JP2000051865A - Electric regeneration type desalting apparatus - Google Patents

Electric regeneration type desalting apparatus

Info

Publication number
JP2000051865A
JP2000051865A JP10222785A JP22278598A JP2000051865A JP 2000051865 A JP2000051865 A JP 2000051865A JP 10222785 A JP10222785 A JP 10222785A JP 22278598 A JP22278598 A JP 22278598A JP 2000051865 A JP2000051865 A JP 2000051865A
Authority
JP
Japan
Prior art keywords
water
regeneration type
electric regeneration
desalination apparatus
type desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222785A
Other languages
Japanese (ja)
Inventor
Kiminobu Osawa
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10222785A priority Critical patent/JP2000051865A/en
Publication of JP2000051865A publication Critical patent/JP2000051865A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject apparatus utilizing electrodialysis in the production of pure water or ultrapure water used in a pharmaceutical field, a power field, a semiconductor producing field and a liquid crystal producing field. SOLUTION: An electric regeneration type desalting apparatus wherein water 42 to be treated is introduced and formed desalted water 49 is discharged comprises detectors 43, 44, 45 and 46 measuring the quality or quantity of water 42 to be treated or desalted water 49 and control means 47 and 48 controlling the values of a current or voltage supplied to the electric regeneration type desalting apparatus 41 on the basis of the output values of the detectors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製薬分野、電力分
野、半導体製造分野、液晶製造分野で用いられる純水、
超純水の製造に関わるものであり、さらに詳しくは電気
透析を利用した電気再生型脱塩装置に関するものであ
る。
[0001] The present invention relates to pure water used in the fields of pharmaceuticals, electric power, semiconductor manufacturing, and liquid crystal.
The present invention relates to the production of ultrapure water, and more particularly to an electric regeneration type desalination apparatus using electrodialysis.

【0002】[0002]

【従来の技術】純水を製造する方法として、イオン交換
樹脂を用いた方法が広く用いられてきたが、近年、イオ
ン交換樹脂、イオン交換繊維とイオン交換膜を組み合わ
せた電気再生型脱塩装置が用いられるようになってき
た。図1に示すように一般的に電気再生型脱塩装置は、
陰イオン交換膜と陽イオン交換膜に挟まれた多くの隔室
からなり、隔質は一対の陽イオン交換膜と陰イオン交換
膜で構成され、膜間には溶液中のイオン移動速度向上、
もしくは電流を流れ易くさせるために、イオン交換樹脂
又はイオン交換繊維が充填されている。給水が脱塩室に
はいると、給水中の各イオンはイオン交換樹脂に捕捉さ
れる。次に各イオンは直流電流により電位の傾きの方向
にイオン交換樹脂もしくはイオン交換繊維上を移動す
る。この際、陽イオンは陽イオン交換膜を通過し、陰極
へ引き寄せられ、陰イオン交換膜の前で移動が止まり、
同様に陰イオンは陽極へ引き寄せられ、陽イオン交換膜
の前で移動が止まり、それぞれ濃縮水として検出され
る。したがって、脱塩室は下部に行くほどイオンがなく
なり、イオン交換樹脂もしくはイオン交換繊維はHC
l、NaOH等の再生剤を用いることなく常に再生型
(H型、OH型)となっている。このため、脱塩室下部
からは再生することなく高純度の処理水(脱塩水)が得
られる。
2. Description of the Related Art As a method for producing pure water, a method using an ion exchange resin has been widely used. In recent years, an electric regeneration type desalination apparatus combining an ion exchange resin, an ion exchange fiber and an ion exchange membrane has been used. Has come to be used. Generally, as shown in FIG.
It consists of a number of compartments sandwiched between an anion exchange membrane and a cation exchange membrane, and the partition consists of a pair of cation exchange membrane and anion exchange membrane.
Alternatively, an ion-exchange resin or ion-exchange fiber is filled to make the current flow easily. When the feedwater enters the desalination chamber, each ion in the feedwater is captured by the ion exchange resin. Next, each ion moves on the ion exchange resin or the ion exchange fiber in the direction of the gradient of the potential by the direct current. At this time, the cations pass through the cation exchange membrane, are attracted to the cathode, stop moving in front of the anion exchange membrane,
Similarly, anions are attracted to the anode, stop moving in front of the cation exchange membrane, and are each detected as concentrated water. Therefore, the lower the demineralization chamber is, the lower the ion is, and the ion exchange resin or ion exchange fiber is HC
It is always of a regenerating type (H type, OH type) without using a regenerating agent such as 1, NaOH. Therefore, high-purity treated water (desalinated water) can be obtained from the lower part of the desalination chamber without regeneration.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
電気再生型脱塩装置の印加電圧もしくは電流値は運転初
期に一定に設定されているため、給水の水質が変動する
と、脱塩室に充填されているイオン交換樹脂、もしくは
イオン交換繊維の量は僅かなため、処理水(脱塩水)水
質が連動して変動する課題があった。例として図2に電
気再生型脱塩装置給水導電率と処理水比抵抗値を採取し
たデータを示す。そのため、電気再生型脱塩装置給水水
質の変動に関わらず、一定水質の処理水が得られる方法
が望まれていた。シリカ、TOC、ホウ素などのイオン
化しにくい物質を電気再生型脱塩装置で除去を期待する
場合は他のイオンに比べ、さらに処理水水質の安定化が
困難となる。本発明はこのような知見を基になされたも
のであり、電気再生型脱塩装置の運転変動、水質変動に
関わらず、一定水質以上の処理水を安定して得ることが
できる電気再生型脱塩装置を提供することを目的とする
ものである。
However, since the applied voltage or current value of the conventional electric regeneration type desalination apparatus is set to be constant in the early stage of operation, when the water quality of the feed water fluctuates, the water is charged into the desalination chamber. Since the amount of the ion-exchange resin or the ion-exchange fiber is small, there is a problem that the quality of the treated water (desalted water) fluctuates in conjunction therewith. As an example, FIG. 2 shows data obtained by collecting the water supply conductivity and the treated water resistivity of the electric regeneration type desalination apparatus. Therefore, there has been a demand for a method capable of obtaining treated water having a constant water quality irrespective of fluctuations in the feed water quality of the electric regeneration type desalination apparatus. When it is expected to remove substances that are difficult to ionize, such as silica, TOC, and boron, using an electric regeneration type desalination apparatus, it becomes more difficult to stabilize the quality of treated water as compared with other ions. The present invention has been made based on such knowledge, and it is possible to stably obtain treated water having a certain water quality or higher irrespective of fluctuations in the operation and water quality of the electric regeneration type desalination apparatus. It is an object to provide a salt device.

【0004】[0004]

【課題を解決するための手段】本発明の電気再生型脱塩
装置は、被処理水を導入し、生成した脱塩水を排出する
電気再生型脱塩装置において、該被処理水又は該脱塩水
の水質もしくは水量を計測する検出計と、検出計の出力
値に基づき電気再生型脱塩装置に供給する電流値又は電
圧値を制御する制御手段を設けたことを特徴とする。
The electric regeneration type desalination apparatus according to the present invention is an electric regeneration type desalination apparatus for introducing treated water and discharging generated desalinated water. And a control means for controlling a current value or a voltage value supplied to the electric regeneration type desalination apparatus based on an output value of the detector.

【0005】本発明における検出計の設置場所は、電気
再生型脱塩装置に導入される被処理水の導入ラインに設
けても良いし、電気再生型脱塩装置から排出される脱塩
水(純水)の排出ラインに設けても良い。
[0005] The detector of the present invention may be installed in the introduction line of the water to be treated introduced into the electric regeneration type desalination apparatus, or the desalinated water (pure water) discharged from the electric regeneration type desalination apparatus. It may be provided in the discharge line of (water).

【0006】導入ラインに設ける場合〔A〕は、被処理
水の水質及び/又は水量の変動を検出計で把握(計測)
する。そして、検出計で計測した水質値や水量に応じて
電気再生型脱塩装置に供給する電流値(電圧値)を制御
する。例えば、被処理水の導入ラインに検出計として導
電率計を設置して導電率を計測したときは、下式によっ
て電気再生型脱塩装置に供給する必要な電流値(電圧
値)を求めることができる。また、TOC計、アルカリ
度検出計(CO2 計)、シリカ濃度計など他の水質検出
計などを用いるときも同様な式に基づいて電流値(電圧
値)を算出することができる。
[0006] In the case of installation in the introduction line [A], the fluctuation of the quality and / or amount of the water to be treated is grasped (measured) by a detector.
I do. Then, a current value (voltage value) supplied to the electric regeneration type desalination device is controlled according to the water quality value and the water amount measured by the detector. For example, when a conductivity meter is installed as a detector on the introduction line of the water to be treated and the conductivity is measured, the required current value (voltage value) to be supplied to the electric regeneration type desalination apparatus is calculated by the following equation. Can be. Also, when other water quality detectors such as a TOC meter, an alkalinity detector (CO 2 meter), and a silica concentration meter are used, the current value (voltage value) can be calculated based on the same equation.

【数1】 (Equation 1)

【0007】脱塩水の排出ラインに設ける場合〔B〕
は、脱塩水(処理水)の水質を検出計で把握(計測)す
る。そして、検出計で計測した水質値を目標水質と対比
し、目標水質に近づくように電気再生型脱塩装置に供給
する電流値(電圧値)を制御する。例えば、脱塩水の排
出ラインに比抵抗計を設置し、制御手段としてPID制
御方式の指示調節計と整流器を設け、脱塩水の目標水質
値を18MΩ・cmとする場合は、指示調節計の設定値
を18MΩ・cmとすることにより、検出比抵抗値が1
8MΩ・cmに近づくように、指示調節計から整流器へ
電流値(電圧値)の増減の指示がなされる。
[0007] In the case of providing in the discharge line of demineralized water [B]
Detects (measures) the quality of desalinated water (treated water) with a detector. Then, the water quality value measured by the detector is compared with the target water quality, and the current value (voltage value) supplied to the electric regeneration type desalination apparatus is controlled so as to approach the target water quality. For example, when a resistivity meter is installed in the discharge line of deionized water, a PID control type indicator controller and a rectifier are provided as control means, and the target water quality value of the demineralized water is 18 MΩ · cm, the setting of the indicator controller is required. By setting the value to 18 MΩ · cm, the detection specific resistance value becomes 1
An instruction controller instructs the rectifier to increase or decrease the current value (voltage value) so as to approach 8 MΩ · cm.

【0008】使用する検出計はどのような脱塩水を得る
かによって決めることができ、例えば、純度の高い純水
を得たい場合は、導電率計や比抵抗計を用いばよく、シ
リカ濃度の低い脱塩水を得たいときはシリカ計を用いれ
ばよいし、TOCを所定値以下にしたいときはTOC計
を用いればよく、その他目的に応じてCO2 計やホウ素
計など任意の検出計を用いることができる。また、水質
の変動が比較的小さいが、必要な脱塩水量が変化する場
合は、水質計の代わりに水量計(被処理水量、脱塩水量
測定)を用いても良い。さらに、複数の検出計を用い、
それらの水質、水量を同時に満足するように制御しても
良いし、被処理水と、脱塩水の両方に検出計を設けて制
御することもできる。
The detector to be used can be determined depending on what kind of demineralized water is to be obtained. For example, when it is desired to obtain pure water having a high purity, a conductivity meter or a resistivity meter may be used, and the silica concentration may be determined. When it is desired to obtain low demineralized water, a silica meter may be used. When it is desired to reduce the TOC to a predetermined value or less, a TOC meter may be used. Depending on the purpose, an arbitrary detector such as a CO 2 meter or a boron meter may be used. be able to. In addition, when the fluctuation in water quality is relatively small, but the required amount of desalinated water changes, a water meter (measured water amount, desalinated water amount measurement) may be used instead of the water quality meter. In addition, using multiple detectors,
The control may be performed so as to satisfy the water quality and the water amount at the same time, or the control may be performed by providing a detector for both the water to be treated and the desalinated water.

【0009】[0009]

【発明の実施の形態】以下に、図面に基づいて本発明を
さらに詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0010】前記〔A〕の電気再生型脱塩装置について
説明する。即ち検出計を電気再生型脱塩装置に導入され
る被処理水の導入ラインに設け、被処理水の水質及び/
又は水量に応じて、電気再生型脱塩装置に供給する必要
な電流値又は電圧値を求める場合〔A〕について、図を
用いて詳細に説明する。
A description will be given of the electric regeneration type desalination apparatus [A]. That is, the detector is provided in the introduction line of the water to be introduced into the electric regeneration type desalination apparatus, and the water quality and / or
Alternatively, the case where the required current value or voltage value to be supplied to the electric regeneration type desalination apparatus according to the amount of water [A] will be described in detail with reference to the drawings.

【0011】図3は本発明の電気再生型脱塩装置を組み
込んだ一次純水製造設備の装置設備の装置構成を示した
ものである。工水、市水などの原水1は、凝集,ろ過
2、活性炭塔3、軟化装置4で構成される前処理システ
ム9で濁質成分、硬度成分、有機物の一部及び塩素が除
去される。詳しくは凝集,ろ過2にて、原水中に含まれ
るSSや不純物を凝集剤を添加して凝集フロックを生成
させ、これをろ過して除去する。活性炭塔3では、原水
中の残留塩素、有機物を除去する。軟化装置4では、原
水中のCaやMgなど硬度成分を除去する。これによ
り、水質向上と共に後続装置でのスケール発生を抑制す
る。次に、一次純水システム10では、まず、脱気装置
5の前で塩酸等の酸を添加し、pH4〜5.5で運転
(脱気)し、原水中の溶存二酸化炭素、溶存酸素を除去
する。二酸化炭素は電気再生型脱塩装置7の負荷にな
り、電気再生型脱塩装置7による水質向上の妨げになる
ので予め除去しておくことが望ましい。続いて逆浸透膜
装置6(RO膜装置)の前で水酸化ナトリウム等のアル
カリでpHを8〜11に調整し、RO膜でイオン成分
(塩類)、TOC、シリカ、ホウ素等を除去する。さら
に、RO膜装置6からリークしてきた成分(残留イオン
性物質)を電気再生型脱塩装置7で除去する。電気再生
型脱塩装置7で処理された純水(高純度脱塩水)はサブ
システム11へ送水され、超純水となる。洗浄を行った
使用済み超純水は、回収水8として脱気装置5の前に戻
される。なお、この装置構成は本発明を説明するための
例に過ぎず、本発明を何等制限するものではない。
FIG. 3 shows an apparatus configuration of a primary pure water production facility incorporating the electric regeneration type desalination apparatus of the present invention. Raw water 1 such as industrial water and city water is subjected to a pretreatment system 9 including a coagulation / filtration 2, an activated carbon tower 3, and a softening device 4 to remove turbid components, hardness components, some organic substances, and chlorine. Specifically, in the flocculation and filtration 2, SS and impurities contained in the raw water are added with a flocculant to generate flocculated flocs, which are removed by filtration. In the activated carbon tower 3, residual chlorine and organic matter in raw water are removed. In the softening device 4, hardness components such as Ca and Mg in the raw water are removed. As a result, the generation of scale in the subsequent device is suppressed while improving the water quality. Next, in the primary pure water system 10, first, an acid such as hydrochloric acid is added in front of the deaerator 5 and the system is operated (degassed) at a pH of 4 to 5.5 to remove dissolved carbon dioxide and dissolved oxygen in the raw water. Remove. Carbon dioxide is a load on the electric regeneration type desalination apparatus 7 and hinders the improvement of water quality by the electric regeneration type desalination apparatus 7. Therefore, it is desirable to remove carbon dioxide in advance. Subsequently, the pH is adjusted to 8 to 11 with an alkali such as sodium hydroxide before the reverse osmosis membrane device 6 (RO membrane device), and ion components (salts), TOC, silica, boron, and the like are removed by the RO membrane. Further, components (residual ionic substances) leaked from the RO membrane device 6 are removed by the electric regeneration type desalination device 7. Pure water (high-purity demineralized water) treated by the electric regeneration type desalination device 7 is sent to the subsystem 11 and becomes ultrapure water. The used ultrapure water that has been washed is returned as collected water 8 before the deaerator 5. Note that this device configuration is merely an example for describing the present invention, and does not limit the present invention in any way.

【0012】図4に、この場合〔A〕の電気再生型脱塩
装置の具体的な構成について、即ち具体的な制御方法に
ついて示す。なお、本発明においては、検出計を含む制
御手段を備えた全体構成を電気再生型脱塩装置としてい
るので、前記の制御手段が設けられていない(従来の)
装置を図中及び以下の説明では電気透析器という。本来
電気透析器と電気再生型脱塩装置とは同一装置を示す
が、本発明の電気再生型脱塩装置との混同を避けるため
である。
FIG. 4 shows a specific configuration of the electric regeneration type desalination apparatus [A], that is, a specific control method. In the present invention, since the entire configuration including the control means including the detector is an electric regeneration type desalination apparatus, the control means is not provided (conventional).
The device is referred to as an electrodialyzer in the figures and in the following description. Although the electrodialyzer and the electric regeneration type desalination apparatus are originally the same apparatus, this is to avoid confusion with the electric regeneration type desalination apparatus of the present invention.

【0013】1. 電気透析器41に導入される被処理
水42の導入ラインに、検出計として、出力付きの流量
計(水量計)43を取り付けモニター(連続監視)す
る。また、出力付きの導電率計44、シリカ計45、C
2 計46等の水質計を取り付けモニター(連続監視)
する。なお、ホウ素計については現在上市されていない
が、将来開発された場合には、これも使用することがで
きる。
1. A flow meter (water meter) 43 with an output is attached as a detector to the introduction line of the water to be treated 42 introduced into the electrodialyzer 41, and is monitored (continuously monitored). Further, a conductivity meter 44 with an output, a silica meter 45, C
O 2 meter 46 or the like water meter mounting monitor (continuous monitoring)
I do. The boron meter is not currently on the market, but if it is developed in the future, it can also be used.

【0014】2. 上記項目のうち、一定の数値で推移
するものについては制御対象項目として省略してもかま
わない。
2. Of the above items, those that change at a fixed numerical value may be omitted as control target items.

【0015】3. 上記検出計からの連続出力信号をP
C(パーソナルコンピュータ)(=演算部47)等に入
力し、演算式によって必要電流値を算出する。必要電流
値を算出する演算式については前記したとおりである
が、この式は一例であって何等制限されるものではな
い。電流効率eは目的とする除去対象目標水質によって
決定される定数である。
3. The continuous output signal from the detector is P
It is input to a C (personal computer) (= calculation unit 47) or the like, and a required current value is calculated by a calculation formula. The calculation formula for calculating the necessary current value is as described above, but this formula is an example and is not limited at all. The current efficiency e is a constant determined by the target removal target water quality.

【0016】4. 算出した必要電流値を整流器48に
入力し、電気透析器41に印加させる。
4. The calculated necessary current value is input to the rectifier 48 and applied to the electrodialyzer 41.

【0017】次に、前記〔B〕の電気再生型脱塩装置に
ついて説明する。即ち、検出計を電気再生型脱塩装置
(電気透析器)から排出される脱塩水の排出ラインに設
け、脱塩水の水質と目標水質とを対比して、目標水質に
近づけるように供給する電流値又は電圧値を制御する場
合〔B〕について、図を用いて詳細に説明する。
Next, the electric regeneration type desalination apparatus [B] will be described. That is, a detector is provided in a discharge line of demineralized water discharged from an electric regeneration type demineralizer (electrodialyzer), and a current supplied to compare the quality of the demineralized water with the target water quality so as to approach the target water quality. The case of controlling the value or the voltage value [B] will be described in detail with reference to the drawings.

【0018】本発明の電気再生型脱塩装置を組み込んだ
一次純水製造設備の装置設備の装置構成については、前
記図3と全く同様であり、説明の重複を避ける。
The equipment configuration of the equipment of the primary pure water production equipment incorporating the electric regeneration type desalination equipment of the present invention is exactly the same as that of FIG. 3, and the description will not be repeated.

【0019】図5に、この場合〔B〕の電気再生型脱塩
装置の具体的な構成について、即ち具体的な制御方法に
ついて示す。
FIG. 5 shows a specific configuration of the electric regeneration type desalination apparatus [B], that is, a specific control method.

【0020】1. 電気透析器51から排出される脱塩
水52の排出ラインに、検出計として、出力付きの比抵
抗計53を取り付けモニター(連続監視)する。また、
出力付きのTOC計54、シリカ計55を取り付けモニ
ター(連続監視)する。なお、ホウ素計については現在
上市されていないが、将来開発された場合には、これも
使用することができる。
1. A specific resistance meter 53 with an output is attached to the discharge line of the demineralized water 52 discharged from the electrodialyzer 51 as a detector to monitor (continuously monitor). Also,
A TOC meter 54 with output and a silica meter 55 are attached and monitored (continuous monitoring). The boron meter is not currently on the market, but if it is developed in the future, it can also be used.

【0021】2. 上記検出計(水質計)の連続出力信
号を指示調節計56に入力する。指示調節計56とは水
質などの測定入力値をもとに、PID制御、比例制御、
ON/OFF制御等によって目標値に制御する機器のこ
とである。具体的にはオムロン(株)製デジタル指示調
節計「E5AK型」や山武ハネウエル(株)製デジタル
指示調節計「SDC200型」などがある。
2. The continuous output signal of the detector (water quality meter) is input to the indicating controller 56. Indicating controller 56 is based on measured input values such as water quality, PID control, proportional control,
A device that controls to a target value by ON / OFF control or the like. Specifically, there are a digital indicating controller “E5AK type” manufactured by OMRON Corporation and a digital indicating controller “SDC200 type” manufactured by Yamatake Honeywell Co., Ltd.

【0022】3. 指示調節計56からの信号を整流器
57に入力し、電気透析器51に印加する電圧値もしく
は電流値を自動設定する。
3. A signal from the indicating controller 56 is input to the rectifier 57, and a voltage value or a current value to be applied to the electrodialyzer 51 is automatically set.

【0023】4. 電気再生型脱塩装置処理水の制御対
象水質項目が複数個ある場合は、最も電流をかけないと
除去できない項目を制御対象とする。また、複数個の水
質項目をPCに入力し、プログラム演算によって、指示
調節計に入力する項目を自動制御することも可能であ
る。
4. When there are a plurality of control target water quality items of the electric regeneration type desalination device treated water, the items which cannot be removed unless the most current is applied are set as control targets. It is also possible to input a plurality of water quality items to the PC and automatically control the items to be input to the indicating controller by program calculation.

【0024】このように本発明の電気再生型脱塩装置で
は、給水の水質変動に関わらず、一定水質の処理水(脱
塩水)を安定して得ることができるものとなる。
As described above, in the electric regeneration type desalination apparatus of the present invention, treated water (demineralized water) having a constant water quality can be stably obtained irrespective of the water quality fluctuation of the feed water.

【0025】[0025]

【実施例】以下に、本発明の効果を確認した実験例を示
す。
EXAMPLES Examples of the effects of the present invention have been confirmed below.

【0026】[実施例1〔A〕] 1.図6に示した試験装置を製作した。 1)電気透析器通水量:80〜120L/hr 2)活性炭装置:栗田工業(株)製「クリコールKW1
0−30」 3)逆浸透膜装置:栗田工業(株)製「マクエースKN
−200」 4)電気透析器:栗田工業(株)製「ピュアエースPA
−200」 5)整流器:(株)高砂製作所製「GPO250−1」
[Example 1 [A]] The test device shown in FIG. 6 was manufactured. 1) Electric dialyzer flow rate: 80 to 120 L / hr 2) Activated carbon device: Kurikou KW1 manufactured by Kurita Water Industries Ltd.
0-30 "3) Reverse osmosis membrane device:" McAce KN "manufactured by Kurita Water Industries Ltd.
-200 "4) Electrodialyzer:" Pure Ace PA "manufactured by Kurita Water Industries Ltd.
-200 "5) Rectifier:" GPO250-1 "manufactured by Takasago Machinery Works, Ltd.

【0027】2.電気透析器の被処理水の導入ラインに
以下の検出計(流量計,水質計)を取り付けた。 1)流量計:東京計装(株)製 検出器「X-1000」 変換
器「SC100AS 」 2)導電率計:フォックスボロー社製「873型」 3)CO2 計:Sievers Insutruments Inc製TOC計Siev
ers810型でIC測定 4)シリカ計:Zellseger analytics 製 シリカ自動分析
装置 Model 9097
2. The following detectors (flow meters, water quality meters) were attached to the introduction line of the water to be treated in the electrodialyzer. 1) Flowmeter: Tokyo Keiso Co. detector "X-1000" converter "SC100AS" 2) conductivity meter: Foxborough Co. "873 type" 3) CO 2 meter: Sievers Insutruments Inc Ltd. TOC meter Siev
IC measurement with ers810 4) Silica meter: Silica automatic analyzer Model 9097 manufactured by Zellseger analytics

【0028】3.上述の検出計からの連続出力信号より
必要電流値を算出する演算式をプログラム化した。電流
効率は20%にした。演算機は(株)東芝製PC Dynab
ool GT-S575 を用いた。
3. An arithmetic expression for calculating a required current value from the continuous output signal from the above-described detector has been programmed. The current efficiency was set to 20%. The computer is PC Dynab manufactured by Toshiba Corporation
ool GT-S575 was used.

【0029】4.図6に示した装置で給水流量及び給水
水質を意図的に変動させて、上記方法で電流値を制御し
たときの処理水(脱塩水)水質を測定した。
4. The supply water flow rate and the supply water quality were intentionally varied by the apparatus shown in FIG. 6, and the quality of the treated water (desalted water) when the current value was controlled by the above method was measured.

【0030】5.試験結果 図7に給水流量を変動させたときの処理水比抵抗値を示
す。図8に給水導電率を変動させた場合の処理水比抵抗
値を示す。図9に給水シリカ濃度を変動させた場合の処
理水シリカ濃度を示す。何れの場合も本発明の電気再生
型脱塩装置を用いることにより、安定した処理水質を得
ることができた。
5. Test Results FIG. 7 shows the treated water specific resistance when the supply water flow rate was varied. FIG. 8 shows a treated water specific resistance value when the water supply conductivity is changed. FIG. 9 shows the silica concentration of the treated water when the silica concentration of the feed water is varied. In each case, stable treated water quality could be obtained by using the electric regeneration type desalination apparatus of the present invention.

【0031】[実施例1〔B〕] 1.図10に示した試験装置を製作した。 1)電気透析器通水量:80〜120L/hr 2)活性炭装置:栗田工業(株)製「クリコールKW1
0−30」 3)逆浸透膜装置:栗田工業(株)製「マクエースKN
−200」 4)電気透析器:栗田工業(株)製「ピュアエースPA
−200」 5)整流器:(株)高砂製作所製「GPO250−1」 6)指示調節計:オムロン(株)製「E5AK型」
[Example 1 [B]] The test device shown in FIG. 10 was manufactured. 1) Electric dialyzer flow rate: 80 to 120 L / hr 2) Activated carbon device: Kurikou KW1 manufactured by Kurita Water Industries Ltd.
0-30 "3) Reverse osmosis membrane device:" McAce KN "manufactured by Kurita Water Industries Ltd.
-200 "4) Electrodialyzer:" Pure Ace PA "manufactured by Kurita Water Industries Ltd.
-200 "5) Rectifier:" GPO250-1 "manufactured by Takasago Machinery Co., Ltd. 6) Indicating controller:" E5AK type "manufactured by OMRON Corporation.

【0032】2.電気透析器の処理水(脱塩水)の排出
ラインに以下の検出計(水質計)を取り付けた。 1)比抵抗計:栗田工業(株)製「MX−4」 2)TOC計:Anatel社製A−1000」
2. The following detector (water quality meter) was attached to the treated water (demineralized water) discharge line of the electrodialyzer. 1) Specific resistance meter: "MX-4" manufactured by Kurita Water Industries Ltd. 2) TOC meter: A-1000 manufactured by Anatel

【0033】3.図10に示した装置で給水水質を意図
的に変動させて、上記方法で電流値を制御したときと制
御を行わなかった場合について比較を行った。制御方法
はPID制御によって行った。制御においてセットポイ
ントは比抵抗値については17.5MΩ・cmに設定
し、TOCについては50ppbに設定した。
3. A comparison was made between a case where the current value was controlled by the above-described method and a case where the control was not performed by intentionally fluctuating the feedwater quality with the apparatus shown in FIG. The control method was performed by PID control. In the control, the set point was set to 17.5 MΩ · cm for the specific resistance value, and set to 50 ppb for the TOC.

【0034】4.試験結果 図11に比抵抗計で制御した場合の結果について示す。
図12にTOC計で制御した場合の結果について示す。
何れの場合も本発明の電気再生型脱塩装置を用いること
により、安定した処理水質を得ることができた。
4. Test Results FIG. 11 shows the results in the case of controlling with a resistivity meter.
FIG. 12 shows the result when the control is performed by the TOC meter.
In each case, stable treated water quality could be obtained by using the electric regeneration type desalination apparatus of the present invention.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の電気再生型
脱塩装置によれば、電気再生型脱塩装置の運転変動、水
質変動に関わらず、安定した水質を得られる。
As described above in detail, according to the electric regeneration type desalination apparatus of the present invention, a stable water quality can be obtained irrespective of the operation fluctuation and the water quality fluctuation of the electric regeneration type desalination apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気再生型脱塩装置の脱イオン原理を示す要部
の拡大断面図である。
FIG. 1 is an enlarged sectional view of a main part showing a deionization principle of an electric regeneration type desalination apparatus.

【図2】逆浸透膜(RO)給水水質の変動と電気再生型
脱塩装置処理水質の関係を示す相関図である。
FIG. 2 is a correlation diagram showing a relationship between fluctuations in the quality of water supplied to a reverse osmosis membrane (RO) and the quality of water treated by an electric regeneration type desalination apparatus.

【図3】本発明の電気再生型脱塩装置を組み込んだ前処
理システム−一次純水システムの一例を示す流れ説明図
である。
FIG. 3 is a flowchart illustrating an example of a pretreatment system-primary pure water system incorporating an electric regeneration type desalination apparatus of the present invention.

【図4】本発明の電気再生型脱塩装置の構成(制御手
段)の一例を示す流れ説明図である。
FIG. 4 is a flowchart illustrating an example of the configuration (control means) of the electric regeneration type desalination apparatus of the present invention.

【図5】本発明の電気再生型脱塩装置の構成(制御手
段)の他の一例を示す流れ説明図である。
FIG. 5 is a flowchart illustrating another example of the configuration (control means) of the electric regeneration type desalination apparatus of the present invention.

【図6】実施例1に用いた試験装置の構成を示す流れ説
明図である。
FIG. 6 is a flowchart illustrating the configuration of a test apparatus used in Example 1.

【図7】給水水量を変動させたときの処理水比抵抗値を
示すグラフである。
FIG. 7 is a graph showing a treated water specific resistance value when a supply water amount is changed.

【図8】給水導電率を変動させたときの処理水比抵抗値
を示すグラフである。
FIG. 8 is a graph showing a treated water specific resistance value when the water supply conductivity is varied.

【図9】給水シリカ濃度を変動させたときの処理水比抵
抗値を示すグラフである。
FIG. 9 is a graph showing a treated water specific resistance value when a feed water silica concentration is varied.

【図10】実施例2に用いた試験装置の構成を示す流れ
説明図である。
FIG. 10 is a flowchart illustrating the configuration of a test apparatus used in Example 2.

【図11】給水水質を変動させて比抵抗計で制御した場
合の結果を示すグラフである。
FIG. 11 is a graph showing the results when the supply water quality is varied and controlled by a resistivity meter.

【図12】給水水質を変動させてTOC計で制御した場
合の結果を示すグラフである。
FIG. 12 is a graph showing the results when the water supply quality is varied and controlled by a TOC meter.

【符号の説明】[Explanation of symbols]

41 電気透析器(制御手段を備えない電気再生型脱塩
装置) 42 被処理水 43 検出計(流量計) 44 検出計(導電率計) 45 検出計(シリカ計) 46 検出計(CO2 計) 47 演算部 48 整流器 49 脱塩水
41 Electrodialyzer (Electric regeneration type desalination device without control means) 42 Treated water 43 Detector (flow meter) 44 Detector (conductivity meter) 45 Detector (silica meter) 46 Detector (CO 2 meter ) 47 Operation unit 48 Rectifier 49 Demineralized water

フロントページの続き Fターム(参考) 4D006 GA03 GA17 KA01 KA52 KA72 KB11 KB12 KB13 KB14 KB17 KE02P KE13P KE17Q KE18Q KE19P KE30P MA13 MA14 PA01 PB02 PB23 PB70 PC02 PC31 PC42 4D061 AA01 AB13 BA09 BB01 BB04 BB37 BB39 CA03 CA06 CA08 CA09 CA11 CA13 CA14 Continued on front page F-term (reference) 4D006 GA03 GA17 KA01 KA52 KA72 KB11 KB12 KB13 KB14 KB17 KE02P KE13P KE17Q KE18Q KE19P KE30P MA13 MA14 PA01 PB02 PB23 PB70 PC02 PC31 PC42 4D061 AA01 CA13 BB01 CA13 BB01 CA13 BB03 CA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理水を導入し、生成した脱塩水を排
出する電気再生型脱塩装置において、該被処理水又は該
脱塩水の水質もしくは水量を計測する検出計と、検出計
の出力値に基づき電気再生型脱塩装置に供給する電流値
又は電圧値を制御する制御手段を設けたことを特徴とす
る電気再生型脱塩装置。
1. An electric regeneration type desalination device for introducing treated water and discharging generated desalinated water, wherein a detector for measuring the quality or amount of the treated water or the desalinated water, and an output of the detector An electric regeneration type desalination apparatus characterized by comprising control means for controlling a current value or a voltage value supplied to the electric regeneration type desalination apparatus based on the value.
【請求項2】 制御手段は、被処理水の水質及び/又は
水量に応じて、電気再生型脱塩装置に供給する必要な電
流値又は電圧値を求めるようにしたものであることを特
徴とする請求項1に記載の電気再生型脱塩装置。
2. The method according to claim 1, wherein the control means calculates a current value or a voltage value required to be supplied to the electric regeneration type desalination apparatus according to the quality and / or amount of the water to be treated. The electric regeneration type desalination apparatus according to claim 1.
【請求項3】 制御手段は、脱塩水の水質と目標水質と
を対比して、目標水質に近づけるように電気再生型脱塩
装置に供給する電流値又は電圧値を制御するようにした
ものであることを特徴とする請求項1に記載の電気再生
型脱塩装置。
3. The control means compares the quality of the desalinated water with the target water quality and controls the current value or the voltage value supplied to the electric regeneration type desalination apparatus so as to approach the target water quality. The electric regeneration type desalination apparatus according to claim 1, wherein:
JP10222785A 1998-08-06 1998-08-06 Electric regeneration type desalting apparatus Pending JP2000051865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222785A JP2000051865A (en) 1998-08-06 1998-08-06 Electric regeneration type desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222785A JP2000051865A (en) 1998-08-06 1998-08-06 Electric regeneration type desalting apparatus

Publications (1)

Publication Number Publication Date
JP2000051865A true JP2000051865A (en) 2000-02-22

Family

ID=16787867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222785A Pending JP2000051865A (en) 1998-08-06 1998-08-06 Electric regeneration type desalting apparatus

Country Status (1)

Country Link
JP (1) JP2000051865A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181459A (en) * 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2003326267A (en) * 2002-05-09 2003-11-18 Kurita Water Ind Ltd Operation method for electric deionizer
JP2003326266A (en) * 2002-05-08 2003-11-18 Kurita Water Ind Ltd Method and apparatus for producing pure water, and scale monitor
JP2004507342A (en) * 2000-08-11 2004-03-11 イオニックス,インコーポレーテッド Apparatus and method for electrodialysis
WO2006100716A1 (en) * 2005-03-18 2006-09-28 Kurita Water Industries Ltd. Water treatment apparatus for fuel cell
JP2008039631A (en) * 2006-08-08 2008-02-21 Toshiba Corp Reactor coolant purifying device
JP2008135769A (en) * 2003-08-29 2008-06-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2008221195A (en) * 2007-03-16 2008-09-25 Miura Co Ltd Operation method of pure water production system
JP2008229506A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Pure water production system
JP2009220062A (en) * 2008-03-18 2009-10-01 Fuji Electric Holdings Co Ltd Water treatment system
JP2010058010A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
JP2010058013A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production system
JP2011505241A (en) * 2007-11-30 2011-02-24 シーメンス ウォーター テクノロジース コーポレイション System and method for water treatment
WO2012117712A1 (en) * 2011-02-28 2012-09-07 日本曹達株式会社 Water treatment device and water treatment method
JP2013103194A (en) * 2011-11-15 2013-05-30 Miura Co Ltd Water treatment system
JP2014184407A (en) * 2013-03-25 2014-10-02 Miura Co Ltd Water treatment apparatus
JP2014188396A (en) * 2013-03-26 2014-10-06 Miura Co Ltd Pure water manufacturing apparatus
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
JP2020518437A (en) * 2017-05-08 2020-06-25 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Water treatment of sodium, high salinity or high sodium water for agricultural use
JP7183208B2 (en) 2020-02-14 2022-12-05 栗田工業株式会社 Ultrapure water production device and ultrapure water production method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778664B2 (en) * 2000-08-11 2011-09-21 ジーイー・アイオニクス・インコーポレイテッド Apparatus and method for electrodialysis
JP2004507342A (en) * 2000-08-11 2004-03-11 イオニックス,インコーポレーテッド Apparatus and method for electrodialysis
JP2003181459A (en) * 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2003326266A (en) * 2002-05-08 2003-11-18 Kurita Water Ind Ltd Method and apparatus for producing pure water, and scale monitor
JP2003326267A (en) * 2002-05-09 2003-11-18 Kurita Water Ind Ltd Operation method for electric deionizer
JP2008135769A (en) * 2003-08-29 2008-06-12 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009055061A (en) * 2003-08-29 2009-03-12 Asml Netherlands Bv Lithographic equipment, and device manufacturing method
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006100716A1 (en) * 2005-03-18 2006-09-28 Kurita Water Industries Ltd. Water treatment apparatus for fuel cell
JP2008039631A (en) * 2006-08-08 2008-02-21 Toshiba Corp Reactor coolant purifying device
JP4673808B2 (en) * 2006-08-08 2011-04-20 株式会社東芝 Reactor coolant purification equipment
JP2008221195A (en) * 2007-03-16 2008-09-25 Miura Co Ltd Operation method of pure water production system
JP2008229506A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Pure water production system
JP2011505241A (en) * 2007-11-30 2011-02-24 シーメンス ウォーター テクノロジース コーポレイション System and method for water treatment
JP2009220062A (en) * 2008-03-18 2009-10-01 Fuji Electric Holdings Co Ltd Water treatment system
JP2010058010A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
JP2010058013A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production system
JPWO2012117712A1 (en) * 2011-02-28 2014-07-07 日本曹達株式会社 Water treatment apparatus and water treatment method
WO2012117712A1 (en) * 2011-02-28 2012-09-07 日本曹達株式会社 Water treatment device and water treatment method
JP2013103194A (en) * 2011-11-15 2013-05-30 Miura Co Ltd Water treatment system
JP2014184407A (en) * 2013-03-25 2014-10-02 Miura Co Ltd Water treatment apparatus
JP2014188396A (en) * 2013-03-26 2014-10-06 Miura Co Ltd Pure water manufacturing apparatus
JP2020518437A (en) * 2017-05-08 2020-06-25 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Water treatment of sodium, high salinity or high sodium water for agricultural use
JP7261745B2 (en) 2017-05-08 2023-04-20 エヴォクア ウォーター テクノロジーズ エルエルシー Water treatment of sodium water, high salinity water or high sodium water for agricultural applications
US11655166B2 (en) 2017-05-08 2023-05-23 Evoqua Water Technologies Llc Water treatment of sodic, high salinity, or high sodium waters for agricultural application
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
CN110612154A (en) * 2017-06-23 2019-12-24 栗田工业株式会社 Control method and design method of electrodeionization device
KR20200020665A (en) * 2017-06-23 2020-02-26 쿠리타 고교 가부시키가이샤 Control method and design method of electric deionizer
JPWO2018235366A1 (en) * 2017-06-23 2020-04-23 栗田工業株式会社 Control method and design method of electric deionization apparatus
TWI740026B (en) * 2017-06-23 2021-09-21 日商栗田工業股份有限公司 Control method and design method of electrodeionization device
KR102521139B1 (en) * 2017-06-23 2023-04-12 쿠리타 고교 가부시키가이샤 Control method and design method of electric deionization device
JP7183208B2 (en) 2020-02-14 2022-12-05 栗田工業株式会社 Ultrapure water production device and ultrapure water production method

Similar Documents

Publication Publication Date Title
JP2000051865A (en) Electric regeneration type desalting apparatus
US5762774A (en) Apparatus for the purification of liquids and a method of manufacturing and of operating same
US10718734B2 (en) Method for determining antirust effect of treated water
TWI710529B (en) Ultrapure water production device and operation method of ultrapure water production device
Fu et al. Removal of low concentrations of hardness ions from aqueous solutions using electrodeionization process
US20060260954A1 (en) Acidic electrolyzed water production system and generation control method
Jin et al. Membrane-based electrochemical precipitation for water softening
KR101955898B1 (en) Water Treatment Apparatus Built-In Quantum Energy Generator for Scale Creation Prevent
EP0777120A2 (en) Apparatus for detecting anions in water
EP1990320A2 (en) Wastewater ammonium extraction and electrolytic conversion to nitrogen gas
US10464024B2 (en) Water treatment device and operating method for water treatment device
UA77143C2 (en) Method for electric stabilization scale-control water preparation, system and facility for realizing the same
JP2003001259A (en) Ultrapure water producing apparatus
WO2002028517A1 (en) Method for early detection of the occurrence of scaling in the purification of water
JP2023110825A (en) Water softening device
Yuzer et al. Application of an electrodialysis process to recover nitric acid from aluminum finishing industry waste
CN209193674U (en) A kind of minimizing processing unit of high slat-containing wastewater
CA2228886A1 (en) Apparatus for the purification of liquids and a method of manufacturing and of operating same
JP2003181459A (en) Method for producing deionized water
JP2018199104A (en) Operational method of electric deionized water production apparatus and electric deionized water production apparatus
JP3979172B2 (en) Method and apparatus for producing pure water and scale monitor apparatus
JP3894039B2 (en) Operation method of electrodeionization equipment
Imai et al. Removing fluoride from a hot spring using an electrolysis system
Amarasooriya et al. Removal of co-existing fluoride, calcium, magnesium, and carbonates, by non-chemical induced electrolysis system for drinking and industrial purposes
JPH09145653A (en) Method and instrument for measuring content of total organic carbon of high-conductivity sample water