JP2007209890A - Treatment method and apparatus for organic wastewater - Google Patents

Treatment method and apparatus for organic wastewater Download PDF

Info

Publication number
JP2007209890A
JP2007209890A JP2006032425A JP2006032425A JP2007209890A JP 2007209890 A JP2007209890 A JP 2007209890A JP 2006032425 A JP2006032425 A JP 2006032425A JP 2006032425 A JP2006032425 A JP 2006032425A JP 2007209890 A JP2007209890 A JP 2007209890A
Authority
JP
Japan
Prior art keywords
tank
water
treatment apparatus
scum
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032425A
Other languages
Japanese (ja)
Other versions
JP4910415B2 (en
Inventor
Mitsuharu Terajima
光春 寺嶋
Rajibu Goeru
ラジブ ゴエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006032425A priority Critical patent/JP4910415B2/en
Publication of JP2007209890A publication Critical patent/JP2007209890A/en
Application granted granted Critical
Publication of JP4910415B2 publication Critical patent/JP4910415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method and apparatus for coagulating organic wastewater and then applying floatation separation to the coagulated organic wastewater in a floating tank, the method and apparatus achieving reduction in sludge discharged from the wastewater treatment apparatus or generation of no sludge. <P>SOLUTION: Organic wastewater is led to the coagulation tank 11 of a first dissolved-air floatation apparatus 10, where an inorganic coagulant like PAC is added to the organic wastewater together with floating scum returned from a floating separating chamber 12B and the organic wastewater is subjected to coagulation. Coagulated water is sent to the floating tank 12, mixed with fine bubbles from a fine bubble generator 13 and a polymer coagulant serving as a coagulant aid in a mixing chamber 12A, and then separated by floatation in the floating separation tank 12B. Floating scum from the floating separation tank 12B is returned to the coagulation tank 11. While, part of the separated water is used as water for generating fine bubbles of the fine bubble generator 13, the remaining being sent to a biological treatment device 20. Biologically treated water is subjected to coagulation and dissolved-air floatation in a second dissolved-air floatation apparatus 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機性排水を凝集処理した後、浮上分離処理するようにした排水処理装置及び方法に関するものである。   The present invention relates to a wastewater treatment apparatus and method in which organic wastewater is subjected to flocculation treatment and then subjected to floating separation treatment.

有機性排水を凝集した後、浮上分離処理することは特開2002−113471号に記載されている。   Japanese Patent Application Laid-Open No. 2002-113471 describes that the organic waste water is agglomerated and then subjected to floating separation treatment.

この特開2002−113471号では、浮上分離処理により生じた浮上スカムを酸処理して無機凝集剤成分(アルミニウムイオン又は鉄イオン)を溶出させ、この溶出した無機凝集剤含有液を凝集槽に返送し、酸処理による不溶解汚泥は脱水機で脱水して廃棄処理する。
特開2002−113471号
In Japanese Patent Laid-Open No. 2002-113471, the floating scum generated by the floating separation treatment is acid-treated to elute the inorganic flocculant component (aluminum ion or iron ion), and the eluted inorganic flocculant-containing liquid is returned to the coagulation tank. Insoluble sludge produced by acid treatment is dehydrated with a dehydrator and discarded.
JP 2002-113471 A

加圧浮上装置では、凝集できない溶解性の有機物は浮上分離できないので、後段に設置した曝気槽等の生物処理で処理する必要がある。本発明の目的は、従来の凝集加圧浮上では除去できない、溶解性の有機物の一部を処理し、後段の生物処理の負荷を低減して曝気動力を低減することである。   In the pressurized flotation device, soluble organic matter that cannot be agglomerated cannot be levitated and separated, so it must be treated by biological treatment such as an aeration tank installed in the subsequent stage. An object of the present invention is to treat a part of soluble organic matter that cannot be removed by conventional coagulation and pressure flotation, and to reduce aeration power by reducing the burden of biological treatment in the subsequent stage.

また、上記特開2002−113471号では、浮上スカムの大部分を占める不溶解汚泥は凝集槽に戻されず、廃棄されるため、廃棄する汚泥の量が多い。   Moreover, in the said Unexamined-Japanese-Patent No. 2002-113471, the insoluble sludge which occupies most floating scum is not returned to a coagulation tank, but is discarded, Therefore The amount of sludge to discard is large.

本発明の他の目的は、有機性排水を凝集処理した後、浮上槽で浮上分離処理するようにした排水処理装置及び方法において、排水処理装置から排出される汚泥を減少させることができる排水処理装置及び方法を提供することである。   Another object of the present invention is to provide a wastewater treatment apparatus and method for coagulating organic wastewater and then subjecting it to a floatation tank so as to reduce sludge discharged from the wastewater treatment apparatus. An apparatus and method is provided.

請求項1の排水処理装置は、有機性排水の凝集槽と、この凝集槽の流出水に微細気泡を混合して浮上スカムと分離水とに浮上分離する浮上槽と、を有する排水処理装置において、該浮上槽で分離された浮上スカムの少なくとも一部を前記凝集槽に返送するスカム返送手段を備えたことを特徴とするものである。   The wastewater treatment apparatus according to claim 1 is a wastewater treatment apparatus having a coagulation tank for organic wastewater, and a levitation tank that floats and separates into a floating scum and separated water by mixing fine bubbles with the effluent water of the coagulation tank. And a scum returning means for returning at least a part of the floating scum separated in the floating tank to the aggregating tank.

請求項2の排水処理装置は、請求項1において、前記浮上槽からの分離水を生物処理する生物処理装置を備えたことを特徴とするものである。   A wastewater treatment apparatus according to a second aspect is characterized in that, in the first aspect, a biological treatment apparatus for biologically treating the separated water from the levitation tank is provided.

請求項3の排水処理装置は、有機性排水の凝集槽と、この凝集槽の流出水に微細気泡を混合して第1の浮上スカムと第1の分離水とに浮上分離する第1の浮上槽と、該第1の分離水を生物処理する生物処理装置と、該生物処理装置からの生物処理水に微細気泡を混合して第2の浮上スカムと第2の分離水とに浮上分離する第2の浮上槽と、該第1の浮上スカム及び第2の浮上スカムのうち少なくとも一方の浮上スカムの少なくとも一部を前記凝集槽に返送するスカム返送手段とを備えたことを特徴とするものである。   The wastewater treatment apparatus according to claim 3 is a first levitation unit that flocculates and separates into a first levitation scum and a first separation water by mixing fine bubbles in the effluent of the organic effluent and the outflow water of the coagulation basin. A tank, a biological treatment apparatus for biologically treating the first separated water, and mixing fine bubbles with the biologically treated water from the biological treatment apparatus to float and separate the second floating scum and the second separated water. A second levitation tank and scum return means for returning at least a part of at least one of the first levitation scum and the second levitation scum to the agglomeration tank. It is.

請求項4の排水処理装置は、請求項2又は3において、前記生物処理装置は、曝気槽と、該曝気槽内に流動可能に収容され、生物膜を担持した流動担体とを有した流動生物膜式好気処理装置であることを特徴とするものである。   A wastewater treatment apparatus according to a fourth aspect of the present invention is the biological organism according to the second or third aspect, wherein the biological treatment apparatus includes an aeration tank and a fluid carrier that is housed in the aeration tank so as to be flowable and carries a biofilm. It is a membrane-type aerobic treatment device.

請求項5の排水処理装置は、請求項1ないし4のいずれか1項において、前記浮上槽は、その槽内が、浮上分離処理される水に対し微細気泡を混合して混合水とする混合室と、この混合室内からの混合水が導入され、スカムが浮上する浮上分離室とに区画されていることを特徴とするものである。   The waste water treatment apparatus according to claim 5 is the mixing tank according to any one of claims 1 to 4, wherein the levitation tank is mixed with fine bubbles mixed with water to be subjected to the levitation separation process. The chamber is divided into a floating separation chamber into which mixed water from the mixing chamber is introduced and the scum rises.

請求項6の排水処理装置は、請求項5において、前記混合室内に凝集助剤を添加する凝集助剤添加手段を備えたことを特徴とするものである。   A waste water treatment apparatus according to a sixth aspect is characterized in that in the fifth aspect, a coagulation aid adding means for adding a coagulation aid into the mixing chamber is provided.

請求項7の排水処理装置は、請求項5において、該混合室には、浮上分離処理される水を該混合室内に導入するための導入部が設けられており、この導入部からの水に対し前記凝集助剤添加手段から凝集助剤を添加した後、前記微細気泡を微細気泡添加手段から添加するようにしてなり、該凝集助剤添加手段に対し該微細気泡添加手段が直接配置されていることを特徴とするものである。   According to a seventh aspect of the present invention, there is provided the waste water treatment apparatus according to the fifth aspect, wherein the mixing chamber is provided with an introduction portion for introducing water to be floated and separated into the mixing chamber. On the other hand, after adding the coagulation aid from the coagulation aid addition means, the fine bubbles are added from the microbubble addition means, and the microbubble addition means is arranged directly with respect to the coagulation aid addition means. It is characterized by being.

