JP2010172806A - Pure water production system - Google Patents

Pure water production system Download PDF

Info

Publication number
JP2010172806A
JP2010172806A JP2009016789A JP2009016789A JP2010172806A JP 2010172806 A JP2010172806 A JP 2010172806A JP 2009016789 A JP2009016789 A JP 2009016789A JP 2009016789 A JP2009016789 A JP 2009016789A JP 2010172806 A JP2010172806 A JP 2010172806A
Authority
JP
Japan
Prior art keywords
pure water
water
water tank
pure
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009016789A
Other languages
Japanese (ja)
Other versions
JP5277995B2 (en
Inventor
Takeshi Yoneda
剛 米田
Atsuyuki Manabe
敦行 真鍋
Takafumi Ii
孝文 井伊
Shuhei Izumi
修平 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009016789A priority Critical patent/JP5277995B2/en
Publication of JP2010172806A publication Critical patent/JP2010172806A/en
Application granted granted Critical
Publication of JP5277995B2 publication Critical patent/JP5277995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pure water production system where pure water stored in a pure water tank is constantly maintained with a desired high purity, and the pure water having high purity can be always fed to an external apparatus. <P>SOLUTION: The on/off control of a pure water device is performed (S1). The present water position is detected by a water position sensor 12 (S2), whether a timer counts a prescribed time or not is judged, and, when the prescribed time is passed, whether water position variation is caused or not is judged (S3→S4). Then, in the case water position variation is caused, the on/off control of the pure water device is performed (S4→S1), on the other hand, in the case water position variation is not caused, when the water position of a treatment water tank is less than the stop water position of a circulation pump, the pure water device is forcibly driven, and on the other hand, when the water position is more than the stop water position of the circulation pump, the circulation pump is driven, and at the point of time of lowering to the stop water position, the circulation pump is stopped, the pure water device is forcibly driven, and thereafter, the on/off control of the pure water device is performed, and the above treatments are repeated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は純水製造システムに関し、より詳しくは、膜ろ過装置や電気再生式脱塩装置(以下、「EDI装置」という。)等の純水装置で製造された純水を純水タンクに貯留し、該純水タンクに貯留された純水を熱交換器等の外部機器に給水する純水製造システムに関する。   The present invention relates to a pure water production system, and more specifically, stores pure water produced by a pure water device such as a membrane filtration device or an electric regenerative desalination device (hereinafter referred to as “EDI device”) in a pure water tank. The present invention also relates to a pure water production system for supplying pure water stored in the pure water tank to an external device such as a heat exchanger.

従来より、熱交換器、冷却塔、ボイラー用水、医療器具等の洗浄用水などには高純度に精製された純水が使用されている。   Conventionally, pure water purified to high purity has been used for heat exchangers, cooling towers, boiler water, cleaning water for medical instruments, and the like.

この種の純水製造システムでは、通常、地下水や井戸水等の原水を逆浸透膜装置(以下、「RO装置」という。)等の膜ろ過装置やEDI装置で処理して純水(処理水)を生成し、この生成された純水を処理水タンク(純水タンク)に貯留している。   In this type of pure water production system, raw water such as ground water and well water is usually treated with a membrane filtration device such as a reverse osmosis membrane device (hereinafter referred to as “RO device”) or an EDI device, and pure water (treated water). And the generated pure water is stored in a treated water tank (pure water tank).

例えば、特許文献1には、図19に示すように、RO装置107の透過水を脱イオン処理するEDI装置101の処理水出口側に設けた処理水流出ライン102に、処理水供給ライン103と処理水循環ライン104を分岐して接続し、処理水の流路を処理水供給ライン103又は処理水循環ライン104に切り替えるための流路切替手段105を設置し、処理水供給ライン102に処理水タンク106を接続して該処理水タンク106内に貯留された処理水を外部機器に送るようにし、EDI装置101を連続的に運転すると共に、処理水供給ライン102に送られる処理水の量に応じて、処理水を処理水供給ライン102に送る制御と、処理水を処理水循環ライン103に送る制御とを行うようにした電気脱イオン法による被処理水の処理方法が提案されている。   For example, in Patent Document 1, as shown in FIG. 19, a treated water supply line 103 and a treated water supply line 103 are connected to a treated water outlet line 102 provided on the treated water outlet side of an EDI device 101 that deionizes the permeated water of the RO device 107. A treated water circulation line 104 is branched and connected, and a flow path switching means 105 for switching the treated water flow path to the treated water supply line 103 or the treated water circulation line 104 is installed, and the treated water tank 106 is disposed in the treated water supply line 102. And the treated water stored in the treated water tank 106 is sent to an external device, the EDI apparatus 101 is continuously operated, and the amount of treated water sent to the treated water supply line 102 is The treatment of the water to be treated by the electrodeionization method in which the control to send the treated water to the treated water supply line 102 and the control to send the treated water to the treated water circulation line 103 are performed. Methods have been proposed.

すなわち、外部機器に接続された給水ライン108の通過水量に応じてEDI装置101をオン・オフ制御すると、EDI装置101の運転時間が短い場合は、EDI装置101内の脱塩室に収容されたイオン交換樹脂の再生が不完全となる。したがって、この状態でEDI装置101の運転を再開すると、イオン交換樹脂のイオン交換能力が低下した状態で再運転されるため、処理水の純度低下を招くおそれがある。   That is, when the EDI device 101 is turned on / off according to the amount of water passing through the water supply line 108 connected to an external device, when the operation time of the EDI device 101 is short, the EDI device 101 is accommodated in a desalination chamber in the EDI device 101. The regeneration of the ion exchange resin is incomplete. Therefore, when the operation of the EDI apparatus 101 is resumed in this state, the operation is restarted in a state in which the ion exchange capacity of the ion exchange resin is lowered, which may cause a decrease in the purity of the treated water.

このため特許文献1では、EDI装置101を連続運転する一方で、処理水タンク101内の水位が所定レベルに達したときは、流路切替手段105により処理水流路を処理水循環ライン104に切り替え、処理水を被処理水供給ライン109に還流させている。そして、これによりEDI装置101内の脱塩室に収容されたイオン交換樹脂は、常に再生された状態を維持することが可能となり、処理水の純度低下を防止している。   Therefore, in Patent Document 1, while the EDI apparatus 101 is continuously operated, when the water level in the treated water tank 101 reaches a predetermined level, the treated water flow path is switched to the treated water circulation line 104 by the flow path switching means 105, The treated water is returned to the treated water supply line 109. As a result, the ion exchange resin accommodated in the desalination chamber in the EDI apparatus 101 can always be kept in a regenerated state, thereby preventing the purity of the treated water from being lowered.

特許第3273718号明細書Japanese Patent No. 3273718

しかしながら、特許文献1では、処理水タンク106が外気と接している場合、給水ライン108に接続される外部機器の長時間停止等により処理水タンク106内での処理水の滞留時間が長くなると、大気中のCOが処理水内に溶解したり、処理水タンク106の内壁や処理水タンク106内に配された水位センサ等の取付部品から金属イオン等の不純物が溶出し、その結果、処理水の水質低下を招くおそれがある。 However, in Patent Document 1, when the treated water tank 106 is in contact with the outside air, if the residence time of the treated water in the treated water tank 106 becomes longer due to, for example, a long stoppage of an external device connected to the water supply line 108, Atmospheric CO 2 is dissolved in the treated water, or impurities such as metal ions are eluted from the inner wall of the treated water tank 106 and mounting parts such as a water level sensor arranged in the treated water tank 106. There is a risk of water quality degradation.

本発明はこのような事情に鑑みなされたものであって、純水タンクに貯留される純水を常に所望の高純度に維持し、斯かる高純度の純水を常時外部機器に給水することができる純水製造システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and always maintains pure water stored in a pure water tank at a desired high purity, and constantly supplies such high purity pure water to an external device. It is an object of the present invention to provide a pure water production system capable of producing water.

上記目的を達成するために本発明に係る純水製造システムは、純水を生成する少なくとも一つ以上の純水装置と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンクの水位を検出する水位検出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記水位が所定時間内に変動したか否かを判断する判断手段と、該判断手段により前記水位変動が生じなかったと判断されたときは前記循環手段を駆動させる駆動手段とを有していることを特徴としている。   In order to achieve the above object, a pure water production system according to the present invention includes at least one or more pure water apparatuses that generate pure water, a pure water tank that stores pure water generated by the pure water apparatus, Water level detection means for detecting the water level of the pure water tank, circulation means for circulating the pure water in the pure water tank into the system, and judgment means for judging whether or not the water level has fluctuated within a predetermined time; And a drive means for driving the circulation means when the judgment means judges that the water level fluctuation has not occurred.

