JP7306074B2 - Ultrapure water production device and ultrapure water production method - Google Patents

Ultrapure water production device and ultrapure water production method Download PDF

Info

Publication number
JP7306074B2
JP7306074B2 JP2019106513A JP2019106513A JP7306074B2 JP 7306074 B2 JP7306074 B2 JP 7306074B2 JP 2019106513 A JP2019106513 A JP 2019106513A JP 2019106513 A JP2019106513 A JP 2019106513A JP 7306074 B2 JP7306074 B2 JP 7306074B2
Authority
JP
Japan
Prior art keywords
water
pure water
heat exchanger
water production
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019106513A
Other languages
Japanese (ja)
Other versions
JP2020199436A (en
Inventor
優仁 栩内
聡 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019106513A priority Critical patent/JP7306074B2/en
Publication of JP2020199436A publication Critical patent/JP2020199436A/en
Application granted granted Critical
Publication of JP7306074B2 publication Critical patent/JP7306074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は半導体、液晶等の電子産業分野で利用される超純水を製造する超純水製造装置及びこの超純水製造装置を用いた超純水の製造方法に関する。 The present invention relates to an ultrapure water producing apparatus for producing ultrapure water used in the electronic industry such as semiconductors and liquid crystals, and a method for producing ultrapure water using this ultrapure water producing apparatus.

従来、半導体等の電子産業分野で用いられている超純水は、図2に示すように前処理システム2、一次純水製造装置3及び一次純水を処理する二次純水製造装置(サブシステム)4で構成される超純水製造装置1で原水(工業用水、市水、井水等)Wを処理することにより製造されている。 Conventionally, ultrapure water used in the electronic industry field such as semiconductors has a pretreatment system 2, a primary pure water production device 3, and a secondary pure water production device (sub) for processing the primary pure water, as shown in FIG. system) 4 by treating raw water (industrial water, city water, well water, etc.) W in an ultrapure water production apparatus 1.

凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理システム2では、原水W中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 Suspended solids and colloidal substances in the raw water W are removed in the pretreatment system 2 comprising coagulation, pressure flotation (sedimentation), filtration (membrane filtration) devices, and the like. In this process, it is also possible to remove polymeric organic substances, hydrophobic organic substances, and the like.

一次純水製造装置3は、前処理された水W0のタンク11、予熱器15、熱交換器16、逆浸透膜装置(RO装置)12、イオン交換装置(混床式又は4床5塔式など)13及び脱気装置14を備える。この一次純水製造装置3では、原水中のイオンや有機成分の除去を行う。なお、水は温度が高い程、粘性が低下し、膜装置などの透過性が向上する。このため、図2に示す通り、逆浸透膜装置12の前段に予熱器15及び熱交換器16が設置され、熱交換器16の出口水を所定温度となるように制御することより、水の粘度を低下させ、逆浸透膜装置12、イオン交換装置13及び脱気装置14への供給水の温度が所定温度以上となるように水を加温するとともに、二次純水製造装置4への供給水である一次純水W1を所定の温度に制御する。熱交換器16の1次側には、熱源流体として蒸気が供給される。逆浸透膜装置12では、所定の回収率で被処理水を処理することにより塩類を除去すると共に、イオン性やコロイド性のTOCを除去する一方、濃縮水W3を排出する。イオン交換装置13では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。そして、脱気装置14では無機系炭素(IC)、溶存酸素の除去を行う。 The primary pure water production device 3 includes a tank 11 for pretreated water W0, a preheater 15, a heat exchanger 16, a reverse osmosis membrane device (RO device) 12, an ion exchange device (mixed bed type or 4 bed 5 tower type etc.) 13 and a deaerator 14 . This primary pure water manufacturing apparatus 3 removes ions and organic components from the raw water. It should be noted that the higher the temperature of water, the lower the viscosity and the higher the permeability of a membrane device. For this reason, as shown in FIG. 2, a preheater 15 and a heat exchanger 16 are installed upstream of the reverse osmosis membrane device 12, and by controlling the outlet water of the heat exchanger 16 to a predetermined temperature, The viscosity of the water is reduced, the temperature of the water supplied to the reverse osmosis membrane device 12, the ion exchange device 13 and the degassing device 14 is heated to a predetermined temperature or higher, and the water is supplied to the secondary pure water production device 4. Primary pure water W1, which is supplied water, is controlled to a predetermined temperature. Steam is supplied to the primary side of the heat exchanger 16 as a heat source fluid. In the reverse osmosis membrane device 12, the water to be treated is treated at a predetermined recovery rate to remove salts and ionic and colloidal TOC, while discharging concentrated water W3. The ion exchange device 13 removes salts and TOC components adsorbed or ion-exchanged by the ion exchange resin. Then, the deaerator 14 removes inorganic carbon (IC) and dissolved oxygen.

一次純水製造装置で製造された一次純水W1は、配管17を介して二次純水製造装置4へ送水される。この二次純水製造装置4は、一次純水タンク21、ポンプ22、熱交換器23、低圧紫外線酸化装置(UV酸化装置)24、非再生式のイオン交換装置25及び限外濾過膜(UF膜)26を備えている。低圧紫外線酸化装置24では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置25で除去される。限外濾過膜装置26では、微粒子が除去され、イオン交換樹脂からの流出粒子も除去される。 Primary pure water W<b>1 produced by the primary pure water production system is sent to the secondary pure water production system 4 via pipe 17 . This secondary pure water production device 4 includes a primary pure water tank 21, a pump 22, a heat exchanger 23, a low-pressure ultraviolet oxidation device (UV oxidation device) 24, a non-regenerative ion exchange device 25 and an ultrafiltration membrane (UF membrane) 26. In the low-pressure ultraviolet oxidizer 24, TOC is decomposed into organic acids and CO 2 by ultraviolet rays of 185 nm emitted from a low-pressure ultraviolet lamp. Organic matter and CO 2 generated by the decomposition are removed in the subsequent ion exchange device 25 . The ultrafiltration membrane device 26 removes fine particles and also removes effluent particles from the ion exchange resin.

この二次純水製造装置4で製造された超純水W2は、配管27を介してユースポイント5に送られ、未使用の超純水は配管28を介して一次純水タンク21へ戻される。なお、ポンプ22の圧力が不足する場合、イオン交換装置25の上流側(例えばUV酸化装置24とイオン交換装置25の間)に昇圧ポンプが設置されることもある。 The ultrapure water W2 produced by the secondary pure water production device 4 is sent to the point of use 5 via a pipe 27, and unused ultrapure water is returned to the primary pure water tank 21 via a pipe 28. . If the pressure of the pump 22 is insufficient, a booster pump may be installed upstream of the ion exchange device 25 (for example, between the UV oxidation device 24 and the ion exchange device 25).

熱交換器23は、二次純水製造装置4からユースポイント5に送水される超純水W2の水温を所定温度(例えば約25℃程度)にするためのものである。 一般に、二次純水製造装置4で製造された超純水W2はユースポイント5へ供給され、余剰の超純水W2(未使用)はユースポイント5から二次純水製造装置4へ返送され、該二次純水製造装置4で再度処理されて一定の超純水水質を維持しながら循環する。そして、常時循環することで水が滞留せず、微生物の繁殖が抑制されている。この循環途中において、ポンプ22や低圧紫外線酸化装置24の紫外線照射のランプの熱などにより循環超純水の水温が上昇するのを熱交換器23によって奪熱し、循環する超純水の水温を所定温度に維持する。 The heat exchanger 23 is for setting the water temperature of the ultrapure water W2 sent from the secondary pure water production device 4 to the point of use 5 to a predetermined temperature (for example, about 25°C). In general, the ultrapure water W2 produced by the secondary pure water production device 4 is supplied to the point of use 5, and surplus ultrapure water W2 (unused) is returned from the point of use 5 to the secondary pure water production device 4. , is processed again in the secondary pure water production device 4 and circulated while maintaining a constant ultrapure water quality. The constant circulation prevents the water from stagnation and suppresses the propagation of microorganisms. During this circulation, the temperature of the circulating ultrapure water rises due to the heat of the ultraviolet irradiation lamp of the pump 22 and the low-pressure ultraviolet oxidation device 24, and the heat is removed by the heat exchanger 23, and the water temperature of the circulating ultrapure water is set to a predetermined value. Maintain at temperature.

なお、この二次純水製造装置4からの超純水W2をさらに三次純水製造装置で処理して不純物濃度をさらに低下させることもある。三次純水製造装置としては、二次純水製造装置と同様の構成のものを用いることができる。 The ultrapure water W2 from the secondary pure water production system 4 may be further treated in a tertiary pure water production system to further reduce the impurity concentration. As the tertiary pure water production device, one having the same configuration as the secondary pure water production device can be used.

上述したような前処理水W0を逆浸透膜装置(RO装置)12の前段で予熱器15及び熱交換器16により加温処理する超純水製造装置として、例えば特許文献1に示すものが提案されている。 As an ultrapure water production apparatus that heats the pretreated water W0 as described above with a preheater 15 and a heat exchanger 16 at the front stage of the reverse osmosis membrane device (RO device) 12, for example, the one shown in Patent Document 1 is proposed. It is

特開2013-119060号公報JP 2013-119060 A

しかしながら、近年、従来の熱交換器で前処理水W0を加温する一次純水製造装置(超純水製造装置)においても省エネルギー化が求められており、熱交換器16でのエネルギー(蒸気)消費量を削減できることが望ましい。 However, in recent years, there has been a demand for energy saving in a primary pure water production apparatus (ultra-pure water production apparatus) that heats pretreated water W0 with a conventional heat exchanger. It is desirable to be able to reduce consumption.

本発明は、上記課題に鑑みてなされたものであり、従来よりも熱交換器によるエネルギー消費量を削減することの可能な超純水製造装置及びこれを用いた超純水製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an ultrapure water production apparatus and an ultrapure water production method using the same that can reduce the energy consumption of heat exchangers compared to conventional ones. for the purpose.

上記目的に鑑み、本発明は第一に、熱交換器及び逆浸透膜分離手段を備えた一次純水製造装置と、該一次純水製造装置から得られた一次純水を処理する二次純水製造装置とを有する超純水製造装置であって、前記熱交換器が前記逆浸透膜分離手段の後段に設けられている超純水製造装置を提供する(発明1)。 In view of the above object, the present invention firstly provides a primary pure water production system equipped with a heat exchanger and reverse osmosis membrane separation means, and a secondary water purification system for treating the primary pure water obtained from the primary pure water production system. and a water production device, wherein the heat exchanger is provided downstream of the reverse osmosis membrane separation means (Invention 1).

かかる発明(発明1)によれば、逆浸透膜分離手段の処理水を熱交換器で加温することが可能となり、逆浸透膜分離手段の供給水を加温する場合と比較して、逆浸透膜分離手段の回収率に応じて熱交換器での熱源流体の使用量を低減することができる。 According to this invention (Invention 1), it is possible to heat the treated water of the reverse osmosis membrane separation means with a heat exchanger, and compared with the case of heating the feed water of the reverse osmosis membrane separation means, the reverse The amount of heat source fluid used in the heat exchanger can be reduced according to the recovery rate of the permeable membrane separation means.

上記発明(発明1)においては、前記逆浸透膜分離手段の処理水の流量検出手段及び温度検出手段と、前記熱交換器の出口水の目標温度を設定する手段と、これら流量検出手段及び温度検出手段で検出される流量及び温度に基づいて、この目標温度となるように熱交換器への熱源流体の供給量を制御する手段とを備えるのが好ましい(発明2)。 In the above invention (Invention 1), the flow rate detection means and the temperature detection means of the treated water of the reverse osmosis membrane separation means, the means for setting the target temperature of the outlet water of the heat exchanger, the flow rate detection means and the temperature detection means and means for controlling the supply amount of the heat source fluid to the heat exchanger so as to achieve the target temperature based on the flow rate and temperature detected by the detection means (Invention 2).

かかる発明(発明2)によれば、逆浸透膜分離手段の処理水の流量及び温度に基づいて、熱交換器への熱源流体の供給量を制御することができるので、熱源流体使用量をさらに最適化することができる。 According to this invention (Invention 2), the amount of heat source fluid supplied to the heat exchanger can be controlled based on the flow rate and temperature of the treated water of the reverse osmosis membrane separation means, so the amount of heat source fluid used can be further reduced. can be optimized.

また、本発明は第二に、熱交換器及び逆浸透膜分離手段を備えた一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造方法において、 逆浸透膜分離手段の処理水を熱交換器で加温する超純水製造方法を提供する(発明3)。 Secondly, according to the present invention, primary pure water is produced by passing raw water through a primary pure water producing apparatus equipped with a heat exchanger and reverse osmosis membrane separation means, and secondary pure water is produced from the primary pure water. Provided is a method for producing ultrapure water in which water is passed through a device to produce ultrapure water, in which treated water from a reverse osmosis membrane separation means is heated by a heat exchanger (Invention 3).

かかる発明(発明3)によれば、逆浸透膜分離手段の処理水を熱交換器で加温することにより、逆浸透膜分離手段の供給水を加温する場合と比較して、逆浸透膜分離手段の回収率に応じて蒸気使用量を低減することができる。 According to this invention (Invention 3), by heating the treated water of the reverse osmosis membrane separation means with a heat exchanger, compared with the case of heating the feed water of the reverse osmosis membrane separation means, the reverse osmosis membrane The amount of steam used can be reduced according to the recovery rate of the separation means.

前記発明(発明3)においては、前記逆浸透膜分離手段の処理水の流量及び温度を計測し、この計測された流量及び温度に基づいて、前記熱交換器を通過した水が目標温度となるように熱交換器への熱源流体の供給量を制御するのが好ましい(発明4)。 In the invention (invention 3), the flow rate and temperature of the treated water of the reverse osmosis membrane separation means are measured, and the water passing through the heat exchanger reaches the target temperature based on the measured flow rate and temperature. It is preferable to control the amount of heat source fluid supplied to the heat exchanger as follows (Invention 4).

かかる発明(発明4)によれば、逆浸透膜分離手段の処理水の流量及び温度に基づいて、熱交換器への熱源流体の供給量を制御することにより、さらに熱源流体の使用量の最適化を図ることができる。 According to this invention (invention 4), by controlling the amount of heat source fluid supplied to the heat exchanger based on the flow rate and temperature of the treated water of the reverse osmosis membrane separation means, the amount of heat source fluid used is further optimized. can be improved.

本発明によれば、熱交換器を逆浸透膜の後段に設けて、逆浸透膜の処理水を熱交換器で加温することにより、逆浸透膜の供給水を加温する場合と比較して、逆浸透膜の回収率に応じて熱源流体の使用量を低減することができ、熱交換器でのエネルギー消費量を削減することが可能となる。 According to the present invention, the heat exchanger is provided after the reverse osmosis membrane, and the treated water of the reverse osmosis membrane is heated by the heat exchanger, compared with the case of heating the feed water of the reverse osmosis membrane. Therefore, the amount of heat source fluid used can be reduced according to the recovery rate of the reverse osmosis membrane, and the energy consumption of the heat exchanger can be reduced.

本発明の一実施形態による超純水製造装置を示すフロー図である。1 is a flow diagram showing an ultrapure water production apparatus according to one embodiment of the present invention; FIG. 従来の超純水製造装置を示すフロー図である。FIG. 3 is a flow diagram showing a conventional ultrapure water production apparatus;

以下、本発明の一実施形態による超純水製造装置について添付図面を参照して説明する。 Hereinafter, an ultrapure water production apparatus according to one embodiment of the present invention will be described with reference to the accompanying drawings.

[超純水製造装置]
図1は本発明の一実施形態による超純水製造装置を示すフロー図であり、図1において、超純水製造装置1は基本的には前述した従来例と同じ構成を有するので、同一の構成には同一の符号を付し、その詳細な説明を省略する。
[Ultrapure water production equipment]
FIG. 1 is a flow diagram showing an ultrapure water production system according to one embodiment of the present invention. The same reference numerals are given to the configurations, and detailed descriptions thereof are omitted.

本実施形態の超純水製造装置1は、図1に示すように前処理システム2、一次純水製造装置3及び一次純水を処理する二次純水製造装置(サブシステム)4で構成される。前処理システム2は、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる。 As shown in FIG. 1, the ultrapure water production system 1 of this embodiment is composed of a pretreatment system 2, a primary pure water production system 3, and a secondary pure water production system (subsystem) 4 for processing the primary pure water. be. The pretreatment system 2 includes flocculation, pressure flotation (sedimentation), and filtration (membrane filtration) devices.

一次純水製造装置3は、前処理水W0のタンク11と、予熱器15と、逆浸透膜分離手段としての逆浸透膜装置(RO装置)12と、イオン交換装置(混床式、4床5塔式と、電気再生式イオン交換装置(EDI又はCDI)など)13と脱気装置14とを備え、本実施形態においては、逆浸透膜装置(RO装置)12の後段に熱交換器16が配置されている。この逆浸透膜装置(RO装置)12に用いる逆浸透膜としては特に制限はないが、膜面積が広く、高いフラックスを確保できるものが望ましい。 The primary pure water production device 3 includes a tank 11 for pretreated water W0, a preheater 15, a reverse osmosis membrane device (RO device) 12 as reverse osmosis membrane separation means, and an ion exchange device (mixed bed type, 4-bed 5 tower type, electrically regenerative ion exchange device (EDI or CDI, etc.) 13 and degassing device 14, and in this embodiment, a heat exchanger 16 is installed after the reverse osmosis membrane device (RO device) 12 are placed. The reverse osmosis membrane used in the reverse osmosis membrane device (RO device) 12 is not particularly limited, but it is desirable to have a wide membrane area and a high flux.

この一次純水製造装置3には、逆浸透膜装置(RO装置)12の透過水W4の流量検出手段としての流量計と、温度検出手段としての温度センサと、熱交換器の出口水W5の温度センサとが設置されている。これら流量計及び温度センサと、熱交換器16の出口水W5の温度センサ及び熱交換器16とはそれぞれ制御手段に接続されていて、この制御手段に熱交換器16の出口水W5の目標温度を設定すると、これら流量計及び温度センサで検出される逆浸透膜装置(RO装置)12の透過水W4の流量及び温度に基づいて、この目標温度となるように熱交換器16への熱源流体の供給量を制御することが可能となっている。なお、便宜上、透過水W4の流量計、温度センサと、熱交換器16の出口水W5の温度センサ及び制御手段については図示を省略する。 The primary pure water production apparatus 3 includes a flow meter as flow rate detection means for the permeate water W4 of the reverse osmosis membrane apparatus (RO apparatus) 12, a temperature sensor as temperature detection means, and an outlet water W5 of the heat exchanger. A temperature sensor is installed. These flow meter and temperature sensor, the temperature sensor of the outlet water W5 of the heat exchanger 16 and the heat exchanger 16 are connected to control means, and the target temperature of the outlet water W5 of the heat exchanger 16 is controlled by the control means. is set, based on the flow rate and temperature of the permeated water W4 of the reverse osmosis membrane device (RO device) 12 detected by these flow meters and temperature sensors, the heat source fluid to the heat exchanger 16 is adjusted to the target temperature. It is possible to control the supply amount of For convenience, the illustration of the flow meter and temperature sensor for the permeated water W4 and the temperature sensor and control means for the outlet water W5 of the heat exchanger 16 is omitted.

そして、二次純水製造装置4は、一次純水W1のタンク21と、ポンプ22と、熱交換器23と、低圧紫外線酸化装置(UV酸化装置)24と、非再生式のイオン交換装置25と、限外濾過膜(UF膜)26とにより構成される。 The secondary pure water production device 4 includes a tank 21 for primary pure water W1, a pump 22, a heat exchanger 23, a low-pressure ultraviolet oxidation device (UV oxidation device) 24, and a non-regenerative ion exchange device 25. and an ultrafiltration membrane (UF membrane) 26 .

[超純水製造方法]
上述したような構成を有する超純水製造装置を用いた超純水の製造方法について説明する。
[Ultrapure water production method]
A method for producing ultrapure water using the ultrapure water production apparatus having the configuration described above will be described.

まず、原水Wを前処理システム2に供給して、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより処理する。これにより、原水W中の懸濁物質やコロイド物質を除去する。また、この前処理システム2で高分子系有機物、疎水性有機物なども除去することができる。ここで処理された前処理水W0では通常、水中の微粒子数は10個/mL以下となる。 First, raw water W is supplied to the pretreatment system 2 and treated by coagulation, pressure flotation (sedimentation), filtration (membrane filtration), and the like. Suspended solids and colloidal substances in the raw water W are thereby removed. In addition, the pretreatment system 2 can also remove macromolecular organic substances, hydrophobic organic substances, and the like. In the pretreated water W0 treated here, the number of fine particles in water is usually 10 3 particles/mL or less.

次にこの前処理水W0を一次純水製造装置3のタンク11に一旦貯留した後供給するが、この際予熱器15によりある程度加温する。これにより前処理水W0の粘度を低下させて、逆浸透膜装置(RO膜装置)12での透過性を向上させる。この加温する温度は、前処理水W0の温度にもよるが、逆浸透膜装置12への供給水の温度が18℃未満では、前処理水W0の粘度の低下が十分でないだけでなく、後述する熱交換器16での熱源流体の供給量が多く必要になる一方、22℃を超えると、予熱器15での加温のエネルギーの必要量が過大となるため18~22℃程度とすればよい。 Next, the pretreated water W0 is temporarily stored in the tank 11 of the primary pure water producing apparatus 3 and then supplied. This reduces the viscosity of the pretreated water W0 and improves the permeability in the reverse osmosis membrane device (RO membrane device) 12 . The heating temperature depends on the temperature of the pretreated water W0, but if the temperature of the water supplied to the reverse osmosis membrane device 12 is less than 18° C., not only does the viscosity of the pretreated water W0 not sufficiently decrease, While a large amount of heat source fluid is required to be supplied in the heat exchanger 16, which will be described later, if the temperature exceeds 22°C, the required amount of energy for heating in the preheater 15 becomes excessive. Just do it.

このようにして予熱した前処理水W0を逆浸透膜装置(RO膜装置)12で所定の回収率で処理することにより塩類を除去すると共に、イオン性やコロイド性のTOCを除去する一方、濃縮水W3を排出する。この逆浸透膜装置(RO膜装置)12による回収率は、前処理水W0及び一次純水W1にもよるが、60~90容積%程度、特に70~80容積%程度である。したがって、逆浸透膜装置(RO膜装置)12の透過水W4は、前処理水W0よりも回収率を積算した分だけ、その量が少なくなる。このとき、逆浸透膜でのスライム・スケールトラブルを防止するために、スライムコントロール剤やスケール付着防止剤を添加することが好ましい。 The pretreated water W0 thus preheated is treated with a reverse osmosis membrane device (RO membrane device) 12 at a predetermined recovery rate to remove salts and to remove ionic and colloidal TOC, while concentrating Water W3 is discharged. The recovery rate of the reverse osmosis membrane device (RO membrane device) 12 depends on the pretreated water W0 and the primary pure water W1, but is about 60 to 90% by volume, particularly about 70 to 80% by volume. Therefore, the amount of the permeated water W4 of the reverse osmosis membrane device (RO membrane device) 12 is smaller than that of the pretreated water W0 by an amount corresponding to the integrated recovery rate. At this time, it is preferable to add a slime control agent or an anti-scaling agent in order to prevent slime and scale troubles in the reverse osmosis membrane.

続いて、このRO膜透過水W4を熱交換器16により再度加温して、所定の温度の出口水W5を製造する。このRO膜透過水W4の加温温度は、要求される超純水W2の水温にもよるが、23℃未満では熱交換器16によりあえて最加温するのは効率的でない一方、27℃を超えると熱交換器16に供給する熱源流体の供給量が多く必要になるため、23~27℃程度、例えば約25℃とすればよい。 Subsequently, the RO membrane permeated water W4 is heated again by the heat exchanger 16 to produce outlet water W5 at a predetermined temperature. The temperature at which the RO membrane permeated water W4 is heated depends on the required water temperature of the ultrapure water W2. If it exceeds, a large amount of heat source fluid is required to be supplied to the heat exchanger 16, so the temperature should be about 23 to 27°C, for example, about 25°C.

具体的には、制御手段に熱交換器16の出口水W5の目標温度をインプットしておき、逆浸透膜装置(RO装置)12の透過水W4の流量及び温度を流量計及び温度センサによりそれぞれ計測し、この計測値に基づいて目標温度となるように熱交換器16への熱源流体の供給量を決定し、出口水W5の温度センサの測定値に基づいて熱源流体の供給量を制御すればよい。 Specifically, the target temperature of the outlet water W5 of the heat exchanger 16 is input to the control means, and the flow rate and temperature of the permeated water W4 of the reverse osmosis membrane device (RO device) 12 are measured by a flow meter and a temperature sensor, respectively. Based on this measured value, the supply amount of the heat source fluid to the heat exchanger 16 is determined so as to achieve the target temperature, and the supply amount of the heat source fluid is controlled based on the measured value of the temperature sensor of the outlet water W5. Just do it.

このようにRO膜透過水W4を熱交換器16で加温することにより、逆浸透膜装置12の透過水W4は、前処理水W0(逆浸透膜装置12の供給水)よりも回収率を積算した分だけその量が少ないので、逆浸透膜装置12の供給水を熱交換器16で加温する場合と比べて、熱交換器16への熱源流体の供給量を少なくすることができるため、熱交換器でのエネルギー消費量を削減することができる。しかも一次純水W1の吐出側により近い位置で熱交換器16により加温することになるので、一次純水W1の供給温度をより正確に管理することが可能となる、という効果も奏する。 By heating the RO membrane permeated water W4 in the heat exchanger 16 in this way, the permeated water W4 of the reverse osmosis membrane device 12 has a higher recovery rate than the pretreated water W0 (supply water of the reverse osmosis membrane device 12). Since the amount is smaller by the integrated amount, the amount of heat source fluid supplied to the heat exchanger 16 can be reduced compared to the case where the water supplied to the reverse osmosis membrane device 12 is heated by the heat exchanger 16. , the energy consumption in the heat exchanger can be reduced. Moreover, since the heat exchanger 16 heats the primary pure water W1 at a position closer to the discharge side, the supply temperature of the primary pure water W1 can be controlled more accurately.

その後、イオン交換装置13で塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行い、脱気装置14で無機系炭素(IC)、溶存酸素の除去を行うことにより、一次純水W1を製造する。 After that, the ion exchange device 13 removes salts and the TOC components adsorbed or ion-exchanged by the ion exchange resin, and the degassing device 14 removes inorganic carbon (IC) and dissolved oxygen. A primary pure water W1 is produced.

そして、製造された一次純水W1は、配管17を介して二次純水製造装置4へ送水され、一次純水タンク21に一旦貯留される。そして、低圧紫外線酸化装置24で、低圧紫外線ランプより出される185nmの紫外線により微量に残存するTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置25で除去される。限外濾過膜装置26では、微粒子が除去され、イオン交換樹脂からの流出粒子も除去される。このようにして超純水W2を製造することができる。 The produced primary pure water W1 is then sent to the secondary pure water producing device 4 through the pipe 17 and temporarily stored in the primary pure water tank 21 . Then, in the low-pressure ultraviolet oxidizer 24, a trace amount of remaining TOC is decomposed into organic acids and further CO 2 by ultraviolet rays of 185 nm emitted from a low-pressure ultraviolet lamp. Organic matter and CO 2 generated by the decomposition are removed in the subsequent ion exchange device 25 . The ultrafiltration membrane device 26 removes fine particles and also removes effluent particles from the ion exchange resin. Thus, ultrapure water W2 can be produced.

この二次純水製造装置4で製造された超純水W2は、配管27を介してユースポイント5に送られ、未使用の超純水は配管28を介して一次純水タンク21へ戻される。なお、熱交換器23は、上述したような超純水W2の循環利用に伴いポンプ22や低圧紫外線酸化装置24の紫外線照射のランプの熱などにより超純水W2の水温が上昇することがあるので、このような場合には、熱交換器23によって奪熱し、循環する超純水W2の水温を所定温度に維持する。 The ultrapure water W2 produced by the secondary pure water production device 4 is sent to the point of use 5 via a pipe 27, and unused ultrapure water is returned to the primary pure water tank 21 via a pipe 28. . In the heat exchanger 23, the water temperature of the ultrapure water W2 may rise due to the heat of the UV irradiation lamp of the pump 22 and the low-pressure UV oxidation device 24 as the ultrapure water W2 is circulated as described above. Therefore, in such a case, heat is taken by the heat exchanger 23 to maintain the water temperature of the circulating ultrapure water W2 at a predetermined temperature.

以上、本発明について、前記実施形態に基づき説明してきたが、本発明は前記実施形態に限らず種々の変形実施が可能であり、一次純水製造装置3と二次純水製造装置4は本実施例の構成に限らず種々の構成とすることができる。例えば、一次純水製造装置3では逆浸透膜(RO)装置12を2段に直列に配置して、いずれかの透過水を熱交換器16で加温するようにしてもよい。さらに二次純水製造装置4の後段にさらに三次純水装置を設けてもよい。 Although the present invention has been described above based on the above-described embodiments, the present invention is not limited to the above-described embodiments, and various modifications are possible. Various configurations are possible without being limited to the configuration of the embodiment. For example, in the primary pure water production system 3 , reverse osmosis (RO) membranes 12 may be arranged in series in two stages, and one of the permeated water may be heated by the heat exchanger 16 . Furthermore, a tertiary pure water device may be further provided after the secondary pure water production device 4 .

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

〔比較例1〕
図2に示す超純水製造装置1を用い、原水Wを前処理装置2、一次純水製造装置3及び二次純水製造装置4により処理して超純水W2を製造した。
[Comparative Example 1]
Using the ultrapure water production apparatus 1 shown in FIG. 2, raw water W was treated by a pretreatment apparatus 2, a primary pure water production apparatus 3 and a secondary pure water production apparatus 4 to produce ultrapure water W2.

この際、一次純水製造装置3の給水として10m/hの前処理水W0を予熱器15で20℃に加温した後、さらに熱交換器16で25℃に加温し、逆浸透膜装置(RO装置)12で回収率70容積%で処理してRO膜透過水W4とした。このときの熱交換器16での必要熱量は、210[MJ/h]であった。 At this time, 10 m 3 /h of pretreated water W0 as feed water for the primary pure water production apparatus 3 is heated to 20° C. in the preheater 15, and further heated to 25° C. in the heat exchanger 16. The water was treated with an apparatus (RO apparatus) 12 at a recovery rate of 70% by volume to obtain RO membrane permeated water W4. The required amount of heat in the heat exchanger 16 at this time was 210 [MJ/h].

〔実施例1〕
図1に示す超純水製造装置1を用い、原水Wを前処理装置2、一次純水製造装置3及び二次純水製造装置4により処理して超純水W2を製造した。
[Example 1]
Using the ultrapure water production apparatus 1 shown in FIG. 1, raw water W was treated with a pretreatment apparatus 2, a primary pure water production apparatus 3 and a secondary pure water production apparatus 4 to produce ultrapure water W2.

この際、一次純水製造装置3の給水として10m/hの前処理水W0を予熱器15で20℃に加温した後、逆浸透膜装置(RO装置)12で回収率70容積%で処理した。このRO膜透過水W4をさらに熱交換器16で25℃に加温した。このときの熱交換器16での必要熱量は、147[MJ/h]であった。 At this time, after heating 10 m 3 /h of pretreated water W0 to 20° C. in the preheater 15 as the feed water for the primary pure water production device 3, the reverse osmosis membrane device (RO device) 12 was used with a recovery rate of 70% by volume. processed. This RO membrane permeated water W4 was further heated to 25° C. by the heat exchanger 16 . The required amount of heat in the heat exchanger 16 at this time was 147 [MJ/h].

一方、逆浸透膜装置12の処理水を25℃から20℃に下げたことによる逆浸透膜装置12の所費電力の増加は、25℃基準での透過水0.8m/d(at0.74MPa)とすると、20℃及び25℃での温度補正係数各々0.144及び1であるので、これにより各々の入口圧力は0.85MP及び0.74MPaとなる。よってΔ0.09MPaが温度変化による全揚程(Δ9m)に影響する。 On the other hand, the increase in power consumption of the reverse osmosis membrane device 12 due to lowering the treated water of the reverse osmosis membrane device 12 from 25 ° C. to 20 ° C. is 0.8 m / d (at 0.74 MPa ), the temperature correction factors at 20° C. and 25° C. are 0.144 and 1, respectively, which gives inlet pressures of 0.85 MPa and 0.74 MPa, respectively. Therefore, Δ0.09 MPa affects the total head (Δ9 m) due to temperature change.

消費電力Wは軸動力W/モータ効率で求められる。重力加速度9.8m/S、ポンプ効率80%、モータ効率80%を一定とすると、比較例1と実施例1とにおける消費電力の差は以下のように算出される。
消費電力(W)=1000[kg/m]×9.8[m/S]×10[m/h]
×Δ9[m]÷0.8÷0.8
=1.38MJ/h
The power consumption W is obtained by shaft power W/motor efficiency. Assuming that the gravitational acceleration of 9.8 m/S, the pump efficiency of 80%, and the motor efficiency of 80% are constant, the difference in power consumption between Comparative Example 1 and Example 1 is calculated as follows.
Power consumption (W) = 1000 [kg/ m3 ] x 9.8 [m/ S2 ] x 10 [ m3 /h]
× Δ9 [m] ÷ 0.8 ÷ 0.8
= 1.38MJ/h

したがって、逆浸透膜装置12消費電力の増加分1.38MJ/hと熱交換器16で削減できる熱量63(210-147)MJ/hとから、61.6MJ/hのエネルギーの削減が見込めることが確認できた。 Therefore, an energy reduction of 61.6 MJ/h can be expected from the increase in power consumption of the reverse osmosis membrane device 12 of 1.38 MJ/h and the amount of heat that can be reduced by the heat exchanger 16 of 63 (210-147) MJ/h. was confirmed.

1 超純水製造装置
2 前処理システム
3 一次純水製造装置
11 タンク
12 逆浸透膜装置(RO装置)
13 イオン交換装置
14 脱気装置
15 予熱器
16 熱交換器
17 配管
4 二次純水製造装置(サブシステム)
21 一次純水タンク
22 ポンプ
23 熱交換器
24 低圧紫外線酸化装置(UV酸化装置)
25 イオン交換装置
26 限外濾過膜(UF膜)
27 配管
28 配管
5 ユースポイント
W 原水
W0 前処理水
W1 一次純水
W2 超純水
W3 濃縮水
W4 RO膜透過水
W5 出口水
1 ultrapure water production device 2 pretreatment system 3 primary pure water production device 11 tank 12 reverse osmosis membrane device (RO device)
13 Ion exchange device 14 Deaerator 15 Preheater 16 Heat exchanger 17 Piping 4 Secondary pure water production device (subsystem)
21 primary pure water tank 22 pump 23 heat exchanger 24 low pressure ultraviolet oxidizer (UV oxidizer)
25 Ion exchange device 26 Ultrafiltration membrane (UF membrane)
27 Piping 28 Piping 5 Point of Use W Raw Water W0 Pretreated Water W1 Primary Pure Water W2 Ultrapure Water W3 Concentrated Water W4 RO Membrane Permeated Water W5 Outlet Water

Claims (4)

一次純水製造装置と、該一次純水製造装置から得られた一次純水を処理する二次純水製造装置とを有する超純水製造装置であって、
前記一次純水製造装置は、予熱器と、逆浸透膜分離手段と、第一熱交換器と、混床式又は4床5塔式のイオン交換装置と、脱気装置とをこの順に備え、
前記二次純水製造装置は、第二熱交換器と、紫外線酸化装置と、イオン交換装置と、限外濾過膜とをこの順に備え、
前記第一熱交換器は、超純水の製造工程において、前記逆浸透膜分離手段の処理水を23~27℃の範囲に加温するものである超純水製造装置。
An ultrapure water production apparatus comprising a primary pure water production apparatus and a secondary pure water production apparatus for processing the primary pure water obtained from the primary pure water production apparatus,
The primary pure water production apparatus comprises a preheater, a reverse osmosis membrane separation means, a first heat exchanger, a mixed-bed or 4-bed 5-tower ion exchanger, and a deaerator in this order,
The secondary pure water production device comprises a second heat exchanger, an ultraviolet oxidation device, an ion exchange device, and an ultrafiltration membrane in this order,
The first heat exchanger heats the treated water of the reverse osmosis membrane separation means to a range of 23 to 27° C. in the ultrapure water production process.
前記逆浸透膜分離手段の処理水の流量検出手段及び温度検出手段と、前記第一熱交換器の出口水の目標温度を設定する手段と、これら流量検出手段及び温度検出手段で検出される流量及び温度に基づいて、この目標温度となるように前記第一熱交換器への熱源流体の供給量を制御する手段とを備える、請求項1に記載の超純水製造装置。 Flow rate detection means and temperature detection means of the treated water of the reverse osmosis membrane separation means, means for setting the target temperature of the outlet water of the first heat exchanger, and flow rates detected by these flow rate detection means and temperature detection means and means for controlling the supply amount of the heat source fluid to the first heat exchanger so as to achieve the target temperature based on the temperature. 一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造方法において、
前記一次純水製造装置は、予熱器と、逆浸透膜分離手段と、第一熱交換器と、混床式又は4床5塔式のイオン交換装置と、脱気装置とをこの順に備え、
前記二次純水製造装置は、第二熱交換器と、紫外線酸化装置と、イオン交換装置と、限外濾過膜とをこの順に備え、
超純水の製造工程において、前記逆浸透膜装置分離手段の処理水を前記第一熱交換器で23~27℃の範囲に加温する超純水製造方法。
In an ultrapure water production method, raw water is passed through a primary pure water production device to produce primary pure water, and the primary pure water is passed through a secondary pure water production device to produce ultrapure water,
The primary pure water production apparatus comprises a preheater, a reverse osmosis membrane separation means, a first heat exchanger, a mixed-bed or 4-bed 5-tower ion exchanger, and a deaerator in this order,
The secondary pure water production device comprises a second heat exchanger, an ultraviolet oxidation device, an ion exchange device, and an ultrafiltration membrane in this order,
A method for producing ultrapure water, wherein in the ultrapure water production process, the treated water of the reverse osmosis membrane device separation means is heated to a range of 23 to 27° C. by the first heat exchanger.
前記逆浸透膜分離手段の処理水の流量及び温度を計測し、この計測された流量及び温度に基づいて、前記第一熱交換器を通過した水が目標温度となるように前記第一熱交換器への熱源流体の供給量を制御する、請求項3に記載の超純水製造方法。 The flow rate and temperature of the treated water of the reverse osmosis membrane separation means are measured, and based on the measured flow rate and temperature, the first heat exchange is performed so that the water passing through the first heat exchanger reaches a target temperature. 4. The method for producing ultrapure water according to claim 3, wherein the amount of heat source fluid supplied to the vessel is controlled.
JP2019106513A 2019-06-06 2019-06-06 Ultrapure water production device and ultrapure water production method Active JP7306074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019106513A JP7306074B2 (en) 2019-06-06 2019-06-06 Ultrapure water production device and ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106513A JP7306074B2 (en) 2019-06-06 2019-06-06 Ultrapure water production device and ultrapure water production method

Publications (2)

Publication Number Publication Date
JP2020199436A JP2020199436A (en) 2020-12-17
JP7306074B2 true JP7306074B2 (en) 2023-07-11

Family

ID=73742326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106513A Active JP7306074B2 (en) 2019-06-06 2019-06-06 Ultrapure water production device and ultrapure water production method

Country Status (1)

Country Link
JP (1) JP7306074B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074147A1 (en) * 2021-10-25 2023-05-04 オルガノ株式会社 Water treatment system and water treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229223A (en) 1999-02-05 2000-08-22 Kurita Water Ind Ltd Electrolytically deionizing device and its operation
JP2001047054A (en) 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2013119060A (en) 2011-12-07 2013-06-17 Kurita Water Ind Ltd Ultrapure water production method and apparatus
JP2017032224A (en) 2015-08-03 2017-02-09 三浦工業株式会社 Heated water manufacturing system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189796A (en) * 1987-01-30 1988-08-05 Daicel Chem Ind Ltd Heat exchanger of hollow yarn type for manufacture of super-pure water of high temperature
JPH0929251A (en) * 1995-07-17 1997-02-04 Kurita Water Ind Ltd Ultrapure water preparing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229223A (en) 1999-02-05 2000-08-22 Kurita Water Ind Ltd Electrolytically deionizing device and its operation
JP2001047054A (en) 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2013119060A (en) 2011-12-07 2013-06-17 Kurita Water Ind Ltd Ultrapure water production method and apparatus
JP2017032224A (en) 2015-08-03 2017-02-09 三浦工業株式会社 Heated water manufacturing system

Also Published As

Publication number Publication date
JP2020199436A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP4867182B2 (en) Pure water production equipment
US6991733B2 (en) Process for removing organics from ultrapure water
TWI391332B (en) Pure water manufacturing device
JP4779391B2 (en) Pure water production equipment
WO2019244443A1 (en) Method for removing boron from water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration
WO2018051552A1 (en) Ultrapure water manufacturing device
JPH11244853A (en) Production of pure water
JP5953726B2 (en) Ultrapure water production method and apparatus
JP2013202581A (en) Ultrapure water production apparatus
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
US20220348487A1 (en) Methods and systems for zero liquid discharge recycling of waste generated from manufacturing operations
JP7306074B2 (en) Ultrapure water production device and ultrapure water production method
CN114555534B (en) Water treatment system, ultrapure water production system, and water treatment method
JP2006255651A (en) Pure water producing system
JP7405066B2 (en) Ultrapure water production equipment and ultrapure water production method
JP4208270B2 (en) Pure water production method
JP2013202610A (en) Ultrapure water production apparatus
JP2006122908A (en) Pure water producing method
WO2022239483A1 (en) Method and device for producing ultrapure water
WO2023100443A1 (en) Warm ultrapure water production device
JP7168739B2 (en) Water treatment device and water treatment method
WO2022215475A1 (en) Electrodeionization system and control method for electrodeionization system
JP5257175B2 (en) Ultrapure water production equipment
CN117677589A (en) Method for operating pure water production system
CN112520879A (en) Ultrapure water production system and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230612

R150 Certificate of patent or registration of utility model

Ref document number: 7306074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150