JP2010058013A - Pure water production system - Google Patents

Pure water production system Download PDF

Info

Publication number
JP2010058013A
JP2010058013A JP2008224112A JP2008224112A JP2010058013A JP 2010058013 A JP2010058013 A JP 2010058013A JP 2008224112 A JP2008224112 A JP 2008224112A JP 2008224112 A JP2008224112 A JP 2008224112A JP 2010058013 A JP2010058013 A JP 2010058013A
Authority
JP
Japan
Prior art keywords
water
flow rate
chamber
reverse osmosis
permeated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008224112A
Other languages
Japanese (ja)
Other versions
JP4978593B2 (en
Inventor
Takanari Kume
隆成 久米
Yasuyuki Arimitsu
保幸 有光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2008224112A priority Critical patent/JP4978593B2/en
Publication of JP2010058013A publication Critical patent/JP2010058013A/en
Application granted granted Critical
Publication of JP4978593B2 publication Critical patent/JP4978593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pure water production system which reduces a scale risk in an electric deionization module without using a chemical agent. <P>SOLUTION: The pure water production system for producing pure water by treating raw water with a water softener 1, a reverse osmosis membrane device 2, and an electric deionizer 10 in this order includes: a detector 22 for the hardness of a permeate installed between the reverse osmosis membrane device 2 and the electric deionizer 10 to detect the hardness of the permeate; a control means 15 for concentrated water flow rate to control the flow rate of the permeate supplied to a concentration chamber 6b when supplying the permeate from the reverse osmosis membrane device 2 to a desalting chamber 6a and the concentration chamber 6b of the electric deionizer 10; and a control portion 21 for controlling the concentrated water flow rate control means 15 based on the detection signals of the detector 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気脱イオン装置を用いて原水を処理するようにした純水製造システムに関する。   The present invention relates to a pure water production system in which raw water is treated using an electrodeionization apparatus.

工水、市水、井水或いは半導体製造工程等からの回収水を処理して純水を製造するシステムとして、原水を逆浸透膜装置で処理した後、電気脱イオン装置を用いて処理する純水製造システムが知られている(例えば特許文献1、2)。   As a system for producing pure water by treating recovered water from industrial water, city water, well water, or semiconductor manufacturing process, etc. A water production system is known (for example, Patent Documents 1 and 2).

電気脱イオン装置は、一対の電極間に陽イオン交換膜および陰イオン交換膜を交互に配列することにより脱塩室、濃縮室および電極室が区画形成され、脱塩室にイオン交換体が充填された電気脱イオンモジュールを備えており、脱塩室、濃縮室および電極室に被処理水を流入させ、脱塩室においてイオンが除去された処理水が処理水流出ラインからユースポイント等に供給され、濃縮室には、脱塩室から移動してきたイオンが濃縮し、濃縮水として外部に排出され、かつ電極室からなるものである。   In the electrodeionization device, a cation exchange membrane and an anion exchange membrane are alternately arranged between a pair of electrodes to form a demineralization chamber, a concentration chamber, and an electrode chamber, and the demineralization chamber is filled with an ion exchanger. The deionized chamber, the concentrating chamber, and the electrode chamber are supplied with treated water, and the treated water from which ions have been removed in the desalting chamber is supplied from the treated water outflow line to use points, etc. In the concentration chamber, the ions that have moved from the desalting chamber are concentrated and discharged to the outside as concentrated water, and are composed of an electrode chamber.

従来、電気脱イオン装置において、軟化器で処理した軟化水を電気脱イオン装置の濃縮水として使用するとともに、この軟化水にスケール防止剤を添加するようにした技術がある。
特開2003−1259号公報 特開2001−29752号公報 特表2007−528781号公報
Conventionally, in an electrodeionization apparatus, there is a technique in which softened water treated with a softener is used as concentrated water for an electrodeionization apparatus, and a scale inhibitor is added to the softened water.
JP 2003-1259 A JP 2001-29752 A JP-T-2007-528781

このような電気脱イオン装置においては、脱塩室からイオンが移動してくる濃縮室側では、イオン交換膜表面に炭酸カルシウム等のスケールが形成され、処理能力が低下する、いわゆるスケールリスクが発生しやすい。特許文献3では、電気脱イオン装置において、軟化器で処理した軟化水を電気脱イオン装置の濃縮水として使用するとともに、この軟化水にスケール防止剤を添加している。しかしながら、スケール防止剤のような薬剤を含んだ濃縮水を系外へ排水すると、環境汚染を引き起こすおそれがあった。   In such an electrodeionization apparatus, on the concentration chamber side where ions move from the demineralization chamber, a scale such as calcium carbonate is formed on the surface of the ion exchange membrane, and so-called scale risk occurs. It's easy to do. In patent document 3, in the electrodeionization apparatus, while using the softened water processed with the softener as concentrated water of an electrodeionization apparatus, the scale inhibitor is added to this softened water. However, draining concentrated water containing a chemical such as a scale inhibitor out of the system may cause environmental pollution.