請求項8の排水処理装置は、請求項1ないし7のいずれか1項において、前記スカム返送手段によって返送されるスカムの少なくとも一部を好気処理するスカム好気処理手段を備えたことを特徴とするものである。   A wastewater treatment apparatus according to an eighth aspect of the present invention includes the scum aerobic treatment means according to any one of the first to seventh aspects, wherein the scum aerobic treatment means performs aerobic treatment on at least a part of the scum returned by the scum return means. It is what.

請求項9の排水処理装置は、請求項1ないし8のいずれか1項において、返送されるスカムを前記有機性排水と混合してから前記凝集槽に導入するように構成したことを特徴とするものである。   A wastewater treatment apparatus according to a ninth aspect is characterized in that, in any one of the first to eighth aspects, the returned scum is mixed with the organic wastewater and then introduced into the aggregation tank. Is.

請求項10の有機性排水の処理方法は、有機性排水を請求項1ないし9のいずれか1項に記載の排水処理装置によって処理することを特徴とするものである。   An organic wastewater treatment method according to a tenth aspect is characterized in that the organic wastewater is treated by the wastewater treatment apparatus according to any one of the first to ninth aspects.

請求項11の有機性排水の処理方法は、請求項10において、該排水処理装置は請求項4に記載の排水処理装置であり、該生物処理装置の曝気を間欠的に停止し、該生物処理装置を好気−嫌気のサイクルで運転することを特徴とするものである。   An organic wastewater treatment method according to an eleventh aspect is the wastewater treatment apparatus according to the fourth aspect, wherein the wastewater treatment apparatus is the wastewater treatment apparatus according to the fourth aspect, wherein aeration of the biological treatment apparatus is intermittently stopped, and the biological treatment is performed. The apparatus is operated in an aerobic-anaerobic cycle.

本発明では、有機性排水を凝集処理した後、浮上分離処理する方法及び装置において、浮上分離されたスカムを凝集槽に直接に又は有機性排水と混合してから導入し、スカムを循環させる。このように浮上スカムを循環させると、活性汚泥が発生する。   In the present invention, after the organic waste water is agglomerated, the floated and separated scum is introduced directly into the agglomeration tank or after being mixed with the organic waste water, and the scum is circulated. When the floating scum is circulated in this manner, activated sludge is generated.

有機性排水中の溶解性BODの一部が活性汚泥の微生物の体内に取り込まれると、貯蔵物質となる。 When a part of the soluble BOD in the organic waste water is taken into the microorganism body of the activated sludge, it becomes a storage material.

また、一般に活性汚泥の表面は粘着性となっているところから一部の懸濁性BODが活性汚泥に吸着される。   Moreover, since the surface of activated sludge is generally sticky, some suspended BOD is adsorbed by activated sludge.

このようにBODを取り込んだり吸着した活性汚泥が浮上槽に導入されると、この浮上槽は微細気泡によって好気的環境となっているところから、活性汚泥中の微生物内の貯蔵物質や吸着BOD成分が酸化分解される。これにより、有機性排水中のBOD成分が酸化分解されて水中から除去される。 When activated sludge that has taken in or adsorbed BOD in this way is introduced into the levitation tank, the levitation tank is in an aerobic environment due to microbubbles. Components are oxidatively decomposed. Thereby, the BOD component in the organic waste water is oxidized and decomposed and removed from the water.

なお、浮上槽内で貯蔵物質や吸着BOD成分が酸化分解されたりすることにより、活性汚泥は再び溶解性BODを取り込んだり懸濁性BODを吸着することが可能となる。   In addition, when the storage substance and the adsorbed BOD component are oxidatively decomposed in the levitation tank, the activated sludge can take up the soluble BOD again or adsorb the suspended BOD.

このようにして、本発明によると、排水処理装置から排出される汚泥量が減少する。 Thus, according to the present invention, the amount of sludge discharged from the waste water treatment device is reduced.

また、浮上槽の後段側に生物処理装置が設置されている場合には、この生物処理装置の負荷が減少し、その生物処理槽の槽容積を小さくしたり、好気処理のためのエアレーション動力を減少させたりすることが可能となる。 In addition, when a biological treatment apparatus is installed on the rear stage side of the levitation tank, the load on the biological treatment apparatus is reduced, and the aeration power for aerobic treatment is reduced. Can be reduced.

本発明においては、この生物処理装置の後段に第2の浮上槽を設け、この第2の浮上槽の浮上スカムの少なくとも一部を凝集槽に返送するようにしてもよい。この場合にも、上記と同様の作用効果が奏される。 In the present invention, a second levitation tank may be provided after the biological treatment apparatus, and at least a part of the levitation scum of the second levitation tank may be returned to the coagulation tank. Also in this case, the same effects as described above are exhibited.

なお、第2浮上槽へ導入される汚泥は、生物処理装置を経たものであり、微生物が増殖しているので、第2浮上槽でのBOD除去効果が向上する。 Note that the sludge introduced into the second levitation tank has passed through the biological treatment apparatus, and microorganisms are growing, so that the BOD removal effect in the second levitation tank is improved.

生物反応装置を、曝気槽に担体を入れた流動生物膜式の好気処理装置にすると、担体同士が擦れて、担体表面で増殖した活性汚泥微生物が流出し、第2浮上槽に導入される。この活性汚泥は、活性が高いために、汚水と接触したときの溶解性BODの取り込み量が多い。 When the bioreactor is a fluidized biofilm aerobic treatment device in which a carrier is placed in an aeration tank, the carriers are rubbed together, and activated sludge microorganisms grown on the surface of the carrier flow out and are introduced into the second levitation tank. . Since this activated sludge has high activity, the amount of soluble BOD taken up is large when it comes into contact with sewage.

生物処理装置の曝気を定期的に止め、嫌気−好気のサイクルを繰り返すと、活性汚泥は環境変化に対応できる能力を備えるようになる。嫌気状態の時には取り込み物質を酸化分解できないので、貯蔵物質に変換することができるようになり、液中のBODを体内に取り込む能力が増大する。 When the aeration of the biological treatment apparatus is periodically stopped and the anaerobic-aerobic cycle is repeated, the activated sludge has the ability to cope with environmental changes. Since the uptake substance cannot be oxidatively decomposed in an anaerobic state, it can be converted into a storage substance, and the ability to take up BOD in the liquid into the body is increased.

本発明において、浮上槽を混合室と浮上分離室とに区画し、この混合室に対し凝集助剤と微細気泡を添加すると、気泡内部に含有した強固な気泡含有フロックが生成する。この内部に気泡を含んだ気泡含有フロックは、有機性排水と混合されるまでの間、フロックに含有した気泡中の酸素を使って活性汚泥微生物が生物処理装置で体内に取り込んだ貯蔵物質を酸化分解するので、汚水と混合したときの溶解性BOD取り込み量が増大する。また、フロックに気泡を含んでいるので、比重が低く、浮上槽での分離性能も高くなる。 In the present invention, when the levitation tank is divided into a mixing chamber and a levitation separation chamber, and a coagulation aid and fine bubbles are added to the mixing chamber, a strong bubble-containing floc contained inside the bubbles is generated. The bubble-containing floc containing bubbles inside oxidizes the stored material that the activated sludge microorganisms have taken into the body by the biological treatment device using oxygen in the bubbles contained in the floc until it is mixed with organic wastewater. Since it decomposes, the amount of soluble BOD uptake when mixed with sewage increases. Moreover, since the floc contains air bubbles, the specific gravity is low and the separation performance in the levitation tank is also high.

本発明では、凝集槽に返送されるスカムを好気処理することにより、スカム中の微生物体内のBOD成分を消費させたり、スカムの腐敗を防止することができる。   In the present invention, the scum returned to the agglomeration tank is subjected to aerobic treatment, so that the BOD component in the microorganisms in the scum can be consumed or the scum can be prevented from decaying.

本発明では、返送スカムを有機性排水と混合してから凝集槽へ導入することにより、スカムの汚泥がBOD懸濁成分を吸着する効果が大きくなり、この効果と凝集剤による凝集効果とが相乗し、効率よく凝集処理が行われるようになる。 In the present invention, the return scum is mixed with the organic waste water and then introduced into the agglomeration tank, whereby the effect of the sludge of the scum adsorbing the BOD suspended component increases, and this effect and the agglomeration effect by the aggregating agent are synergistic. In addition, the aggregation process is efficiently performed.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の有機性排水処理装置の第1の実施の形態を示す系統図である。なお、有機性排水としては、下水や食品加工、紙パルプ、繊維、石油化学などの工場排水、また、レストラン、ガソリンスタンドからの排水などが例示されるが、これらに限定されない。   FIG. 1 is a system diagram showing a first embodiment of the organic waste water treatment apparatus of the present invention. Examples of organic wastewater include, but are not limited to, sewage, food processing, factory wastewater such as paper pulp, fiber, and petrochemical, and wastewater from restaurants and gas stations.

有機性排水は、第1加圧浮上分離装置10の凝集槽11に導入され、後述の浮上分離室12Bから返送される浮上スカムと共にPAC等の無機凝集剤が添加されて凝集処理される。凝集処理水は、浮上槽12に送給され、混合室12Aで微細気泡発生装置13からの微細気泡及び凝集助剤としての高分子凝集剤と混合された後、浮上分離室12Bで浮上分離される。浮上分離室12Bからの浮上スカムは前記凝集槽11に返送される。一方、分離水の一部は、微細気泡発生装置13の微細気泡発生用水として利用され、残部は生物処理装置20に送給される。   The organic waste water is introduced into the agglomeration tank 11 of the first pressurized flotation separation apparatus 10, and an inorganic flocculant such as PAC is added together with the flotation scum returned from the flotation separation chamber 12B described later to be agglomerated. The agglomerated water is fed to the levitation tank 12, mixed with the fine bubbles from the fine bubble generator 13 and the polymer flocculant as an agglomeration aid in the mixing chamber 12A, and then levitated and separated in the flotation separation chamber 12B. The The floating scum from the floating separation chamber 12B is returned to the aggregation tank 11. On the other hand, a part of the separated water is used as water for generating fine bubbles in the fine bubble generating device 13, and the remaining part is fed to the biological treatment device 20.

この微細気泡発生装置13、及び後述の微細気泡発生装置33は、微細気泡発生用水を加圧して気体を溶解した後、減圧して、微細気泡を発生させる方式のものであり、第1加圧浮上分離装置10の浮上槽12及び後述の第2加圧浮上分離装置30の浮上槽32では、微細気泡発生装置13,33で微細気泡を発生させるのと同時に凝集処理水に微細気泡及び凝集助剤を混合するように構成されている。   The fine bubble generating device 13 and the fine bubble generating device 33 to be described later are of a type that generates fine bubbles by pressurizing the water for generating fine bubbles to dissolve the gas and then reducing the pressure to generate fine bubbles. In the flotation tank 12 of the flotation separation apparatus 10 and the flotation tank 32 of the second pressurized flotation separation apparatus 30 described later, fine bubbles are generated by the fine bubble generation devices 13 and 33 and at the same time, fine bubbles and coagulation assistance are added to the agglomerated water. It is comprised so that an agent may be mixed.

生物処理装置30としては生物膜を利用したものが好ましく、特に接触曝気生物反応装置や、スポンジ担体などの流動担体を投入した生物膜式好気処理装置が好ましい。   The biological treatment apparatus 30 preferably uses a biofilm, and particularly preferably a contact aeration bioreaction apparatus or a biofilm aerobic treatment apparatus into which a fluid carrier such as a sponge carrier is introduced.

第2加圧浮上分離装置30では、生物処理装置20からの生物処理水が、凝集槽31でPAC等の無機凝集剤が添加されて凝集処理される。凝集処理水は浮上槽32に送給され、混合室32Aで微細気泡発生装置33からの微細気泡及び高分子凝集剤と混合された後、浮上分離室32Bで浮上分離される。浮上分離室32Bからの浮上スカムは系外に排出される。分離水は、十分に水質の高いものであるため、一部は微細気泡発生装置33の微細気泡発生用水として利用され、残部は処理水として系外へ排出される。   In the second pressurized flotation separation device 30, the biologically treated water from the biological treatment device 20 is agglomerated by adding an inorganic flocculant such as PAC in the agglomeration tank 31. The agglomerated water is fed to the floating tank 32, mixed with the fine bubbles and the polymer flocculant from the fine bubble generating device 33 in the mixing chamber 32A, and then floated and separated in the floating separation chamber 32B. The floating scum from the floating separation chamber 32B is discharged out of the system. Since the separated water has a sufficiently high water quality, a part of the separated water is used as water for generating fine bubbles in the fine bubble generating device 33, and the remaining part is discharged out of the system as treated water.

凝集槽11,31に添加する無機凝集剤としては、PAC、硫酸バンド(硫酸アルミニウム)、塩化第二鉄、硫酸第一鉄、硫酸第二鉄等の無機凝集剤を用いることができ、その添加量は、凝集処理する水中の汚濁物質濃度に対して0.1〜10倍、特に0.5〜2倍程度とするのが好ましい。   As the inorganic flocculant added to the flocculation tanks 11 and 31, inorganic flocculants such as PAC, sulfuric acid band (aluminum sulfate), ferric chloride, ferrous sulfate, ferric sulfate, etc. can be used. The amount is preferably about 0.1 to 10 times, particularly about 0.5 to 2 times the concentration of pollutants in the water to be agglomerated.

また、浮上槽12,32に凝集助剤として添加する高分子凝集剤としては、通常、ポリ(メタ)アクリルアミド、その加水分解物、ポリ(メタ)アクリル酸、(メタ)アクリルアミドとアルキルアミノ(メタ)アクリルアミド共重合体等のノニオン性、アニオン性、カチオン性又は両性高分子凝集剤を使用することができる。   In addition, as a polymer flocculant to be added to the levitation tanks 12 and 32 as a coagulation aid, poly (meth) acrylamide, its hydrolyzate, poly (meth) acrylic acid, (meth) acrylamide and alkylamino (meta) ) Nonionic, anionic, cationic or amphoteric polymer flocculants such as acrylamide copolymers can be used.

高分子凝集剤の添加量は、通常、排水量に対して0.5〜5mg/L程度とされる。   The addition amount of the polymer flocculant is usually about 0.5 to 5 mg / L with respect to the amount of drainage.

微細気泡発生装置13,23,33としては渦流ポンプ方式のものなどを用いることができる。   As the fine bubble generators 13, 23, 33, a vortex pump type can be used.

この実施の形態では、浮上分離室12Bで浮上分離されたスカムを凝集槽11に導入し、スカムを循環させる。このように浮上スカムを循環させると、活性汚泥が発生する。有機性排水中の溶解性BODの一部がこの活性汚泥の微生物の体内に取り込まれ、貯蔵物質となる。また、活性汚泥の表面は粘着性となっているところから一部の懸濁性BODが活性汚泥に吸着される。   In this embodiment, the scum floated and separated in the floating separation chamber 12B is introduced into the aggregation tank 11, and the scum is circulated. When the floating scum is circulated in this manner, activated sludge is generated. Part of the soluble BOD in the organic waste water is taken into the body of the microorganisms of the activated sludge and becomes a storage material. Further, since the surface of the activated sludge is sticky, a part of the suspended BOD is adsorbed on the activated sludge.

このようにBODを取り込んだり吸着した活性汚泥が浮上槽12に導入されると、この浮上槽12は微細気泡によって好気的環境となっているところから、活性汚泥中の微生物内の貯蔵物質や吸着BOD成分が酸化分解される。これにより、有機性排水中のBOD成分が酸化分解されて水中から除去される。 When activated sludge that has taken in or adsorbed BOD is introduced into the levitation tank 12, the levitation tank 12 is in an aerobic environment due to fine bubbles. The adsorbed BOD component is oxidatively decomposed. Thereby, the BOD component in the organic waste water is oxidized and decomposed and removed from the water.

なお、浮上槽12内で貯蔵物質や吸着BOD成分が酸化分解されたりすることにより、活性汚泥は再び溶解性BODを取り込んだり懸濁性BODを吸着することが可能となる。   In addition, when a storage substance and adsorption | suction BOD component are oxidatively decomposed in the levitation tank 12, it becomes possible for activated sludge to take in soluble BOD again or to adsorb | suck suspension BOD.

このようにして、浮上スカムを凝集槽11に返送することにより、この排水処理装置から排出される汚泥量が減少する。   In this way, the amount of sludge discharged from the waste water treatment device is reduced by returning the floating scum to the coagulation tank 11.

また、浮上槽12の後段側に設置されている生物処理装置20の負荷が減少し、生物処理装置20の槽容積を小さくしたり、好気処理のためのエアレーション動力を減少させたりすることが可能となる。   Moreover, the load of the biological treatment apparatus 20 installed on the rear stage side of the levitation tank 12 may be reduced, the tank volume of the biological treatment apparatus 20 may be reduced, or the aeration power for aerobic treatment may be reduced. It becomes possible.

この生物反応装置20を、曝気槽に担体を入れた流動生物膜式の好気処理装置にすると、担体同士が擦れて、担体表面で増殖した活性汚泥微生物が流出し、第2加圧浮上分離装置30に導入される。この生物処理装置20からの活性汚泥は、活性の高い活性汚泥であるために、汚水と接触したときの溶解性BODの取り込み量が多くなる。   When this bioreactor 20 is a fluidized biofilm type aerobic treatment device in which a carrier is placed in an aeration tank, the carriers are rubbed together, and activated sludge microorganisms grown on the surface of the carrier flow out, and the second pressurized floating separation is performed. Introduced into the apparatus 30. Since the activated sludge from the biological treatment apparatus 20 is activated sludge having high activity, the amount of soluble BOD taken up when it comes into contact with the sewage increases.

なお、生物処理装置20の曝気を定期的に止め、嫌気−好気のサイクルを繰り返すと、活性汚泥は環境変化に対応できる能力を備えるようになる。嫌気状態の時には取り込み物質を酸化分解できないので、貯蔵物質に変換することができるようになり、液中のBODを体内に取り込む能力が増大する。   In addition, when the aeration of the biological treatment apparatus 20 is periodically stopped and the anaerobic-aerobic cycle is repeated, the activated sludge has an ability to cope with environmental changes. Since the uptake substance cannot be oxidatively decomposed in an anaerobic state, it can be converted into a storage substance, and the ability to take up BOD in the liquid into the body is increased.

この実施の形態では、浮上槽12,32を混合室12A,32Aと浮上分離室12B,32Bとに区画し、この混合室12A,32Aに対し凝集助剤と微細気泡を添加するので、気泡内部に含有した強固な気泡含有フロックが生成する。この内部に気泡を含んだ気泡含有フロックは、有機性排水と混合されるまでの間、フロックに含有した気泡中の酸素を使って活性汚泥微生物が生物処理装置で体内に取り込んだ貯蔵物質を酸化分解するので、汚水と混合したときの溶解性BOD取り込み量が増大する。また、フロックに気泡を含んでいるので、比重が低く、浮上槽での分離性能も高くなる。   In this embodiment, the levitation tanks 12 and 32 are divided into mixing chambers 12A and 32A and levitation separation chambers 12B and 32B, and a coagulation aid and fine bubbles are added to the mixing chambers 12A and 32A. A strong bubble-containing floc contained in is produced. The bubble-containing floc containing bubbles inside oxidizes the stored material that the activated sludge microorganisms have taken into the body by the biological treatment device using oxygen in the bubbles contained in the floc until it is mixed with organic wastewater. Since it decomposes, the amount of soluble BOD uptake when mixed with sewage increases. Moreover, since the floc contains air bubbles, the specific gravity is low and the separation performance in the levitation tank is also high.

第2図は本発明の排水処理装置の第2の実施の形態を示す系統図である。   FIG. 2 is a system diagram showing a second embodiment of the waste water treatment apparatus of the present invention.

この実施の形態では、第1加圧浮上分離装置10の浮上分離室12Bからの浮上スカムを系外に排出し、代わりに、第2加圧浮上分離装置30の浮上分離室32Bからの浮上スカムを凝集槽11へ返送するようにしたものである。その他の構成は第1図と同一であり、同一符号は同一部分を示している。   In this embodiment, the floating scum from the floating separation chamber 12B of the first pressurized floating separation apparatus 10 is discharged out of the system, and instead, the floating scum from the floating separation chamber 32B of the second pressurized floating separation apparatus 30 is discharged. Is returned to the agglomeration tank 11. Other configurations are the same as those in FIG. 1, and the same reference numerals indicate the same parts.

この実施の形態では、生物処理装置20を経由して微生物が増殖した活性汚泥を含む浮上スカムが凝集槽11に返送されるので、第1図の場合と同等あるいはそれ以上のBOD除去性能を得ることができる。   In this embodiment, the floating scum containing activated sludge in which microorganisms are propagated is returned to the agglomeration tank 11 via the biological treatment apparatus 20, so that a BOD removal performance equal to or higher than that in the case of FIG. 1 is obtained. be able to.

第3図は本発明の排水処理装置の第3の実施の形態を示す系統図である。   FIG. 3 is a system diagram showing a third embodiment of the waste water treatment apparatus of the present invention.

この実施の形態では、第1及び第2の加圧浮上分離装置10,20の浮上分離室12B,32Bからの浮上スカムをそれぞれ凝集槽11へ返送するようにしたものであり、その他の構成は第1図と同一であり、同一符号は同一部分を示している。   In this embodiment, the floating scum from the floating separation chambers 12B and 32B of the first and second pressurized floating separation devices 10 and 20 is returned to the agglomeration tank 11, respectively, and other configurations are as follows. The same reference numerals denote the same parts as those in FIG.

この実施の形態によると、各浮上槽12,32の浮上スカムがいずれも凝集槽11へ返送されるので、スカム排出量を著しく少なくすることができる。なお、凝集槽11へのスカム返送量が過剰であるときには、一部のスカムを系外へ排出してもよい。   According to this embodiment, since the floating scum of each of the floating tanks 12 and 32 is returned to the agglomeration tank 11, the amount of discharged scum can be remarkably reduced. When the amount of scum returned to the agglomeration tank 11 is excessive, a part of the scum may be discharged out of the system.

第4図は本発明の第4の実施の形態を示す系統図である。   FIG. 4 is a system diagram showing a fourth embodiment of the present invention.

この実施の形態では、第1及び第2の加圧浮上分離装置10,20の浮上分離室12B,32Bからの浮上スカムをスカム貯槽40に導入し、好気性処理してから凝集槽11へ返送するようにしたものである。第4図のその他の構成は第3図と同一であり、同一符号は同一部分を示している。   In this embodiment, the floating scum from the floating separation chambers 12B and 32B of the first and second pressurized floating separation apparatuses 10 and 20 is introduced into the scum storage tank 40, subjected to aerobic treatment, and then returned to the agglomeration tank 11. It is what you do. The other structure of FIG. 4 is the same as that of FIG. 3, and the same code | symbol has shown the identical part.

この実施の形態でも第3図と同様の効果が奏される。なお、浮上槽12,32での浮上スカム量が変動しても、スカム貯槽40を設けているので、凝集槽11に導入される返送スカム量を平準化することができる。   In this embodiment, the same effect as in FIG. 3 is obtained. Even if the floating scum amount in the floating tanks 12 and 32 fluctuates, the return scum amount introduced into the agglomeration tank 11 can be leveled because the scum storage tank 40 is provided.

このスカム貯槽40に散気管等の好気処理手段を設け、微生物体内のBOD成分を貯槽40での貯蔵期間中に消費させるようにしたり、汚泥の腐敗を防止するようにしてもよい。   The scum storage tank 40 may be provided with aerobic treatment means such as a diffuser tube so that BOD components in the microorganisms are consumed during the storage period in the storage tank 40, or sludge decay is prevented.

第5図及び第6図は本発明の第5及び第6の実施の形態を示す系統図である。   FIGS. 5 and 6 are system diagrams showing fifth and sixth embodiments of the present invention.

これらの実施の形態は、第1加圧浮上分離装置10の前段に混和槽8を配置し、有機性排水と浮上分離室12B,32Bからの返送スカムをこの混和槽8にて混合した後、凝集槽11に導入するようにしたものである。   In these embodiments, the mixing tank 8 is disposed in the previous stage of the first pressurized flotation separation apparatus 10, and the organic waste water and the return scum from the flotation separation chambers 12 </ b> B and 32 </ b> B are mixed in the mixing tank 8. It is introduced into the agglomeration tank 11.

第5図のその他の構成は第3図と同一であり、第6図のその他の構成は第4図と同一であり、それぞれ同一符号は同一部分を示している。   Other configurations in FIG. 5 are the same as those in FIG. 3, other configurations in FIG. 6 are the same as those in FIG. 4, and the same reference numerals denote the same parts.

これらの第5,6図の実施の形態でも、第3,4図と同様の効果が奏される。なお、返送スカムを混和槽8で予め有機性排水と混合してから凝集槽11へ導入することにより、汚泥がBOD懸濁成分を吸着する効果と凝集剤による凝集効果とが相乗し、効率よく凝集処理が行われる。   In the embodiment shown in FIGS. 5 and 6, the same effects as those shown in FIGS. The return scum is mixed with the organic wastewater in the mixing tank 8 in advance and then introduced into the coagulation tank 11, so that the effect of sludge adsorbing the BOD suspended component and the coagulation effect by the coagulant synergize efficiently. Aggregation is performed.

次に、上記加圧浮上分離装置10,30に用いるのに好適な加圧浮上分離装置50の構成について第7図〜第11図を参照して説明する。   Next, the configuration of a pressurized levitation separator 50 suitable for use in the pressurized levitation separators 10 and 30 will be described with reference to FIGS.

第7図はこの加圧浮上分離装置の長手方向の縦断面図、第8図は仕切壁付近の構成を示す断面斜視図、第9図は混合室内の水の循環状況を示す断面図、第10図は第9図のX−X線断面図、第11図は第10図のXI−XI線断面図である。   FIG. 7 is a longitudinal sectional view in the longitudinal direction of this pressurized flotation separation device, FIG. 8 is a sectional perspective view showing the configuration in the vicinity of the partition wall, FIG. 9 is a sectional view showing the circulation state of water in the mixing chamber, FIG. 10 is a sectional view taken along line XX of FIG. 9, and FIG. 11 is a sectional view taken along line XI-XI of FIG.

平面視形状が略長方形の槽体53内が、仕切壁51及び隔壁52によって区画されることにより、前記凝集槽11又は31に相当する凝集反応室60、前記混合室12A又は32Aに相当する混合室70及び前記浮上分離室12B又は32Bに相当する浮上分離室80がこの順に形成されている。各室60,70,80は槽体53の長手方向に配列されており、各壁51,52は槽体53の短手方向すなわち幅方向に延設されている。   The inside of the tank body 53 having a substantially rectangular shape in plan view is partitioned by the partition wall 51 and the partition wall 52, so that the aggregation reaction chamber 60 corresponding to the aggregation tank 11 or 31 and the mixing corresponding to the mixing chamber 12A or 32A are mixed. A floating separation chamber 80 corresponding to the chamber 70 and the floating separation chamber 12B or 32B is formed in this order. The chambers 60, 70, 80 are arranged in the longitudinal direction of the tank body 53, and the walls 51, 52 are extended in the short direction, that is, the width direction of the tank body 53.

仕切壁51の下部の幅方向の中央部に、室60,70を連通する流出口66が形成されている。仕切壁51の上端は、槽体53間の水面より上方に延出している。   An outlet 66 for communicating the chambers 60 and 70 is formed at the center in the width direction at the bottom of the partition wall 51. The upper end of the partition wall 51 extends upward from the water surface between the tank bodies 53.

隔壁52は、槽体底面53bから立設され、その上端は槽体53間の水面よりも下位となっている。   The partition wall 52 is erected from the tank body bottom surface 53 b, and the upper end thereof is lower than the water surface between the tank bodies 53.

各壁51,52は槽体の両側面53aに連なっている。   Each wall 51, 52 is connected to both side surfaces 53a of the tank body.

凝集反応室60へは、原水配管61を介して原水(第1加圧浮上分離装置10であれば、有機排水又は混和槽8からの水、第2加圧浮上分離装置20であれば、生物処理装置20からの生物処理水)が導入されると共に、無機凝集剤及びアルカリ剤が各々の供給配管62,63を介して供給可能とされている。凝集反応室60内の水のpHを検知するためのpH計64が設置され、このpH計64の検出値が所定範囲となるようにアルカリ剤薬注ポンプ(図示略)が作動される。   The agglomeration reaction chamber 60 is fed with raw water (raw water from the organic waste water or mixing tank 8 in the case of the first pressurized flotation separator 10, biological organism in the case of the second pressurized flotation separator 20 through the raw water pipe 61. Biologically treated water from the treatment apparatus 20 is introduced, and an inorganic flocculant and an alkali agent can be supplied through the supply pipes 62 and 63, respectively. A pH meter 64 for detecting the pH of water in the agglomeration reaction chamber 60 is installed, and an alkaline agent injection pump (not shown) is operated so that the detected value of the pH meter 64 falls within a predetermined range.

凝集反応室60内の水は撹拌機65によって撹拌され、凝集処理される。   The water in the agglomeration reaction chamber 60 is agitated by an agitator 65 and agglomerated.

凝集反応水は、流出口66を通って混合室70に流入し、該混合室70の幅方向中央付近を槽体底面53bに沿って流れる。この槽体底面53bのうち、幅方向中央かつ隔壁52に比較的近接して、加圧水吐出用のノズル73が設けられている。該ノズル73の先端は、槽体底面53bから若干突出している。   Aggregation reaction water flows into the mixing chamber 70 through the outlet 66 and flows along the tank bottom surface 53b in the vicinity of the center in the width direction of the mixing chamber 70. In the tank bottom surface 53b, a nozzle 73 for discharging pressurized water is provided in the center in the width direction and relatively close to the partition wall 52. The tip of the nozzle 73 slightly protrudes from the tank body bottom surface 53b.

このノズル73の近傍であって、且つ該ノズル73よりも流出口66側に高分子凝集助剤溶液の供給管77が設けられている。この供給管77は高分子凝集助剤溶液を上向きに吐出させるように上向きに設置されている。   A polymer agglomeration aid solution supply pipe 77 is provided in the vicinity of the nozzle 73 and closer to the outlet 66 than the nozzle 73. The supply pipe 77 is installed upward so as to discharge the polymer aggregation aid solution upward.

この供給管77の上端のレベルはノズル73の上端よりも高い。   The level of the upper end of the supply pipe 77 is higher than the upper end of the nozzle 73.

この実施の形態では、浮上分離室80内の下部から配管71を介して水を取り出し、微細気泡発生装置13又は33に相当する微細発生装置72にて空気を加圧溶解させ、この加圧水をノズル73へ供給する。   In this embodiment, water is taken out from the lower part of the levitation separation chamber 80 through a pipe 71, air is pressurized and dissolved in the fine bubble generator 72 corresponding to the fine bubble generator 13 or 33, and this pressurized water is supplied to the nozzle. 73.

この実施の形態では、ノズル73及び供給管77は、後述する傾斜した隔壁上部52bの鉛直下方領域に配置されている。また、この実施の形態では、ノズル73及び供給管77は槽体底面53bの幅方向の中央に1個のみ設けられている。   In this embodiment, the nozzle 73 and the supply pipe 77 are arranged in a vertically lower region of an inclined partition upper portion 52b described later. In this embodiment, only one nozzle 73 and supply pipe 77 are provided at the center of the tank bottom surface 53b in the width direction.

流出口66からの凝集処理水に対し供給管77からの高分子凝集助剤溶液が添加され、これに対しノズル73からの加圧水が添加され、これらが混ざり合いながら主として隔壁52の幅方向中央付近に沿って上昇する。隔壁52は、上部52bを除き略鉛直な(好ましくは、鉛直面に対し±10゜以内の)鉛直部52aとなっており、該上部52bは仕切壁51側へ傾斜している。   The polymer agglomeration aid solution from the supply pipe 77 is added to the agglomerated water from the outflow port 66, and pressurized water from the nozzle 73 is added thereto, and these are mixed and mainly near the center in the width direction of the partition wall 52. Ascend along. The partition 52 is a vertical portion 52a that is substantially vertical (preferably within ± 10 ° with respect to the vertical plane) except for the upper portion 52b, and the upper portion 52b is inclined toward the partition wall 51.

上記上昇流は、隔壁52の鉛直部52aに沿って略鉛直上方へ向って流れる。この上昇流は、次いで、傾斜した隔壁上部52bに案内されて仕切壁51側へ流れ方向を変え、仕切壁51の近傍に到ると該仕切壁51に沿って下降する下降流となる。仕切壁51の下部にまで流れてきた下降流は、流出口66からの凝集処理水と合流しながら槽体底面53bを隔壁52へ向って流れる。このようにして、混合室52内に第9図の如く上下方向の循環流が形成される。そして、循環している間に、凝集物に対し加圧水から生じた微細な気泡が付着すると同時に凝集反応水中の凝集物が高分子凝集助剤によって粗大化することで、内部に気泡を含有した大きなフロックになる。   The upward flow flows substantially vertically upward along the vertical portion 52 a of the partition wall 52. Next, the upward flow is guided by the inclined partition upper part 52 b to change the flow direction toward the partition wall 51, and becomes a downward flow descending along the partition wall 51 when reaching the vicinity of the partition wall 51. The downward flow that has flowed to the lower part of the partition wall 51 flows toward the partition wall 52 through the tank bottom surface 53 b while joining with the agglomerated water from the outlet 66. In this manner, a vertical circulation flow is formed in the mixing chamber 52 as shown in FIG. And while circulating, fine bubbles generated from the pressurized water adhere to the aggregates, and at the same time, the aggregates in the aggregation reaction water are coarsened by the polymer aggregation assistant, so that large bubbles containing bubbles are contained inside. Become a flock.

なお、この混合室内の水の循環状況について第9図〜第11図を参照してさらに詳細に説明する。   The water circulation state in the mixing chamber will be described in more detail with reference to FIGS.

流出口66から凝集反応水が混合室70内に流入し、この流入した水は槽体底面53bに沿って該槽体幅方向の中央付近を隔壁52へ向って流れる。   Aggregation reaction water flows into the mixing chamber 70 from the outlet 66, and the inflowed water flows toward the partition wall 52 along the tank bottom surface 53b in the vicinity of the center in the tank width direction.

この槽体底面53bに沿う流れに対し、供給管77から高分子凝集助剤溶液が添加されるとともに、ノズル73から加圧水が上向きに添加される。高分子凝集助剤は加圧水の大きな勢いに引き込まれ、加圧水に混ざりながら上方向に流れる。ノズル73は、隔壁52に比較的近接して配置されているので、隔壁52に当って流れを上向きに変えようとする流れと、この上向きの加圧水流とが重畳することにより、隔壁52の近傍の槽体幅方向中央部付近において、上方に向う部分的に比較的高流速の上昇流が形成される。隔壁52の両側付近では、比較的低流速の上昇流が形成されるか、又は混合室70の幅が大きい場合等には、下降流が形成される。   A polymer aggregation assistant solution is added from the supply pipe 77 to the flow along the tank bottom surface 53b, and pressurized water is added upward from the nozzle 73. The polymer agglomeration aid is drawn into a large momentum of the pressurized water and flows upward while being mixed with the pressurized water. Since the nozzle 73 is disposed relatively close to the partition wall 52, the flow that attempts to change the flow upwards against the partition wall 52 and the upward pressurized water flow overlap each other, thereby the vicinity of the partition wall 52. In the vicinity of the central part of the tank body in the width direction, an upward flow with a relatively high flow velocity is formed partially upward. In the vicinity of both sides of the partition wall 52, an upward flow with a relatively low flow rate is formed, or when the width of the mixing chamber 70 is large, a downward flow is formed.

この隔壁52の幅方向中央付近に沿う上昇流は、傾斜した隔壁上部52bに当って仕切壁51側へ流れ方向を変えて混合室70の水面付近を仕切壁51へ向って流れるが、隔壁52の幅方向中央付近の上昇流速が幅方向の両側よりも大きいので、仕切壁51へ向う流れは、第5図のように、隔壁52近傍の幅方向中央付近から仕切壁51の幅方向全体へ広がる放射方向流れとなる。仕切壁51の全体に広がった流れは、次いで仕切壁51に沿って下降し、流出口66からの流れに伴って槽体底面53bの幅方向中央付近に集束するようにして隔壁52へ向って流れる。そして、隔壁52の近傍に到ると、前記の通り幅方向中央側が高流速となるようにして隔壁52に沿って上昇する。   The upward flow along the vicinity of the center of the partition wall 52 in the width direction hits the inclined partition wall upper portion 52b, changes the flow direction toward the partition wall 51 and flows near the water surface of the mixing chamber 70 toward the partition wall 51. Since the ascending flow velocity in the vicinity of the center in the width direction is larger than that on both sides in the width direction, the flow toward the partition wall 51 moves from the vicinity of the center in the width direction near the partition wall 52 to the entire width direction of the partition wall 51 as shown in FIG. It becomes a spreading radial flow. The flow spread over the entire partition wall 51 then descends along the partition wall 51 and moves toward the partition wall 52 so as to converge in the vicinity of the center of the tank bottom surface 53b in the width direction along with the flow from the outlet 66. Flowing. And when it reaches the vicinity of the partition 52, it raises along the partition 52 so that the width direction center side may become a high flow velocity as mentioned above.

このように、混合室70内では隔壁52に沿う上昇流と隔壁51に沿う下降流との上下循環に加え、隔壁52に沿って上昇した後、隔壁52から離反するに従って幅方向に広がり、次いで、仕切壁51に沿って下降した後、幅方向中央に集束する幅方向の循環とが重畳した上下及び左右循環流が形成される。このため、混合室2内で凝集処理水及び高分子凝集助剤溶液と加圧水とが万遍なく混ざり合うようになる。   As described above, in the mixing chamber 70, in addition to the up-and-down circulation of the upward flow along the partition wall 52 and the downward flow along the partition wall 51, after rising along the partition wall 52, it spreads in the width direction as being separated from the partition wall 52, Then, after descending along the partition wall 51, vertical and horizontal circulation flows are formed in which the circulation in the width direction converging at the center in the width direction is superimposed. For this reason, in the mixing chamber 2, the flocculated water, the polymer flocculating aid solution, and the pressurized water are mixed evenly.

しかも、隔壁上部52bが仕切壁51側へ傾斜しており、隔壁52に沿う上昇流が仕切壁51側へ流れ方向を変えるので、上昇してきた水が短絡的に隔壁52を乗り越えて浮上分離室80へ流れることがない。   In addition, the partition upper part 52b is inclined toward the partition wall 51, and the upward flow along the partition wall 52 changes the flow direction toward the partition wall 51, so that the rising water crosses over the partition wall 52 in a short-circuited manner and rises to the separation chamber. No flow to 80.

この結果、凝集処理水及び高分子凝集助剤溶液と加圧水とが十分に混ざり合い、フロックに気泡が十分に含有された状態で、フロックが浮上分離室80へ供給され、フロックが効率よく浮上分離される。   As a result, the flocs are supplied to the levitation separation chamber 80 in a state where the flocculated water and the polymer flocculation aid solution are sufficiently mixed with the pressurized water, and the bubbles are sufficiently contained in the flocs, and the flocs are efficiently levitated and separated. Is done.

しかも、この実施の形態では、流出口66からの凝集反応水に対し高分子凝集助剤溶液が供給管77から添加され、その後加圧水がノズル73から添加される。このため、凝集反応水中の凝集物に気泡が付着すると同時に、凝集物に対し高分子凝集助剤が接触し、凝集物表面に対し高分子凝集助剤が結合し易い。この結果、凝集反応水中の小さな凝集物同士が高分子凝集助剤によって結合され、成長し易くなる。この成長した粗大フロックは、気泡をフロック内部に含有しているため、浮上速度が大きく、フロックから気泡が分離しにくい。このため、効率良く浮上分離処理される。   Moreover, in this embodiment, the polymer coagulation assistant solution is added from the supply pipe 77 to the coagulation reaction water from the outlet 66, and then pressurized water is added from the nozzle 73. For this reason, bubbles adhere to the aggregate in the aggregation reaction water, and at the same time, the polymer aggregation aid comes into contact with the aggregate, and the polymer aggregation assistant easily binds to the aggregate surface. As a result, small agglomerates in the agglomeration reaction water are bound to each other by the polymer agglomeration aid, and are easily grown. Since the grown coarse floc contains bubbles inside the floc, the rising speed is high and the bubbles are difficult to separate from the floc. For this reason, the levitating separation process is efficiently performed.

浮上したフロックは、スキマーやスクレーバ等のかき取り機81によってスラッジ受入室82へ排出され、排出管83を介して取り出される。   The floated flock is discharged to a sludge receiving chamber 82 by a scraper 81 such as a skimmer or a scraper and taken out via a discharge pipe 83.

なお、浮上分離室80内で沈降したスラッジは、配管84を介して凝集槽11又は混和槽8へ返送されるか、又は系外へ排出される。   The sludge settled in the floating separation chamber 80 is returned to the agglomeration tank 11 or the mixing tank 8 via the pipe 84 or discharged out of the system.

清浄水は、浮上分離室80の上下方向の途中から配管85によって抜き出され、水位調整槽(図示略)を介して取り出される。この水位調整槽は、槽体53内の水位を調整するためのものである。   The clean water is extracted from the midway in the vertical direction of the levitation separation chamber 80 by the pipe 85, and is taken out via a water level adjusting tank (not shown). This water level adjustment tank is for adjusting the water level in the tank body 53.

ノズル73の上端と供給管77の上端とのレベル差は150mm以下、特に20〜100mm程度が好ましい。   The level difference between the upper end of the nozzle 73 and the upper end of the supply pipe 77 is preferably 150 mm or less, particularly about 20 to 100 mm.

ノズル73と供給管77との水平方向距離は100mm以下特に50mm以下であることが好ましく、できるだけノズル73と供給管77の距離が近い方が高分子凝集助剤の混合効率が良くなる。   The horizontal distance between the nozzle 73 and the supply pipe 77 is preferably 100 mm or less, particularly preferably 50 mm or less, and the mixing efficiency of the polymer coagulant aid is improved when the distance between the nozzle 73 and the supply pipe 77 is as short as possible.