また、本発明に係る純水製造システムは、純水を生成する少なくとも一つ以上の純水装置と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンクと外部機器との間に介装されて該外部機器に給水される純水流量を検出する流量出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記流量検出手段が所定時間内に前記純水流量を検出したか否かを判断する判断手段と、該判断手段により前記純水流量を検出しなかったと判断されたときは前記循環手段を駆動させる駆動手段とを有していることを特徴としている。   Moreover, the pure water production system according to the present invention includes at least one or more pure water devices that generate pure water, a pure water tank that stores pure water generated by the pure water device, and the pure water tank. A flow rate output means for detecting the flow rate of pure water interposed between the external equipment and supplied to the external equipment, a circulation means for circulating pure water in the pure water tank in the system, and the flow rate detection means Determining means for determining whether or not the pure water flow rate has been detected within a predetermined time, and drive means for driving the circulation means when the determination means determines that the pure water flow rate has not been detected. It is characterized by having.

また、本発明に係る純水製造システムは、純水を生成する少なくとも一つ以上の純水装置と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンク内の純水の水質を検出する水質検出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記水質検出手段の検出結果に応じて前記循環手段の駆動を制御する制御手段とを備えていることを特徴としている。   Further, the pure water production system according to the present invention includes at least one or more pure water devices that generate pure water, a pure water tank that stores pure water generated by the pure water device, and an inside of the pure water tank. Water quality detection means for detecting the quality of the pure water, circulation means for circulating the pure water in the pure water tank in the system, and control for controlling the driving of the circulation means according to the detection result of the water quality detection means And a means.

さらに、本発明の純水製造システムは、前記水質検出手段が、前記純水タンク内での前記純水の比抵抗を検出する比抵抗検出手段を有し、前記制御手段は、前記比抵抗が所定値以下か否かを判断する判断手段と、該判断手段により前記比抵抗が前記所定値以下であると判断されたときに前記循環手段を駆動する駆動手段とを有することを特徴としている。   Furthermore, in the pure water production system of the present invention, the water quality detection means has specific resistance detection means for detecting a specific resistance of the pure water in the pure water tank, and the control means has the specific resistance It has a judging means for judging whether or not it is a predetermined value or less, and a driving means for driving the circulating means when the judging means judges that the specific resistance is not more than the predetermined value.

また、本発明の純水製造システムは、前記水質検出手段が、前記純水タンク内での前記純水の電気伝導率を検出する電気伝導率検出手段を有し、前記制御手段は、前記電気伝導率が所定値以上か否かを判断する判断手段と、前記判断手段により前記電気伝導率が前記所定値以上であると判断されたときに前記循環手段を駆動する駆動手段とを有していることを特徴としている。   Further, in the pure water production system of the present invention, the water quality detection means has electrical conductivity detection means for detecting the electrical conductivity of the pure water in the pure water tank, and the control means Determining means for determining whether or not conductivity is greater than or equal to a predetermined value; and drive means for driving the circulation means when the determining means determines that the electrical conductivity is equal to or greater than the predetermined value. It is characterized by being.

さらに、本発明の純水製造システムは、前記水質検出手段が、前記純水タンク内での前記純水の比抵抗を検出する比抵抗検出手段と、前記純水に含有されるCO濃度を検出するCO濃度検出手段と、前記純水のpH値を検出するpH検出手段とを有し、前記制御手段は、前記CO濃度検出手段及び前記pH検出手段の各検出結果に基づいて比抵抗を推算する比抵抗推算手段と、前記比抵抗検出手段の検出結果が前記比抵抗推算手段の推算結果よりも小さいときに前記循環手段を駆動する駆動手段とを有していることを特徴としている。 Further, in the pure water production system of the present invention, the water quality detection means includes a specific resistance detection means for detecting a specific resistance of the pure water in the pure water tank, and a CO 2 concentration contained in the pure water. A CO 2 concentration detecting means for detecting; and a pH detecting means for detecting a pH value of the pure water, wherein the control means is configured to perform comparison based on the detection results of the CO 2 concentration detecting means and the pH detecting means. A specific resistance estimation means for estimating resistance; and a drive means for driving the circulation means when the detection result of the specific resistance detection means is smaller than the estimation result of the specific resistance estimation means. Yes.

また、本発明の純水製造システムは、前記水質検出手段が、前記純水タンク内での前記純水の電気伝導率を検出する比抵抗検出手段と、前記純水に含有されるCO濃度を検出するCO濃度検出手段と、前記純水のpH値を検出するpH検出手段とを有し、前記制御手段は、前記CO濃度検出手段及び前記pH検出手段の各検出結果に基づいて電気伝導率を推算する電気伝導率推算手段と、前記電気伝導率検出手段の検出結果が前記電気伝導率推算手段の推算結果よりも大きいときに前記循環手段を駆動する駆動手段とを有していることを特徴としている。 Further, in the pure water production system of the present invention, the water quality detection means includes a specific resistance detection means for detecting the electrical conductivity of the pure water in the pure water tank, and a CO 2 concentration contained in the pure water. CO 2 concentration detection means for detecting the pH value, and pH detection means for detecting the pH value of the pure water. The control means is based on the detection results of the CO 2 concentration detection means and the pH detection means. Electrical conductivity estimation means for estimating electrical conductivity; and drive means for driving the circulation means when the detection result of the electrical conductivity detection means is greater than the estimation result of the electrical conductivity estimation means. It is characterized by being.

また、本発明の純水製造システムは、前記純水装置が、EDI装置、膜ろ過装置、及びイオン交換樹脂塔のうちの少なくとも一つ以上を含むことを特徴としている。   In the pure water production system of the present invention, the pure water device includes at least one of an EDI device, a membrane filtration device, and an ion exchange resin tower.

さらに、本発明の純水製造システムは、前記純水装置の上流側に被処理水タンクが設けられ、前記循環手段は前記被処理水タンクに接続されていることを特徴としている。   Furthermore, the pure water production system of the present invention is characterized in that a treated water tank is provided upstream of the pure water device, and the circulating means is connected to the treated water tank.

また、本発明の純水製造システムは、前記純水装置が複数設けられている場合は、最上流の純水装置の上流側又は前記純水装置間に被処理水タンクが設けられ、前記循環手段は前記被処理水タンクに接続されていることを特徴としている。   Further, in the pure water production system of the present invention, when a plurality of the pure water devices are provided, a water tank to be treated is provided upstream of the most upstream pure water device or between the pure water devices, and the circulation The means is connected to the water tank to be treated.

上記純水製造システムによれば、純水を生成する少なくとも一つ以上の純水装置(RO装置、EDI装置、イオン交換樹脂塔等)と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンクの水位を検出する水位検出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記水位が所定時間内に変動したか否かを判断する判断手段と、該判断手段により前記水位変動が生じなかったと判断されたときは前記循環手段を駆動させる駆動手段とを有しているので、純水タンク内の水位が所定時間変動しなかった場合は、前記純水タンク内の純水を系内に循環させて再処理することができる。したがって、純水タンク内に純水が長時間滞留することがないので、大気中のCOが純水に溶解したり純水タンクの内壁や純水タンク内に付設された部品類から金属イオン等の不純物が溶出するのを抑制することができ、常に所望の高純度を有する純水を熱交換器等の外部機器に給水することができる。 According to the pure water production system, at least one or more pure water devices (RO device, EDI device, ion exchange resin tower, etc.) that generate pure water and the pure water generated by the pure water device are stored. A pure water tank, a water level detecting means for detecting the water level of the pure water tank, a circulating means for circulating the pure water in the pure water tank into the system, and whether or not the water level has changed within a predetermined time. Since there is a judging means for judging and a driving means for driving the circulating means when the judging means judges that the water level fluctuation has not occurred, the water level in the pure water tank does not fluctuate for a predetermined time. In this case, the pure water in the pure water tank can be circulated in the system for reprocessing. Therefore, pure water does not stay in the pure water tank for a long time, so that CO 2 in the atmosphere dissolves in pure water or metal ions from parts attached to the inner wall of the pure water tank or the pure water tank. It is possible to suppress elution of impurities such as, and to always supply pure water having a desired high purity to an external device such as a heat exchanger.

また、流量検出手段を純水タンクと外部機器との間に介装し、純水流量が所定時間検出されない場合は前記所定時間水位変動が生じなかったと判断し、駆動手段により循環手段を駆動させるので、前記純水タンク内の純水を系内に循環させて再処理することができる。すなわち、水位検出手段に代えて流量検出手段を設けた場合も、上述と同様、大気中のCOが純水に溶解したり純水タンクの内壁や純水タンク内に付設された部品類から金属イオン等の不純物が溶出するのを抑制することができ、常時、所望の高純度を有する純水を熱交換器等の外部機器に給水することができる。 Further, a flow rate detecting means is interposed between the pure water tank and the external device, and if the pure water flow rate is not detected for a predetermined time, it is determined that the water level has not changed for the predetermined time, and the circulating means is driven by the driving means. Therefore, the pure water in the pure water tank can be circulated in the system for reprocessing. That is, when the flow rate detection means is provided instead of the water level detection means, as described above, CO 2 in the atmosphere is dissolved in pure water or from the parts attached to the inner wall of the pure water tank or the pure water tank. Elution of impurities such as metal ions can be suppressed, and pure water having a desired high purity can be constantly supplied to an external device such as a heat exchanger.

また、比抵抗検出手段、又は電気伝導率検出手段を設け、比抵抗が所定値以下、又は電気伝導率が所定値以上の場合に純水の水質が低下したと判断して駆動手段により循環手段を駆動させるので、前記純水タンク内の純水を系内に循環させて再処理することができる。すなわち、水位変動や流量検出に代えて、比抵抗又は電気伝導率の検出値に応じて循環手段の駆動を制御することによっても、上述と同様、大気中のCOが純水に溶解したり純水タンクの内壁や純水タンク内に付設された部品類から金属イオン等の不純物が溶出するのを抑制することができ、常に所望の高純度を有する純水を熱交換器等の外部機器に給水することができる。 Further, there is provided a specific resistance detecting means or an electric conductivity detecting means, and when the specific resistance is not more than a predetermined value or when the electric conductivity is not less than the predetermined value, it is judged that the quality of the pure water has deteriorated, and the circulating means by the driving means Therefore, the pure water in the pure water tank can be circulated in the system for reprocessing. That is, instead of detecting fluctuations in the water level and detecting the flow rate, by controlling the driving of the circulating means in accordance with the detected value of specific resistance or electrical conductivity, CO 2 in the atmosphere can be dissolved in pure water as described above. It is possible to suppress the elution of impurities such as metal ions from the inner wall of the pure water tank and the parts attached to the pure water tank, and always use the pure water having the desired high purity as an external device such as a heat exchanger. Can be supplied with water.

また、比抵抗検出手段又は電気伝導率検出手段に加え、CO濃度検出手段及びpH検出手段を設け、CO濃度やpH値に基づいて比抵抗又は電気伝導率を推算する一方、実際の比抵抗又は電気伝導率を検出し、推算値と検出値を比較し、その比較結果に応じて循環手段の駆動を制御することにより、所望水質の純水を外部機器に給水することが可能である。 In addition to the specific resistance detection means or the electrical conductivity detection means, a CO 2 concentration detection means and a pH detection means are provided to estimate the specific resistance or electrical conductivity based on the CO 2 concentration or pH value, while the actual ratio By detecting the resistance or electrical conductivity, comparing the estimated value and the detected value, and controlling the driving of the circulating means according to the comparison result, it is possible to supply pure water of desired water quality to the external device. .

すなわち、比抵抗検出値が比抵抗推算値よりも小さい場合、又は電気伝導率検出値が電気伝導率推算値よりも大きい場合は、純水純度の低下要因がCO溶解に依るものと判断することができる。したがって、CO溶解であれば許容できるような水質要求の場合は、純水を無駄に系内に循環させるのを回避してエネルギを節減する一方、比抵抗検出値が比抵抗推算値以下の場合、又は電気伝導率検出値が電気伝導率推算値以上の場合は、純水タンク等からの金属イオンの溶出など、CO溶解以外の理由で水質が低下していると判断し、純水を系内で循環させることができるので、常に所望水質の純水を外部機器に給水することが可能となる。 That is, when the specific resistance detection value is smaller than the specific resistance estimated value, or if the electrical conductivity detected value is greater than the electrical conductivity estimated value, a reduction factor of pure water purity is determined to be due to CO 2 dissolution be able to. Therefore, in the case of water quality requirements that can be tolerated if CO 2 is dissolved, energy is saved by avoiding the wasteful circulation of pure water in the system, while the detected resistivity value is less than the estimated resistivity value. If the detected conductivity value is equal to or higher than the estimated conductivity value, it is determined that the water quality is reduced for reasons other than CO 2 dissolution, such as elution of metal ions from a pure water tank. Can be circulated in the system, so that it is always possible to supply pure water having a desired water quality to an external device.

本発明に係る純水製造システムの一実施の形態(第1の実施の形態)を示すシステム構成図である。1 is a system configuration diagram showing an embodiment (first embodiment) of a pure water production system according to the present invention. EDI装置の内部構造を模式的に示した図である。It is the figure which showed the internal structure of the EDI apparatus typically. 前記純水製造システムの制御系を示すブロック構成図である。It is a block block diagram which shows the control system of the said pure water manufacturing system. 第1の水位設定パターンを説明するための処理水タンクの正面図である。It is a front view of the treated water tank for demonstrating a 1st water level setting pattern. 上記純水製造システムの第1の水位設定パターンにおける制御手順を示すフローチャート(1/2)である。It is a flowchart (1/2) which shows the control procedure in the 1st water level setting pattern of the said pure water manufacturing system. 上記純水製造システムの第1の水位設定パターンにおける制御手順を示すフローチャート(2/2)である。It is a flowchart (2/2) which shows the control procedure in the 1st water level setting pattern of the said pure water manufacturing system. 第2の水位パターンを説明するための処理水タンクの正面図である。It is a front view of the treated water tank for demonstrating a 2nd water level pattern. 上記純水製造システムの第2の水位設定パターンにおける制御手順を示すフローチャート(1/2)である。It is a flowchart (1/2) which shows the control procedure in the 2nd water level setting pattern of the said pure water manufacturing system. 上記純水製造システムの第2の水位設定パターンにおける制御手順を示すフローチャート(2/2)である。It is a flowchart (2/2) which shows the control procedure in the 2nd water level setting pattern of the said pure water manufacturing system. 本発明に係る純水製造システムの第2の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 2nd embodiment of a pure water manufacturing system concerning the present invention. 上記第2の実施の形態の制御手順の要部フローチャートである。It is a principal part flowchart of the control procedure of the said 2nd Embodiment. 本発明に係る純水製造システムの第3の実施の形態を示すシステム構成図である。It is a system block diagram which shows 3rd Embodiment of the pure water manufacturing system which concerns on this invention. 上記第3の実施の形態の制御手順の要部フローチャートである。It is a principal part flowchart of the control procedure of the said 3rd Embodiment. 本発明に係る純水製造システムの第4の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 4th embodiment of a pure water manufacturing system concerning the present invention. 上記第4の実施の形態の制御手順の要部フローチャートである。It is a principal part flowchart of the control procedure of the said 4th Embodiment. 本発明に係る純水製造システムの第5の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 5th embodiment of a pure water manufacturing system concerning the present invention. 本発明に係る純水製造システムの第6の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 6th embodiment of a pure water manufacturing system concerning the present invention. 本発明に係る純水製造システムの第7の実施の形態を示すシステム構成図である。It is a system configuration figure showing a 7th embodiment of a pure water manufacturing system concerning the present invention. 特許文献1に記載された純水製造システムの概略システム構成図である。1 is a schematic system configuration diagram of a pure water production system described in Patent Document 1. FIG.

次に、本発明の実施の形態を図面に基づき詳説する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る純水製造システムの一実施の形態を示すシステム構成図である。   FIG. 1 is a system configuration diagram showing an embodiment of a pure water production system according to the present invention.

該純水製造システムは、原水供給ライン1からの原水を軟水化して被処理水を生成する軟水装置2と、該軟水装置2で生成された被処理水を貯留する被処理水タンク3と、被処理水ライン4から供給される被処理水を処理して純水を生成する純水装置5と、該純水装置5で生成された純水を処理水ライン6を介して貯留する処理水タンク(純水タンク)7とを備えている。   The pure water production system includes a soft water device 2 that softens raw water from the raw water supply line 1 to generate treated water, a treated water tank 3 that stores treated water generated by the soft water device 2, and A pure water device 5 that generates pure water by treating the water to be treated supplied from the water to be treated line 4, and treated water that stores the pure water produced by the pure water device 5 via the treated water line 6. And a tank (pure water tank) 7.

処理水タンク7は、給水ライン8を介して冷熱機器等の外部機器に接続され、純水を前記外部機器に給水する一方、循環水ライン9を介して処理水タンク7内の純水が被処理水タンク3に還流可能となるように構成されている。すなわち、循環水ライン9には循環弁10及び循環ポンプ(循環手段)11が介装され、必要に応じて処理水タンク7内の純水が被処理水タンク3に還流される。   The treated water tank 7 is connected to an external device such as a cooling / heating device via a water supply line 8 and supplies pure water to the external device, while the pure water in the treated water tank 7 is covered via a circulating water line 9. It is configured to be able to return to the treated water tank 3. That is, the circulating water line 9 is provided with a circulation valve 10 and a circulation pump (circulation means) 11, and pure water in the treated water tank 7 is returned to the treated water tank 3 as necessary.