本発明は、このような課題に鑑みてなされたものであり、薬剤を使用することなく、電気脱イオンモジュールのスケールリスクを低減した純水製造システムを提供することを目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the pure water manufacturing system which reduced the scale risk of the electrodeionization module, without using a chemical | medical agent.

本発明者らは、電気脱イオン装置に供給する透過水又は前処理の軟水の硬度を検出し、その硬度検出信号に基づいて電気脱イオンモジュールの濃縮室への給水流量を増やすことにより、局所濃縮を回避し、スケールリスクを低減できることを見出し、これに基づいて、以下のような新たな純水製造システムを発明するに至った。   The present inventors detect the hardness of the permeated water or pretreated soft water supplied to the electrodeionization apparatus, and increase the feed water flow rate to the concentration chamber of the electrodeionization module based on the hardness detection signal, thereby The inventors have found that the concentration risk can be avoided and the scale risk can be reduced, and based on this, the following new pure water production system has been invented.

(1) 原水を軟水化装置、逆浸透膜装置および電気脱イオン装置の順で処理して純水を製造する純水製造システムにおいて、前記逆浸透膜装置および前記電気脱イオン装置の間に設けられた、透過水の硬度を検出する透過水硬度検出器と、前記逆浸透膜装置から前記電気脱イオン装置の脱塩室および濃縮室に透過水を供給する際に、前記濃縮室に供給される透過水の流量を調整する濃縮水流量調整手段と、前記透過水硬度検出器の検出信号に基づいて前記濃縮水流量調整手段を制御する制御部と、を備えたことを特徴とする純水製造システム。 (1) In a pure water production system for producing pure water by processing raw water in the order of a water softening device, a reverse osmosis membrane device, and an electrodeionization device, provided between the reverse osmosis membrane device and the electrodeionization device When the permeated water hardness detector detects the hardness of the permeated water and the permeated water is supplied from the reverse osmosis membrane device to the demineralization chamber and the concentration chamber of the electrodeionization device, the permeated water hardness detector is supplied to the concentration chamber. Concentrated water flow rate adjusting means for adjusting the flow rate of the permeated water, and a control unit for controlling the concentrated water flow rate adjusting means based on a detection signal of the permeated water hardness detector. Manufacturing system.

(2) 原水を軟水化装置、逆浸透膜装置および電気脱イオン装置の順で処理して純水を製造する純水製造システムにおいて、前記軟水化装置および前記逆浸透膜装置の間に設けられた、軟水の硬度を検出する軟水硬度検出器と、前記逆浸透膜装置から前記電気脱イオン装置の脱塩室および濃縮室に透過水を供給する際に、前記濃縮室に供給される透過水の流量を調整する濃縮水流量調整手段と、前記軟水硬度検出器の検出信号に基づいて前記濃縮水流量調整手段を制御する制御部と、を備えたことを特徴とする純水製造システム。 (2) In a pure water production system for producing pure water by treating raw water in the order of a water softening device, a reverse osmosis membrane device, and an electrodeionization device, it is provided between the water softening device and the reverse osmosis membrane device. In addition, when the permeated water is supplied from the reverse osmosis membrane device to the demineralization chamber and the concentration chamber of the electrodeionization device, the permeated water supplied to the concentration chamber is detected. A pure water production system comprising: a concentrated water flow rate adjusting unit that adjusts the flow rate of the water; and a control unit that controls the concentrated water flow rate adjusting unit based on a detection signal of the soft water hardness detector.

(3) 前記電気脱イオン装置の脱塩室で脱イオン処理された処理水が流出する処理水流出ラインに設けられ、該処理水流出ラインに流れる処理水の流量を検出する流量センサと、前記流量センサの流量検知信号に基づいて前記電気脱イオン装置に透過水を給水する給水ポンプの速度を制御する制御部と、を備えたことを特徴とする(1)又は(2)記載の純水製造システム。 (3) a flow rate sensor that is provided in a treated water outflow line through which treated water deionized in the deionization chamber of the electrodeionization apparatus flows out and detects the flow rate of treated water flowing in the treated water outflow line; The pure water according to (1) or (2), further comprising: a control unit that controls a speed of a water supply pump that supplies permeated water to the electrodeionization device based on a flow rate detection signal of a flow rate sensor. Manufacturing system.

(4) 前記濃縮水流量調整手段は、前記濃縮室への流入ラインに直列に接続された開閉切換弁および第1定流量弁と、前記開閉切換弁および前記第1定流量弁と並列に接続された第2定流量弁とを備え、前記制御部は、前記透過水硬度検出器または前記軟水硬度検出器の検出信号に基づいて前記開閉切換弁を制御することを特徴とする(1)乃至(3)のいずれかに記載の純水製造システム。 (4) The concentrated water flow rate adjusting means is connected in parallel to the open / close switching valve and the first constant flow valve connected in series to the inflow line to the concentrating chamber, and the open / close switching valve and the first constant flow valve. The control valve controls the on-off switching valve based on a detection signal of the permeated water hardness detector or the soft water hardness detector. (3) The pure water production system according to any one of (3).

本発明の純水製造システムによれば、電気脱イオン装置に供給する透過水又は前処理の軟水の硬度を検出し、その硬度検出信号に基づいて電気脱イオンモジュールの濃縮室への給水流量を増やすことにより、局所濃縮を回避することができる。この結果、薬剤を使用することなく、電気脱イオンモジュールのスケールリスクを低減することができる。   According to the pure water production system of the present invention, the hardness of the permeated water supplied to the electrodeionization device or the soft water of the pretreatment is detected, and the flow rate of the feedwater to the concentration chamber of the electrodeionization module is determined based on the hardness detection signal. By increasing, local concentration can be avoided. As a result, the scale risk of the electrodeionization module can be reduced without using a drug.

図1は、本発明の第1実施形態による純水製造システムのシステム構成図である。   FIG. 1 is a system configuration diagram of a pure water production system according to a first embodiment of the present invention.

図1において、純水製造システムは、原水を軟水化処理する軟水装置1、軟水化された水を一次脱イオン処理する逆浸透膜装置2、および逆浸透膜装置2で処理された透過水を貯留する給水タンク3を備えている。給水タンク3の下流には透過水ライン4が設けられ、透過水ライン4に設けられた給水ポンプ5により電気脱イオン装置10の電気脱イオンモジュール6へ透過水が被処理水として送られ、二次脱イオン処理されるようになっている。   In FIG. 1, a pure water production system includes a soft water device 1 for softening raw water, a reverse osmosis membrane device 2 for primary deionization of softened water, and permeated water treated by the reverse osmosis membrane device 2. A water supply tank 3 for storage is provided. A permeated water line 4 is provided downstream of the water supply tank 3, and the permeated water is sent to the electrodeionization module 6 of the electrodeionization apparatus 10 as treated water by a feedwater pump 5 provided in the permeate water line 4. Subsequent deionization is performed.

電気脱イオンモジュール6は、図示しない一対の電極間に、陽イオン交換膜および陰イオン交換膜を交互に配列することにより、脱塩室6a、濃縮室6bおよび電極室6cが区画形成され、脱塩室6aにはイオン交換体が充填されたものである。脱塩室6aには被処理水を流入させる脱塩室流入ライン7、および脱塩室6aにおいてイオンが除去された処理水が流出する処理水流出ライン8が接続されている。濃縮室6bには、被処理水を流入させる濃縮室流入ライン11、および濃縮室6bにおいてイオンが濃縮された濃縮水を排水する濃縮水排水ライン12が接続されている。また、電極室6cには被処理水を流入させる電極室流入ライン13、および電極水流出ライン14が接続されている。脱塩室流入ライン7、濃縮室流入ライン11および電極室流入ライン13のそれぞれには流量調整弁9が接続されている。   In the electrodeionization module 6, a cation exchange membrane and an anion exchange membrane are alternately arranged between a pair of electrodes (not shown) so that a demineralization chamber 6 a, a concentration chamber 6 b, and an electrode chamber 6 c are partitioned and removed. The salt chamber 6a is filled with an ion exchanger. The desalting chamber 6a is connected to a desalting chamber inflow line 7 through which treated water flows and a treated water outflow line 8 from which treated water from which ions have been removed in the desalting chamber 6a flows out. The concentration chamber 6b is connected with a concentration chamber inflow line 11 through which water to be treated is introduced, and a concentration water drain line 12 for discharging the concentrated water in which ions are concentrated in the concentration chamber 6b. The electrode chamber 6c is connected to an electrode chamber inflow line 13 and an electrode water outflow line 14 through which treated water flows. A flow rate adjusting valve 9 is connected to each of the desalting chamber inflow line 7, the concentration chamber inflow line 11, and the electrode chamber inflow line 13.

濃縮室流入ライン11には、濃縮室流量調整手段15が設けられている。濃縮室流量調整手段15は、濃縮室流入ライン11に直列に接続された開閉切換弁16および第1定流量弁17と、開閉切換弁16および第1定流量弁17からなる弁列と並列に接続された第2定流量弁18とを備えたものである。処理水流出ライン8には、処理水流出ライン4に流れる処理水の流量を検出する流量センサ20が設けられ、流量センサ20の流量検知信号は制御部21に送られ、制御部21により給水ポンプ5の回転数、すなわち回転速度を制御するようになっている。   Concentration chamber flow rate adjusting means 15 is provided in the concentration chamber inflow line 11. The concentrating chamber flow rate adjusting means 15 is in parallel with a valve train composed of the on-off switching valve 16 and the first constant flow valve 17 connected in series to the concentrating chamber inflow line 11 and the on-off switching valve 16 and the first constant flow valve 17. A second constant flow valve 18 connected thereto is provided. The treated water outflow line 8 is provided with a flow rate sensor 20 that detects the flow rate of the treated water flowing through the treated water outflow line 4, and a flow rate detection signal of the flow rate sensor 20 is sent to the control unit 21, and the control unit 21 supplies a water supply pump The number of rotations of 5, that is, the rotation speed is controlled.

透過水ライン4には、透過水の硬度を検出する透過水硬度検出器22が設けられている。透過水硬度検出器22の検出信号は制御部21に送られ、制御部21はこの検出信号に基づいて濃縮室流量調整手段15を制御するようになっている。   The permeated water line 4 is provided with a permeated water hardness detector 22 that detects the hardness of the permeated water. The detection signal of the permeated water hardness detector 22 is sent to the control unit 21, and the control unit 21 controls the concentrating chamber flow rate adjusting means 15 based on this detection signal.

透過水硬度検出器22は、例えば透過水ライン4からサンプリングされた試料水に、硬度成分(カルシウムイオンおよびマグネシウムイオン)と反応して変色する金属指示薬を主成分とする試薬を添加し、呈色反応による色相変化を光学的に検出することにより、試料水の硬度を判定するものである。透過水硬度検出器22としては、例えば特許3186577号公報および特許第3214400号公報に開示された構成のものが好適に用いられる。また、試薬としては、例えばエリオクロムブラックT(金属指示薬)、EDTA−Mg(増感剤)、並びにトリエタノールアミンおよびエチレングリコール(非水系溶媒)からなる一液型の試薬が好適に用いられる。透過水硬度検出器22における測定プロセスは、通常、所定量の試料水を収容した測定セルに試薬を添加して混合するステップと、呈色反応後の試料水に2以上の特定波長の光を照射して透過率(または吸光度)を検出するステップとを含む。そして、透過率の検出値と硬度の関係を示す判定テーブルに基づいて試料水の硬度を判定し、その値を検出信号として制御部21に出力する。   The permeated water hardness detector 22 adds, for example, a reagent whose main component is a metal indicator that changes color by reacting with hardness components (calcium ions and magnesium ions) to sample water sampled from the permeated water line 4. The hardness of the sample water is determined by optically detecting the hue change due to the reaction. As the permeated water hardness detector 22, for example, those having the configurations disclosed in Japanese Patent No. 3186777 and Japanese Patent No. 3214400 are suitably used. As the reagent, for example, Eriochrome Black T (metal indicator), EDTA-Mg (sensitizer), and a one-component reagent composed of triethanolamine and ethylene glycol (non-aqueous solvent) are preferably used. The measurement process in the transmitted water hardness detector 22 usually includes adding a reagent to a measurement cell containing a predetermined amount of sample water and mixing it, and applying light of two or more specific wavelengths to the sample water after the color reaction. Irradiating to detect transmittance (or absorbance). And the hardness of sample water is determined based on the determination table which shows the relationship between the detected value of transmittance, and hardness, and the value is output to the control part 21 as a detection signal.

次に作用を説明する。工水、市水、井水等の原水は、軟水装置1で軟水化されたのち、逆浸透膜装置2に給水されて一次脱イオン処理され、その透過水が透過水ライン4から被処理水として給水ポンプ5を介して電気脱イオンモジュール6に給水される。脱塩室流入ライン7から流入した被処理水は脱塩室6aにおいてイオンが除去された後、処理水流出ライン8から処理水が流出される。濃縮室流入ライン11から流入した被処理水は濃縮室6bにおいてイオンが濃縮された後、濃縮水が濃縮水排水ライン12より排出される。また、電極室流入ライン11より流入した被処理水は電極水流出ライン14より電極水として排出される。   Next, the operation will be described. Raw water such as industrial water, city water, and well water is softened by the water softening device 1, then supplied to the reverse osmosis membrane device 2 and subjected to primary deionization treatment, and the permeate is treated water from the permeate line 4. The water is supplied to the electrodeionization module 6 through the water supply pump 5. The treated water flowing in from the desalting chamber inflow line 7 is discharged from the treated water outflow line 8 after ions are removed in the desalting chamber 6a. The treated water that has flowed in from the concentrating chamber inflow line 11 is concentrated in the concentrating chamber 6 b, and then the concentrated water is discharged from the concentrated water drain line 12. In addition, the water to be treated that flows in from the electrode chamber inflow line 11 is discharged from the electrode water outflow line 14 as electrode water.

透過水ライン4に流れる透過水の硬度は、透過水硬度検出器22により検出され、その検出信号は制御部21に送られる。制御部21は、この検出信号に基づいて濃縮室流量調整手段15の開閉切換弁16を制御する。すなわち、透過水硬度検出器22が透過水中への硬度もれを検出した場合は、開閉切換弁16を開くことにより、濃縮室流入ライン11から流入する被処理水の流量を増やして排水流量を増加させ、水回収率(=処理水流量/[処理水流量+排水流量])を低くする。この操作により、局所濃縮が回避されるので、濃縮室におけるスケール形成を防止することができる。   The hardness of the permeated water flowing through the permeated water line 4 is detected by the permeated water hardness detector 22, and the detection signal is sent to the control unit 21. The control unit 21 controls the open / close switching valve 16 of the concentrating chamber flow rate adjusting means 15 based on this detection signal. That is, when the permeate hardness detector 22 detects a leak of hardness into the permeate, the on-off switching valve 16 is opened to increase the flow rate of the water to be treated flowing from the concentration chamber inflow line 11 and to reduce the drainage flow rate. Increase the water recovery rate (= treated water flow rate / [treated water flow rate + drainage flow rate]). By this operation, local concentration is avoided, and scale formation in the concentration chamber can be prevented.

処理水流出ライン8に流れる処理水の流量は、流量センサ20により検知され、この流量検知信号は制御部21に送られ、制御部21により給水ポンプ5の回転数、すなわち回転速度を制御している。つまり、脱塩室6aに供給される被処理水の流量を制御し、処理水流出ライン8から流出する処理水の流量を常に一定に保つようにしている。   The flow rate of the treated water flowing in the treated water outflow line 8 is detected by the flow rate sensor 20, and this flow rate detection signal is sent to the control unit 21, and the control unit 21 controls the rotation speed of the feed water pump 5, that is, the rotation speed. Yes. That is, the flow rate of the treated water supplied to the desalting chamber 6a is controlled so that the flow rate of the treated water flowing out from the treated water outflow line 8 is always kept constant.

図2は、本発明の第2実施形態による純水製造システムのシステム構成図である。第2実施形態においては軟水装置1から逆浸透膜装置2に至る軟水ライン23に軟水硬度検出器24が設けられている。ここにおいて、軟水硬度検出器24は、第1実施形態で説明した透過水硬度検出器22と同様のものである。軟水ライン23に流れる軟水の硬度は軟水硬度検出器24により検出され、その検出信号は制御部21に送られる。制御部21は、この検出信号に基づいて濃縮室流量調整手段15の開閉切換弁16を制御する。すなわち、軟水硬度検出器24が軟水中への硬度もれを検出した場合は、開閉切換弁16を開くことにより、濃縮室流入ライン11から流入する透過水の流量を増やして排水流量を増加させ、水回収率(=処理水流量/[処理水流量+排水流量])を低くする。この操作により、局所濃縮が回避されるので、濃縮室におけるスケール形成を防止することができる。その他の構成は、第1実施形態と同一であるので説明を省略する。   FIG. 2 is a system configuration diagram of a pure water production system according to the second embodiment of the present invention. In the second embodiment, a soft water hardness detector 24 is provided in the soft water line 23 extending from the soft water device 1 to the reverse osmosis membrane device 2. Here, the soft water hardness detector 24 is the same as the permeated water hardness detector 22 described in the first embodiment. The hardness of the soft water flowing through the soft water line 23 is detected by the soft water hardness detector 24, and the detection signal is sent to the control unit 21. The control unit 21 controls the open / close switching valve 16 of the concentrating chamber flow rate adjusting means 15 based on this detection signal. That is, when the soft water hardness detector 24 detects a hardness leak into the soft water, the flow rate of the permeated water flowing from the concentrating chamber inflow line 11 is increased by opening the on-off switching valve 16 to increase the drainage flow rate. Reduce the water recovery rate (= treated water flow rate / [treated water flow rate + drainage flow rate]). By this operation, local concentration is avoided, and scale formation in the concentration chamber can be prevented. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

以上、説明したように、本発明の実施形態によれば、逆浸透膜装置2および電気脱イオン装置10の間に透過水の硬度を検出する透過水硬度検出器22を設け、逆浸透膜装置2から電気脱イオン装置10の脱塩室6aおよび濃縮室6bに透過水を供給する際に、濃縮室6bに供給される透過水の流量を調整する濃縮水流量調整手段15を設け、透過水硬度検出器22の検出信号に基づいて濃縮水流量調整手段15を制御するようにしたので、電気脱イオンモジュール6のスケール形成の大きな要因である透過水の硬度によって濃縮室6bへ供給する流量を増やし、局所濃縮を回避することにより、スケールリスクを低減することができる。   As described above, according to the embodiment of the present invention, the permeated water hardness detector 22 for detecting the hardness of the permeated water is provided between the reverse osmosis membrane device 2 and the electrodeionization device 10, and the reverse osmosis membrane device. When the permeated water is supplied from 2 to the demineralization chamber 6a and the concentration chamber 6b of the electrodeionization apparatus 10, a concentrated water flow rate adjusting means 15 is provided for adjusting the flow rate of the permeated water supplied to the concentration chamber 6b. Since the concentrated water flow rate adjusting means 15 is controlled based on the detection signal of the hardness detector 22, the flow rate supplied to the concentration chamber 6b is determined by the hardness of the permeated water, which is a major factor in the scale formation of the electrodeionization module 6. By increasing and avoiding local concentration, the scale risk can be reduced.

また、本実施形態によれば、軟水化装置1および逆浸透膜装置2の間に軟水の硬度を検出する軟水硬度検出器24を設け、逆浸透膜装置2から電気脱イオン装置10の脱塩室6aおよび濃縮室6bに透過水を供給する際に、濃縮室6bに供給される透過水の流量を調整する濃縮水流量調整手段15を設け、軟水硬度検出器24の検出信号に基づいて濃縮水流量調整手段15を制御するようにしたので、電気脱イオンモジュール6のスケール形成の大きな要因である軟水の硬度によって濃縮室6bへ供給する流量を増やし、局所濃縮を回避することにより、スケールリスクを低減することができる。   Moreover, according to this embodiment, the soft water hardness detector 24 for detecting the hardness of the soft water is provided between the water softening device 1 and the reverse osmosis membrane device 2, and the desalination of the electrodeionization device 10 from the reverse osmosis membrane device 2 is performed. When supplying the permeated water to the chamber 6a and the concentrating chamber 6b, a concentrated water flow rate adjusting means 15 for adjusting the flow rate of the permeated water supplied to the concentrating chamber 6b is provided, and concentrated based on the detection signal of the soft water hardness detector 24. Since the water flow rate adjusting means 15 is controlled, the flow rate supplied to the concentrating chamber 6b is increased by the hardness of soft water, which is a major factor for the scale formation of the electrodeionization module 6, and scale concentration is avoided by avoiding local concentration. Can be reduced.

また、本実施形態によれば、処理水流出ライン8に流れる処理水の流量を検出し、流量センサ20の流量検知信号に基づいて電気脱イオン装置10に透過水を給水する給水ポンプ5の回転数、すなわち回転速度を制御するので、濃縮室6bからの排水流量が増加して水回収率が変動しても、電気脱イオン装置10からの処理水の流量を一定に保つことができる。   Further, according to the present embodiment, the rotation of the feed water pump 5 that detects the flow rate of the treated water flowing in the treated water outflow line 8 and feeds the permeated water to the electrodeionization device 10 based on the flow rate detection signal of the flow rate sensor 20. Since the number, that is, the rotation speed is controlled, the flow rate of the treated water from the electrodeionization apparatus 10 can be kept constant even if the drainage flow rate from the concentration chamber 6b increases and the water recovery rate fluctuates.

また、本実施形態によれば、濃縮室流入ライン11に直列に接続された開閉切換弁16および第1定流量弁17と、これら弁列に並列に接続された第2定流量弁18とにより濃縮室流量調整手段15を構成したので、開閉切換弁16の制御により2段階の流量調整が可能になるとともに、開閉切換弁16を閉状態にした場合でも第2定流量弁18には常に一定流量の透過水を流すことができる。   Further, according to the present embodiment, the on-off switching valve 16 and the first constant flow valve 17 connected in series to the concentrating chamber inflow line 11 and the second constant flow valve 18 connected in parallel to these valve trains. Since the concentrating chamber flow rate adjusting means 15 is configured, the flow rate can be adjusted in two stages by controlling the open / close switching valve 16, and the second constant flow valve 18 is always constant even when the open / close switching valve 16 is closed. A flow rate of permeate can flow.

以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、電気脱イオン装置10、電気脱イオンモジュール6、軟水装置1、逆浸透膜装置2、透過水硬度検出器22、軟水硬度検出器24等の具体的構成および配置は適宜設計変更可能である。また、上記の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。   As mentioned above, although embodiment of this invention was described, it only illustrated the specific example and does not specifically limit this invention, the electrodeionization apparatus 10, the electrodeionization module 6, the water softening apparatus 1, and a reverse osmosis membrane The specific configuration and arrangement of the device 2, the permeated water hardness detector 22, the soft water hardness detector 24, and the like can be appropriately changed in design. In addition, the effects described in the above-described embodiment only list the most preferable effects resulting from the present invention, and the effects according to the present invention are not limited to those described in the embodiments of the present invention. Absent.

本発明の第1実施形態の純水製造装置のシステム構成図である。It is a system block diagram of the pure water manufacturing apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の純水製造装置のシステム構成図である。It is a system block diagram of the pure water manufacturing apparatus of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 軟水装置
2 逆浸透膜装置
5 給水ポンプ
6 電気脱イオンモジュール
8 処理水流出ライン
10 電気脱イオン装置
15 濃縮室流量調整手段
16 開閉切換弁
17 第1定流量弁
18 第2定流量弁
20 流量センサ
22 透過水硬度検出器
23 軟水ライン
24 軟水硬度検出器
DESCRIPTION OF SYMBOLS 1 Soft water apparatus 2 Reverse osmosis membrane apparatus 5 Water supply pump 6 Electrodeionization module 8 Treated water outflow line 10 Electrodeionization apparatus 15 Concentration chamber flow rate adjustment means 16 On-off switching valve 17 First constant flow valve 18 Second constant flow valve 20 Flow rate Sensor 22 Permeated water hardness detector 23 Soft water line 24 Soft water hardness detector

Claims (4)

原水を軟水化装置、逆浸透膜装置および電気脱イオン装置の順で処理して純水を製造する純水製造システムにおいて、
前記逆浸透膜装置および前記電気脱イオン装置の間に設けられた、透過水の硬度を検出する透過水硬度検出器と、
前記逆浸透膜装置から前記電気脱イオン装置の脱塩室および濃縮室に透過水を供給する際に、前記濃縮室に供給される透過水の流量を調整する濃縮水流量調整手段と、
前記透過水硬度検出器の検出信号に基づいて前記濃縮水流量調整手段を制御する制御部と、を備えたことを特徴とする純水製造システム。
In a pure water production system for producing pure water by processing raw water in the order of a water softening device, a reverse osmosis membrane device and an electrodeionization device,
A permeated water hardness detector provided between the reverse osmosis membrane device and the electrodeionization device for detecting the hardness of the permeated water;
Concentrated water flow rate adjusting means for adjusting the flow rate of the permeated water supplied to the concentration chamber when supplying the permeated water from the reverse osmosis membrane device to the demineralization chamber and the concentration chamber of the electrodeionization device;
And a controller for controlling the concentrated water flow rate adjusting means based on a detection signal of the permeated water hardness detector.
原水を軟水化装置、逆浸透膜装置および電気脱イオン装置の順で処理して純水を製造する純水製造システムにおいて、
前記軟水化装置および前記逆浸透膜装置の間に設けられた、軟水の硬度を検出する軟水硬度検出器と、
前記逆浸透膜装置から前記電気脱イオン装置の脱塩室および濃縮室に透過水を供給する際に、前記濃縮室に供給される透過水の流量を調整する濃縮水流量調整手段と、
前記軟水硬度検出器の検出信号に基づいて前記濃縮水流量調整手段を制御する制御部と、を備えたことを特徴とする純水製造システム。
In a pure water production system for producing pure water by processing raw water in the order of a water softening device, a reverse osmosis membrane device and an electrodeionization device,
A soft water hardness detector provided between the water softening device and the reverse osmosis membrane device to detect the hardness of soft water;
Concentrated water flow rate adjusting means for adjusting the flow rate of the permeated water supplied to the concentration chamber when supplying the permeated water from the reverse osmosis membrane device to the demineralization chamber and the concentration chamber of the electrodeionization device;
And a control unit that controls the concentrated water flow rate adjusting means based on a detection signal of the soft water hardness detector.
前記電気脱イオン装置の脱塩室で脱イオン処理された処理水が流出する処理水流出ラインに設けられ、該処理水流出ラインに流れる処理水の流量を検出する流量センサと、
前記流量センサの流量検知信号に基づいて前記電気脱イオン装置に透過水を給水する給水ポンプの速度を制御する制御部と、を備えたことを特徴とする請求項1又は2記載の純水製造システム。
A flow rate sensor that is provided in a treated water outflow line through which treated water deionized in the demineralization chamber of the electrodeionization apparatus flows, and detects a flow rate of treated water flowing in the treated water outflow line;
The pure water production according to claim 1, further comprising: a control unit that controls a speed of a water supply pump that supplies permeated water to the electrodeionization device based on a flow rate detection signal of the flow rate sensor. system.
前記濃縮水流量調整手段は、
前記濃縮室への流入ラインに直列に接続された開閉切換弁および第1定流量弁と、
前記開閉切換弁および前記第1定流量弁と並列に接続された第2定流量弁とを備え、
前記制御部は、前記透過水硬度検出器または前記軟水硬度検出器の検出信号に基づいて前記開閉切換弁を制御することを特徴とする請求項1乃至3のいずれかに記載の純水製造システム。
The concentrated water flow rate adjusting means includes:
An on-off switching valve and a first constant flow valve connected in series to the inflow line to the concentrating chamber;
A second constant flow valve connected in parallel with the open / close switching valve and the first constant flow valve;
The pure water production system according to any one of claims 1 to 3, wherein the control unit controls the open / close switching valve based on a detection signal of the permeated water hardness detector or the soft water hardness detector. .
JP2008224112A 2008-09-01 2008-09-01 Pure water production system Active JP4978593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224112A JP4978593B2 (en) 2008-09-01 2008-09-01 Pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224112A JP4978593B2 (en) 2008-09-01 2008-09-01 Pure water production system

Publications (2)

Publication Number Publication Date
JP2010058013A true JP2010058013A (en) 2010-03-18
JP4978593B2 JP4978593B2 (en) 2012-07-18

Family

ID=42185431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224112A Active JP4978593B2 (en) 2008-09-01 2008-09-01 Pure water production system

Country Status (1)

Country Link
JP (1) JP4978593B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061402A (en) * 2010-09-15 2012-03-29 Toshiba Corp Desalination system
CN109634241A (en) * 2018-12-25 2019-04-16 华南智能机器人创新研究院 Automatic production control method and system in a kind of production of tap water
JP7103467B1 (en) * 2021-04-07 2022-07-20 栗田工業株式会社 Control method of electric deionization system and electric deionization system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155562A (en) * 1993-12-03 1995-06-20 Matsushita Electric Ind Co Ltd Water regulator
JP2000051865A (en) * 1998-08-06 2000-02-22 Kurita Water Ind Ltd Electric regeneration type desalting apparatus
JP2001029752A (en) * 1999-07-23 2001-02-06 Kurita Water Ind Ltd Manufacture of high-purity water and device therefor
JP2003001259A (en) * 2001-06-22 2003-01-07 Kurita Water Ind Ltd Ultrapure water producing apparatus
JP2006255650A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Apparatus for producing pure water
JP2007513749A (en) * 2003-11-13 2007-05-31 ユーエスフィルター・コーポレイション Water treatment system and method
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2008194658A (en) * 2007-02-16 2008-08-28 Miura Co Ltd Pure water preparation system
JP2008229506A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Pure water production system
JP2010058010A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
JP3161750U (en) * 2007-04-18 2010-08-12 シーメンス ウォーター テクノロジース コーポレイション Water treatment with low scale potential

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155562A (en) * 1993-12-03 1995-06-20 Matsushita Electric Ind Co Ltd Water regulator
JP2000051865A (en) * 1998-08-06 2000-02-22 Kurita Water Ind Ltd Electric regeneration type desalting apparatus
JP2001029752A (en) * 1999-07-23 2001-02-06 Kurita Water Ind Ltd Manufacture of high-purity water and device therefor
JP2003001259A (en) * 2001-06-22 2003-01-07 Kurita Water Ind Ltd Ultrapure water producing apparatus
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2007513749A (en) * 2003-11-13 2007-05-31 ユーエスフィルター・コーポレイション Water treatment system and method
JP2006255650A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Apparatus for producing pure water
JP2008194658A (en) * 2007-02-16 2008-08-28 Miura Co Ltd Pure water preparation system
JP2008229506A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Pure water production system
JP3161750U (en) * 2007-04-18 2010-08-12 シーメンス ウォーター テクノロジース コーポレイション Water treatment with low scale potential
JP2010058010A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061402A (en) * 2010-09-15 2012-03-29 Toshiba Corp Desalination system
CN109634241A (en) * 2018-12-25 2019-04-16 华南智能机器人创新研究院 Automatic production control method and system in a kind of production of tap water
JP7103467B1 (en) * 2021-04-07 2022-07-20 栗田工業株式会社 Control method of electric deionization system and electric deionization system
WO2022215475A1 (en) * 2021-04-07 2022-10-13 栗田工業株式会社 Electrodeionization system and control method for electrodeionization system

Also Published As

Publication number Publication date
JP4978593B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
JP3161750U (en) Water treatment with low scale potential
JP4867182B2 (en) Pure water production equipment
TWI391332B (en) Pure water manufacturing device
TW201726557A (en) Ultrapure water production apparatus and method for operating thereof that can efficiently remove boron and rapidly prevent leakage thereof
JP4973853B2 (en) Pure water production system
KR102065275B1 (en) Desalination apparatus and method for desalinizing using the same
JP5768961B2 (en) Water treatment equipment
JPH0957271A (en) Treatment of water by electrolytic deionization method and device used therefor
CN105050963B (en) Water reuse (treatment system and desalting processing device and water reuse (treatment method
JP2006255652A (en) Apparatus for producing pure water
JP2008221195A (en) Operation method of pure water production system
JPH11244853A (en) Production of pure water
JP4978593B2 (en) Pure water production system
JP2009285522A (en) Reverse osmosis membrane device
Zhou et al. Effects of nanofiltration on desalination of flue gas desulfurization wastewater by electrodialysis: Treatment effect, fouling property and techno-economic analysis
JP5915295B2 (en) Pure water production method
US20230295019A1 (en) Hybrid electrochemical and membrane-based processes for treating water with high silica concentrations
JP2006255651A (en) Pure water producing system
CA2935262C (en) Process and apparatus for multivalent ion desalination
KR101730878B1 (en) Treating apparatus and method for concentrated waste water using ro-fo-ro process
JP7306074B2 (en) Ultrapure water production device and ultrapure water production method
Lai et al. Applications of the Taguchi method for key parameter screening in electrodialysis reversal used for high salinity wastewater
JP7147291B2 (en) Pure water production device, pure water production method
JP5591961B2 (en) Desalination apparatus and control method of desalination apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250