JP2004351375A - High-speed floatation separation method of waste water and apparatus therefor - Google Patents

High-speed floatation separation method of waste water and apparatus therefor Download PDF

Info

Publication number
JP2004351375A
JP2004351375A JP2003154757A JP2003154757A JP2004351375A JP 2004351375 A JP2004351375 A JP 2004351375A JP 2003154757 A JP2003154757 A JP 2003154757A JP 2003154757 A JP2003154757 A JP 2003154757A JP 2004351375 A JP2004351375 A JP 2004351375A
Authority
JP
Japan
Prior art keywords
organic
bubbles
added
wastewater
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003154757A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Yutaka Yoneyama
豊 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003154757A priority Critical patent/JP2004351375A/en
Publication of JP2004351375A publication Critical patent/JP2004351375A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new flotation separation method and a device capable of solid/liquid separating suspended particles which are flocculation removal object substances in waste water such as diluted suspended water at high speed. <P>SOLUTION: In a high-speed floatation separation method of drainage and an apparatus therefor, a surfactant having at least a cation group or a polymer flocculant is added to the waste water under the coexistence of organic SS, bubbles are generated, and the suspended particles in the waste water and the organic SS are adhered to the interface of the bubbles to be floated and separated. In the high-speed floatation separation method of waste water and the apparatus therefor, at least an inorganic flocculant is added to the waste water under the coexistence of the organic SS, bubbles are generated, then the surfactant having the cation group or the polymer flocculant is added thereto, and the suspended particles in the waste water and the organic SS are adhered to the interface of the bubbles to be floated and separated. It is preferable that the organic SS is activated sludge. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、下水、工場排水などの、懸濁粒子を比較的少量含有する希薄懸濁水のような排水の高速浮上分離方法及び装置に関し、従来の加圧溶解空気による浮上分離法(「DAF」と略称される)の5倍以上の高速度で、浮上分離できる水処理技術に関する技術であり、汚泥の脱水などの前で行われる汚泥の浮上濃縮技術とは異なる技術である。
【0002】
本発明の除去対象物質は、SS、コロイド粒子などの懸濁成分、及びフミン酸、フルボ酸、リン酸イオン、フッ素イオン、COD成分などの溶解成分である。これらの溶解物質は、無機凝集剤を添加してフロック化し、懸濁粒子に転換することで除去できる。
また、キレート剤、アルカリ又は硫化物を添加して金属キレート不溶化物、金属水酸化物、金属硫化物などとして不溶化することにより金属イオンを除去する際にも、当然本発明を適用して、不溶化により生じた懸濁粒子を除去することができる。更に、被処理水に粉末活性炭などの粉末吸着剤を添加し、被吸着物質を吸着したのち、水中の粉末吸着剤を本発明によって高速に浮上分離することもできる。
【0003】
本発明は、特に有機性の懸濁粒子を含有する合流式下水道の雨天時越流水(CSOと略称される)又は下水処理施設に流入する下水(特に雨天時下水)の高速固液分離技術として、極めて好適な新技術である。
【0004】
【従来の技術】
最近、合流式下水道における雨天時越流水(CSO)の、公共用水域への汚濁負荷が大きな問題になっている。合流式下水道の雨天時越流水(CSO)は、短時間に膨大な水量が発生するので、高速度で固液分離して、SSが除去された処理水を公共用水域に放流する必要があるが、従来高速度で固液分離する技術としては、砂を添加して沈降性が大きいフロックを形成させる技術が公知である。しかし、砂を回収して再利用する工程でサイクロン、管路などの磨耗が激しく、砂をフロックに付着させる工程に、5〜10分と言うかなりの時間が必要であると言う欠点があった。
【0005】
また、下水処理施設に流入する下水は、最初沈殿池で沈殿分離されたのち、活性汚泥処理されるが、最初沈殿池のSSの除去率が悪いため、凝集剤を添加して凝集沈殿処理する例が北欧で普及している。しかし、凝集沈殿速度が小さく、大きな沈殿池を必要とする欠点がある。そのため、CSO及び下水を高速度で固液分離できる新技術が待望されている。
【0006】
また、従来より、懸濁粒子を含有する、いわゆる懸濁水のような排水(以下「原水」ともいう)に加圧溶解空気含有水を吹き込んで、生成する粒径数10μmの微細気泡に懸濁粒子を付着させて浮上分離する方法が、(特許文献1)などに広く知られている。
しかし、従来の方法では、浮上分離速度がせいぜい200mm/min程度と小さく、また空気圧縮機、空気溶解設備などの付帯設備が必要という欠点がある。
【0007】
また汚泥の濃縮技術の分野において、常圧浮上濃縮法が公知である。この技術は、文献(たとえば、(非特許文献1)参照)に記載されているように、水に起泡助剤(たとえばアニオン界面活性剤)を添加して空気を吹き込み、タービン翼で撹拌することによって微細気泡を生成させ、この微細気泡と余剰活性汚泥などの下水汚泥を混合し、さらに高分子凝集剤を添加して汚泥と気泡を付着させ、気泡の浮力によって汚泥粒子を浮上分離して汚泥を濃縮する技術である。図3に汚泥の常圧浮上濃縮法のフローシートを示す。
【0008】
このように、常圧浮上濃縮法は、汚泥の濃縮技術であり、下水のCSOのような希薄懸濁水の固液分離技術には適用できず、その適用例はすべて汚泥濃縮に限られている。また、その実施には、起泡助剤、気泡用水、高分子凝集剤が不可欠である。
【0009】
【特許文献1】
特開2002−113471号公報
【非特許文献1】
環境技術誌、2002年第31巻第2号pp135〜
【0010】
【発明が解決しょうとする課題】
本発明は、汚泥の濃縮のような高濃度のSSを含んだ汚泥スラリの濃縮ではなく、排水、例えば懸濁水中の凝集除去対象物質を起泡助剤、起泡用水を使用することなく、極めて高速度で固液分離できる新規な浮上分離方法及び装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意研究を行い、次の新知見を得た。すなわち、懸濁粒子を含有する原水に、加圧浮上分離法のような気泡径が数10μmの微細気泡でなく、径が数100μmの気泡を分散させた状態で、カチオン基を持つ界面活性剤(又はカチオン基を有する高分子凝集剤)を添加しても、原水中の微細懸濁粒子は、径が数100μmと大きい気泡にほとんど付着しないが、これに対し、原水に活性汚泥(有機性排水を生物処理するのに利用される微生物群)、又は最初沈殿池汚泥(初沈汚泥)などの有機性汚泥を少量添加して同様な操作を行うと、驚くべきことに有機性汚泥が原水中の微細な懸濁粒子の、径が大きい気泡への付着の媒介剤として作用し、原水中の微細な懸濁粒子が活性汚泥とともに気泡界面に強く付着し、高速度で浮上し(浮上速度は気泡径の2乗に比例して大きくなる)、清澄な処理水を分離出来るという重要な現象を発見した。
本発明者らは、この知見に基づいて本発明を完成するに至った。
【0012】
すなわち、本発明は、下記の手段によって上記の課題を解決した。
(1)排水に、有機性SSの存在下で、少なくともカチオン基を持つ界面活性剤又は高分子凝集剤を添加し、気泡を生じさせて、気泡界面に排水中の懸濁粒子と有機性SSを付着させ、浮上分離することを特徴とする排水の高速浮上分離方法。
(2)排水に、有機性SSの存在下で、少なくとも無機凝集剤を添加し、気泡を生じさせたのち、カチオン基を持つ界面活性剤もしくは高分子凝集剤を添加して、気泡界面に排水の凝集粒子及び有機性SSを付着させ、浮上分離することを特徴とする排水の高速浮上分離方法。
(3)前記気泡の平均気泡径が600〜1000μmであることを特徴とする前記(1)又は(2)記載の高速浮上分離方法。
(4)前記有機性SSが活性汚泥であることを特徴とする、前記(1)又は(2)記載の高速浮上分離方法。
【0013】
(5)無機凝集剤を添加した又は添加しない懸濁粒子を含む排水に、空気を導入して気泡を発生させる気泡分散手段と、有機性SSが共存し、前記気泡が分散された排水にカチオン基を持つ界面活性剤又は高分子凝集剤を添加する凝集撹拌槽と、気泡界面に原水中の懸濁粒子と有機性汚泥が付着された気泡が分散された排水を固液分離する浮上分離槽とを有することを特徴とする排水の高速浮上分離装置。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の高速浮上分離技術の一実施態様を示す系統図である。
原水1に、たとえばエジェクタ3を介して空気4などの水に溶解しにくいガスを吸引して、粒径数100μmの気泡を原水1に分散させる。次に気泡を分散させた原水1に活性汚泥などの有機性汚泥5を少量(100〜300mg/リットル程度)添加し、カチオン基を持つ界面活性剤又は高分子凝集剤7を添加して、凝集撹拌槽6で0.5分程度撹拌すると、添加汚泥5にカチオン基を持つ界面活性剤又は高分子凝集剤7が吸着する。有機性SSとしては、活性汚泥、初沈汚泥などの有機性排水の処理施設に存在する有機性汚泥が好適である。なお、原水中にもともと有機性汚泥由来のSSが含まれている場合は、外部から有機性SSを添加する必要はない。
【0015】
カチオン基吸着汚泥8はカチオン基吸着によって界面が疎水化しているため、気液界面が疎水性である気泡群に効果的に付着し、カチオン基吸着汚泥8に原水1中の懸濁粒子(原水に無機凝集剤を添加する場合は「凝集粒子」となっている)及び気泡が付着・一体化する。これを浮上分離槽9に導入する。
【0016】
浮上分離槽9の浮上分離部では、「気泡径が大きい気泡と添加した汚泥5と原水1中の懸濁粒子」が一体化したものが、浮上速度1m/min以上で高速浮上分離され、槽下部に極めて清澄な処理水が分離されてくるので、槽下部から極めて清澄な処理水10が流出する。浮上分離物(浮上物、フロス)11は適宜フロス貯槽12に引き抜く。なお、図1中、2は無機凝集剤であり、原水1中の懸濁粒子の一次凝集性を高める作用を有する。
原水1に添加する有機性汚泥5の量は、汚泥5添加後の原水1のSSが、汚泥5添加前の原水1のSSの2〜5倍程度に増加するように、汚泥5の添加量を設定すればよい。
【0017】
なお、原水1に気泡を分散させるのに、エジェクタ3を例示したが、もちろんエジェクタ3以外に任意の気泡分散手段(たとえば、スタチックミキサーによる気泡分散、微細気泡散気管からの散気、タービン翼などによる気泡微細化など)を適用してよい。当然、気泡を分散させる場合に、気泡が安定する(壊れにくい)ように界面活性剤などの起泡剤を添加しても構わない。
【0018】
本発明の最重要ポイントは、CSOのような希薄懸濁水に、「加圧浮上法よりも気泡径が大きい気泡」および「活性汚泥、初沈汚泥などの有機性SS」を共存した状態で、カチオン基を持つ界面活性剤又は高分子凝集剤を添加するという技術思想である。
【0019】
カチオン基を持つ高分子凝集剤とは、カチオンポリマ及び両性ポリマ(アニオン基とカチオン基の両者を有するポリマ)を意味する。カチオン基を持つ界面活性剤とは、カチオン界面活性剤、及びカチオン基とアニオン基の両方をもつ両性界面活性剤を意味する。
【0020】
本発明に好適なカチオンポリマの種類としては、たとえばポリジメチルジアリルアンモニウムクロライド、ポリエチレンイミン、縮合ポリアミン、ジメチルアミノエステルメタクリレートメチルクロライド4級塩、ポリアミジンなどの汚泥脱水助剤に使われている公知のもので良い。
また両性ポリマとしては、ポリアクリル酸エステル、アクリルアミドアクリル酸エステル共重合体などが好適である。
【0021】
更に本発明に好適なカチオン界面活性剤としては、第4級アンモニウム塩が挙げられ、たとえばモノアルキルアンモニウムクロライド、ジアルキルアンモニウムクロライドが代表例である。
両性界面活性剤としてはベタイン型、グリシン型など公知の両性界面活性剤を利用すればよい。
【0022】
有機性SSが共存する原水にカチオン基を有するポリマを添加する場合は、添加した汚泥が凝集することが明確に観察できるが、カチオン基を持つ界面活性剤を添加する場合は、外観上特に凝集しているようには見えない。しかし、カチオン界面活性剤が汚泥と気泡界面に吸着し、原水中の微細SSと添加汚泥と気泡の3者が一体化した状態が形成されるのが確認できる。
【0023】
図2は、本発明の他の好適実施例である。図2では、気泡を浮上分離部に直接供給する点が図1と異なる。なお、図1で示したものと同一機能を有するものは、同一符号を用いて示す。
【0024】
すなわち、原水1に有機性汚泥5及びカチオン基を有する界面活性剤又は高分子凝集剤7を添加し、撹拌槽6で撹拌すると、添加汚泥5にカチオン基が吸着し、カチオン基吸着汚泥8に原水1中の懸濁粒子(原水1に無機凝集剤2を添加する場合は凝集粒子)が付着し一体化する。次に、撹拌槽6の流出液を、下部に散気部材である散気管14が設置された浮上分離槽9に導入する。散気管14からは粒径数100μmの気泡が吐出される。カチオン基吸着汚泥8は、カチオン基吸着によって界面が疎水化しているため、気液界面が疎水性である気泡群に効果的に付着し、浮上分離される。浮上物(フロス)11は槽9の上部に形成され、清澄な処理水10が槽9の下部から流出する。
【0025】
【実施例】
以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら制限されるものでない。
【0026】
(実施例1) 合流式下水道の雨天時越流水(CSO)の処理試験
雨天時下水越流水:CSO(SS:230mg/リットル)に塩化第2鉄を40mg/リットル添加し、20秒間急速撹拌を行った後、活性汚泥を有機性SSとして500mg/リットル添加し、撹拌槽下部の微細気泡散気管から平均径600μmの気泡を、気泡量として0.1kg・air/kg・SS供給しつつ、カチオン系高分子凝集剤(エバグロースC104G:エバラ製作所製品)を0.5%対SS添加して、1分間撹拌した。
この結果、「気泡、汚泥、原水の懸濁粒子の凝集粒子が一体化したもの」が形成された。
【0027】
これを浮上分離槽に供給したところ、浮上分離速度(浮上分離部の原水下降流速)と処理水SSの関係は、第1表に示すようであった。浮上分離速度1.2m/minという高速分離条件でも、処理水SSは充分低濃度であった。浮上分離速度の限界値は1.8m/minであった。
【0028】
【表1】

Figure 2004351375
【0029】
(比較例1)
実施例1において活性汚泥を添加しなかったこと以外は、すべて同一条件で試験した。この結果、第1表に示すように、浮上分離速度0.2m/minにおいても原水SSはほとんど除去できなかった。この原因は、気泡粒径が大きいため、カチオンポリマを添加しても、原水の懸濁粒子が気泡界面に付着しないためであった。
【0030】
(実施例2) 合流式下水道の雨天時越流水(CSO)の処理試験(その2)
雨天時下水越流水:CSO(SS:230mg/リットル)に、活性汚泥をSSとして700mg/リットル添加し、撹拌槽下部の微細散気管から平均径600μmの気泡を、気泡量として0.1kg・air/kg・SS供給しつつ、カチオン系界面活性剤(アーマックT50:ライオン(株)製品)を0.2%対SS添加して、1分撹拌した。この結果、気泡に汚泥と原水懸濁粒子の凝集粒子が付着し一体化した。
これを浮上分離速度1.5m/minで浮上分離槽に供給した結果、効果的に浮上分離され、SS:18mg/リットルの処理水が得られた。
【0031】
(比較例2)
比較のために、有機性SSとして活性汚泥を添加しなかったこと以外は、実施例2と同一条件で試験したところ、気泡界面に原水中の懸濁粒子が付着しないため、浮上分離速度0.2m/minの条件でも全く浮上分離できず、処理水SSは810mg/リットルとなり、処理不能であった。
【0032】
【発明の効果】
本発明によれば、以下の優れた効果が得られた。
(1)従来の排水の浮上分離技術では不可能であった高速度で、排水中の凝集除去対象物質を浮上分離できる。
(2)したがって、たとえば合流式下水道の雨天時越流水(CSO)などのように、短時間に膨大な水量が発生する原水の高速固液分離に極めて好適であり、非常にコンパクトな装置でCSOの懸濁粒子を除去できる。
(3)汚泥の常圧浮上濃縮法で必要な起泡助剤を使用しないので、処理水の発泡トラブルが起きない。
(4)汚泥の常圧浮上濃縮法で必要な起泡用水を使用しないので、用水必要量が少なくてすむ。
【図面の簡単な説明】
【図1】本発明の高速浮上分離技術の一実施態様を示す系統図である。
【図2】本発明の別の好適な実施態様を示す系統図である。
【図3】従来技術の汚泥の常圧浮上濃縮法のフローシートである。
【符号の説明】
1 原水
2 無機凝集剤
3 エジェクタ
4 空気
5 有機性汚泥
6 凝集撹拌槽
7 カチオン系高分子凝集剤
8 カチオン基吸着汚泥
9 浮上分離槽
10 処理水
11 浮上物
12 フロス貯槽
13 攪拌槽
14 散気管
21 汚泥
22 気泡用水
23 気泡助剤
24 空気
25 起泡用攪拌装置
26 混合装置
27 高分子凝集剤
28 浮上分離装置
29 分離水
30 濃縮汚泥[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for high-speed flotation and separation of wastewater such as dilute suspension water containing relatively small amounts of suspended particles, such as sewage and industrial wastewater, using a conventional flotation method using pressurized dissolved air ("DAF"). This is a technology related to a water treatment technology that can float and separate at a speed 5 times or more higher than that of the sludge, and is a technology different from the floating and concentration technology of sludge performed before sludge dehydration or the like.
[0002]
The substances to be removed in the present invention are suspended components such as SS and colloid particles, and dissolved components such as humic acid, fulvic acid, phosphate ions, fluorine ions, and COD components. These dissolved substances can be removed by adding an inorganic flocculant to floc and converting them into suspended particles.
In addition, when the metal ion is removed by adding a chelating agent, an alkali or a sulfide and insolubilizing the metal chelate as a metal chelate, a metal hydroxide, a metal sulfide, etc., the present invention is naturally applied, The suspended particles generated by the above can be removed. Furthermore, after a powder adsorbent such as powdered activated carbon is added to the water to be treated and the substance to be adsorbed is adsorbed, the powder adsorbent in the water can be floated and separated at high speed by the present invention.
[0003]
The present invention is a high-speed solid-liquid separation technique for rainwater overflow (abbreviated as CSO) of a combined sewer system containing organic suspended particles or sewage flowing to a sewage treatment facility (especially rainwater sewage). This is a very suitable new technology.
[0004]
[Prior art]
Recently, the pollution load of public water bodies due to rainfall overflow (CSO) in combined sewers has become a major problem. Since the stormwater overflow (CSO) of the combined sewer system generates an enormous amount of water in a short time, it is necessary to separate solid-liquid at a high speed and discharge the treated water from which SS has been removed to a public water area. However, conventionally, as a technique for performing solid-liquid separation at a high speed, a technique is known in which sand is added to form flocs having large sedimentation properties. However, in the process of collecting and reusing sand, cyclones, pipes and the like are severely worn, and there is a disadvantage that a considerable time of 5 to 10 minutes is required in the process of attaching sand to flocs. .
[0005]
In addition, the sewage flowing into the sewage treatment facility is first subjected to sedimentation and separation in the sedimentation basin and then subjected to activated sludge treatment. Examples are widespread in Northern Europe. However, there is a disadvantage that the coagulation sedimentation rate is low and a large sedimentation tank is required. Therefore, a new technology capable of separating CSO and sewage at a high speed at a high speed is desired.
[0006]
Conventionally, water containing pressurized dissolved air is blown into wastewater (hereinafter, also referred to as “raw water”) containing suspended particles, such as so-called suspended water, and suspended in fine bubbles having a particle size of several 10 μm. A method of causing particles to adhere and float and separate is widely known in, for example, (Patent Document 1).
However, the conventional method has drawbacks in that the flotation separation speed is as small as 200 mm / min at most, and additional facilities such as an air compressor and an air melting facility are required.
[0007]
In the field of sludge concentration technology, a normal pressure flotation concentration method is known. In this technique, as described in a literature (for example, see Non-Patent Document 1), a foaming aid (for example, an anionic surfactant) is added to water, air is blown into the water, and the water is stirred by a turbine blade. By generating fine bubbles by mixing the fine bubbles with excess sewage sludge such as activated sludge, adding a polymer flocculant to attach the sludge and the bubbles, float and separate the sludge particles by the buoyancy of the bubbles This is a technology to concentrate sludge. FIG. 3 shows a flow sheet of the sludge normal pressure flotation enrichment method.
[0008]
As described above, the normal pressure flotation enrichment method is a technology for enriching sludge, and cannot be applied to the solid-liquid separation technology of dilute suspension water such as sewage CSO. . In addition, a foaming aid, water for foaming, and a polymer flocculant are indispensable for the implementation.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-113471 [Non-Patent Document 1]
Environmental Technology Magazine, Vol. 31, No. 2, 2002, pp 135-
[0010]
[Problems to be solved by the invention]
The present invention is not concentrated sludge slurry containing a high concentration of SS such as concentrated sludge, wastewater, for example, the coagulation removal target substance in the suspension water without using a foaming aid, using foaming water, An object of the present invention is to provide a novel flotation separation method and apparatus capable of solid-liquid separation at an extremely high speed.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive research to solve the above-mentioned problems, and have obtained the following new findings. That is, a surfactant having a cationic group in a state where bubbles having a diameter of several 100 μm are dispersed in raw water containing suspended particles, instead of fine bubbles having a diameter of several tens of μm as in the pressure flotation method. (Or a polymer flocculant having a cationic group), the fine suspended particles in the raw water hardly adhere to large bubbles having a diameter of several hundred μm, whereas the activated sludge (organic Surprisingly, when a small amount of organic sludge such as microorganisms used for biological treatment of wastewater or primary sedimentation basin sludge (primary sediment sludge) is added and the same operation is performed, organic sludge is reduced. Acts as a mediator of the adhesion of fine suspended particles in water to large air bubbles, and the fine suspended particles in raw water strongly adhere to the bubble interface together with activated sludge and float at a high speed (floating speed Increases in proportion to the square of the bubble diameter), I discovered an important phenomenon that Kiyoshi process water can be separated.
The present inventors have completed the present invention based on this finding.
[0012]
That is, the present invention has solved the above-mentioned problems by the following means.
(1) In the presence of organic SS, a surfactant or polymer flocculant having at least a cationic group is added to waste water to generate air bubbles, and suspended particles in the waste water and organic SS are generated at the air bubble interface. A high-speed flotation separation method for wastewater, comprising adhering water and flotation separation.
(2) At least an inorganic flocculant is added to the wastewater in the presence of the organic SS to generate bubbles, and then a surfactant or a polymer flocculant having a cationic group is added, and the wastewater is discharged to the bubble interface. A high-speed flotation separation method for wastewater, comprising adhering the flocculated particles and an organic SS and separating them by flotation.
(3) The high-speed flotation separation method according to (1) or (2), wherein the average bubble diameter of the bubbles is 600 to 1000 μm.
(4) The high-speed flotation method according to (1) or (2), wherein the organic SS is activated sludge.
[0013]
(5) Bubble dispersing means for introducing air into the wastewater containing suspended particles with or without the addition of an inorganic flocculant, and an organic SS coexisting, and cationic water is added to the wastewater in which the bubbles are dispersed. A flocculation stirrer tank for adding a surfactant or polymer flocculant having a base, and a flotation tank for solid-liquid separation of wastewater in which bubbles suspended in raw water and organic sludge are attached to the bubble interface. And a high-speed flotation / separation device for wastewater.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing one embodiment of the high-speed flotation separation technology of the present invention.
A gas that is hardly soluble in water, such as air 4, is sucked into the raw water 1 through the ejector 3, for example, and bubbles having a particle size of several hundred μm are dispersed in the raw water 1. Next, a small amount (about 100 to 300 mg / liter) of organic sludge 5 such as activated sludge is added to the raw water 1 in which bubbles are dispersed, and a surfactant having a cationic group or a polymer flocculant 7 is added to form a flocculant. When the mixture is stirred in the stirring tank 6 for about 0.5 minutes, the surfactant having a cationic group or the polymer flocculant 7 is adsorbed on the added sludge 5. As the organic SS, organic sludge existing in a treatment facility for organic wastewater such as activated sludge and primary sludge is suitable. When raw water originally contains SS derived from organic sludge, it is not necessary to add organic SS externally.
[0015]
Since the interface of the cationic group-adsorbed sludge 8 is hydrophobicized by the adsorption of the cationic group, the gas-liquid interface effectively adheres to the bubbles having hydrophobicity, and the suspended particles (raw water) in the raw water 1 are applied to the cationic group-adsorbed sludge 8. When an inorganic coagulant is added to the mixture, it becomes "agglomerated particles") and air bubbles adhere and integrate. This is introduced into the flotation tank 9.
[0016]
In the flotation section of the flotation tank 9, the one in which “bubbles having a large bubble diameter, added sludge 5 and suspended particles in the raw water 1” are integrated at a high flotation speed of 1 m / min or more is separated by high-speed flotation. Since extremely clear treated water is separated at the lower part, extremely clear treated water 10 flows out from the lower part of the tank. The floating separation material (floating material, floss) 11 is appropriately pulled out to a floss storage tank 12. In FIG. 1, reference numeral 2 denotes an inorganic coagulant, which has an effect of increasing the primary cohesion of the suspended particles in the raw water 1.
The amount of the organic sludge 5 to be added to the raw water 1 is determined so that the SS of the raw water 1 after the addition of the sludge 5 increases to about 2 to 5 times the SS of the raw water 1 before the addition of the sludge 5. Should be set.
[0017]
In addition, the ejector 3 is exemplified to disperse the bubbles in the raw water 1. Of course, other than the ejector 3, any bubble dispersing means (for example, bubble dispersion by a static mixer, air diffusion from a fine bubble diffuser, turbine blade Etc.). Of course, when the bubbles are dispersed, a foaming agent such as a surfactant may be added so that the bubbles are stabilized (hard to break).
[0018]
The most important point of the present invention is that, in a dilute suspension water such as CSO, "bubbles having a larger bubble diameter than the pressure flotation method" and "organic SS such as activated sludge and primary sludge" coexist. The technical idea is to add a surfactant having a cationic group or a polymer flocculant.
[0019]
The polymer flocculant having a cationic group means a cationic polymer and an amphoteric polymer (a polymer having both an anionic group and a cationic group). The surfactant having a cationic group means a cationic surfactant and an amphoteric surfactant having both a cationic group and an anionic group.
[0020]
Examples of the kind of the cationic polymer suitable for the present invention include, for example, those known as sludge dewatering aids such as polydimethyldiallylammonium chloride, polyethyleneimine, condensed polyamine, dimethylaminoester methacrylate methyl chloride quaternary salt, and polyamidine. Is good.
As the amphoteric polymer, a polyacrylate, an acrylamide acrylate copolymer, or the like is preferable.
[0021]
Further, the cationic surfactants suitable for the present invention include quaternary ammonium salts, for example, monoalkylammonium chloride and dialkylammonium chloride are typical examples.
As the amphoteric surfactant, a known amphoteric surfactant such as a betaine type or a glycine type may be used.
[0022]
When a polymer having a cationic group is added to raw water in which an organic SS coexists, it is clearly observed that the added sludge aggregates, but when a surfactant having a cationic group is added, the appearance of the sludge is particularly agglomerated. I don't seem to be doing it. However, it can be confirmed that the cationic surfactant is adsorbed on the sludge / bubble interface, and a state where the fine SS in the raw water, the added sludge and the bubbles are integrated is formed.
[0023]
FIG. 2 shows another preferred embodiment of the present invention. FIG. 2 differs from FIG. 1 in that bubbles are directly supplied to the floating separation unit. Components having the same functions as those shown in FIG. 1 are denoted by the same reference numerals.
[0024]
That is, when an organic sludge 5 and a surfactant having a cationic group or a polymer flocculant 7 are added to the raw water 1 and stirred in the stirring tank 6, the cationic group is adsorbed on the added sludge 5 and the cationic group-adsorbed sludge 8 is added to the sludge 8. Suspended particles in the raw water 1 (aggregated particles when the inorganic coagulant 2 is added to the raw water 1) adhere and integrate. Next, the effluent of the stirring tank 6 is introduced into the flotation tank 9 in which a diffuser 14 serving as a diffuser member is provided below. Air bubbles having a particle size of several hundred μm are discharged from the air diffuser 14. Since the interface of the cationic group-adsorbed sludge 8 is hydrophobicized by the adsorption of the cationic group, the sludge 8 effectively adheres to bubbles having a gas-liquid interface that is hydrophobic and floats and separates. The floating material (floss) 11 is formed at the upper part of the tank 9, and the clear treated water 10 flows out from the lower part of the tank 9.
[0025]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0026]
(Example 1) Treatment test of combined sewer sewer overflow (CSO) Rain sewer overflow: CSO (SS: 230 mg / l), ferric chloride (40 mg / l) was added, and rapid stirring was performed for 20 seconds. After that, 500 mg / L of activated sludge was added as organic SS, and cations were supplied while supplying bubbles having an average diameter of 600 μm as bubbles in an amount of 0.1 kg · air / kg · SS from the fine bubble diffuser at the bottom of the stirring tank. A system polymer flocculant (Ebagrose C104G: product of Ebara Seisakusho) was added to 0.5% of SS and stirred for 1 minute.
As a result, "the one in which the aggregated particles of the bubbles, the sludge, and the suspended particles of the raw water were integrated" was formed.
[0027]
When this was supplied to the flotation tank, the relationship between the flotation speed (raw water descending flow rate of the flotation section) and the treated water SS was as shown in Table 1. The treated water SS had a sufficiently low concentration even under a high-speed separation condition of a floating separation speed of 1.2 m / min. The limit value of the flotation speed was 1.8 m / min.
[0028]
[Table 1]
Figure 2004351375
[0029]
(Comparative Example 1)
All tests were carried out under the same conditions except that no activated sludge was added in Example 1. As a result, as shown in Table 1, the raw water SS could hardly be removed even at the flotation separation speed of 0.2 m / min. This was because the suspended particles of the raw water did not adhere to the bubble interface even when the cationic polymer was added due to the large bubble particle size.
[0030]
(Example 2) Treatment test for combined overflow sewerage (CSO) in rainy weather (Part 2)
Sewage overflow in rainy weather: Activated sludge was added to CSO (SS: 230 mg / L) at 700 mg / L as SS, and air bubbles having an average diameter of 600 μm were obtained from the fine aeration tube at the lower part of the stirring tank as air bubbles of 0.1 kg · air. While supplying / kg · SS, a cationic surfactant (Armac T50: product of Lion Corporation) was added at 0.2% to SS, and the mixture was stirred for 1 minute. As a result, agglomerated particles of the sludge and the raw water suspended particles adhered to the bubbles and integrated.
This was supplied to a flotation tank at a flotation separation speed of 1.5 m / min. As a result, flotation was effectively performed, and treated water of SS: 18 mg / l was obtained.
[0031]
(Comparative Example 2)
For comparison, a test was conducted under the same conditions as in Example 2 except that activated sludge was not added as the organic SS. Since the suspended particles in the raw water did not adhere to the bubble interface, the flotation speed was 0.1%. Even under the condition of 2 m / min, no flotation could be performed, and the treated water SS was 810 mg / L, and could not be treated.
[0032]
【The invention's effect】
According to the present invention, the following excellent effects have been obtained.
(1) The substance to be subjected to coagulation removal in the wastewater can be floated and separated at a high speed, which is impossible with the conventional wastewater flotation separation technology.
(2) Therefore, it is very suitable for high-speed solid-liquid separation of raw water in which an enormous amount of water is generated in a short time, for example, in the case of combined sewerage overflowing rainy water (CSO). Suspended particles can be removed.
(3) Since no foaming aid necessary for the normal pressure flotation and concentration method of sludge is used, no foaming trouble occurs in the treated water.
(4) Since the foaming water required for the normal pressure flotation and concentration of sludge is not used, the required amount of water is small.
[Brief description of the drawings]
FIG. 1 is a system diagram showing one embodiment of the high-speed flotation separation technology of the present invention.
FIG. 2 is a system diagram showing another preferred embodiment of the present invention.
FIG. 3 is a flow sheet of a conventional sludge flotation and concentration method under normal pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Inorganic coagulant 3 Ejector 4 Air 5 Organic sludge 6 Coagulation stirring tank 7 Cationic polymer coagulant 8 Cationic group adsorption sludge 9 Floating separation tank 10 Treated water 11 Floating material 12 Floss storage tank 13 Stirring tank 14 Aeration tube 21 Sludge 22 Bubble water 23 Bubble aid 24 Air 25 Bubbling stirrer 26 Mixing device 27 Polymer flocculant 28 Flotation device 29 Separation water 30 Concentrated sludge

Claims (5)

排水に、有機性SSの存在下で、少なくともカチオン基を持つ界面活性剤又は高分子凝集剤を添加し、気泡を生じさせて、気泡界面に排水中の懸濁粒子と有機性SSを付着させ、浮上分離することを特徴とする排水の高速浮上分離方法。In the wastewater, in the presence of the organic SS, a surfactant or a polymer flocculant having at least a cationic group is added to generate air bubbles, and the suspended particles and the organic SS in the wastewater adhere to the air bubble interface. A high-speed flotation separation method for wastewater, comprising flotation separation. 排水に、有機性SSの存在下で、少なくとも無機凝集剤を添加し、気泡を生じさせたのち、カチオン基を持つ界面活性剤もしくは高分子凝集剤を添加して、気泡界面に排水の凝集粒子及び有機性SSを付着させ、浮上分離することを特徴とする排水の高速浮上分離方法。At least an inorganic flocculant is added to the wastewater in the presence of the organic SS to generate bubbles, and then a surfactant or a polymer flocculant having a cationic group is added, and the flocculent particles of the wastewater are added to the bubble interface. And flotation separation of the wastewater by adhering organic SS and floatation separation. 前記気泡の平均気泡径が600〜1000μmであることを特徴とする請求項1又は請求項2記載の高速浮上分離方法。3. The high-speed flotation separation method according to claim 1, wherein the average bubble diameter of the bubbles is from 600 to 1000 [mu] m. 前記有機性SSが活性汚泥であることを特徴とする、請求項1又は請求項2記載の高速浮上分離方法。The high-speed flotation method according to claim 1 or 2, wherein the organic SS is activated sludge. 無機凝集剤を添加した又は添加しない懸濁粒子を含む排水に、空気を導入して気泡を発生させる気泡分散手段と、有機性SSが共存した前記気泡が分散された排水にカチオン基を持つ界面活性剤又は高分子凝集剤を添加する凝集撹拌槽と、気泡界面に原水中の懸濁粒子と有機性汚泥が付着された気泡が分散された排水を固液分離する浮上分離槽とを有することを特徴とする排水の高速浮上分離装置。A bubble dispersing means for introducing air into the waste water containing suspended particles with or without the addition of an inorganic flocculant to generate air bubbles, and an interface having a cationic group in the waste water in which the air bubbles are dispersed in which organic SS coexists. It has a flocculation and stirring tank for adding an activator or a polymer flocculant, and a flotation tank for solid-liquid separation of wastewater in which bubbles suspended in raw water and organic sludge attached to the bubble interface are dispersed. A high-speed flotation / separation device for wastewater.
JP2003154757A 2003-05-30 2003-05-30 High-speed floatation separation method of waste water and apparatus therefor Pending JP2004351375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154757A JP2004351375A (en) 2003-05-30 2003-05-30 High-speed floatation separation method of waste water and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154757A JP2004351375A (en) 2003-05-30 2003-05-30 High-speed floatation separation method of waste water and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2004351375A true JP2004351375A (en) 2004-12-16

Family

ID=34049330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154757A Pending JP2004351375A (en) 2003-05-30 2003-05-30 High-speed floatation separation method of waste water and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2004351375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209890A (en) * 2006-02-09 2007-08-23 Kurita Water Ind Ltd Treatment method and apparatus for organic wastewater
JP2010162481A (en) * 2009-01-16 2010-07-29 Hymo Corp Humin removing agent and method for removing humin contained in water
JP2011011125A (en) * 2009-06-30 2011-01-20 Hymo Corp Water treatment method
JP2017176999A (en) * 2016-03-30 2017-10-05 住友重機械エンバイロメント株式会社 Wastewater treatment system
JPWO2018030109A1 (en) * 2016-08-08 2019-01-10 オルガノ株式会社 Membrane filtration method and membrane filtration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209890A (en) * 2006-02-09 2007-08-23 Kurita Water Ind Ltd Treatment method and apparatus for organic wastewater
JP2010162481A (en) * 2009-01-16 2010-07-29 Hymo Corp Humin removing agent and method for removing humin contained in water
JP2011011125A (en) * 2009-06-30 2011-01-20 Hymo Corp Water treatment method
JP2017176999A (en) * 2016-03-30 2017-10-05 住友重機械エンバイロメント株式会社 Wastewater treatment system
JPWO2018030109A1 (en) * 2016-08-08 2019-01-10 オルガノ株式会社 Membrane filtration method and membrane filtration system

Similar Documents

Publication Publication Date Title
EP1330414B1 (en) Method for treatment of water and wastewater
JP2000218280A (en) Method and device for treating waste water
JP4323531B2 (en) Coagulated pressure floating separation water treatment method and water treatment apparatus
JP2009248006A (en) Adsorption-coagulation type wastewater treatment agent
JP2007209890A (en) Treatment method and apparatus for organic wastewater
CN104936907B (en) The technique for reducing sulfate concentration in waste water stream by using regeneration gibbsite
JP2008110280A (en) Method for treating dyeing waste water
JP2001009446A (en) Pressure flotation method and equipment therefor
CN104478055B (en) Sewage disposal complexing agent, its preparation method and methods for using them
JPH08257583A (en) Waste water treatment apparatus
JP4337787B2 (en) Wastewater treatment method and treatment apparatus
JP2004351375A (en) High-speed floatation separation method of waste water and apparatus therefor
JP2003245504A (en) Method and device for treating wastewater
CN101786711A (en) Method for treating oilfield polymer flooding oil-extraction wastewater
JP2012081387A (en) Washing method of cyanide-contaminated soil
JP3755756B2 (en) High-speed solid-liquid separation method and apparatus
JP2002316191A (en) Method and apparatus for treating organic foul water
TAŞDEMİR et al. Removal of fine particles from wastewater using induced air flotation
CN216106335U (en) Novel air flotation pretreatment system
Park et al. Weighted coagulation with glass and diatomite for storm water treatment and sludge disposal
JP2007319764A (en) Coagulant
JPS5854639B2 (en) Sludge thickening method and its equipment
JP2002320978A (en) Method and system ultrahigh speed treatment of phosphorus-containing water
JPH09314151A (en) Water treatment method by flocculation flotation separation
WO2006008474A1 (en) Flotation process and apparatus for separating suspended particles from a liquid