JP5215578B2 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP5215578B2
JP5215578B2 JP2007068663A JP2007068663A JP5215578B2 JP 5215578 B2 JP5215578 B2 JP 5215578B2 JP 2007068663 A JP2007068663 A JP 2007068663A JP 2007068663 A JP2007068663 A JP 2007068663A JP 5215578 B2 JP5215578 B2 JP 5215578B2
Authority
JP
Japan
Prior art keywords
sludge
activated carbon
added
raw water
returned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007068663A
Other languages
Japanese (ja)
Other versions
JP2008229415A (en
Inventor
裕章 目黒
彰 恵良
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2007068663A priority Critical patent/JP5215578B2/en
Publication of JP2008229415A publication Critical patent/JP2008229415A/en
Application granted granted Critical
Publication of JP5215578B2 publication Critical patent/JP5215578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機物含有原水中の有機物を分解処理する水処理方法及び水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus for decomposing organic matter in organic matter-containing raw water.

フェントン処理とは、フェントン法を利用した有機物の酸化分解法である。この反応は1980年代にフェントン氏によってその現象が初めて発見され、その後の研究により、酸化剤と遷移金属イオンとの反応により生成するラジカルが有機物の酸化分解反応に有用であることが見出された。この時の代表的な酸化剤と遷移金属イオンとの組み合わせが、過酸化水素と第一鉄イオン(Fe2+)である。酸化剤としては、過酸化水素の他に過硫酸、過炭酸、過塩素酸とその塩などが使用できるが、過酸化水素が好適に使用される(以下、過酸化水素とFe2+の反応をフェントン法、それを利用した処理をフェントン処理と称する)。 The Fenton treatment is an oxidative decomposition method of organic substances using the Fenton method. This phenomenon was first discovered by Mr. Fenton in the 1980s, and subsequent studies found that radicals generated by the reaction of oxidants and transition metal ions were useful for oxidative decomposition of organic matter. . A typical combination of the oxidizing agent and the transition metal ion at this time is hydrogen peroxide and ferrous ion (Fe 2+ ). As the oxidizing agent, persulfuric acid, percarbonate, perchloric acid and salts thereof can be used in addition to hydrogen peroxide, but hydrogen peroxide is preferably used (hereinafter, the reaction between hydrogen peroxide and Fe 2+ is performed). Fenton method, and processing using the Fenton method is called Fenton processing).

このようなフェントン法において、フェントン反応に活性炭を添加することによって、反応を促進させる試みがなされている。この技術は、特許文献1以前にも記載されている古くからの技術であり、特許文献1では、フェントン処理中に活性炭を添加することに加えて、その汚泥の全量を反応槽に返送し、再利用することが提案されている。また、特許文献2では、活性炭充填塔に通水しながらフェントン処理する方法が提案されている。   In such a Fenton method, an attempt has been made to promote the reaction by adding activated carbon to the Fenton reaction. This technology is an old technology described before Patent Document 1, and in Patent Document 1, in addition to adding activated carbon during the Fenton treatment, the entire amount of the sludge is returned to the reaction tank, It has been proposed to be reused. Further, Patent Document 2 proposes a method of performing Fenton treatment while passing water through an activated carbon packed tower.

特開昭56−48290号公報JP 56-48290 A 特開昭62−241596号公報JP 62-241596 A

フェントン反応と活性炭の併用利用については、反応系に活性炭を添加するだけで反応が促進されるが、反応条件によっては多量の活性炭を必要とするため、活性炭を添加しない場合に比べてかえって発生汚泥が増加してしまう問題があった。これに対して、特許文献1に記載されている、活性炭を含んだ汚泥を硫酸にて溶解させた後、全量反応系に返送する方法は、活性炭を再利用するためにコスト及び汚泥削減に有用であるが、本発明者らによる再現検討の結果、処理直後からしばらくは良好に運転できるものの、通常の運転では処理後数百時間の内に分解効率の低下が引き起こされ、処理技術として利用できない問題が明らかとなった。また、本発明者らは特許文献1に記述されている添加過酸化水素に対する活性炭の添加割合の範囲内(10〜200重量%)に収まるように返送汚泥量を操作し、有機物の分解処理を行ったが、この範囲内においては特に顕著な促進効果は見られなかった。   For combined use of the Fenton reaction and activated carbon, the reaction can be accelerated just by adding activated carbon to the reaction system, but depending on the reaction conditions, a large amount of activated carbon is required. There was a problem that would increase. On the other hand, the method described in Patent Document 1 for dissolving sludge containing activated carbon with sulfuric acid and then returning it to the reaction system is useful for reducing costs and sludge because the activated carbon is reused. However, as a result of the reproducibility study by the present inventors, although it can be operated satisfactorily for a while immediately after the processing, the degradation efficiency is reduced within a few hundred hours after the processing, and it cannot be used as a processing technique. The problem became clear. In addition, the present inventors manipulate the amount of returned sludge so as to be within the range of the addition ratio of activated carbon to the added hydrogen peroxide described in Patent Document 1 (10 to 200% by weight), and decompose organic matter. Although it was carried out, no particularly remarkable accelerating effect was observed within this range.

一方、反応中の活性炭濃度を上昇させる観点から、通水方法を活性炭充填搭型としている特許文献2の方法では、活性炭と排水と過酸化水素、鉄塩の接触頻度を高めることで高い促進効果を得ることが可能であるが、処理充填塔内の活性炭表面上に鉄が析出しやすく閉塞しやすい問題がある。   On the other hand, from the viewpoint of increasing the concentration of activated carbon during the reaction, the method of Patent Document 2 in which the water flow method is a column filled with activated carbon has a high acceleration effect by increasing the contact frequency of activated carbon, waste water, hydrogen peroxide, and iron salt. However, there is a problem that iron is likely to precipitate on the activated carbon surface in the treatment packed tower and is easily blocked.

以上の理由から、活性炭によりフェントン反応を促進する方法は、比較的多くの活性炭を要する等の問題のために広く普及するに至っていない。   For the above reasons, the method of promoting the Fenton reaction with activated carbon has not been widely used due to problems such as requiring a relatively large amount of activated carbon.

本発明は、通常の活性炭を添加しないフェントン反応で発生する汚泥よりも発生汚泥を低減させ、且つ汚泥循環における閉塞、分解率の低下をほとんど伴わずに原水中の有機物を分解することができる水処理方法及び水処理装置である。   The present invention reduces the generated sludge from the sludge generated by the Fenton reaction without the addition of ordinary activated carbon, and can decompose organic matter in the raw water with little blockage in the sludge circulation and a decrease in the decomposition rate. It is a processing method and a water treatment apparatus.

また、本発明は、有機物を含有する原水の処理を行う水処理方法であって、前記原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加し、前記有機物を分解する分解工程と、前記分解した反応液中の第二鉄イオンと活性炭とを含む混合物を固液分離する固液分離工程と、前記固液分離した汚泥の少なくとも一部を前記分解工程に返送する返送工程と、を含み、前記分解工程において、前記添加する第一鉄塩の第一鉄イオンに対して重量比で1〜20倍となるように前記活性炭を添加し、かつ、前記返送工程において、前記原水のCOD濃度に対する前記第一鉄塩の添加量の化学当量比nと、前記第一鉄塩の添加量に対する前記返送汚泥の重量比(返送汚泥/Fe 2+ )とが、次の関係を満たすように前記汚泥を返送する水処理方法である。
nが0.05〜0.07のとき (返送汚泥/Fe 2+ )が1300
nが0.07〜0.1のとき (返送汚泥/Fe 2+ )が800〜1300
nが0.1〜0.15のとき (返送汚泥/Fe 2+ )が600〜1000
nが0.15〜0.25のとき (返送汚泥/Fe 2+ )が200〜1000
The present invention is also a water treatment method for treating raw water containing an organic substance, wherein the organic substance is decomposed by adding hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt, and activated carbon to the raw water. A decomposition step, a solid-liquid separation step for solid-liquid separation of a mixture containing ferric ions and activated carbon in the decomposed reaction solution, and a return for returning at least a part of the solid-liquid separated sludge to the decomposition step And in the decomposition step, the activated carbon is added in a weight ratio of 1 to 20 times the ferrous ion of the ferrous salt to be added, and in the return step, The chemical equivalent ratio n of the addition amount of the ferrous salt to the COD concentration of the raw water and the weight ratio of the return sludge to the addition amount of the ferrous salt (return sludge / Fe 2+ ) are as follows: Water to return the sludge to meet It is a processing method.
When n is 0.05 to 0.07 (returned sludge / Fe 2+ ) is 1300
When n is 0.07 to 0.1 (Returned sludge / Fe 2+ ) is 800 to 1300
When n is 0.1 to 0.15 (Returned sludge / Fe 2+ ) is 600 to 1000
When n is 0.15 to 0.25 (Returned sludge / Fe 2+ ) is 200 to 1000

また、前記水処理方法の前記分解工程における滞留時間が2時間以上であることが好ましい。 Further, it is preferable definitive residence time to the decomposition step of the water treatment method is not less than 2 hours.

さらに、本発明は、有機物を含有する原水の処理を行う水処理装置であって、前記原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加することにより前記有機物を分解するための反応槽と、前記分解した反応液中の第二鉄イオンと活性炭とを含む混合物を固液分離する固液分離手段と、前記固液分離した汚泥の少なくとも一部を前記反応槽に返送する返送手段と、を有し、前記添加する活性炭の量は、前記第一鉄塩の第一鉄イオンに対して重量比で1〜20倍であり、前記返送する汚泥の量は、前記原水のCOD濃度に対する前記第一鉄塩の添加量の化学当量比nと、前記第一鉄塩の添加量に対する前記返送汚泥の重量比(返送汚泥/Fe2+)とが、次の関係を満たす範囲である水処理装置である。
nが0.05〜0.07のとき (返送汚泥/Fe2+)が1300
nが0.07〜0.1のとき (返送汚泥/Fe2+)が800〜1300
nが0.1〜0.15のとき (返送汚泥/Fe2+)が600〜1000
nが0.15〜0.25のとき (返送汚泥/Fe2+)が200〜1000
また、前記水処理装置において、前記反応槽における滞留時間が2時間以上であることが好ましい。
Furthermore, the present invention is a water treatment apparatus for treating raw water containing organic matter, wherein the organic matter is decomposed by adding hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt, and activated carbon to the raw water. A solid-liquid separation means for solid-liquid separation of a mixture containing ferric ions and activated carbon in the decomposed reaction liquid, and at least a part of the solid-liquid separated sludge in the reaction tank. has a returning means for returning the amount of activated carbon to the additive is 1 to 20 times by weight relative to the ferrous ion of the ferrous salt, the amount of sludge that the return of the previous The chemical equivalent ratio n of the addition amount of the ferrous salt to the COD concentration of the raw water and the weight ratio of the return sludge to the addition amount of the ferrous salt (return sludge / Fe 2+ ) have the following relationship: It is a water treatment device which is a range to be satisfied.
When n is 0.05 to 0.07, (returned sludge / Fe 2+ ) is 1300
When n is 0.07 to 0.1 (returned sludge / Fe 2+ ) is 800 to 1300
When n is 0.1 to 0.15 (Returned sludge / Fe 2+ ) is 600 to 1000
When n is 0.15 to 0.25 (Returned sludge / Fe 2+ ) is 200 to 1000
Moreover, in the said water treatment apparatus, it is preferable that the residence time in the said reaction tank is 2 hours or more.

本発明では、有機物含有原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加して有機物を分解する水処理方法において、添加する第一鉄イオンの量に対する活性炭の量及び返送する汚泥の量を所定の範囲に規定することにより、通常の活性炭を添加しないフェントン反応で発生する汚泥よりも発生汚泥を低減させ、且つ汚泥循環における閉塞、分解率の低下をほとんど伴わずに原水中の有機物を分解することができる。またそのような水処理方法に使用する水処理装置を提供する。   In the present invention, in the water treatment method of decomposing organic matter by adding hydrogen peroxide, at least a ferrous salt to the organic matter-containing raw water, and decomposing the organic matter, the amount of activated carbon relative to the amount of ferrous ion added and By defining the amount of sludge to be returned within a specified range, the generated sludge is reduced compared to sludge generated by the Fenton reaction without adding normal activated carbon, and with almost no blockage in the sludge circulation and a decrease in decomposition rate. Organic substances in raw water can be decomposed. Moreover, the water treatment apparatus used for such a water treatment method is provided.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明者らは、フェントン処理に活性炭を併用する処理方法において、反応槽に少なくとも第一鉄塩を含む分解触媒と、添加する第一鉄塩の第一鉄イオン(Fe2+)に対して重量比で1倍〜20倍となるように活性炭を添加しながら、中和処理後の活性炭を含んだ廃汚泥の少なくとも一部を排出しつつ反応槽に返送するとき、返送汚泥量を添加するFe2+に対して重量比で50倍〜1300倍の範囲になるように添加することで、汚泥循環における閉塞、分解率の低下が改善し、良好な分解率を保ちながら有機物含有原水を酸化処理できることを見出した。 In the treatment method in which activated carbon is used in combination with Fenton treatment, the inventors of the present invention have a decomposition catalyst containing at least a ferrous salt in a reaction tank and a weight of ferrous ions (Fe 2+ ) of the ferrous salt to be added. Fe is added to the amount of return sludge when returning to the reaction tank while discharging at least part of the waste sludge containing neutralized activated carbon while adding activated carbon to a ratio of 1 to 20 times. By adding so as to be in the range of 50 times to 1300 times by weight with respect to 2+ , blockage in sludge circulation and reduction in decomposition rate can be improved, and organic material-containing raw water can be oxidized while maintaining good decomposition rate I found.

本実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。水処理装置1は、反応槽10と、中和槽12と、還元槽14と、凝集槽16と、固液分離手段である沈殿槽18とを備える。水処理装置1において、反応槽10の出口と中和槽12の入口、中和槽12の出口と還元槽14の入口、還元槽14の出口と凝集槽16の入口、凝集槽16の出口と沈殿槽18の入口がそれぞれ配管等により接続されている。また、沈殿槽18は配管等により返送手段であるポンプ(図示せず)等を介して反応槽10と接続されている。   An outline of an example of the water treatment apparatus according to the present embodiment is shown in FIG. 1 and the configuration thereof will be described. The water treatment apparatus 1 includes a reaction tank 10, a neutralization tank 12, a reduction tank 14, a coagulation tank 16, and a precipitation tank 18 that is a solid-liquid separation unit. In the water treatment apparatus 1, the outlet of the reaction tank 10 and the inlet of the neutralizing tank 12, the outlet of the neutralizing tank 12 and the inlet of the reducing tank 14, the outlet of the reducing tank 14 and the inlet of the coagulating tank 16, and the outlet of the coagulating tank 16 The inlets of the precipitation tank 18 are connected to each other by piping or the like. Moreover, the sedimentation tank 18 is connected to the reaction tank 10 via a pump (not shown) which is a return means by piping or the like.

次に、本実施形態に係る水処理装置1の動作及び水処理方法について説明する。汚染物質である有機物を含む原水(被処理水)を反応槽10に送液し、反応槽10において、過酸化水素、少なくとも第一鉄塩を含む分解触媒、活性炭を添加し、有機物を酸化により分解する(分解工程)。このとき、硫酸等の酸により酸性条件に調整する。酸化処理後、反応液を中和槽12に送液し、中和槽12においてアルカリ剤を添加し、pHを6〜10.5に調整する(中和工程)。その後、中和された中和液を還元槽14に送液し、還元剤を添加して残留過酸化水素を還元し(還元工程)、残留過酸化水素を除去する。残留過酸化水素が除去された還元液を凝集槽16へ送液し、凝集剤を添加してフロックを成長させ、凝集させる(凝集工程)。成長したフロックを含む凝集液を沈殿槽18へ送液し、自然沈降分離により、第二鉄イオン(Fe3+)及び活性炭を含む汚泥と処理水とに固液分離する(固液分離工程)。汚泥のうち少なくとも一部を過酸化水素、分解触媒、活性炭と共に再び反応槽10へ添加する。汚泥のうち一部は引き抜き汚泥として系外へ排出してもよい。一方、固液分離された処理水は系外へ排出する。 Next, the operation of the water treatment apparatus 1 and the water treatment method according to this embodiment will be described. Raw water containing organic substances that are pollutants (treated water) is sent to the reaction tank 10, and hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt and activated carbon are added to the reaction tank 10, and the organic substances are oxidized by oxidation. Decompose (decomposition process). At this time, it adjusts to acidic conditions with acids, such as a sulfuric acid. After the oxidation treatment, the reaction solution is sent to the neutralization tank 12 and an alkali agent is added in the neutralization tank 12 to adjust the pH to 6 to 10.5 (neutralization step). Thereafter, the neutralized neutralized solution is sent to the reduction tank 14, a reducing agent is added to reduce the residual hydrogen peroxide (reduction step), and the residual hydrogen peroxide is removed. The reducing solution from which the residual hydrogen peroxide has been removed is sent to the agglomeration tank 16, and a flocculant is added to grow the flocs and agglomerate (aggregation step). The agglomerated liquid containing the grown floc is sent to the precipitation tank 18 and is separated into solid and liquid by sludge containing ferric ions (Fe 3+ ) and activated carbon and treated water by natural sedimentation separation (solid-liquid separation step). At least a part of the sludge is added to the reaction tank 10 together with hydrogen peroxide, a decomposition catalyst, and activated carbon. A part of the sludge may be extracted and discharged out of the system as sludge. On the other hand, the treated water that has been subjected to solid-liquid separation is discharged out of the system.

本実施形態に係る水処理方法は、有機物、例えばジメチルスルホキシド(DMSO)、エチレンジアミン四酢酸(EDTA)、フェノール類、有機塩素化合物、環境ホルモン、生物処理水、揚水した汚染地下水、界面活性剤等の難生物分解性有機物の酸化分解、又は易生物分解化等に使用される。原水中の有機物の対象濃度としては、どのような濃度であっても薬剤濃度の最適化により効果はあるが、CODで1000mg/L以下であることが好ましい。   The water treatment method according to this embodiment includes organic substances such as dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA), phenols, organochlorine compounds, environmental hormones, biologically treated water, pumped contaminated groundwater, surfactants, and the like. Used for oxidative degradation or biodegradation of hardly biodegradable organic substances. The target concentration of the organic matter in the raw water is effective by optimizing the drug concentration at any concentration, but is preferably 1000 mg / L or less in COD.

反応槽10では、少なくとも第一鉄塩を含む分解触媒から発生する第一鉄イオン及び活性炭、過酸化水素が同時に存在すればよい。本実施形態で用いられる活性炭は、特に限定されるものではないが、比表面積を確保するために粉炭であることが望ましい。活性炭は、分解工程において発生する第二鉄イオン(Fe3+)の触媒活性を上昇させ、分解反応を促進する役割を主に行う。活性炭の反応促進効果は、活性炭の原料によってある程度は左右されるが著しい差はなく、コスト及び汎用性を考慮すると石炭系又は木質系の活性炭が好適に使用される。活性炭によるフェントン法の促進効果は、反応系中に存在するFe3+を活性化させる作用によるものなので、添加する鉄塩は、第一鉄塩の他に、通常のフェントン法では使用に適さない第二鉄塩も使用することができる。第一鉄塩及び第二鉄塩としては、それらの硫酸塩、塩酸塩、硝酸塩などが使用できるが、硫酸鉄や塩化鉄が特に好適に使用される。 In the reaction tank 10, ferrous ions generated from a decomposition catalyst containing at least a ferrous salt, activated carbon, and hydrogen peroxide may be simultaneously present. The activated carbon used in the present embodiment is not particularly limited, but is desirably pulverized coal in order to ensure a specific surface area. Activated carbon mainly plays a role of increasing the catalytic activity of ferric ions (Fe 3+ ) generated in the decomposition step and promoting the decomposition reaction. The reaction promoting effect of the activated carbon depends to some extent on the activated carbon raw material, but there is no significant difference. In view of cost and versatility, coal-based or wood-based activated carbon is preferably used. The activated effect of the Fenton method with activated carbon is due to the action of activating Fe 3+ present in the reaction system, so that the iron salt to be added is not suitable for use in the normal Fenton method in addition to the ferrous salt. Diiron salts can also be used. As the ferrous salt and ferric salt, sulfates, hydrochlorides, nitrates and the like thereof can be used, and iron sulfate and iron chloride are particularly preferably used.

反応槽10におけるpHは酸性条件であれば良いが、系内の溶存鉄濃度を保つことを考慮すると、pH2〜3の範囲、特にpH2.4〜2.6の範囲(2.5付近)が反応に好適である。pHの調整には硫酸、塩酸、酢酸、リン酸、硝酸等の酸が用いられるが、硫酸を使用することが好ましい。硝酸は高価であり且つ後段の窒素負荷上昇につながり、塩酸は塩化物イオンによる反応がラジカルスカベンジャーとして作用するため好ましくない。   The pH in the reaction vessel 10 may be an acidic condition, but considering that the dissolved iron concentration in the system is maintained, the pH range is 2 to 3, particularly the pH range 2.4 to 2.6 (around 2.5). Suitable for the reaction. Acids such as sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid and nitric acid are used to adjust the pH, but it is preferable to use sulfuric acid. Nitric acid is expensive and leads to a subsequent increase in nitrogen load, and hydrochloric acid is not preferred because the reaction with chloride ions acts as a radical scavenger.

活性炭の添加量は、反応槽10において添加する第一鉄塩のFe2+に対して重量比で1〜20倍(すなわち、活性炭/Fe2+(重量比)=1〜20)である。活性炭の添加量がFe2+に対して20倍を超えてもCOD分解率は大きく向上せず、また凝集不良が起きやすくなる。活性炭の添加量がFe2+に対して1倍未満であると良好なCOD分解率が得られない。また、活性炭/Fe2+(重量比)=1〜10の範囲であることが好ましい。 The addition amount of the activated carbon is 1 to 20 times (that is, activated carbon / Fe 2+ (weight ratio) = 1 to 20) with respect to Fe 2+ of the ferrous salt added in the reaction tank 10. Even if the addition amount of the activated carbon exceeds 20 times with respect to Fe 2+ , the COD decomposition rate is not greatly improved, and agglomeration failure tends to occur. When the addition amount of activated carbon is less than 1 time with respect to Fe 2+ , a good COD decomposition rate cannot be obtained. Moreover, it is preferable that it is the range of activated carbon / Fe < 2+ > (weight ratio) = 1-10.

また、活性炭の添加量は、反応槽10において添加する過酸化水素に対して重量比で0.1〜1倍(すなわち、活性炭/過酸化水素(重量比)=0.1〜1)であることが好ましい。活性炭の添加量が過酸化水素に対して1倍を超えてもCOD分解率は大きく向上せず、0.1倍未満であると良好なCOD分解率が得られない場合がある。また、活性炭/過酸化水素(重量比)=0.1〜0.5の範囲であることがより好ましい。   Moreover, the addition amount of activated carbon is 0.1-1 times by weight with respect to the hydrogen peroxide added in the reaction tank 10 (that is, activated carbon / hydrogen peroxide (weight ratio) = 0.1-1). It is preferable. Even if the addition amount of activated carbon exceeds 1 time with respect to hydrogen peroxide, the COD decomposition rate is not greatly improved, and if it is less than 0.1 times, a good COD decomposition rate may not be obtained. Moreover, it is more preferable that the range is activated carbon / hydrogen peroxide (weight ratio) = 0.1 to 0.5.

反応槽10における薬剤の添加濃度は、処理対象となる原水のCOD濃度によって異なるが、概ねFe2+の添加量は原水のCOD濃度に対して化学当量比で0.05〜0.25倍(すなわち、Fe2+/COD(化学当量比)=0.05〜0.25)であることが好ましい。Fe2+の添加量が原水のCOD濃度に対して0.25倍を超える範囲では、活性炭を添加しないフェントン反応で十分なCOD除去率を期待できる条件において発生する汚泥量よりも、多くの汚泥が発生してしまう場合があるため好ましくない。また、Fe2+の添加量が原水のCOD濃度に対して0.05倍未満であると良好なCOD分解率が得られない場合があるため好ましくない。また、Fe2+/COD(化学当量比)=0.05〜0.15の範囲であることがより好ましい。 Although the addition concentration of the chemical in the reaction tank 10 varies depending on the COD concentration of the raw water to be treated, the addition amount of Fe 2+ is generally 0.05 to 0.25 times the chemical equivalent ratio of the COD concentration of the raw water (ie, Fe 2+ / COD (chemical equivalent ratio) = 0.05 to 0.25). In the range where the addition amount of Fe 2+ exceeds 0.25 times the COD concentration of raw water, more sludge is generated than the amount of sludge generated under conditions where a sufficient COD removal rate can be expected in the Fenton reaction without adding activated carbon. Since it may occur, it is not preferable. Further, if the addition amount of Fe 2+ is less than 0.05 times the COD concentration of the raw water, it is not preferable because a good COD decomposition rate may not be obtained. Moreover, it is more preferable that it is the range of Fe <2 + > / COD (chemical equivalent ratio) = 0.05-0.15.

処理対象物質である有機物が活性炭に吸着する物質である場合は、添加する活性炭に吸着する分のCOD値を、初期COD値に加算した濃度について、前記Fe2+/COD(化学当量比)の範囲内を適用すればよい。 When the organic substance to be treated is a substance that is adsorbed on activated carbon, the Fe 2+ / COD (chemical equivalent ratio) range for the concentration obtained by adding the COD value adsorbed on the added activated carbon to the initial COD value The inside can be applied.

過酸化水素の添加量は概ね原水のCODに対して化学当量比で0.8〜3倍(すなわち、過酸化水素/COD(化学当量比)=0.8〜3)であることが好ましい。過酸化水素の添加量が原水のCODに対して3倍を超えると、残留過酸化水素濃度が高くなり過酸化水素の還元処理のコストが増大してしまう場合がある。過酸化水素の添加量が原水のCODに対して0.8倍未満であると、良好なCOD分解率が得られない場合がある。また、過酸化水素/COD(化学当量比)=1〜2の範囲であることがより好ましい。   The amount of hydrogen peroxide added is preferably about 0.8 to 3 times the chemical equivalent ratio of the raw water COD (that is, hydrogen peroxide / COD (chemical equivalent ratio) = 0.8 to 3). If the amount of hydrogen peroxide added exceeds 3 times the COD of the raw water, the residual hydrogen peroxide concentration may increase and the cost of hydrogen peroxide reduction may increase. If the amount of hydrogen peroxide added is less than 0.8 times the COD of raw water, a good COD decomposition rate may not be obtained. Further, hydrogen peroxide / COD (chemical equivalent ratio) = 1 to 2 is more preferable.

原水に含まれる有機物がジメチルスルホキシド(DMSO)を含む場合は、概ねFe2+の添加量は原水のジメチルスルホキシドに対して化学当量比で0.5〜1.5倍(すなわち、Fe2+/DMSO(化学当量比)=0.5〜1.5)であることが好ましい。Fe2+の添加量が原水のジメチルスルホキシドに対して1.5倍を超える範囲では、活性炭を添加しないフェントン反応で十分なCOD除去率を期待できる条件において発生する汚泥量よりも、多くの汚泥が発生してしまう場合があるため好ましくない。また、Fe2+の添加量が原水のジメチルスルホキシドに対して0.5倍未満であると良好なCOD分解率が得られない場合があるため好ましくない。また、Fe2+/DMSO(化学当量比)=0.5〜1の範囲であることがより好ましい。 When the organic matter contained in the raw water contains dimethyl sulfoxide (DMSO), the amount of Fe 2+ added is generally 0.5 to 1.5 times the chemical equivalent ratio of dimethyl sulfoxide of the raw water (ie, Fe 2+ / DMSO ( It is preferable that the chemical equivalent ratio) = 0.5 to 1.5). In the range where the addition amount of Fe 2+ exceeds 1.5 times that of dimethyl sulfoxide of raw water, more sludge is generated than the amount of sludge generated under conditions where a sufficient COD removal rate can be expected in the Fenton reaction without adding activated carbon. Since it may occur, it is not preferable. Further, if the addition amount of Fe 2+ is less than 0.5 times that of dimethyl sulfoxide of raw water, a good COD decomposition rate may not be obtained, which is not preferable. Moreover, it is more preferable that it is the range of Fe <2 + > / DMSO (chemical equivalent ratio) = 0.5-1.

反応槽10における反応方法としては、バッチ処理、連続処理のどちらでも可能である。バッチ処理の場合、反応槽10系内のpHを酸性にした後、分解触媒、活性炭、返送汚泥を添加し、過酸化水素を所定の反応時間内で所定の添加量になるまで除々に添加していくことが過酸化水素の自己分解を抑制できる点で好ましい。さらに、過酸化水素について、初期段階でFe2+と当モル量添加し、その後残りの量を所定の反応時間内で除々に添加していくことが過酸化水素の自己分解を抑制できる点で好ましい。また、過酸化水素を添加後、概ね反応時間の10〜20%程度、薬剤を添加せずに撹拌する時間を設けることが過酸化水素を分解させ、処理水中の過酸化水素濃度を低減できる点で好ましい。また、このような撹拌時間を設けることによって、固液分離工程において、残留している過酸化水素の自己分解により発生した酸素が一旦沈降した汚泥を浮上させることを防止することもできる。 As a reaction method in the reaction vessel 10, either batch processing or continuous processing is possible. In the case of batch processing, after acidifying the pH in the reaction tank 10 system, a decomposition catalyst, activated carbon and return sludge are added, and hydrogen peroxide is gradually added until a predetermined addition amount is reached within a predetermined reaction time. It is preferable that the self-decomposition of hydrogen peroxide can be suppressed. Furthermore, it is preferable that hydrogen peroxide is added in an equimolar amount with Fe 2+ at an initial stage, and then the remaining amount is gradually added within a predetermined reaction time in terms of suppressing the self-decomposition of hydrogen peroxide. . In addition, it is possible to reduce the concentration of hydrogen peroxide in the treated water by decomposing hydrogen peroxide by adding about 10-20% of the reaction time and adding the stirring time without adding chemicals after adding hydrogen peroxide. Is preferable. Further, by providing such a stirring time, it is possible to prevent the sludge once precipitated by the oxygen generated by the self-decomposition of the remaining hydrogen peroxide in the solid-liquid separation step.

連続処理の場合、本実施形態における反応槽10は、反応速度論の観点から分割することが好ましい。図2に反応槽を少なくとも2つ備える水処理装置の一例の概略を示す。図2における水処理装置2は、反応槽を3つの反応槽10a,10b,10cに分割した例である。反応槽10の数は特に制限はないが、反応速度論の観点から2個〜10個に分割することが好ましく、2個〜4個に分割することがより好ましい。また、反応槽10を分割した場合の各薬剤の添加は、各槽へ分割添加することもできる。このとき、過酸化水素の添加は、反応槽10を分割した場合には各槽へそれぞれ分割して添加すると過酸化水素の自己分解を抑制できるという望ましい効果をもたらす。活性炭及び分解触媒、循環した汚泥の分割した反応槽への添加方法に特に限定はないが、コスト及び装置形状の簡便さの観点から、第一の反応槽10aに添加することが好ましい。   In the case of continuous processing, the reaction vessel 10 in this embodiment is preferably divided from the viewpoint of reaction kinetics. FIG. 2 shows an outline of an example of a water treatment apparatus provided with at least two reaction vessels. The water treatment apparatus 2 in FIG. 2 is an example in which the reaction tank is divided into three reaction tanks 10a, 10b, and 10c. The number of reaction vessels 10 is not particularly limited, but is preferably divided into 2 to 10 from the viewpoint of reaction kinetics, and more preferably divided into 2 to 4. Moreover, addition of each chemical | medical agent when the reaction tank 10 is divided | segmented can also be dividedly added to each tank. At this time, the addition of hydrogen peroxide brings about a desirable effect that, when the reaction tank 10 is divided, if it is added separately to each tank, the self-decomposition of hydrogen peroxide can be suppressed. There is no particular limitation on the method of adding the activated carbon, the decomposition catalyst, and the circulated sludge to the divided reaction tank, but it is preferably added to the first reaction tank 10a from the viewpoint of cost and simplicity of the apparatus shape.

また、図3に示すように、過酸化水素を各反応槽10a〜10cへそれぞれ分割して添加し、分割した反応槽1段目(反応槽10a)に分解触媒、反応槽2段目(反応槽10b)に活性炭及び返送汚泥を添加するとさらに分解率が向上するという望ましい効果をもたらす。これは、反応槽1段目においてFe2+により分解反応を行い、反応槽2段目において生成したFe3+を活性炭により活性化する方が効率的に分解反応が進行するからである。このように反応槽1段目に分解触媒、反応槽2段目に活性炭及び返送汚泥を添加する場合、2段目以降の容積を1段目の反応槽10aよりも大きくして、反応液に対するFe3+の存在量を多くしてもよいし、1段目の反応槽10aの容積を2段目以降よりも大きくして1段目の反応槽10aにおけるFe2+の滞留時間を長くしてもよい。これらにより、さらに分解率を向上することができる。 Moreover, as shown in FIG. 3, hydrogen peroxide is dividedly added to each of the reaction tanks 10a to 10c, and the decomposition catalyst and the second stage of the reaction tank (reaction) are added to the divided first reaction tank (reaction tank 10a). Adding activated carbon and return sludge to the tank 10b) brings about the desirable effect of further improving the decomposition rate. This is because the decomposition reaction proceeds more efficiently when the decomposition reaction is performed with Fe 2+ in the first stage of the reaction tank and the Fe 3+ generated in the second stage of the reaction tank is activated with activated carbon. When the decomposition catalyst is added to the first stage of the reaction tank and the activated carbon and the return sludge are added to the second stage of the reaction tank, the volume after the second stage is made larger than that of the first stage reaction tank 10a to The amount of Fe 3+ may be increased, or the residence time of Fe 2+ in the first-stage reaction tank 10a may be increased by making the volume of the first-stage reaction tank 10a larger than the second and subsequent stages. Good. By these, the decomposition rate can be further improved.

反応槽10の後段には、中和槽12の後、残留過酸化水素が高濃度の場合は除去するための還元手段として還元槽14が設けられる。中和槽12におけるアルカリ剤は、特に限定はないが、水酸化ナトリウム、水酸化カルシウム等の塩基が好適に使用される。還元槽14における還元方法としては、還元剤として還元物質や酵素の添加又は曝気処理等が挙げられる。過酸化水素の除去のための還元剤には、還元物質として亜硫酸水素ナトリウム、亜硫酸ナトリウム等の亜硫酸塩、チオ硫酸塩、亜硝酸塩、チオ尿素、アリルチオ尿素、硫化水素、水素、チオグリコール酸、水素化ホウ素塩の他、アスコルビン酸等の各種有機物が、また、酵素にはカタラーゼ等が使用される。また、図4に示すように、還元物質や酵素等の還元剤により過酸化水素を除去する場合は、反応槽10の後段で中和槽12の前段に還元槽14を設置してもよい。   In the subsequent stage of the reaction tank 10, after the neutralization tank 12, a reduction tank 14 is provided as a reducing means for removing residual hydrogen peroxide when the concentration is high. The alkali agent in the neutralization tank 12 is not particularly limited, but a base such as sodium hydroxide or calcium hydroxide is preferably used. Examples of the reduction method in the reduction tank 14 include addition of a reducing substance or enzyme as a reducing agent, or aeration treatment. Reducing agents for removing hydrogen peroxide include sodium bisulfite, sodium sulfite and other sulfites such as sodium sulfite, thiosulfate, nitrite, thiourea, allylthiourea, hydrogen sulfide, hydrogen, thioglycolic acid, hydrogen In addition to boron halides, various organic substances such as ascorbic acid and catalase are used as enzymes. Further, as shown in FIG. 4, when removing hydrogen peroxide with a reducing agent such as a reducing substance or an enzyme, a reducing tank 14 may be installed after the reaction tank 10 and before the neutralization tank 12.

その後、凝集槽16にて高分子凝集剤等の凝集剤を添加してフロックを成長させる。このときの高分子凝集剤の種類には特に限定はなく、アニオン系、ノニオン系のものが好適に使用される。フロックは沈殿槽18において沈降分離により固液分離される。固液分離は、沈降分離の他に、膜分離、加圧浮上等の分離方法により行われてもよい。   Thereafter, a floc is grown by adding a flocculant such as a polymer flocculant in the flocculant 16. The kind of the polymer flocculant at this time is not particularly limited, and anionic and nonionic ones are preferably used. The floc is separated into solid and liquid by sedimentation separation in the sedimentation tank 18. Solid-liquid separation may be performed by separation methods such as membrane separation and pressurized flotation in addition to sedimentation separation.

本実施形態において、分離された汚泥は第二鉄イオン(Fe3+)と活性炭とを含み、その少なくとも一部は、反応槽10において添加される第一鉄塩のFe2+に対して重量比で50〜1300倍の量(すなわち、返送汚泥/Fe2+(重量比)=50〜1300)となるように反応槽10へ返送されて循環再利用され、残りは系外へ排出される。返送汚泥/Fe2+(重量比)が50未満であると反応促進効果が得がたく、1300を超えてもそれ以上の反応促進効果が得がたい。また、返送汚泥/Fe2+(重量比)=100〜1000の範囲であることが好ましい。分離された汚泥は、分離方法にもよるが、沈降分離の場合は通常15000〜40000mg/L程度の濃度となる。 In this embodiment, the separated sludge contains ferric ions (Fe 3+ ) and activated carbon, at least a part of which is in a weight ratio with respect to Fe 2+ of the ferrous salt added in the reaction vessel 10. It is returned to the reaction tank 10 so as to be 50 to 1300 times the amount (that is, returned sludge / Fe 2+ (weight ratio) = 50 to 1300) and recycled, and the rest is discharged out of the system. When the return sludge / Fe 2+ (weight ratio) is less than 50, it is difficult to obtain a reaction promoting effect, and even if it exceeds 1300, it is difficult to obtain a further reaction promoting effect. Moreover, it is preferable that it is the range of returned sludge / Fe < 2+ > (weight ratio) = 100-1000. Although the separated sludge depends on the separation method, in the case of sedimentation separation, the concentration is usually about 15000 to 40000 mg / L.

このとき、原水にSS(Suspended solids)成分がある場合は、Fe3+と活性炭由来の汚泥の他にSS成分が加算される。したがって、SS成分が加算される分、同様の添加しているFe2+とFe2+と活性炭由来の返送汚泥量重量比に設定するために返送すべき全体の汚泥量が増加してしまうので、原水中のSS成分は、後述するような凝集処理、膜処理、加圧浮上などで予め除去しておくことが好ましい。 At this time, when the raw water has an SS (Suspended solids) component, the SS component is added in addition to the Fe 3+ and activated carbon-derived sludge. Therefore, since the SS component is added, the total amount of sludge to be returned for setting the same weight ratio of Fe 2+ , Fe 2+ and the amount of returned sludge derived from activated carbon is increased. The SS component in the water is preferably removed in advance by agglomeration treatment, membrane treatment, pressurized levitation as described later.

反応槽10を経由した後の中和槽12での汚泥量は、Fe2+に対して返送汚泥重量及び返送される濃縮汚泥濃度、分解対象COD濃度によって概ね決定されるが、15000mg/Lを越えると、その後の凝集処理によるフロック形成が困難になるので15000mg/L以下であることが好ましい。 The amount of sludge in the neutralization tank 12 after passing through the reaction tank 10 is largely determined by the return sludge weight, the concentrated sludge concentration to be returned, and the COD concentration to be decomposed with respect to Fe 2+ , but exceeds 15000 mg / L. Then, since it becomes difficult to form flocs by the subsequent aggregation treatment, it is preferably 15000 mg / L or less.

このように返送汚泥量を設定する場合、返送汚泥流量は原水流量に対して10〜200%の範囲内が好ましく、返送汚泥流量が30〜100%の範囲内がより好ましい。返送汚泥比R[−]及び中和槽12内の汚泥濃度S[mg/L]を、Fe2+/COD=a(重量比)、返送汚泥/Fe2+=b(重量比)、沈殿槽濃縮汚泥濃度=c[mg/L]、活性炭/Fe2+=d(重量比)、COD濃度=x[mg/L]で示すと、以下の式となる。 When the return sludge amount is set in this way, the return sludge flow rate is preferably within the range of 10 to 200% with respect to the raw water flow rate, and the return sludge flow rate is more preferably within the range of 30 to 100%. Return sludge ratio R [−] and sludge concentration S [mg / L] in neutralization tank 12 are Fe 2+ / COD = a (weight ratio), returned sludge / Fe 2+ = b (weight ratio), precipitation tank concentration When the sludge concentration = c [mg / L], activated carbon / Fe 2+ = d (weight ratio), and COD concentration = x [mg / L], the following equation is obtained.

Figure 0005215578
Figure 0005215578

返送汚泥が反応槽10へ返送されるとき、返送される汚泥に含まれる活性炭と添加している活性炭の合計量は、添加しているFe2+に対して重量比で50〜1300倍、且つ過酸化水素に対して重量比で2〜80倍の範囲内となることが好ましい。また、活性炭の合計量は、過酸化水素に対して7〜80倍の範囲内となることがより好ましい。 When the returned sludge is returned to the reaction tank 10, the total amount of activated carbon contained in the returned sludge and the added activated carbon is 50 to 1300 times by weight with respect to Fe 2+ added, The weight ratio is preferably in the range of 2 to 80 times that of hydrogen oxide. The total amount of activated carbon is more preferably in the range of 7 to 80 times that of hydrogen peroxide.

汚泥を返送する場合、そのまま反応槽10へ添加することもできるが、図5に示すように、汚泥滞留槽20を設け、そこで反応槽10に添加すべき薬剤を添加した後に、反応槽10へ返送して原水に添加してもよい。すなわち、このような形態で、原水に過酸化水素、分解触媒及び活性炭を添加してもよい。これにより、分解率をさらに向上させるという望ましい効果をもたらす。また、図6に示すように、酸もしくはアルカリで汚泥を少しでも溶解させた後に反応槽10へ返送したり、還元剤を添加してFe3+イオンをFe2+イオンに少しでも還元した後に反応槽10へ返送したりすることも、分解率をさらに向上させるという望ましい効果をもたらす。なお、還元剤を添加する場合は、酸もしくはアルカリによって汚泥を溶解させた状態へ添加すると、Fe3+イオンの還元剤との接触効率向上によるFe2+イオンへの還元効率向上の点でさらに好ましい。 When returning the sludge, it can be added to the reaction tank 10 as it is. However, as shown in FIG. 5, a sludge retention tank 20 is provided, and after adding a chemical to be added to the reaction tank 10, the reaction tank 10 is added. You may return and add to raw water. That is, in such a form, hydrogen peroxide, a decomposition catalyst, and activated carbon may be added to raw water. This brings about a desirable effect of further improving the decomposition rate. Further, as shown in FIG. 6, the sludge is dissolved in acid or alkali as much as possible and then returned to the reaction tank 10, or a reducing agent is added to reduce Fe 3+ ions to Fe 2+ ions as much as possible. Returning to 10 also has a desirable effect of further improving the decomposition rate. In the case of adding the reducing agent, the addition to the state obtained by dissolving sludge by acid or alkaline, more preferably in view of reduction efficiency of the Fe 2+ ions by contact efficiency of the reducing agent of Fe 3+ ions.

本実施形態では発生する汚泥を循環させるので、反応系に鉄塩及び活性炭以外の汚泥が流入することは好ましくない。したがって、反応槽10の前段に凝集処理設備、膜処理設備、加圧浮上設備などの固形分(SS)除去手段を設けることが好ましい。図7に反応槽10の前段に凝集処理装置として凝集処理用凝集槽22と凝集処理用沈殿槽24とを設置した水処理装置の一例の概略を示す。図7における水処理装置7において、凝集処理用凝集槽22の出口は凝集処理用沈殿槽24の入口に、凝集処理用沈殿槽24の出口は反応槽10の入口に配管等により接続されている。原水に凝集処理用凝集槽22及び凝集処理用沈殿槽24において凝集処理等が施された(固形分除去工程)後、反応槽10において分解処理が行われる。特に前段が凝集処理の場合、本実施形態により発生した廃汚泥を凝集処理に再利用することで、廃汚泥中の活性炭による有機物の除去、フロックの沈降性改善などに有効である。   In this embodiment, since the generated sludge is circulated, it is not preferable that sludge other than iron salt and activated carbon flows into the reaction system. Therefore, it is preferable to provide solid content (SS) removing means such as an agglomeration treatment facility, a membrane treatment facility, and a pressurized flotation facility in the previous stage of the reaction vessel 10. FIG. 7 shows an outline of an example of a water treatment apparatus in which a flocculation tank 22 for flocculation treatment and a precipitation tank 24 for flocculation treatment are installed as an agglomeration apparatus in the previous stage of the reaction tank 10. In the water treatment device 7 in FIG. 7, the outlet of the aggregation tank 22 for aggregation treatment is connected to the inlet of the precipitation tank 24 for aggregation treatment, and the outlet of the aggregation tank 24 for aggregation treatment is connected to the inlet of the reaction tank 10 by piping or the like. . After the raw water is subjected to agglomeration treatment or the like in the agglomeration treatment coagulation tank 22 and the coagulation treatment precipitation tank 24 (solid content removal step), the decomposition treatment is performed in the reaction vessel 10. In particular, when the first stage is agglomeration treatment, the waste sludge generated according to the present embodiment is reused for the agglomeration treatment, which is effective for removal of organic substances by activated carbon in the waste sludge and improvement of floc sedimentation.

系外へ引き抜かれる汚泥量は、反応系内の汚泥量を一定量に維持するために、前述した反応槽10へのFe2+添加量、活性炭添加量及び流入原水のSS量で決定され、それらの合計量と等しい量が引き抜かれる。引き抜かれた汚泥は、例えば図7に示すようにフェントン反応の前段に凝集処理装置を設置している場合、その凝集処理用凝集槽22に返送すると、凝集処理のCOD低減及び凝集性向上の効果をもたらすので好ましい。 The amount of sludge withdrawn out of the system is determined by the amount of Fe 2+ added to the reaction tank 10 described above, the amount of activated carbon added, and the amount of SS of inflow raw water in order to maintain a constant amount of sludge in the reaction system. An amount equal to the total amount of is extracted. For example, when the agglomeration treatment apparatus is installed in the previous stage of the Fenton reaction as shown in FIG. Is preferable.

また、図8に示すように汚泥濃縮槽26を設け、汚泥濃縮槽26から反応槽10へ汚泥を返送してもよい。これにより、返送汚泥の濃度を高くして、返送流量を減らすことができるという効果をもたらすので好ましい。   Further, as shown in FIG. 8, a sludge concentration tank 26 may be provided, and the sludge may be returned from the sludge concentration tank 26 to the reaction tank 10. Thereby, since the density | concentration of return sludge is made high and the effect that the return flow volume can be reduced is brought, it is preferable.

本実施形態に係る水処理方法を適用することにより、通常の活性炭を添加しないフェントン反応で発生する汚泥よりも発生汚泥を低減させ、且つ汚泥循環における閉塞、分解率の低下をほとんど伴わずに原水中の有機物を分解することができる。   By applying the water treatment method according to the present embodiment, the generated sludge is reduced as compared with the sludge generated by the Fenton reaction without adding normal activated carbon, and the raw material is almost free from clogging and lowering of the decomposition rate in the sludge circulation. It can decompose organic matter in water.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
汚泥の引き抜きを行わなくては分解率が大きく低下すること、返送汚泥/Fe2+(重量比)を上昇させるとCOD分解が促進することを確認するために、以下の実験を行った。
Example 1
The following experiment was conducted to confirm that the decomposition rate would be greatly reduced without sludge extraction and that COD decomposition would be accelerated if the return sludge / Fe 2+ (weight ratio) was increased.

図1と同様の装置を作製し、活性炭によってほとんど吸着除去されない物質であるDMSOをCOD=40mg/Lとなるように純水に溶解させた模擬排水を対象として、原水流量1L/minで、反応槽での返送汚泥流量を考慮しない滞留時間を1hrとし、反応槽のpHを硫酸によりpH=2.5に設定して、H=250mg/L、FeCl・4HO及び木質系粉末活性炭、返送汚泥を表1に記載の量で添加した。残留過酸化水素を亜硫酸水素ナトリウムで除去した後、水酸化ナトリウム(NaOH)でpH=6.5〜8に中和し、沈殿槽で汚泥を沈降分離した。暫く系内の汚泥を引き抜かずに循環運転して、所定の返送汚泥/Fe2+(重量比)になったことを確認した後、添加している活性炭及びFeCl・4HO由来の発生汚泥量を引き抜きながら、反応槽へ汚泥を返送して運転したときの、沈殿槽上澄みのCOD濃度を、JIS−K0102(1998)−17「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」に従い測定してCOD分解率を求めた。本実験において、沈殿槽の濃縮汚泥濃度は17000mg/Lであった。処理開始から24hr後と300hr後での、各条件の時のCOD分解率を表1に示す。 A device similar to that shown in FIG. 1 was prepared, and the reaction was conducted at a raw water flow rate of 1 L / min for simulated waste water in which DMSO, which is a substance hardly absorbed and removed by activated carbon, was dissolved in pure water so that COD = 40 mg / L. The residence time without considering the return sludge flow rate in the tank is set to 1 hr, the pH of the reaction tank is set to pH = 2.5 with sulfuric acid, H 2 O 2 = 250 mg / L, FeCl 2 .4H 2 O, and wood system Powdered activated carbon and return sludge were added in the amounts shown in Table 1. Residual hydrogen peroxide was removed with sodium bisulfite, then neutralized with sodium hydroxide (NaOH) to pH = 6.5-8, and sludge was settled and separated in a settling tank. Circulating operation without extracting the sludge in the system for a while and confirming that it has become the specified return sludge / Fe 2+ (weight ratio), then the activated carbon added and the generated sludge derived from FeCl 2 · 4H 2 O The COD concentration in the supernatant of the sedimentation tank when the sludge was returned to the reaction tank and operated while extracting the amount was measured according to JIS-K0102 (1998) -17 “Oxygen consumption by potassium permanganate at 100 ° C. (COD Mn ) The COD decomposition rate was determined according to the measurement. In this experiment, the concentration sludge concentration in the settling tank was 17000 mg / L. Table 1 shows the COD decomposition rates under the respective conditions 24 hours and 300 hours after the start of the treatment.

(比較例1)
比較例1においては、実施例1のような汚泥の引き抜き及びFeCl・4HOと活性炭の添加を行わなかった。Fe3+に対して活性炭が1.4倍(重量比)の組成の汚泥を、沈殿槽における濃縮汚泥濃度が17000mg/Lで、中和槽の汚泥濃度が5000mg/Lで一定となる量で予め添加し、汚泥濃度が安定していることを確認してから24hr後と300hr後のCOD分解率を測定した。
(Comparative Example 1)
In Comparative Example 1, sludge extraction as in Example 1 and addition of FeCl 2 .4H 2 O and activated carbon were not performed. The sludge having a composition of activated carbon 1.4 times (weight ratio) with respect to Fe 3+ is preliminarily fixed in an amount such that the concentrated sludge concentration in the settling tank is 17000 mg / L and the sludge concentration in the neutralization tank is 5000 mg / L. After adding and confirming that the sludge concentration was stable, the COD decomposition rate after 24 hours and after 300 hours was measured.

(比較例2)
比較例2においては、返送汚泥/Fe2+(重量比)=18.4とした以外は実施例1と同様にしてCOD分解率を求めた。
(Comparative Example 2)
In Comparative Example 2, the COD decomposition rate was determined in the same manner as in Example 1 except that the return sludge / Fe 2+ (weight ratio) = 18.4.

(比較例3)
比較例3においては、返送汚泥/Fe2+(重量比)=7.1とした以外は実施例1と同様にしてCOD分解率を求めた。
(Comparative Example 3)
In Comparative Example 3, the COD decomposition rate was determined in the same manner as in Example 1 except that the return sludge / Fe 2+ (weight ratio) = 7.1.

表1の比較例1の結果より、汚泥を引き抜かずに汚泥を循環利用し続けると、初期は全ての返送汚泥の分解活性が高いために良好な処理水質が得られているが、時間の経過と共にその分解活性が低下していき、COD分解率が大きく低下していることが分かる。また、比較例2と実施例1との比較より、返送汚泥/Fe2+(重量比)を大きくすることで、COD分解率が向上することが分かる。さらに、比較例2及び3と実施例1とを比較することにより、反応槽中の活性炭量/H(重量比)が1.3〜2.6の範囲(添加過酸化水素に対して反応槽中の活性炭量が130〜260重量%の範囲)ではCOD分解率が低下しており、その値を7.2とすることでCOD分解率が向上していることがわかる。 From the results of Comparative Example 1 in Table 1, when the sludge is circulated and reused without extracting the sludge, good treatment water quality is obtained in the initial stage due to the high decomposition activity of all the returned sludge. In addition, it can be seen that the decomposition activity is decreasing and the COD decomposition rate is greatly decreased. Moreover, it turns out that a COD decomposition rate improves by enlarging return sludge / Fe <2+ > (weight ratio) from the comparison with the comparative example 2 and Example 1. FIG. Further, by comparing Comparative Examples 2 and 3 with Example 1, the amount of activated carbon in the reaction tank / H 2 O 2 (weight ratio) was in the range of 1.3 to 2.6 (relative to the added hydrogen peroxide). Thus, it can be seen that the COD decomposition rate is reduced when the amount of activated carbon in the reaction tank is in the range of 130 to 260% by weight, and the COD decomposition rate is improved by setting the value to 7.2.

Figure 0005215578
Figure 0005215578

(実施例2)
実施例2では、添加する鉄塩及び活性炭の最適添加割合を検討した。活性炭の添加による反応促進効果は、主にFe3+の触媒活性を上昇させるものなので、最適添加割合を検討するにあたっては、Fe3+イオンを使用した。
(Example 2)
In Example 2, the optimum addition ratio of iron salt and activated carbon to be added was examined. Reaction acceleration effect by addition of activated carbon, mainly because something that increases the catalytic activity of Fe 3+, is In considering the optimum addition ratio, using Fe 3+ ions.

500mLビーカーに、発生する汚泥量が5000mg/Lとなるように、木質系粉末活性炭及び触媒としてFeClを添加した。両者の割合をFe3+原子としての重量:活性炭重量=1:0.001〜26の範囲で設定し、DMSOを500mg/Lとなるように添加し、硫酸でpH=2.5に調整して、過酸化水素を250mg/L添加して1hr反応させた。その後NaOHによりpH=7として、残留過酸化水素を重亜硫酸水素ナトリウムで除去し、高分子凝集剤としてアニオン系ポリマーOA−23(オルガノ社製)を用いて、フロックを形成させ、静置後その上澄みのDMSO濃度を分析した。活性炭/Fe3+(重量比)とDMSO除去率(%)の関係を図9に示す。 Wood-based powdered activated carbon and FeCl 3 as a catalyst were added to a 500 mL beaker so that the amount of generated sludge was 5000 mg / L. The ratio of both is set in the range of Fe 3+ atom weight: activated carbon weight = 1: 0.001-26, DMSO is added to 500 mg / L, and the pH is adjusted to 2.5 with sulfuric acid. Then, 250 mg / L of hydrogen peroxide was added to react for 1 hr. Thereafter, the pH is set to 7 with NaOH, the residual hydrogen peroxide is removed with sodium bisulfite, and an anionic polymer OA-23 (manufactured by Organo) is used as a polymer flocculant to form a floc. The DMSO concentration of the supernatant was analyzed. FIG. 9 shows the relationship between activated carbon / Fe 3+ (weight ratio) and DMSO removal rate (%).

図9より、活性炭/Fe3+(重量比)=0.001〜26の範囲では、活性炭の割合が多くなるほど除去率が上昇することがわかる。また、その上昇率は活性炭/Fe3+(重量比)=1付近までにおいて急激に上昇し、活性炭/Fe3+(重量比)=5付近である程度安定することがわかる。 From FIG. 9, it can be seen that in the range of activated carbon / Fe 3+ (weight ratio) = 0.001 to 26, the removal rate increases as the proportion of activated carbon increases. Further, it can be seen that the rate of increase rapidly increases up to near activated carbon / Fe 3+ (weight ratio) = 1 and stabilizes to some extent near activated carbon / Fe 3+ (weight ratio) = 5.

(実施例3)
Fe2+/COD(化学当量比)の値は、小さければ処理における汚泥発生量が少ない反面、CODの除去率が低くなる傾向にある。逆に大きくなればCODの除去率が上昇する一方で、処理における発生汚泥が多くなる。COD除去率の低下に対しては汚泥を返送することで補える。そこで、一定の反応時間における、Fe2+/COD(化学当量比)の各値における返送汚泥/Fe2+とCOD除去率の関係に着目し、Fe2+/CODの各値における、COD除去率80%以上となる返送汚泥/Fe2+の範囲を検討するために、以下の実験を行った。
(Example 3)
If the value of Fe 2+ / COD (chemical equivalent ratio) is small, the amount of sludge generated in the treatment is small, but the COD removal rate tends to be low. On the other hand, if it increases, the COD removal rate increases, while the generated sludge increases in the treatment. The reduction in COD removal rate can be compensated by returning sludge. Therefore, paying attention to the relationship between the return sludge / Fe 2+ and the COD removal rate at each value of Fe 2+ / COD (chemical equivalent ratio) at a fixed reaction time, the COD removal rate at each value of Fe 2+ / COD is 80%. In order to examine the range of the return sludge / Fe 2+ as described above, the following experiment was performed.

図1と同様の装置を作製し、活性炭によってほとんど吸着除去されない物質であるDMSOをCOD=40mg/Lとなるように純水に溶解させた模擬排水を対象として、原水流量1L/minで、反応槽での返送汚泥流量を考慮しない滞留時間を1hrとし、反応槽のpHを硫酸によりpH=2.5に設定して、Hを過酸化水素/COD(化学当量比)=3、FeCl・4HOをFe2+/COD(化学当量比)=n=0.07,0.1,0.15,0.25、木質系粉末活性炭を活性炭/Fe2+(重量比)=5となるように添加した。中和槽での発生汚泥が15000mg/Lを超えないように35〜40%の範囲内で原水流量に対する返送汚泥流量比を変化させて、各n値の時に返送汚泥/Fe2+(重量比)を所定の値に設定した。その後、残留過酸化水素を亜硫酸水素ナトリウムで除去した後、水酸化ナトリウムで中和し、沈殿槽で汚泥を沈降分離した。本実験において、沈殿槽の濃縮汚泥濃度は27000mg/Lであった。実験の開始時間としては、暫く系内の汚泥を引き抜かずに循環運転して、所定の返送汚泥/Fe2+の比になったことを確認した時とした。添加している活性炭及びFeCl・4HO由来の発生汚泥量を引き抜きながら、反応槽へ汚泥を返送して連続運転したときの沈殿槽上澄みのCOD濃度をJIS−K0102(1998)−17に従い測定して、濃度が安定した時の測定値からCOD分解率を求めた。結果を図10に示す。 A device similar to that shown in FIG. 1 was prepared, and the reaction was conducted at a raw water flow rate of 1 L / min for simulated waste water in which DMSO, which is a substance hardly absorbed and removed by activated carbon, was dissolved in pure water so that COD = 40 mg / L. The residence time not considering the return sludge flow rate in the tank is 1 hr, the pH of the reaction tank is set to pH = 2.5 with sulfuric acid, and H 2 O 2 is hydrogen peroxide / COD (chemical equivalent ratio) = 3, FeCl 2 .4H 2 O is Fe 2+ / COD (chemical equivalent ratio) = n = 0.07,0.1,0.15,0.25, and the wood-based powdered activated carbon is activated carbon / Fe 2+ (weight ratio) = 5. It added so that it might become. By changing the return sludge flow rate ratio to the raw water flow rate within the range of 35-40% so that the generated sludge in the neutralization tank does not exceed 15000 mg / L, the return sludge / Fe 2+ (weight ratio) at each n value Was set to a predetermined value. Thereafter, residual hydrogen peroxide was removed with sodium bisulfite, neutralized with sodium hydroxide, and sludge was settled and separated in a settling tank. In this experiment, the concentration sludge concentration in the settling tank was 27000 mg / L. The start time of the experiment was when it was confirmed that a predetermined ratio of returned sludge / Fe 2+ was obtained by circulating the sludge in the system for a while without extracting it. The COD concentration in the supernatant of the sedimentation tank when the activated carbon and the generated sludge derived from FeCl 2 · 4H 2 O are extracted while returning the sludge to the reaction tank and operating continuously is in accordance with JIS-K0102 (1998) -17. The COD decomposition rate was determined from the measured value when the concentration was stabilized. The results are shown in FIG.

図10より、反応槽の滞留時間1hr以上において、n=0.1より下では、返送汚泥/Fe2+を増加させてもCOD分解率が80%以上に達しないことがわかる。n=0.1〜0.15では、返送汚泥/Fe2+が600〜1000の間で80%以上のCOD分解率が得られることがわかる。また、n=0.15〜0.25では、返送汚泥/Fe2+が200〜1000の間で80%以上のCOD分解率が得られることがわかる。さらに、n=0.25以上では、返送汚泥/Fe2+が50〜1000で80%以上のCOD分解率が得られることがわかる。 FIG. 10 shows that the COD decomposition rate does not reach 80% or more even if the return sludge / Fe 2+ is increased when the residence time in the reaction tank is 1 hr or more and below n = 0.1. It can be seen that when n = 0.1 to 0.15, a COD decomposition rate of 80% or more is obtained when the returned sludge / Fe 2+ is 600 to 1000. In addition, when n = 0.15 to 0.25, it can be seen that a COD decomposition rate of 80% or more is obtained when the returned sludge / Fe 2+ is between 200 and 1000. Furthermore, when n = 0.25 or more, it is understood that a COD decomposition rate of 80% or more can be obtained when the returned sludge / Fe 2+ is 50 to 1000.

なお、n=0.3を超える場合については、以下の理由で好ましくない。本実験において、H=250mg/L、FeCl・4HO=500mg/Lの通常の活性炭を添加しないフェントン反応を行うと、COD除去率は85%であった。このとき発生する汚泥量を計算すると、理論的に269mg/Lである。本実施例の活性炭を添加するフェントン反応では、n=0.3とすると、H=250mg/L、FeCl・4HO=148mg/L、活性炭=210mg/Lとなり、理論的に発生する汚泥は290mg/Lと計算される。したがって、n=0.3以上では、COD分解率80%以上とするときに発生する汚泥量が、活性炭を添加しないフェントン反応よりも多くなってしまうため、好ましくない。活性炭/Fe2+(重量比)=5の場合の各n値における従来の活性炭を添加しないフェントン反応に対する汚泥削減率を表2及び図11に示す。 Note that the case where n exceeds 0.3 is not preferable for the following reason. In this experiment, the COD removal rate was 85% when the Fenton reaction was performed without adding normal activated carbon with H 2 O 2 = 250 mg / L and FeCl 2 · 4H 2 O = 500 mg / L. When the amount of sludge generated at this time is calculated, it is theoretically 269 mg / L. In the Fenton reaction in which activated carbon is added in this example, assuming n = 0.3, H 2 O 2 = 250 mg / L, FeCl 2 .4H 2 O = 148 mg / L, activated carbon = 210 mg / L, and theoretically The generated sludge is calculated as 290 mg / L. Therefore, n = 0.3 or more is not preferable because the amount of sludge generated when the COD decomposition rate is 80% or more is larger than the Fenton reaction without adding activated carbon. Table 2 and FIG. 11 show sludge reduction rates for the Fenton reaction in which activated carbon / Fe 2+ (weight ratio) = 5 and each conventional n value is not added.

Figure 0005215578
Figure 0005215578

(実施例4)
実施例3の実験において、Fe2+/COD=n=0.05,0.07における反応槽での返送汚泥流量を考慮しない滞留時間を1hrから2hrに増加させたときの、返送汚泥/Fe2+(重量比)=1300と一定にした場合のCOD除去率の関係について検討した。滞留時間以外の条件は、実施例3と同様である。図12に反応槽の滞留時間(hr)とCOD分解率(%)の関係を示すように、反応槽での滞留時間を1hrから2hrへ増加させることでn=0.05,0.07においてもCOD分解率を80%以上とすることができることは明らかである。これより、滞留時間を上昇させれば、COD除去率が上昇することがわかる。また、図10において滞留時間1hrにおけるn=0.07でのCOD除去率が70%以上である場合、図12より滞留時間2hrに設定すればCOD除去率は80%以上に維持できることは明らかであるので、滞留時間2hr以上においては、n=0.07〜0.1の時、返送汚泥/Fe2+(重量比)=800〜1300に設定することで、COD分解率80%以上が得られることが分かる。また、n=0.05〜0.07においては、返送汚泥/Fe2+(重量比)=1300に設定することで、滞留時間2hr以上においてCOD分解率80%以上が得られることが分かる。
Example 4
In the experiment of Example 3, the return sludge / Fe 2+ when the residence time without considering the return sludge flow rate in the reaction tank at Fe 2+ /COD=n=0.05, 0.07 was increased from 1 hr to 2 hr. The relationship of the COD removal rate when the (weight ratio) = 1300 was constant was examined. Conditions other than the residence time are the same as in Example 3. FIG. 12 shows the relationship between the residence time (hr) of the reaction tank and the COD decomposition rate (%). By increasing the residence time in the reaction tank from 1 hr to 2 hr, n = 0.05, 0.07. It is clear that the COD decomposition rate can be 80% or more. From this, it can be seen that the COD removal rate increases if the residence time is increased. Further, in FIG. 10, when the COD removal rate at n = 0.07 at the residence time 1 hr is 70% or more, it is clear from FIG. 12 that the COD removal rate can be maintained at 80% or more by setting the residence time 2 hr. Therefore, when the residence time is 2 hours or more, when n = 0.07 to 0.1, by setting the return sludge / Fe 2+ (weight ratio) = 800 to 1300, a COD decomposition rate of 80% or more can be obtained. I understand that. Moreover, in n = 0.05-0.07, it turns out that a COD decomposition rate of 80% or more is obtained in residence time 2hr or more by setting to return sludge / Fe2 + (weight ratio) = 1300.

以上の結果より、図13にCOD分解率80%となるn値と返送汚泥/Fe2+の関係を示す。有機物含有排水に少なくとも第一鉄塩を含む分解触媒、活性炭及び過酸化水素を添加して有機物を分解し、第一鉄イオン(Fe2+)から生成された第二鉄イオン(Fe3+)と活性炭を含む混合物を固液分離し、分離した汚泥を分解工程に返送する水処理方法において、図13の太線の範囲内、すなわち、返送汚泥/Fe2+(重量比)=50〜1300の範囲内で処理することにより、従来の活性炭を添加しないフェントン反応で発生する汚泥よりも発生汚泥を低減させ、効果的にCODを除去できることがわかる。 From the above results, FIG. 13 shows the relationship between the n value at which the COD decomposition rate is 80% and the returned sludge / Fe 2+ . Decomposition catalyst containing at least ferrous salt, activated carbon and hydrogen peroxide are added to organic matter-containing wastewater to decompose organic matter, and ferric ions (Fe 3+ ) and activated carbon generated from ferrous ions (Fe 2+ ) In the water treatment method of separating the mixture containing the solid and liquid and returning the separated sludge to the decomposition step, within the range of the thick line in FIG. 13, that is, within the range of the returned sludge / Fe 2+ (weight ratio) = 50 to 1300 It can be seen that by the treatment, the generated sludge can be reduced more effectively than the sludge generated by the Fenton reaction without adding conventional activated carbon, and COD can be effectively removed.

本発明の実施形態に係る水処理装置の一例を示す概略図である。It is the schematic which shows an example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略図である。It is the schematic which shows the other example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施例2における、活性炭/Fe3+(重量比)[−]とDMSO除去率[%]の関係を示す図である。It is a figure which shows the relationship between activated carbon / Fe3 + (weight ratio) [-] and DMSO removal rate [%] in Example 2 of this invention. 本発明の実施例3における、反応槽の滞留時間1hrでのFe2+/CODの各値(n)における返送汚泥/Fe2+[−]とCOD除去率[%]の関係を示す図である。In Example 3 of this invention, it is a figure which shows the relationship between return sludge / Fe2 + [-] and COD removal rate [%] in each value (n) of Fe2 + / COD in the residence time of 1 hr of the reaction vessel. 活性炭/Fe2+(重量比)=5の場合の各n値における従来の活性炭を添加しないフェントン反応に対する汚泥削減率を示す図である。It is a figure which shows the sludge reduction rate with respect to the Fenton reaction which does not add the conventional activated carbon in each n value in the case of activated carbon / Fe < 2+ > (weight ratio) = 5. 本発明の実施例4における、反応槽の滞留時間[hr]とCOD分解率[%]の関係を示す図である。It is a figure which shows the relationship between the residence time [hr] of a reaction tank, and COD decomposition rate [%] in Example 4 of this invention. COD分解率80%となるn値と返送汚泥/Fe2+の関係を示す図である。It is a figure which shows the relationship between n value used as COD decomposition rate 80%, and returned sludge / Fe2 + .

符号の説明Explanation of symbols

1,2,3,4,5,6,7,8 水処理装置、10,10a,10b,10c 反応槽、12 中和槽、14 還元槽、16 凝集槽、18 沈殿槽、20 汚泥滞留槽、22 凝集処理用凝集槽、24 凝集処理用沈殿槽、26 汚泥濃縮槽。   1, 2, 3, 4, 5, 6, 7, 8 Water treatment device 10, 10a, 10b, 10c Reaction tank, 12 Neutralization tank, 14 Reduction tank, 16 Coagulation tank, 18 Precipitation tank, 20 Sludge retention tank , 22 flocculation tank for flocculation treatment, 24 sedimentation tank for flocculation treatment, 26 sludge concentration tank.

Claims (4)

有機物を含有する原水の処理を行う水処理方法であって、
前記原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加し、前記有機物を分解する分解工程と、
前記分解した反応液中の第二鉄イオンと活性炭とを含む混合物を固液分離する固液分離工程と、
前記固液分離した汚泥の少なくとも一部を前記分解工程に返送する返送工程と、
を含み、
前記分解工程において、添加する第一鉄塩の第一鉄イオンに対して重量比で1〜20倍となるように前記活性炭を添加し、かつ、
前記返送工程において、前記原水のCOD濃度に対する前記第一鉄塩の添加量の化学当量比nと、前記第一鉄塩の添加量に対する前記返送汚泥の重量比(返送汚泥/Fe2+)とが、次の関係を満たすように前記汚泥を返送することを特徴とする水処理方法。
nが0.05〜0.07のとき (返送汚泥/Fe2+)が1300
nが0.07〜0.1のとき (返送汚泥/Fe2+)が800〜1300
nが0.1〜0.15のとき (返送汚泥/Fe2+)が600〜1000
nが0.15〜0.25のとき (返送汚泥/Fe2+)が200〜1000
A water treatment method for treating raw water containing organic matter,
A decomposition step of decomposing the organic matter by adding hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt, and activated carbon to the raw water;
A solid-liquid separation step for solid-liquid separation of a mixture containing ferric ions and activated carbon in the decomposed reaction solution;
A return step of returning at least a portion of the solid-liquid separated sludge to the decomposition step;
Including
In the decomposition step, the activated carbon is added so that the weight ratio is 1 to 20 times the ferrous ion of the ferrous salt to be added, and
In the returning step, a chemical equivalent ratio n of the addition amount of the ferrous salt to the COD concentration of the raw water and a weight ratio of the returning sludge to the addition amount of the ferrous salt (return sludge / Fe 2+ ) The water treatment method is characterized by returning the sludge so as to satisfy the following relationship.
When n is 0.05 to 0.07, (returned sludge / Fe 2+ ) is 1300
When n is 0.07 to 0.1 (returned sludge / Fe 2+ ) is 800 to 1300
When n is 0.1 to 0.15 (Returned sludge / Fe 2+ ) is 600 to 1000
When n is 0.15 to 0.25 (Returned sludge / Fe 2+ ) is 200 to 1000
有機物を含有する原水の処理を行う水処理方法であって、A water treatment method for treating raw water containing organic matter,
前記原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加し、前記有機物を分解する分解工程と、  A decomposition step of decomposing the organic matter by adding hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt, and activated carbon to the raw water;
前記分解した反応液中の第二鉄イオンと活性炭とを含む混合物を固液分離する固液分離工程と、  A solid-liquid separation step for solid-liquid separation of a mixture containing ferric ions and activated carbon in the decomposed reaction solution;
前記固液分離した汚泥の少なくとも一部を前記分解工程に返送する返送工程と、  A return step of returning at least a portion of the solid-liquid separated sludge to the decomposition step;
を含み、  Including
前記分解工程において、添加する第一鉄塩の第一鉄イオンに対して重量比で1〜20倍となるように前記活性炭を添加し、かつ、前記原水のCODに対して化学当量比で0.8〜3倍となるように前記過酸化水素を添加し、  In the decomposition step, the activated carbon is added so that the weight ratio is 1 to 20 times with respect to the ferrous ion of the ferrous salt to be added, and the chemical equivalent ratio with respect to the COD of the raw water is 0. Add the hydrogen peroxide to 8 to 3 times,
前記返送工程において、前記原水のCOD濃度に対する前記第一鉄塩の添加量の化学当量比nと、前記第一鉄塩の添加量に対する前記返送汚泥の重量比(返送汚泥/Fe  In the returning step, the chemical equivalent ratio n of the addition amount of the ferrous salt to the COD concentration of the raw water and the weight ratio of the returning sludge to the addition amount of the ferrous salt (returning sludge / Fe 2+2+ )とが、次の関係を満たすように前記汚泥を返送することを特徴とする水処理方法。) And returning the sludge so as to satisfy the following relationship.
滞留時間2時間以上、nが0.05〜0.07のとき (返送汚泥/Fe  When the residence time is 2 hours or more and n is 0.05 to 0.07 (returned sludge / Fe 2+2+ )が1300) Is 1300
滞留時間1時間以上、nが0.07〜0.1のとき (返送汚泥/Fe  When the residence time is 1 hour or more and n is 0.07 to 0.1 (returned sludge / Fe 2+2+ )が800〜1300) Is 800-1300
nが0.1〜0.15のとき (返送汚泥/Fe  When n is 0.1 to 0.15 (Returned sludge / Fe 2+2+ )が600〜1000) 600-1000
nが0.15〜0.25のとき (返送汚泥/Fe  When n is 0.15 to 0.25 (Returned sludge / Fe 2+2+ )が200〜1000) Is 200-1000
有機物を含有する原水の処理を行う水処理装置であって、
前記原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加することにより前記有機物を分解するための反応槽と、
前記分解した反応液中の第二鉄イオンと活性炭とを含む混合物を固液分離する固液分離手段と、
前記固液分離した汚泥の少なくとも一部を前記反応槽に返送する返送手段と、
を有し、
前記添加する活性炭の量は、前記第一鉄塩の第一鉄イオンに対して重量比で1〜20倍であり、前記返送する汚泥の量は、前記原水のCOD濃度に対する前記第一鉄塩の添加量の化学当量比nと、前記第一鉄塩の添加量に対する前記返送汚泥の重量比(返送汚泥/Fe2+)とが、次の関係を満たす範囲であることを特徴とする水処理装置。
nが0.05〜0.07のとき (返送汚泥/Fe2+)が1300
nが0.07〜0.1のとき (返送汚泥/Fe2+)が800〜1300
nが0.1〜0.15のとき (返送汚泥/Fe2+)が600〜1000
nが0.15〜0.25のとき (返送汚泥/Fe2+)が200〜1000
A water treatment apparatus for treating raw water containing organic matter,
A reaction tank for decomposing the organic matter by adding hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt to the raw water, and activated carbon;
Solid-liquid separation means for solid-liquid separation of a mixture containing ferric ions and activated carbon in the decomposed reaction solution;
A return means for returning at least part of the solid-liquid separated sludge to the reaction vessel;
Have
The amount of the activated carbon to be added is 1 to 20 times by weight with respect to the ferrous ion of the ferrous salt, and the amount of sludge to be returned is the ferrous salt with respect to the COD concentration of the raw water. The water treatment is characterized in that the chemical equivalent ratio n of the added amount and the weight ratio of the returned sludge to the added amount of the ferrous salt (returned sludge / Fe 2+ ) are in a range satisfying the following relationship: apparatus.
When n is 0.05 to 0.07, (returned sludge / Fe 2+ ) is 1300
When n is 0.07 to 0.1 (returned sludge / Fe 2+ ) is 800 to 1300
When n is 0.1 to 0.15 (Returned sludge / Fe 2+ ) is 600 to 1000
When n is 0.15 to 0.25 (Returned sludge / Fe 2+ ) is 200 to 1000
有機物を含有する原水の処理を行う水処理装置であって、A water treatment apparatus for treating raw water containing organic matter,
前記原水に過酸化水素、少なくとも第一鉄塩を含む分解触媒、及び活性炭を添加することにより前記有機物を分解するための反応槽と、  A reaction tank for decomposing the organic matter by adding hydrogen peroxide, a decomposition catalyst containing at least a ferrous salt to the raw water, and activated carbon;
前記分解した反応液中の第二鉄イオンと活性炭とを含む混合物を固液分離する固液分離手段と、  Solid-liquid separation means for solid-liquid separation of a mixture containing ferric ions and activated carbon in the decomposed reaction solution;
前記固液分離した汚泥の少なくとも一部を前記反応槽に返送する返送手段と、  A return means for returning at least part of the solid-liquid separated sludge to the reaction vessel;
を有し、  Have
前記添加する活性炭の量は、前記第一鉄塩の第一鉄イオンに対して重量比で1〜20倍であり、かつ、前記添加する過酸化水素の量は、前記原水のCODに対して化学当量比で0.8〜3倍であり、  The amount of the activated carbon to be added is 1 to 20 times by weight with respect to the ferrous ion of the ferrous salt, and the amount of hydrogen peroxide to be added is relative to the COD of the raw water. The chemical equivalent ratio is 0.8 to 3 times,
前記返送する汚泥の量は、前記原水のCOD濃度に対する前記第一鉄塩の添加量の化学当量比nと、前記第一鉄塩の添加量に対する前記返送汚泥の重量比(返送汚泥/Fe  The amount of the sludge to be returned is the chemical equivalent ratio n of the ferrous salt added to the COD concentration of the raw water and the weight ratio of the returned sludge to the added ferrous salt (returned sludge / Fe 2+2+ )とが、次の関係を満たす範囲であることを特徴とする水処理装置。Is a range satisfying the following relationship:
滞留時間2時間以上、nが0.05〜0.07のとき (返送汚泥/Fe  When the residence time is 2 hours or more and n is 0.05 to 0.07 (returned sludge / Fe 2+2+ )が1300) Is 1300
滞留時間1時間以上、nが0.07〜0.1のとき (返送汚泥/Fe  When the residence time is 1 hour or more and n is 0.07 to 0.1 (returned sludge / Fe 2+2+ )が800〜1300) Is 800-1300
nが0.1〜0.15のとき (返送汚泥/Fe  When n is 0.1 to 0.15 (Returned sludge / Fe 2+2+ )が600〜1000) 600-1000
nが0.15〜0.25のとき (返送汚泥/Fe  When n is 0.15 to 0.25 (Returned sludge / Fe 2+2+ )が200〜1000) Is 200-1000
JP2007068663A 2007-03-16 2007-03-16 Water treatment method and water treatment apparatus Active JP5215578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068663A JP5215578B2 (en) 2007-03-16 2007-03-16 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068663A JP5215578B2 (en) 2007-03-16 2007-03-16 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2008229415A JP2008229415A (en) 2008-10-02
JP5215578B2 true JP5215578B2 (en) 2013-06-19

Family

ID=39902851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068663A Active JP5215578B2 (en) 2007-03-16 2007-03-16 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5215578B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108373194A (en) * 2017-01-31 2018-08-07 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
CN108529735A (en) * 2017-03-03 2018-09-14 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
CN110357295A (en) * 2018-03-26 2019-10-22 三菱化学水解决方案株式会社 Processing method and water treatment facilities containing acid flocculate waste liquid

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863586B (en) * 2010-05-28 2012-09-26 中山大学 Membrane bioreactor for denitrification and waste water denitrification method
JP5659746B2 (en) * 2010-12-03 2015-01-28 富士ゼロックス株式会社 Water treatment apparatus and water treatment method
CN102765800A (en) * 2012-08-13 2012-11-07 常州大学 Treatment method of organic wastewater through synthesis-free heterogeneous Fenton treatment
JP5720722B2 (en) * 2013-06-04 2015-05-20 栗田工業株式会社 Method and apparatus for treating water containing hardly biodegradable organic matter
JP6830801B2 (en) * 2016-11-28 2021-02-17 三菱瓦斯化学株式会社 Treatment method of wastewater containing oxidizable substances
JP7082871B2 (en) * 2017-01-16 2022-06-09 三菱ケミカルアクア・ソリューションズ株式会社 Iron reduction catalyst and water treatment equipment, and water treatment method
JP2018158331A (en) * 2017-03-03 2018-10-11 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment method and water treatment equipment
CN109422384A (en) * 2017-08-28 2019-03-05 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
JP2019214004A (en) * 2018-06-11 2019-12-19 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment method, and water treatment device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547198A (en) * 1978-09-29 1980-04-03 Kankyo Eng Kk High grade treatment of organic waste water
JPS5648290A (en) * 1979-09-28 1981-05-01 Taki Chem Co Ltd Treatment of waste water containing organic substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108373194A (en) * 2017-01-31 2018-08-07 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
CN108529735A (en) * 2017-03-03 2018-09-14 三菱化学水解决方案株式会社 Method for treating water and water treatment facilities
CN108529735B (en) * 2017-03-03 2021-07-23 三菱化学水解决方案株式会社 Water treatment method and water treatment apparatus
CN110357295A (en) * 2018-03-26 2019-10-22 三菱化学水解决方案株式会社 Processing method and water treatment facilities containing acid flocculate waste liquid

Also Published As

Publication number Publication date
JP2008229415A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5215578B2 (en) Water treatment method and water treatment apparatus
US11377374B2 (en) System and process for treating water
WO2011118808A1 (en) Treatment method of wastewater containing persistent substances
JP2009101262A (en) Method and apparatus for water treatment
CN114409054B (en) Water treatment method for removing organic pollutants by activating persulfate and cooperatively controlling halogenated byproducts
CN110642418A (en) Method for treating high organic wastewater generated in PCB production by Fenton process
JP2006239507A (en) Organic arsenic compound-containing water treatment method and apparatus
JPH04349997A (en) Treatment of organic waste water
FI97289B (en) Process for the extraction of at least one metal from acid-treated wastewater sludge
KR20060091084A (en) Treatment method for livestock waste water including highly concentrated organic materials
CN103964634B (en) The process for treating industrial waste water of high nitrite, high-carbon hydrochlorate and high COD concentration
JP5526640B2 (en) Method and apparatus for treating water containing biologically indegradable organic matter
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
KR100368951B1 (en) Method of Treating Highly Concentrated Organic Waste Water using Recycled Steeler&#39;s Dust as Catalysts
JPH11156375A (en) Method for treating water containing organic substance
JPS62241596A (en) Treatment of waste water containing organic matter
CN114105277B (en) Method for removing organic pollutants in water by catalyzing hydrogen peroxide
KR102624580B1 (en) Fenton oxidation method via over-injection of hydrogen peroxide
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus
JP3961246B2 (en) Method and apparatus for treating organic wastewater
JP4854706B2 (en) Organic wastewater treatment method and treatment apparatus
KR100225693B1 (en) Nonbiodegradable organic material treatment process
KR20130116244A (en) Method and device for anaerobically treating wastewater containing terephthalic acid
JP2003062583A (en) Treating method for sewage containing decomposition resistant organic material and bromine, and equipment therefor
JP2005246347A (en) Method and apparatus for treating sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130301

R150 Certificate of patent or registration of utility model

Ref document number: 5215578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250