この実施の形態では、凝集反応室60の底面と混合室70の底面とが面一状であるため、凝集反応室60からの凝集処理水は槽体底面53bに沿って流れを乱すことなく流出口66を通り抜け、混合室70の底面に沿って幅方向中央部を流れる。この流れが横方向や上方向に広がるのを防ぐために、流出口66に比較的短いトンネル状のガイド部材を接続してもよい。   In this embodiment, since the bottom surface of the agglomeration reaction chamber 60 and the bottom surface of the mixing chamber 70 are flush, the agglomerated water from the agglomeration reaction chamber 60 flows along the tank bottom surface 53b without disturbing the flow. It passes through the outlet 66 and flows in the center in the width direction along the bottom surface of the mixing chamber 70. In order to prevent this flow from spreading laterally or upward, a relatively short tunnel-shaped guide member may be connected to the outlet 66.

上記実施の形態では、流出口66、供給管77及びノズル73は1個ずつ設けられているが、2個ずつ設けられてもよく、3個以上ずつ設けられてもよい。   In the above embodiment, one outlet 66, one supply pipe 77, and one nozzle 73 are provided, but two may be provided, or three or more may be provided.

実施の形態に係る排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment concerning an embodiment. 実施の形態に係る排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment concerning an embodiment. 実施の形態に係る排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment concerning an embodiment. 実施の形態に係る排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment concerning an embodiment. 実施の形態に係る排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment concerning an embodiment. 実施の形態に係る排水処理装置の系統図である。It is a systematic diagram of the waste water treatment equipment concerning an embodiment. 加圧浮上分離装置の長手方向の縦断面図である。It is a longitudinal cross-sectional view of the longitudinal direction of a pressurization floating separator. 図6の仕切壁付近の構成を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of the partition wall vicinity of FIG. 図6の混合室内の水の循環状況を示す断面図である。It is sectional drawing which shows the circulation condition of the water in the mixing chamber of FIG. 図9のX−X線断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 図9のXI−XI線断面図である。It is the XI-XI sectional view taken on the line of FIG.

符号の説明Explanation of symbols

10 第1加圧浮上分離装置
20 第2加圧浮上分離装置
11,31 凝集槽
12,32 浮上槽
12A,32A 混合室
12B,32B 浮上分離室
13,33,72 微細気泡発生装置
51 仕切壁
52 隔壁
53 槽体
60 凝集反応室
65 撹拌機
66 流出口
70 混合室
80 浮上分離室
DESCRIPTION OF SYMBOLS 10 1st pressurization floating separation apparatus 20 2nd pressurization floating separation apparatus 11,31 Coagulation tank 12,32 Floating tank 12A, 32A Mixing chamber 12B, 32B Flotation separation chamber 13,33,72 Fine bubble generator 51 Partition wall 52 Partition wall 53 Tank 60 Aggregation reaction chamber 65 Stirrer 66 Outflow port 70 Mixing chamber 80 Floating separation chamber

Claims (11)

有機性排水の凝集槽と、
この凝集槽の流出水に微細気泡を混合して浮上スカムと分離水とに浮上分離する浮上槽と、を有する排水処理装置において、
該浮上槽で分離された浮上スカムの少なくとも一部を前記凝集槽に返送するスカム返送手段を備えたことを特徴とする排水処理装置。
An organic waste water agglomeration tank;
In a wastewater treatment apparatus having a levitation tank that mixes fine bubbles with the effluent water of this agglomeration tank and floats and separates into floating scum and separated water
A wastewater treatment apparatus comprising scum returning means for returning at least a part of the floating scum separated in the floating tank to the aggregating tank.
請求項1において、前記浮上槽からの分離水を生物処理する生物処理装置を備えたことを特徴とする排水処理装置。   The wastewater treatment apparatus according to claim 1, further comprising a biological treatment apparatus that biologically treats the separated water from the levitation tank. 有機性排水の凝集槽と、
この凝集槽の流出水に微細気泡を混合して第1の浮上スカムと第1の分離水とに浮上分離する第1の浮上槽と、
該第1の分離水を生物処理する生物処理装置と、
該生物処理装置からの生物処理水に微細気泡を混合して第2の浮上スカムと第2の分離水とに浮上分離する第2の浮上槽と、
該第1の浮上スカム及び第2の浮上スカムのうち少なくとも一方の浮上スカムの少なくとも一部を前記凝集槽に返送するスカム返送手段と
を備えたことを特徴とする排水処理装置。
An organic waste water agglomeration tank;
A first levitation tank that mixes microbubbles with the outflow water of the coagulation tank and floats and separates into a first levitation scum and first separation water;
A biological treatment apparatus for biologically treating the first separated water;
A second levitation tank that mixes fine bubbles with the biologically treated water from the biological treatment apparatus and floats and separates into the second floating scum and the second separated water;
A wastewater treatment apparatus comprising: a scum returning means for returning at least a part of at least one of the first and second floating scums to the agglomeration tank.
請求項2又は3において、前記生物処理装置は、曝気槽と、該曝気槽内に流動可能に収容され、生物膜を担持した流動担体とを有した流動生物膜式好気処理装置であることを特徴とする排水処理装置。   The biological treatment apparatus according to claim 2 or 3, wherein the biological treatment apparatus is a fluidized biofilm aerobic treatment apparatus having an aeration tank and a fluid carrier that is accommodated in the aeration tank so as to be flowable and carries a biofilm. Wastewater treatment equipment characterized by. 請求項1ないし4のいずれか1項において、前記浮上槽は、その槽内が、浮上分離処理される水に対し微細気泡を混合して混合水とする混合室と、この混合室内からの混合水が導入され、スカムが浮上する浮上分離室とに区画されていることを特徴とする排水処理装置。   5. The levitation tank according to claim 1, wherein the levitation tank has a mixing chamber in which fine bubbles are mixed with water to be subjected to the levitation separation process to form mixed water, and mixing from the mixing chamber. A wastewater treatment apparatus characterized by being partitioned into a floating separation chamber into which water is introduced and a scum rises. 請求項5において、前記混合室内に凝集助剤を添加する凝集助剤添加手段を備えたことを特徴とする排水処理装置。   6. The waste water treatment apparatus according to claim 5, further comprising a coagulation aid adding means for adding a coagulation aid into the mixing chamber. 請求項5において、該混合室には、浮上分離処理される水を該混合室内に導入するための導入部が設けられており、
この導入部からの水に対し前記凝集助剤添加手段から凝集助剤を添加した後、前記微細気泡を微細気泡添加手段から添加するようにしてなり、該凝集助剤添加手段に対し該微細気泡添加手段が直接配置されていることを特徴とする排水処理装置。
In Claim 5, the mixing chamber is provided with an introduction portion for introducing water to be floated and separated into the mixing chamber.
After adding the coagulation aid from the coagulation aid adding means to the water from the introduction part, the fine bubbles are added from the microbubble addition means, and the fine bubbles are added to the coagulation aid addition means. A wastewater treatment apparatus characterized in that the adding means is directly arranged.
請求項1ないし7のいずれか1項において、前記スカム返送手段によって返送されるスカムの少なくとも一部を好気処理するスカム好気処理手段を備えたことを特徴とする排水処理装置。   8. The waste water treatment apparatus according to claim 1, further comprising scum aerobic treatment means for aerobically treating at least a part of the scum returned by the scum return means. 請求項1ないし8のいずれか1項において、返送されるスカムを前記有機性排水と混合してから前記凝集槽に導入するように構成したことを特徴とする排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 8, wherein the scum to be returned is mixed with the organic wastewater and then introduced into the agglomeration tank. 有機性排水を請求項1ないし9のいずれか1項に記載の排水処理装置によって処理することを特徴とする有機性排水の処理方法。   Organic wastewater is processed with the wastewater treatment apparatus of any one of Claim 1 thru | or 9, The processing method of the organic wastewater characterized by the above-mentioned. 請求項10において、該排水処理装置は請求項4に記載の排水処理装置であり、
該生物処理装置の曝気を間欠的に停止し、該生物処理装置を好気−嫌気のサイクルで運転することを特徴とする有機性排水の処理方法。
In claim 10, the waste water treatment apparatus is the waste water treatment apparatus according to claim 4,
An organic wastewater treatment method characterized by intermittently stopping aeration of the biological treatment apparatus and operating the biological treatment apparatus in an aerobic-anaerobic cycle.
JP2006032425A 2006-02-09 2006-02-09 Organic wastewater treatment method and apparatus Expired - Fee Related JP4910415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032425A JP4910415B2 (en) 2006-02-09 2006-02-09 Organic wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032425A JP4910415B2 (en) 2006-02-09 2006-02-09 Organic wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2007209890A true JP2007209890A (en) 2007-08-23
JP4910415B2 JP4910415B2 (en) 2012-04-04

Family

ID=38488761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032425A Expired - Fee Related JP4910415B2 (en) 2006-02-09 2006-02-09 Organic wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4910415B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072747A (en) * 2007-09-25 2009-04-09 Sato Kogyo Co Ltd Water treatment apparatus utilizing microbubbles and water treatment method
WO2010011867A1 (en) * 2008-07-23 2010-01-28 Aquero Company, Llc Flotation and separation of flocculated oils and solids from waste waters
JP2012179578A (en) * 2011-03-02 2012-09-20 Kurita Water Ind Ltd Method for separating and recovering microalgae
JP2012179586A (en) * 2011-03-25 2012-09-20 Kurita Water Ind Ltd Method for separating and recovering microalgae
KR101352924B1 (en) 2012-03-05 2014-01-20 금강엔지니어링 주식회사 Advanced wastewater treatment system using fusion type
JP2014028365A (en) * 2012-07-02 2014-02-13 Mitsubishi Rayon Co Ltd Method of treating paper industry sewage
CN104310720A (en) * 2014-11-12 2015-01-28 福建农正鸿发纸业有限责任公司 Method for treating paper-making wastewater
CN105060641A (en) * 2015-08-11 2015-11-18 怀宁县天元纸业有限公司 Paper-making wastewater treatment method
CN105060636A (en) * 2015-08-06 2015-11-18 浙江环科环境研究院有限公司 System and technology for reuse of printing and dyeing wastewater reclaimed water subjected to quality-based treatment
CN106145578A (en) * 2016-07-29 2016-11-23 张凯悦 A kind of butyl benzyl phthalate Contaminated Sewage Sludge inorganic agent and preparation method thereof
US9758395B2 (en) 2011-04-28 2017-09-12 Aquero Company, Llc Lysine-based polymer coagulants for use in clarification of process waters
US9914136B2 (en) 2012-07-24 2018-03-13 Aquero Company, Llc Process for reducing soluble organic content in produced waters associated with the recovery of oil and gas
US9994767B2 (en) 2005-10-14 2018-06-12 Aquero Company, Llc Amino acid, carbohydrate and acrylamide polymers useful as flocculants in agricultural and industrial settings
CN109133554A (en) * 2018-11-01 2019-01-04 焦作大学 A kind of sludge recycle device and sludge recovery method
JP2019126782A (en) * 2018-01-25 2019-08-01 住友重機械工業株式会社 Wastewater biological treatment method and wastewater treatment system
CN110240328A (en) * 2019-07-19 2019-09-17 西安富仕兴环保科技有限公司 A kind of sewerage integrated efficient process equipment of skid-mounted type

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116496A (en) * 1979-03-02 1980-09-08 Nikko Eng Kk Treating method of waste water of kitchen
JPS55119457A (en) * 1979-03-09 1980-09-13 Nikko Eng Kk Floatation separation apparatus
JPS55165111A (en) * 1979-06-11 1980-12-23 Mitsubishi Heavy Ind Ltd Treating method of fine material in water
JP2002052394A (en) * 2000-05-31 2002-02-19 Nisshinbo Ind Inc Carrier for bioreactor and method for manufacturing and using the same
JP2004351375A (en) * 2003-05-30 2004-12-16 Ebara Corp High-speed floatation separation method of waste water and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116496A (en) * 1979-03-02 1980-09-08 Nikko Eng Kk Treating method of waste water of kitchen
JPS55119457A (en) * 1979-03-09 1980-09-13 Nikko Eng Kk Floatation separation apparatus
JPS55165111A (en) * 1979-06-11 1980-12-23 Mitsubishi Heavy Ind Ltd Treating method of fine material in water
JP2002052394A (en) * 2000-05-31 2002-02-19 Nisshinbo Ind Inc Carrier for bioreactor and method for manufacturing and using the same
JP2004351375A (en) * 2003-05-30 2004-12-16 Ebara Corp High-speed floatation separation method of waste water and apparatus therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994767B2 (en) 2005-10-14 2018-06-12 Aquero Company, Llc Amino acid, carbohydrate and acrylamide polymers useful as flocculants in agricultural and industrial settings
JP2009072747A (en) * 2007-09-25 2009-04-09 Sato Kogyo Co Ltd Water treatment apparatus utilizing microbubbles and water treatment method
US9321663B2 (en) 2008-07-23 2016-04-26 Aquero Company, Llc Flotation and separation of flocculated oils and solids from waste waters
WO2010011867A1 (en) * 2008-07-23 2010-01-28 Aquero Company, Llc Flotation and separation of flocculated oils and solids from waste waters
US20110272362A1 (en) * 2008-07-23 2011-11-10 Aquero Company, Llc Flotation and Separation of Flocculated Oils and Solids from Waste Waters
JP2012179578A (en) * 2011-03-02 2012-09-20 Kurita Water Ind Ltd Method for separating and recovering microalgae
JP2012179586A (en) * 2011-03-25 2012-09-20 Kurita Water Ind Ltd Method for separating and recovering microalgae
US9758395B2 (en) 2011-04-28 2017-09-12 Aquero Company, Llc Lysine-based polymer coagulants for use in clarification of process waters
KR101352924B1 (en) 2012-03-05 2014-01-20 금강엔지니어링 주식회사 Advanced wastewater treatment system using fusion type
JP2014028365A (en) * 2012-07-02 2014-02-13 Mitsubishi Rayon Co Ltd Method of treating paper industry sewage
US9914136B2 (en) 2012-07-24 2018-03-13 Aquero Company, Llc Process for reducing soluble organic content in produced waters associated with the recovery of oil and gas
CN104310720A (en) * 2014-11-12 2015-01-28 福建农正鸿发纸业有限责任公司 Method for treating paper-making wastewater
CN105060636A (en) * 2015-08-06 2015-11-18 浙江环科环境研究院有限公司 System and technology for reuse of printing and dyeing wastewater reclaimed water subjected to quality-based treatment
CN105060641A (en) * 2015-08-11 2015-11-18 怀宁县天元纸业有限公司 Paper-making wastewater treatment method
CN106145578A (en) * 2016-07-29 2016-11-23 张凯悦 A kind of butyl benzyl phthalate Contaminated Sewage Sludge inorganic agent and preparation method thereof
JP2019126782A (en) * 2018-01-25 2019-08-01 住友重機械工業株式会社 Wastewater biological treatment method and wastewater treatment system
JP7180979B2 (en) 2018-01-25 2022-11-30 住友重機械工業株式会社 Wastewater biological treatment method and wastewater treatment system
CN109133554A (en) * 2018-11-01 2019-01-04 焦作大学 A kind of sludge recycle device and sludge recovery method
CN109133554B (en) * 2018-11-01 2021-04-23 焦作大学 Sludge recycling device and sludge recycling method
CN110240328A (en) * 2019-07-19 2019-09-17 西安富仕兴环保科技有限公司 A kind of sewerage integrated efficient process equipment of skid-mounted type

Also Published As

Publication number Publication date
JP4910415B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4910415B2 (en) Organic wastewater treatment method and apparatus
US7622036B2 (en) Bio tank/oxygen replenishment system
US20090032460A1 (en) Wastewater treatment method and wastewater treatment equipment
KR101491001B1 (en) Multi stage floatation apparatus
KR101339741B1 (en) Water disposal apparatus and process for eliminating contaminating materials in wastewater.
KR20150069782A (en) Multi-staged air flotation system and Apparatus for treating water with the same
KR101603540B1 (en) Waste water treatment system for high density nitrogen remove and sludge reduction with anaerobic inter-barrier and fluidized media
KR101751250B1 (en) Water treatment system using flotation reactor using discharge ozone and ozone reactor
JP4337787B2 (en) Wastewater treatment method and treatment apparatus
CN109928539B (en) Air floatation sewage treatment device and method based on super-oxygen nano micro-bubbles
KR100671047B1 (en) Sewage Treatment System
CN107915366A (en) A kind of technique that advanced treating is carried out to garbage leachate using ozone
JP2008200604A (en) Bubble treatment device and water treatment apparatus
KR200390937Y1 (en) Sewage Treatment System
JP2004322084A (en) Biological filtration system
JP2008012491A (en) Aerobic digestion tank and sewage cleaning tank equipped with the same
KR101634292B1 (en) Wastewater treatment system using carrier based on modified a2o
KR101634296B1 (en) Sbr wastewater treatment system using soil microorganism
CN108911242B (en) Super nano bubble circulating ozone sewage treatment method and device
CN106348536B (en) Fenton synergistic ozone wastewater treatment device and wastewater treatment method thereof
KR20000037345A (en) Solid separation method and apparatus using minuteness bubble
CN206156977U (en) Device of high chemical oxygen demand of concurrent processing , high ammonia -nitrogen concentration , high phosphorus waste water
KR20200017200A (en) Apparatus of Treating Effluent from Water Treatment Plant
KR100352177B1 (en) Wastewater treatment plant for disintegration and separation of pollutants
CN209872592U (en) Air-float sewage treatment device based on superoxide nano micro bubbles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees