JP3894039B2 - Operation method of electrodeionization equipment - Google Patents

Operation method of electrodeionization equipment Download PDF

Info

Publication number
JP3894039B2
JP3894039B2 JP2002134320A JP2002134320A JP3894039B2 JP 3894039 B2 JP3894039 B2 JP 3894039B2 JP 2002134320 A JP2002134320 A JP 2002134320A JP 2002134320 A JP2002134320 A JP 2002134320A JP 3894039 B2 JP3894039 B2 JP 3894039B2
Authority
JP
Japan
Prior art keywords
water
electrodeionization apparatus
conductivity
concentration
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002134320A
Other languages
Japanese (ja)
Other versions
JP2003326267A (en
Inventor
邦博 岩崎
昌之 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002134320A priority Critical patent/JP3894039B2/en
Publication of JP2003326267A publication Critical patent/JP2003326267A/en
Application granted granted Critical
Publication of JP3894039B2 publication Critical patent/JP3894039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、液晶、製薬、食品、電力等の分野の各種産業、民生用、又は研究設備で利用される脱イオン水を製造する電気脱イオン装置の運転方法に係り、特に電気脱イオン装置におけるCOの除去率を高め、高水質の処理水を確実に得ることを可能とする電気脱イオン装置の運転方法に関する。
【0002】
【従来の技術】
従来、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造には、電極(陽極,陰極)の間に複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填した電気脱イオン装置が多用されている。
【0003】
電気脱イオン装置は、水解離によってHイオンとOHイオンを生成させ、脱塩室内に充填されているイオン交換体を連続して再生することによって、効率的な脱塩処理が可能であり、従来から広く用いられてきたイオン交換樹脂装置のような薬品を用いた再生処理を必要とせず、完全な連続採水が可能で、高純度の水が得られるという優れた効果を発揮する。
【0004】
このような電気脱イオン装置において、給水の導電率の変化により、処理水の比抵抗が大幅に低下することがある。本発明者らの研究によると、電気脱イオン装置の性能に影響を与えるものとして、溶存塩類やシリカ、炭酸などが挙げられ、この内特に炭酸が少量の変化でも大きく性能に影響を与えることが見出された。
【0005】
このような電気脱イオン装置で、COを除去するためには、下記のようなイオン化反応を脱塩室内で生起させ、イオンを発生させる必要がある。
CO+OH→HCO (pKa=6.35)
このようなイオン化反応の促進のためには、電気脱イオン装置の電流密度を高めることが有効であり、電流密度を上げることによりCO除去率が向上することが知られている。
【0006】
【発明が解決しようとする課題】
しかしながら、電気脱イオン装置の電流密度を高めると、濃縮室に炭酸カルシウムスケールが発生したり、電力を余分に消費して電力コストが高くなる。
【0007】
本発明は、供給水中のCO濃度を検知して適正な印加電圧・電流を通電するように制御することにより、安定した処理水比抵抗値を維持することができる電気脱イオン装置の運転方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の電気脱イオン装置の運転方法は、陽極と陰極との間にアニオン交換膜とカチオン交換膜とを配列して濃縮室と脱塩室とを形成し、脱塩室にイオン交換体を充填してなる電気脱イオン装置を運転する方法において、供給水中のCO濃度の変化に対して電流効率が常に25%以下、好ましくは10〜25%となるように電気脱イオン装置の電流値を制御することを特徴とするものである。
【0009】
このように、電気脱イオン装置の電流効率が25%以下、好ましくは10〜25%となるように電流値を制御することにより、生産水(処理水)の比抵抗が例えば15MΩ・cm以上の高い値となる。
【0010】
本発明では、供給水のCO濃度及び導電率と、生産水の流量及び導電率とを計測し、電流効率が前記範囲となるように電流値を制御することが好ましい。
【0011】
また、本発明では、上述の通り炭酸による影響が強い点を考えると、供給水のpHが0.5以上低下し、導電率の上昇が5μS/cm以下であり、生産水の比抵抗値が3MΩ・cm以上低下したときに、電流値を5%以上上昇させるようにしてもよい。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0013】
本発明の電気脱イオン装置の運転方法は、供給水中のCO濃度が変動しても電流効率が常に25%以下、好ましくは10〜25%となるようにするものであり、他の運転条件は従来と同様でよい。
【0014】
従って、供給水(この水は、通常、活性炭塔及び逆浸透膜分離装置等で順次前処理される。)の一部を電気脱イオン装置の濃縮室に供給し、残部を脱塩室に供給して脱イオン処理し、脱塩室の流出水を処理水(生産水)として取り出せば良い。通常の場合、濃縮室の流出水は一部が系外に排出され、残部は濃縮室の供給側へ循環される。
【0015】
なお、濃縮室の流出水の循環は、水回収率の向上のために行われるが、この循環水量には特に制限はなく、通常、濃縮室の流出水の50〜95%程度とし、電気脱イオン装置の水回収率は0.5〜0.95程度の条件で運転を実施するのが好ましい。
【0016】
この電気脱イオン装置による炭酸の除去機構は次の通りである。即ち、炭酸は水酸化物イオンとのイオン化反応により重炭酸イオンに変わる。
CO+OH→HCO
イオン化反応のためにはOHイオンの供給が必要であり、これは水解離によってもたらされる。
O→H+OH
従って、CO量が増えるとOH量もそれだけ多く必要となる。
【0017】
なお、イオン化した重炭酸イオンは速やかに濃縮室へ移動させる必要があるので、CO量が増えると電圧を高くする必要がある。
【0018】
本発明者は、電気脱イオン装置によるCO除去率(生産水の比抵抗)と電流効率との関係について実験的に観察を行ったところ、図1に示すように、電流効率が約20%程度であるときに生産水(処理水)の比抵抗が最大となり、それ以上でもそれ以下でも生産水の比抵抗は低下すること;電流効率が25%以下であるときには比抵抗が15MΩ・cm以上となることが認められた。本発明は、かかる知見に基づくものであり、電流効率を25%以下、好ましくは10〜25%さらに好ましくは12〜22%とすることにより、比抵抗の高い高水質の生産水を得るようにしたものである。
【0019】
なお、図1の通り、電流効率を20%以下にしても処理水比抵抗値はそれ以上大きく上昇しない。これは供給水中のCO濃度が変化しても電流効率は20%程度でよいことを示唆している。
【0020】
本発明者は、供給水中のCO濃度を種々変え、電流効率20%となるように電流値を制御して電気脱イオン装置を運転し、そのときの生産水の比抵抗を計測した。その結果を図2に示す。なお、図2では電極面積は5dmである。
【0021】
図2の通り、供給水中のCO濃度が増大しても、電流効率が20%に保たれるように電流値を増大させることにより、生産水の比抵抗は15MΩ・cm以上の高い値になる。このように、COによる当量導電率増加分だけ電流値を増加させることにより、処理水比抵抗値は安定する。
【0022】
電気脱イオン装置における電流値と電流効率の関係は次式で表される。
I=a・Q(Cf−Cp)/η
I;必要電流値[A]
Q;生産水流量[L/min・セル]
Cf;供給水当量導電率[μS/cm]
Cp;処理水導電率[μS/cm]
η;電流効率[%]
a;定数
Cfはシリカ当量導電率と炭酸ガス当量導電率及びこれらのイオン種以外の全当量導電率の和である。
【0023】
この定数aは、通常の場合、a=1.31である。なお、「/セル」は『脱塩室1室当り』を示す。
【0024】
従って、電流効率が25%以下、好ましくは10〜25%、最も好ましくは電流効率η=20%とし、供給水の導電率と、生産水の流量及び導電率とを上記式に代入し、演算された電流値を電気脱イオン装置に通電すればよい。
【0025】
なお、供給水中のCOがもっとも変動しやすく、かつ当量導電率も大きいため、供給水中のCO濃度をCO計により連続的に計測することが好ましい。CO計の代りに、pH計と無機炭素(IC)計を用いたpH及びIC測定値からCO濃度を求めてもよい。
【0026】
ただし、本発明では、供給水中のCO濃度を計測し、それに応じて電流値を制御する代りに、生産水の比抵抗の計測値の変動は主に供給水中のCO濃度の変動によるものなので、生産水の比抵抗の変動から推定される供給CO濃度変動値に基づいて必要な通電電流値を演算してもよい。具体的には、供給水のpHが0.5以上低下し、導電率の上昇が5μS/cm以下であり、生産水の比抵抗値が3MΩ・cm以上低下したときに、通電電流値を5%以上上昇させるようにしてもよい。
【0027】
【発明の効果】
以上説明したように、本発明によれば、供給水中のCO濃度の変化に対応して適正な電流値で電気脱イオン装置を運転することにより、安定した処理水質が得られる。また、余分な電力消費を防止でき、経済性が高まる。
【図面の簡単な説明】
【図1】電流効率と処理水比抵抗値の関係を示した図である。
【図2】供給水CO濃度と処理水比抵抗値の関係を示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating an electrodeionization apparatus for producing deionized water used in various industries in the fields of semiconductors, liquid crystals, pharmaceuticals, foods, electric power, etc. The present invention relates to an operation method of an electrodeionization apparatus that can increase the removal rate of CO 2 in the apparatus and reliably obtain high-quality treated water.
[0002]
[Prior art]
Conventionally, for the production of deionized water used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. A plurality of anion exchange membranes and cation exchange membranes are alternately arranged to form a concentration chamber and a desalting chamber alternately, and the desalting chamber is made of an ion exchange resin, an ion exchange fiber or a graft exchanger. In addition, an electrodeionization apparatus in which a cation exchanger is mixed or packed in a multilayer is widely used.
[0003]
The electrodeionization device generates H + ions and OH ions by water dissociation and continuously regenerates the ion exchanger filled in the desalting chamber, enabling efficient desalting treatment. Thus, it does not require a regeneration treatment using chemicals such as the ion exchange resin apparatus that has been widely used so far, and complete continuous water sampling is possible, and an excellent effect that high-purity water is obtained is exhibited.
[0004]
In such an electrodeionization apparatus, the specific resistance of the treated water may be significantly reduced due to a change in the conductivity of the feed water. According to the research of the present inventors, there are dissolved salts, silica, carbonic acid and the like as those affecting the performance of the electrodeionization apparatus, and among these, even a small amount of carbonic acid can greatly affect the performance. It was found.
[0005]
In order to remove CO 2 with such an electrodeionization apparatus, it is necessary to generate an ion by causing the following ionization reaction to occur in the demineralization chamber.
CO 2 + OH → HCO 3 (pKa = 6.35)
In order to promote such an ionization reaction, it is effective to increase the current density of the electrodeionization apparatus, and it is known that the CO 2 removal rate is improved by increasing the current density.
[0006]
[Problems to be solved by the invention]
However, when the current density of the electrodeionization device is increased, a calcium carbonate scale is generated in the concentration chamber, or power is consumed excessively, resulting in an increase in power cost.
[0007]
The present invention relates to a method for operating an electrodeionization apparatus capable of maintaining a stable treated water specific resistance value by detecting the CO 2 concentration in the supply water and controlling to apply an appropriate applied voltage / current. The purpose is to provide.
[0008]
[Means for Solving the Problems]
In the operation method of the electrodeionization apparatus of the present invention, an anion exchange membrane and a cation exchange membrane are arranged between an anode and a cathode to form a concentration chamber and a desalting chamber, and an ion exchanger is placed in the desalting chamber. In the method of operating a charged electrodeionization apparatus, the current value of the electrodeionization apparatus is such that the current efficiency is always 25% or less, preferably 10 to 25% with respect to the change in the CO 2 concentration in the feed water. It is characterized by controlling.
[0009]
In this way, by controlling the current value so that the current efficiency of the electrodeionization apparatus is 25% or less, preferably 10 to 25%, the specific resistance of the produced water (treated water) is, for example, 15 MΩ · cm or more. High value.
[0010]
In the present invention, the CO 2 concentration and the conductivity of the feed water, the flow rate and conductivity of the product water is measured, it is preferable to control the current value so that the current efficiency is the range.
[0011]
Further, in the present invention, considering the strong influence of carbonic acid as described above, the pH of the feed water is reduced by 0.5 or more, the increase in conductivity is 5 μS / cm or less, and the specific resistance value of the produced water is The current value may be increased by 5% or more when the voltage drops by 3 MΩ · cm or more.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
The operation method of the electrodeionization apparatus of the present invention is such that the current efficiency is always 25% or less, preferably 10 to 25% even if the CO 2 concentration in the feed water varies, and other operating conditions May be the same as before.
[0014]
Therefore, a part of the supply water (this water is usually pretreated in order by an activated carbon tower and a reverse osmosis membrane separator, etc.) is supplied to the concentration chamber of the electrodeionization device, and the remainder is supplied to the demineralization chamber. Then, deionization treatment is performed, and the outflow water from the desalination chamber may be taken out as treated water (product water). In normal cases, part of the effluent from the concentrating chamber is discharged out of the system, and the remainder is circulated to the supply side of the concentrating chamber.
[0015]
The circulation of the effluent in the concentrating chamber is performed for the purpose of improving the water recovery rate. However, the amount of the circulated water is not particularly limited, and is usually about 50 to 95% of the effluent in the concentrating chamber. It is preferable to carry out the operation under conditions where the water recovery rate of the ion device is about 0.5 to 0.95.
[0016]
The removal mechanism of carbonic acid by this electrodeionization apparatus is as follows. That is, carbonic acid is converted to bicarbonate ion by an ionization reaction with hydroxide ions.
CO 2 + OH → HCO 3
The ionization reaction requires a supply of OH ions, which is brought about by water dissociation.
H 2 O → H + + OH
Therefore, when the amount of CO 2 is increased, the amount of OH is increased accordingly.
[0017]
In addition, since it is necessary to move the ionized bicarbonate ion quickly to the concentration chamber, it is necessary to increase the voltage as the amount of CO 2 increases.
[0018]
The present inventor experimentally observed the relationship between the CO 2 removal rate (specific resistance of the produced water) and the current efficiency by the electrodeionization apparatus. As shown in FIG. 1, the current efficiency was about 20%. The specific resistance of the production water (treated water) becomes the maximum when it is about, and the specific resistance of the production water is reduced below or above that; the specific resistance is 15 MΩ · cm or more when the current efficiency is 25% or less It was recognized that The present invention is based on such knowledge, and by setting the current efficiency to 25% or less, preferably 10 to 25%, more preferably 12 to 22%, high-quality product water with high specific resistance is obtained. It is a thing.
[0019]
As shown in FIG. 1, even if the current efficiency is 20% or less, the treated water specific resistance value does not increase any more. This suggests that the current efficiency may be about 20% even if the CO 2 concentration in the feed water changes.
[0020]
The inventor varied the CO 2 concentration in the feed water, controlled the current value so that the current efficiency was 20%, operated the electrodeionization apparatus, and measured the specific resistance of the produced water at that time. The result is shown in FIG. In FIG. 2, the electrode area is 5 dm 2 .
[0021]
As shown in FIG. 2, even if the CO 2 concentration in the feed water is increased, the specific resistance of the production water is increased to a high value of 15 MΩ · cm or more by increasing the current value so that the current efficiency is maintained at 20%. Become. In this way, the specific resistance value of the treated water is stabilized by increasing the current value by an amount equivalent to the increase in equivalent conductivity due to CO 2 .
[0022]
The relationship between the current value and the current efficiency in the electrodeionization apparatus is expressed by the following equation.
I = a · Q (Cf−Cp) / η
I: Required current [A]
Q: Production water flow rate [L / min · cell]
Cf: Supply water equivalent conductivity [μS / cm]
Cp; treated water conductivity [μS / cm]
η: Current efficiency [%]
a; Constant Cf is the sum of silica equivalent conductivity, carbon dioxide equivalent conductivity and total equivalent conductivity other than these ionic species.
[0023]
This constant a is normally a = 1.31. “/ Cell” indicates “per desalination chamber”.
[0024]
Therefore, the current efficiency is 25% or less, preferably 10 to 25%, most preferably the current efficiency η = 20%, and the conductivity of the feed water, the flow rate and the conductivity of the production water are substituted into the above formula, and the calculation is performed. What is necessary is just to energize the electrodeionization apparatus with the current value.
[0025]
In addition, since CO 2 in supply water is most likely to fluctuate and the equivalent conductivity is large, it is preferable to continuously measure the CO 2 concentration in supply water using a CO 2 meter. Instead of the CO 2 meter, the CO 2 concentration may be obtained from pH and IC measurement values using a pH meter and an inorganic carbon (IC) meter.
[0026]
However, in the present invention, instead of measuring the CO 2 concentration in the feed water and controlling the current value accordingly, the variation in the measured value of the specific resistance of the production water is mainly due to the variation in the CO 2 concentration in the feed water. Therefore, the necessary energization current value may be calculated based on the supply CO 2 concentration fluctuation value estimated from the fluctuation of the specific resistance of the production water. Specifically, when the pH of the feed water is reduced by 0.5 or more, the increase in conductivity is 5 μS / cm or less, and the specific resistance value of the produced water is reduced by 3 MΩ · cm or more, the energization current value is 5 % May be increased.
[0027]
【The invention's effect】
As described above, according to the present invention, stable treated water quality can be obtained by operating the electrodeionization apparatus with an appropriate current value corresponding to the change in the CO 2 concentration in the feed water. In addition, excessive power consumption can be prevented, and economic efficiency is increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between current efficiency and treated water resistivity.
FIG. 2 is a diagram showing the relationship between the supply water CO 2 concentration and the treated water specific resistance value.

Claims (5)

陽極と陰極との間にアニオン交換膜とカチオン交換膜とを配列して濃縮室と脱塩室とを形成し、脱塩室にイオン交換体を充填してなる電気脱イオン装置を運転する方法において、
供給水中のCO濃度の変化に対して電流効率が常に25%以下となるように電気脱イオン装置の電流値を制御することを特徴とする電気脱イオン装置の運転方法。
A method for operating an electrodeionization apparatus in which an anion exchange membrane and a cation exchange membrane are arranged between an anode and a cathode to form a concentration chamber and a desalting chamber, and the desalting chamber is filled with an ion exchanger. In
A method for operating an electrodeionization apparatus, wherein the current value of the electrodeionization apparatus is controlled so that the current efficiency is always 25% or less with respect to a change in the CO 2 concentration in the supply water.
請求項1において、供給水のCO濃度及び導電率と、生産水の流量及び導電率とを計測し、電流効率が前記範囲となるように電流値を制御することを特徴とする電気脱イオン装置の運転方法。 2. The electrodeionization method according to claim 1, wherein the CO2 concentration and conductivity of the feed water, the flow rate and conductivity of the production water are measured, and the current value is controlled so that the current efficiency falls within the range. How to operate the device. 請求項2において、通電すべき電流値を次式に従って演算することを特徴とする電気脱イオン装置の運転方法。
I=a・Q(Cf−Cp)/η
I;必要電流値[A]
Q;生産水流量[L/min・セル]
Cf;供給水当量導電率[μS/cm]
Cp;処理水導電率[μS/cm]
η;電流効率[%]
a;定数
The operation method of the electrodeionization apparatus according to claim 2, wherein a current value to be energized is calculated according to the following equation.
I = a · Q (Cf−Cp) / η
I: Required current [A]
Q: Production water flow rate [L / min · cell]
Cf: Supply water equivalent conductivity [μS / cm]
Cp; treated water conductivity [μS / cm]
η: Current efficiency [%]
a: Constant
請求項2又は3において、供給水中のCO濃度をCO計により計測することを特徴とする電気脱イオン装置の運転方法。According to claim 2 or 3, the method operation of electrodeionization apparatus characterized by measuring the CO 2 concentration in the feed water by CO 2 meter. 請求項1において、供給水のpHが0.5以上低下し、導電率の上昇が5μS/cm以下であり、生産水の比抵抗値が3MΩ・cm以上低下したときに、電流値を5%以上上昇させることを特徴とする電気脱イオン装置の運転方法。In claim 1, when the pH of the feed water is reduced by 0.5 or more, the increase in conductivity is 5 μS / cm or less, and the specific resistance value of the produced water is reduced by 3 MΩ · cm or more, the current value is 5%. The operating method of the electrodeionization apparatus characterized by raising above.
JP2002134320A 2002-05-09 2002-05-09 Operation method of electrodeionization equipment Expired - Fee Related JP3894039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134320A JP3894039B2 (en) 2002-05-09 2002-05-09 Operation method of electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134320A JP3894039B2 (en) 2002-05-09 2002-05-09 Operation method of electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2003326267A JP2003326267A (en) 2003-11-18
JP3894039B2 true JP3894039B2 (en) 2007-03-14

Family

ID=29697004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134320A Expired - Fee Related JP3894039B2 (en) 2002-05-09 2002-05-09 Operation method of electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP3894039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990899A (en) * 1982-11-15 1984-05-25 三菱電機株式会社 Voice synthesizer
JP6255686B2 (en) * 2013-03-25 2018-01-10 三浦工業株式会社 Water treatment equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051865A (en) * 1998-08-06 2000-02-22 Kurita Water Ind Ltd Electric regeneration type desalting apparatus
JP3952127B2 (en) * 1999-11-02 2007-08-01 栗田工業株式会社 Electrodeionization treatment method
JP2001170646A (en) * 1999-12-14 2001-06-26 Japan Organo Co Ltd Water passing method of electric deionized water production device
JP3620406B2 (en) * 2000-05-09 2005-02-16 栗田工業株式会社 Pure water production method
JP4599668B2 (en) * 2000-06-30 2010-12-15 栗田工業株式会社 Operation method of electrodeionization equipment

Also Published As

Publication number Publication date
JP2003326267A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
US6274019B1 (en) Electrodeionization apparatus
AU2015242989B2 (en) Electrodesalination system and method
US4969983A (en) Apparatus and process for the removal of acidic and basic gases from fluid mixtures using bipolar membranes
AU2014212394B2 (en) Rechargeable electrochemical cells
CA2850352C (en) Electrochemical desalination for oil recovery
EP1642867B1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JPH0957271A (en) Treatment of water by electrolytic deionization method and device used therefor
BRPI0808853A2 (en) ACID AND BASE GENERATION DEVICES AND METHODS
JP2008259961A (en) Electrodeionizing apparatus and its operation method
JP2010172806A (en) Pure water production system
KR20130129976A (en) Ion exchange deionization apparatus with electrical regeneration
JP3894039B2 (en) Operation method of electrodeionization equipment
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JPH022830A (en) Electric dialysis device
JP3695338B2 (en) Method for producing deionized water
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP4505965B2 (en) Pure water production method
US11542183B2 (en) Water production for coffee brewing by electrodeionization
JP4662277B2 (en) Electrodeionization equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP5382282B2 (en) Pure water production equipment
KR20210070359A (en) High recovery electrodialysis method
JP4016663B2 (en) Operation method of electrodeionization equipment
JP3620406B2 (en) Pure water production method
JP3979172B2 (en) Method and apparatus for producing pure water and scale monitor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees