatus of the acid mine drainage of the present invention, the following effects are obtained.

첫째, 철이온이 포함된 산성 광산 배수를 산화조에서 pH를 종래에 비하여 낮게 운전함으로써 방류되는 처리수의 중화를 위한 설비와 약품비용을 절감하며, 생성된 농축슬러지 일부를 산화조로 다시 투입하여 흡착제 및 산화 촉매제로서 사용할 수 있어 산화에 따른 공기공급설비 용량을 줄이거나 또는 산화제 투입량을 감소시킬 수 있다.First, by reducing the pH of the acid mine drainage containing iron ions in the oxidizing tank as compared to the conventional one to reduce the equipment and chemical costs for the discharge of treated water discharged, and put the produced concentrated sludge back into the oxidizing tank adsorbent And it can be used as the oxidation catalyst can reduce the air supply capacity due to oxidation or reduce the amount of oxidant input.

둘째, 산성 광산 배수에 포함된 Al3+이온과 Fe3+이온을 1차적으로 제거한 후 정화처리함으로써 알루미늄염 이온의 유출을 예방하여 처리 수질의 향상을 도모할 수 있으며, Al(OH)3, Fe(OH)3 수산화물은 하수처리장에서 인 제거용 약품으로 활용할 수 있으며 더불어 응집제 제조 원료로 활용이 가능하다.Secondly, after removing the ion Al 3+ and Fe 3+ ions contained in the acid mine drainage primarily by purification treatment may be to prevent the outflow of the aluminum salt ions to achieve the improvement of the quality of the treated water, Al (OH) 3, Fe (OH) 3 hydroxide can be used as a chemical to remove phosphorus in sewage treatment plants and as a raw material for the manufacture of flocculant.

도 1은 pH에 따른 금속이온의 용해도를 나타내는 그래프.
도 2는 본 발명의 제1실시예에 의한 철이온 제거를 위한 정화장치의 구성도.
도 3은 도 2에 의한 정화공정을 나타내는 플로차트.
도 4는 농축슬러지에 흡착된 금속이온을 나타낸 모식도.
도 5는 본 발명의 제2실시예에 의한 알루미늄이온 제거를 위한 추가 공정이 포함된 정화장치의 구성도.
도 6은 도 5에 의한 정화공정을 나타내는 플로차트.
1 is a graph showing the solubility of metal ions according to pH.
2 is a block diagram of a purification apparatus for removing iron ions according to the first embodiment of the present invention.
3 is a flowchart showing a purification process according to FIG. 2;
Figure 4 is a schematic diagram showing the metal ions adsorbed on the concentrated sludge.
5 is a block diagram of a purification apparatus including an additional process for removing aluminum ions according to a second embodiment of the present invention.
FIG. 6 is a flowchart showing a purification process according to FIG. 5. FIG.

이하에서는 도면을 참고하여 본 발명의 실시예에 대하여 구체적으로 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

1. 제1실시예에 의한 정화장치1. Purification apparatus according to the first embodiment

도 2, 3은 본 발명의 제1실시예에 의한 철이온 제거를 위한 정화장치의 구성도와, 그 정화 공정을 나타내는 플로차트이다.2 and 3 are flowcharts showing the structure of the purification apparatus for removing iron ions according to the first embodiment of the present invention and the purification process thereof.

제1실시예에 의한 정화장치는, 도 2에 도시된 바와 같이, 산성 광산 배수로부터 철이온을 주로 제거하기 위한 것으로서 크게, 산화조(40), 혼합조(50), 응집조(60), 침전조(70) 및 농축조(80)로 이루어진다.As shown in FIG. 2, the purification apparatus according to the first embodiment is mainly used to remove iron ions from acid mine drainage, and includes an oxidation tank 40, a mixing tank 50, a coagulation tank 60, and the like. It consists of a settling tank 70 and a concentration tank 80.

먼저, 산화조(40)는, 하부로 공기 또는 산화제이 공급되어 산성 광산 배수에 포함된 Fe2+이온은 Fe3+이온으로 산화된다. 이때 산화조(40)는 내부로 NaOH 또는 Ca(OH)2과 같은 알칼리제가 공급되어 pH는 7.5~8.5가 되도록 운전한다. 이때 pH가 7.5 미만인 경우 산화 반응 후에도 Fe2+이온이 잔류하기 때문에 Fe(OH)2 수산화물의 불용성 상태를 유지하는데 문제가 있으며, pH가 8.5를 초과하는 경우 배경 기술로서 설명한 바와 같이, 최종 방류되는 처리수를 중화시키기 위한 설비와 비용 부담이 발생된다.First, the oxidizer 40 is supplied with air or an oxidant to the lower side, Fe 2+ ions contained in the acid mine drainage Oxidized to Fe 3+ ions. At this time, the oxidation tank 40 is supplied with an alkaline agent such as NaOH or Ca (OH) 2 and operated to have a pH of 7.5 to 8.5. In this case, when the pH is less than 7.5, Fe 2+ ions remain even after the oxidation reaction, so there is a problem in maintaining the insoluble state of the Fe (OH) 2 hydroxide, and when the pH exceeds 8.5, the final discharge as described in the background art There is a burden on equipment and costs to neutralize the treated water.

도 1은 pH에 따른 금속이온의 용해도를 나타내는 그래프이고, 아래의 표 1은 pH에 따른 금속이온의 응집범위를 나타낸다.1 is a graph showing the solubility of metal ions according to pH, Table 1 below shows the aggregation range of metal ions according to pH.

pH에 따른 금속이온의 응집범위Coagulation range of metal ions according to pH 금속이온Metal ion 침전 pH(최소)Settling pH (min) 기타염 생성 pHOther salt formation pH SnSn 4.24.2 Fe(Ⅲ)Fe (III) 4.34.3 AlAl 5.25.2 Pb(Ⅱ)Pb (Ⅱ) 6.36.3 6.06.0 Cu(Ⅱ)Cu (Ⅱ) 7.27.2 5.35.3 ZnZn 8.48.4 7.07.0 NiNi 9.39.3 Fe(Ⅱ)Fe (II) 9.59.5 CdCD 9.79.7 Mn(Ⅱ)Mn (Ⅱ) 10.610.6

종래의 정화장치와 달리 pH를 9.5 이상으로 운전하지 않게 됨에 따라 방류되는 처리수에 대한 알칼리 중화약품 비용이 절감되고, 알칼리 약품을 소석회로 이용할 경우 슬러지 발생량도 감소하게 되어 알칼리 중화를 위한 산화약품 설비 및 약품 비용을 절감된다.Unlike conventional purifiers, the pH is not operated above 9.5, which reduces the cost of alkali neutralization chemicals for the discharged treated water, and reduces the amount of sludge generated when alkali chemicals are used in the calcination cycle. And drug costs are reduced.

다음으로, 혼합조(50)는, 산성 광산 배수에 알칼리제가 잘 혼합되도록 교반한다.Next, the mixing tank 50 is stirred so that the alkali agent is well mixed with the acid mine drainage.

응집조(60)는, 알칼리제가 혼합된 산성 광산 배수에 폴리머(Polymer)를 공급함으로써 Fe3+ 이온이 포함된 플록을 형성시킨다.The agglomeration tank 60 forms a floc containing Fe 3+ ions by supplying a polymer to acid mine drainage mixed with an alkali chemicals.

침전조(70)는, 플록을 침전시켜 슬러지를 생성하고, 상등수는 외부로 방류하게 된다.The settling tank 70 precipitates flocs to produce sludge, and the supernatant is discharged to the outside.

마지막으로 농축조(80)는, 슬러지를 농축시키고 상등수는 침전조(70)의 상등수와 함께 방류한다. 이때, 농축슬러지의 일부는 탈수처리하고, 나머지 일부는 최초 산성 광산 배수가 유입되는 산화조(40)로 이송한다. Finally, the concentration tank 80 concentrates the sludge and discharges the supernatant water with the supernatant water of the settling tank 70. At this time, part of the concentrated sludge is dewatered, and the other part is transferred to the oxidation tank 40 into which the initial acid mine drainage is introduced.

산화조(40)로 이송되는 농축슬러지는 고형물의 농도를 높임으로써 Fe2+ 이온을 흡착 및 산화시킬 수 있는 흡착제 및 촉매제로서 철이온 제거 효율을 높이는데 있다. 이송되는 농축슬러지의 농도는 50,000mg/L ~ 300,000mg/L이 되도록 하는 것이 바람직하다. 이는 이송되는 농축슬러지의 농도가 너무 낮은 경우 흡착제 및 촉매제의 역할을 하지 못하고, 너무 높은 경우 슬러지 이송 배관의 막힘 현성이 발생하며 슬러지 수집기의 운전에 문제가 발생하기 때문이다.The concentrated sludge transferred to the oxidizing tank 40 increases the iron ion removal efficiency as an adsorbent and a catalyst capable of adsorbing and oxidizing Fe 2+ ions by increasing the concentration of solids. The concentration of the concentrated sludge to be transported is preferably to be 50,000mg / L ~ 300,000mg / L. This is because when the concentration of the concentrated sludge to be transferred is too low, it does not act as an adsorbent and a catalyst, and when it is too high, clogging of the sludge conveying pipe occurs and a problem occurs in the operation of the sludge collector.

그리고 이송량은 산화조(40)에 유입되는 산성 광산 배수의 5~10중량%가 되도록 하는 것이 바람직하다. 이는 이송량이 산성 광산 배수에 비하여 너무 작으면 산화조의 슬러지 농도가 너무 낮게 형성되며, 반대로 너무 많으면 동력 설비 비용 및 유지관리비가 많이 소요되는 문제가 있기 때문이다.And it is preferable that the transfer amount is 5 to 10% by weight of the acid mine drainage flowing into the oxidation tank (40). This is because, if the transport amount is too small compared with the acid mine drainage, the sludge concentration of the oxidizing tank is formed too low, on the contrary, if the amount is too large, there is a problem in that the cost of power equipment and maintenance costs are high.

이러한 농축슬러지는 수산화물 및 기타 입자성 결합형태로 있으며 점성을 가지고 있기 때문에 망간이온 기타 금속이온은 농축슬러지를 통하여 체거름 효과 및 자기촉매적 흡착제로서 작용하여 처리 효율을 향상시킬 수 있게 된다. 도 4는 농축슬러지에 흡착된 금속이온을 나타낸 모식도이다.
Since the concentrated sludge is in the form of hydroxides and other particulate bonds and has a viscosity, manganese ions and other metal ions can improve the treatment efficiency by acting as a sieving effect and an autocatalytic adsorbent through the concentrated sludge. Figure 4 is a schematic diagram showing the metal ions adsorbed in the concentrated sludge.

2. 제2실시예에 의한 정화장치2. Purification apparatus according to the second embodiment

도 5, 6은 본 발명의 제2실시예에 의한 알루미늄 및 철이온 제거를 위한 정화장치의 구성도와, 그 정화 공정을 나타내는 플로차트이다.5 and 6 are flowcharts showing the structure of the purification apparatus for removing aluminum and iron ions according to the second embodiment of the present invention, and the purification process thereof.

제2실시예에 의한 정화장치는, 도 5에 도시된 바와 같이, 산성 광산 배수로부터 알루미늄이온을 1차적으로 제거한 후 상술한 제1실시예에 의한 정화장치에 의하여 철이온을 주로 제거하기 위한 것으로서 산성 광산 배수가 제1실시예의 산화조(40)에 공급되기 전에 전처리를 수행하기 위하여 1차반응조(10), 1차침전조(20) 및 1차농축조(30)를 더 구비한다. 여기서 각 구성요소에 포함된 '1차'는 제1실시예의 구성요소와의 혼동을 피하기 위한 것이며, 별도의 '2차'적인 구성을 염두에 두고 정의한 것은 아님을 밝혀둔다.As shown in FIG. 5, the purification apparatus according to the second embodiment mainly removes the iron ions from the acid mine drainage and then mainly removes the iron ions by the purification apparatus according to the first embodiment. In order to perform pretreatment before the acidic mine drainage is supplied to the oxidation tank 40 of the first embodiment, a primary reaction tank 10, a primary precipitation tank 20, and a primary concentration tank 30 are further provided. Here, the "primary" included in each component is to avoid confusion with the components of the first embodiment, it is clear that it is not defined with a separate 'secondary' configuration in mind.

먼저, 1차반응조(10)는, 알루미늄이온이 포함된 산성 광산 배수에 알칼리제를 공급하여 Al3+ 이온이 Al(OH)3의 수산화물을 형성하도록 한다. 이때 Fe3+ 이온도 Fe(OH)3의 수산화물을 형성하면서 제거된다.First, the primary reactor 10 supplies an alkali agent to the acid mine drainage containing aluminum ions so that the Al 3+ ions form a hydroxide of Al (OH) 3 . At this time, Fe 3+ ions are also removed while forming hydroxide of Fe (OH) 3 .

1차반응조(10)로 공급되는 알칼리제로는 NaOH 또는 Ca(OH)2를 공급하여 pH는 5.2~6.5에서 운전하는 바람직하다. 되도록 운전한다. 이는 pH가 5.2 미만인 경우 알루미늄 이온의 불용성 침전물 형성이 불완전하게 이루어지며, pH가 6.5를 초과하는 경우 Fe2+ 이온도 함께 수산화물을 형성하고 다소의 알루미늄염 이온이 발생할 문제가 있기 때문이다.As the alkali agent supplied to the first reaction tank 10, NaOH or Ca (OH) 2 is supplied, and the pH is preferably operated at 5.2 to 6.5. Drive as much as possible. This is because insoluble precipitates of aluminum ions are incompletely formed when the pH is less than 5.2, and Fe 2+ ions also form hydroxides when the pH is higher than 6.5, and some aluminum salt ions are generated.

1차침전조(20)는, 불용성의 Al(OH)3와 Fe(OH)3의 수산화물을 침전시켜 1차슬러지를 생성하고, 처리수Al3+이온과 Fe3+이온이 제거된 산성 광산 배수)는 제1실시예에 의한 산화조(40)로 공급된다.The primary precipitation tank 20 precipitates insoluble Al (OH) 3 and Fe (OH) 3 hydroxides to produce primary sludge, and acid mine drainage from which the treated water Al 3+ ions and Fe 3+ ions are removed. ) Is supplied to the oxidation tank 40 according to the first embodiment.

1차농축조(30)는, 1차침전조(20)에서 생성된 1차슬러지를 농축시키고, 상등수는 1차침전조(20)의 처리수와 함께 산화조(40)로 공급된다. 이때 생성된 1차 농축슬러지는 Al(OH)3 이외에 Fe(OH)3도 포함되며 인 제거용 약품으로 이용하거나, 탈수처리한다.The primary concentration tank 30 concentrates the primary sludge produced in the primary precipitation tank 20, and the supernatant water is supplied to the oxidation tank 40 together with the treated water of the primary precipitation tank 20. In this case, the produced primary concentrated sludge includes Fe (OH) 3 in addition to Al (OH) 3 , and is used as a chemical for removing phosphorus, or dehydrated.

산화조(40)는, Al3+ 이온과 Fe3+ 이온이 제거된 1차침전조(20)의 처리수와 2차농축조(30)의 상등수가 유입되어, 제1실시예에서 설명한 바와 같이 철이온의 산화와 알칼리제의 공급이 이루어진다. Oxidation tank 40, the treated water of the primary settling tank 20 from which Al 3+ ions and Fe 3+ ions have been removed and the supernatant of the secondary concentration tank 30 are introduced, and as described in the first embodiment, The oxidation of the hot water and the supply of alkali chemicals are performed.

그리고 후속 공정은 제1실시예의 정화장치와 마찬가지로 혼합조(50), 응집조(60), 침전조(70) 및 농축조(80)에서 이루어지며, 세부 공정은 제1실시예와 동일하다.Subsequent processes are performed in the mixing tank 50, the coagulation tank 60, the settling tank 70, and the concentration tank 80 similarly to the purification apparatus of the first embodiment, and the detailed processes are the same as in the first embodiment.

본 발명의 제2실시예에 따르면 제1실시예와 달리 산성 광산 배수로부터, Al3+이온과 Fe3+이온이 제거됨에 따라 다음과 같은 장점이 있다.According to the second embodiment of the present invention, unlike the first embodiment, as Al 3+ ions and Fe 3+ ions are removed from the acid mine drainage, there are the following advantages.

첫째, Al3+이온이 1차적으로 제거됨에 따라 Al(OH)4 - 발생을 예방하여 중화 약품비용을 절감할 수 있다. 또한 Al(OH)4 - 발생이 없어 부유물질을 감소시켜 처리 수질 향상을 기대할 수 있다.First, as Al 3+ ions are first removed, neutralization drug costs can be reduced by preventing Al (OH) 4 generation. In addition, since Al (OH) 4 - is not generated, it can be expected to improve treated water quality by reducing suspended solids.

둘째, 수산화알루미늄이 존재하면 젤라틴 현상을 띠게 되어 농축조(80)에서의 농축슬러지 농도를 높일 수 없으나, 본 발명에 의하면 Al3 +이온이 1차적으로 제거됨에 따라 농축슬러지의 농도를 향상시킴으로써 제1실시예를 구성하는 정화장치에서의 2차 공정의 처리 효율을 향상시킬 수 있다.Second, the presence of aluminum hydroxide is gelatinous to increase the concentration of the concentrated sludge in the thickening tank 80, according to the present invention by increasing the concentration of the concentrated sludge as Al 3 + ions are first removed The treatment efficiency of the secondary process in the purification apparatus which comprises an Example can be improved.

셋째, 인은 PO4 - 형태로 물속에 존재하여 부영양화의 주된 원인 물질인데, PO4 3- 형태의 인은 Al3 +이온이나 Fe3+이온에 의하여 AlPO4, FePO4의 불용성 침전물을 형성하므로 1차침전조(2)에서 발생되는 1차슬러지를 인 제거를 위한 응집제로서 Al3+이온이나 Fe3+이온의 공급원으로서 활용할 수 있다.Third, is the PO 4 - to present in the water in the form inde main causative agent of eutrophication, of PO 4 3- in the form of so forming the AlPO 4, FePO 4 of the water-insoluble precipitate by Al + 3 ions and Fe 3+ ions Primary sludge generated in the primary settling tank 2 can be utilized as a flocculant for removing phosphorus as a source of Al 3+ ions or Fe 3+ ions.

이상에서는 본 발명의 실시예를 중심으로 설명하였으나 본 발명의 권리범위는 특허청구범위에 기재된 기술적 사상과 이로부터의 변형물 내지 균등물에까지 미칠 것이다.The foregoing has been described with reference to the embodiments of the present invention, but the scope of the present invention will extend to the technical spirit described in the claims and modifications or equivalents therefrom.

10 : 1차산화조
20 : 1차침전조
30 : 1차농축조
40 : 산화조
50 : 혼합조
60 : 응집조
70 : 침전조
80 : 농축조
10: primary oxidation tank
20: primary precipitation precursor
30: primary concentration
40: oxidation tank
50: mixing tank
60: coagulation tank
70: sedimentation tank
80: thickening tank

Claims (5)

산성 광산 폐수를 정화시키는 정화장치에 있어서,
철이온이 포함된 산성 광산 폐수에 공기 또는 오존을 공급하여 철이온을 산화시키고, 알칼리제가 공급되는 산화조;
상기 철이온이 산화된 산성 광산 폐수에 폴리머를 공급하여 플록을 형성시키는 응집조;
상기 플록을 침전시켜 슬러지를 생성하고 상등수를 외부로 배출하는 침전조; 및
상기 슬러지를 농축시키고 상등수를 외부로 배출하는 농축조; 를 포함하고,
상기 농축된 슬러지 중 일부를 상기 산화조로 이송시키는 것을 특징으로 하는 산성 광산 폐수의 정화장치.
A purifier for purifying acid mine wastewater,
An oxidation tank for supplying air or ozone to acid mine wastewater containing iron ions to oxidize iron ions and supplying an alkaline agent;
An agglomeration tank for supplying a polymer to the acid mine wastewater in which the iron ions are oxidized to form a floc;
A settling tank which precipitates the floc to produce sludge and discharge the supernatant to the outside; And
A concentration tank for concentrating the sludge and discharging the supernatant to the outside; Lt; / RTI >
And a portion of the concentrated sludge is transferred to the oxidizing tank.
제1항에 있어서,
상기 알칼리제는, 상기 산화조가 pH 7.5 ~ 8.5에서 운전되도록 공급되는 것을 특징으로 하는 산성 광산 배수의 정화장치.
The method of claim 1,
The alkaline agent is purified, acid mine drainage, characterized in that the oxidizing tank is supplied to be operated at pH 7.5 ~ 8.5.
제1항에 있어서,
상기 산화조로 이송되는 농축슬러지는,
50,000mg/L ~ 300,000mg/L의 농도를 갖고, 상기 산화조에 유입되는 상기 산성 광산 폐수의 5~10중량%가 이송되는 것을 특징으로 하는 산성 광산 폐수의 정화장치.
The method of claim 1,
Concentrated sludge to be transferred to the oxidizing tank,
Purification apparatus for acid mine wastewater having a concentration of 50,000 mg / L to 300,000 mg / L, 5 to 10% by weight of the acid mine waste water flowing into the oxidizing tank is transferred.
제1항에 있어서,
상기 산화조로 공급되기 전 알루미늄이온을 함유하는 산성 광산 폐수에 알칼리제가 공급되는 1차반응조;
상기 알루미늄이온이 산화된 상기 산성 광산 폐수로부터 1차슬러지를 생성하고 처리수를 상기 산화조로 공급하는 1차침전조;
상기 1차슬러지를 농축시켜 외부로 배출하고 상등수를 상기 산화조로 공급하는 1차농축조;
를 더 포함하는 것을 특징으로 하는 산성 광산 폐수의 정화장치.
The method of claim 1,
A primary reaction tank in which an alkaline agent is supplied to an acid mine wastewater containing aluminum ions before being supplied to the oxidation tank;
A primary sedimentation tank for generating primary sludge from the acid mine wastewater in which the aluminum ions are oxidized and supplying treated water to the oxidation tank;
A primary concentration tank for concentrating the primary sludge and discharging it to the outside and supplying supernatant water to the oxidation tank;
Purifier of acid mine waste water, characterized in that it further comprises.
제4항에 있어서,
상기 1차반응조에 공급되는 알칼리제는, 상기 1차반응조가 pH 5.2 ~ 6.5 에서 운전되도록 공급되는 것을 특징으로 하는 산성 광산 폐수의 정화장치.
5. The method of claim 4,
The alkaline agent supplied to the primary reaction tank, the acid mine wastewater purification apparatus, characterized in that the primary reactor is supplied to operate at pH 5.2 ~ 6.5.
KR1020120044988A 2012-04-27 2012-04-27 Purifing apparatus of acid mine drainage KR101370246B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120044988A KR101370246B1 (en) 2012-04-27 2012-04-27 Purifing apparatus of acid mine drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120044988A KR101370246B1 (en) 2012-04-27 2012-04-27 Purifing apparatus of acid mine drainage

Publications (2)

Publication Number Publication Date
KR20130121620A KR20130121620A (en) 2013-11-06
KR101370246B1 true KR101370246B1 (en) 2014-03-05

Family

ID=49851825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120044988A KR101370246B1 (en) 2012-04-27 2012-04-27 Purifing apparatus of acid mine drainage

Country Status (1)

Country Link
KR (1) KR101370246B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034893A (en) * 2017-09-25 2019-04-03 주식회사 이앤켐솔루션 Manufacturing method of inorganic adsorbent for phosphorus removal using acid mine drainage sludge
US11198629B2 (en) * 2016-11-17 2021-12-14 Ohio University Method for actively treating mining wastewater for pigment production

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944480A (en) * 2015-06-10 2015-09-30 北京奥意尔工程技术有限公司 Harmless treatment agent for waste drilling fluid
CN105858960A (en) * 2016-05-09 2016-08-17 南京海益环保工程有限公司 Desulfurization wastewater treatment process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200357173Y1 (en) 2004-02-18 2004-07-23 (주)동양기계 Acidic waste water treatment apparatus by means of sludge feedback
JP2009072670A (en) 2007-09-19 2009-04-09 Nittetsu Mining Co Ltd Method for purification of antimony-containing wastewater
KR100966093B1 (en) 2009-11-05 2010-06-25 주식회사 지오웍스 Method clearing wastewater by eco-friendly clarifier
KR20110026828A (en) * 2009-09-08 2011-03-16 한국과학기술연구원 Treatment system for acid mine drainage and treatment method using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200357173Y1 (en) 2004-02-18 2004-07-23 (주)동양기계 Acidic waste water treatment apparatus by means of sludge feedback
JP2009072670A (en) 2007-09-19 2009-04-09 Nittetsu Mining Co Ltd Method for purification of antimony-containing wastewater
KR20110026828A (en) * 2009-09-08 2011-03-16 한국과학기술연구원 Treatment system for acid mine drainage and treatment method using thereof
KR100966093B1 (en) 2009-11-05 2010-06-25 주식회사 지오웍스 Method clearing wastewater by eco-friendly clarifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198629B2 (en) * 2016-11-17 2021-12-14 Ohio University Method for actively treating mining wastewater for pigment production
KR20190034893A (en) * 2017-09-25 2019-04-03 주식회사 이앤켐솔루션 Manufacturing method of inorganic adsorbent for phosphorus removal using acid mine drainage sludge
KR101974594B1 (en) 2017-09-25 2019-05-02 (주)이앤켐솔루션 Manufacturing method of inorganic adsorbent for phosphorus removal using acid mine drainage sludge

Also Published As

Publication number Publication date
KR20130121620A (en) 2013-11-06

Similar Documents

Publication Publication Date Title
RU2766116C2 (en) Production of phosphate compounds of materials containing phosphorus and at least one metal selected from iron and aluminum
JP4947640B2 (en) Waste acid solution treatment method
JPWO2014083903A1 (en) Coal gasification wastewater treatment system and coal gasification wastewater treatment method
CN103951114B (en) A kind of heavy metal wastewater thereby tertiary treatment and deep purifying reuse technology
KR101370246B1 (en) Purifing apparatus of acid mine drainage
CN107176726A (en) Desulphurization for Coal-fired Power Plant waste water integrates defluorination method
CN105293744B (en) A kind of processing method of fluorine-containing phosphorus-containing wastewater
JP5118572B2 (en) Sewage treatment method
CN112897730B (en) System and method for treating and recycling high-arsenic high-fluorine waste acid
CN110921926A (en) High-concentration phosphorus-containing wastewater treatment process based on advanced oxidation method
CN107055870A (en) A kind of compact graphene cleaning Waste Water Treatment and its processing method
CN110950468A (en) Desulfurization wastewater electro-flocculation coupling Fenton oxidation standard-reaching treatment system and method
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
CN212198793U (en) Comprehensive purification system for desulfurization wastewater by limestone-gypsum method
CN111320302B (en) Process for standard emission and efficient sedimentation of low-concentration copper-containing wastewater in semiconductor industry
KR101379374B1 (en) Reducing ironsalt processing method of dyeing wastewater
CN114477607A (en) Treatment system and treatment method for industrial wastewater
CN211871618U (en) Device for treating desulfurization wastewater by composite method
KR101646590B1 (en) Method for treating recycle water of wastewater treatment
CN110862172A (en) Comprehensive purification system and method for desulfurization wastewater by limestone-gypsum method
CN1327954A (en) Process and technology for treating sewage in oil field
JPH05245483A (en) Removing of arsenic in underground hot water
CN106477780B (en) A kind of method that sewage treatment removes ammonia nitrogen except hard synchronization
CN110746000A (en) Method and device for treating desulfurization wastewater by using composite method
CN110563276A (en) advanced treatment method for landfill leachate tail water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190106

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200217

Year of fee payment: 7