また、処理水タンク7の下部には圧力検知式の水位センサ(水位検出手段)12が設けられ、処理水タンク7内の水頭を検知して、その検知信号を後述する制御部に送信する。   In addition, a pressure detection type water level sensor (water level detection means) 12 is provided below the treated water tank 7 to detect the water head in the treated water tank 7 and transmit the detection signal to a control unit described later.

また、軟水装置2は、イオン交換樹脂塔内にナトリウム型の陽イオン交換樹脂(不図示)が収容されており、イオン交換樹脂塔に併設された塩水タンク(不図示)内には飽和食塩水が貯留されている。この軟水装置2では、通水モード時に原水供給ライン1から原水が供給される。そして、原水に含まれる硬度成分、すなわちカルシウムイオン及びマグネシウムイオンが、陽イオン交換樹脂のナトリウムイオンとイオン交換されて除去され、軟水化され、被処理水となって被処理水タンク3に貯留される。また、軟水装置2の陽イオン交換樹脂の交換能力が飽和状態になると、軟水装置2は通水モードから再生モードに切り替えられて飽和食塩水が前記塩水タンクから供給され、これにより陽イオン交換樹脂の再生が行われる。そして再生処理が終了すると、再び通水モードとなって原水が供給可能状態となる。   The water softener 2 contains a sodium-type cation exchange resin (not shown) in an ion exchange resin tower, and a saturated saline solution is placed in a salt water tank (not shown) attached to the ion exchange resin tower. Is stored. In this water softener 2, raw water is supplied from the raw water supply line 1 in the water flow mode. Then, the hardness components contained in the raw water, that is, calcium ions and magnesium ions are ion-exchanged with sodium ions of the cation exchange resin to be removed, softened, and become treated water stored in the treated water tank 3. The Moreover, when the exchange capacity of the cation exchange resin of the water softener 2 is saturated, the water softener 2 is switched from the water flow mode to the regeneration mode, and saturated saline is supplied from the salt water tank, whereby the cation exchange resin. Is played. When the regeneration process is completed, the water supply mode is entered again, and raw water can be supplied.

また、純水装置5は、本実施の形態では、RO装置13とEDI装置14とで構成されている。   Moreover, the pure water apparatus 5 is comprised by the RO apparatus 13 and the EDI apparatus 14 in this Embodiment.

RO装置13は、例えばスパイラル形状に巻回されたRO膜エレメント(以下、「RO膜」という。)15aを内蔵したROモジュール15と、加圧ポンプ16とを有している。また、ROモジュール15は、被処理水が供給される一次側とRO膜15aを透過した透過水を出力する二次側とに分離されている。さらに、RO装置13には、RO膜15aを透過しなかった濃縮水の一部を原水側に還流するRO循環水ライン17と、前記濃縮水の残部を系外に排水する排水ライン18とが接続されている。RO循環水ライン17は、具体的には、排水ライン18の途中から分岐されて前記加圧ポンプ16の上流側に接続されると共に、該RO循環水ライン17には定流量制御弁(不図示)が介装され、濃縮水の一部が被処理水タンク3からの被処理水と合流し、ROモジュール15に供給されるように構成されている。尚、排水ライン18には排水弁19が介装されている。   The RO device 13 includes, for example, an RO module 15 including an RO membrane element (hereinafter referred to as “RO membrane”) 15 a wound in a spiral shape, and a pressure pump 16. The RO module 15 is separated into a primary side to which treated water is supplied and a secondary side that outputs permeated water that has passed through the RO membrane 15a. Furthermore, the RO device 13 includes an RO circulating water line 17 that circulates a part of the concentrated water that has not permeated the RO membrane 15a to the raw water side, and a drain line 18 that drains the remainder of the concentrated water outside the system. It is connected. Specifically, the RO circulating water line 17 is branched from the middle of the drainage line 18 and connected to the upstream side of the pressurizing pump 16, and a constant flow control valve (not shown) is connected to the RO circulating water line 17. ) Is interposed, and part of the concentrated water is combined with the water to be treated from the water tank 3 to be treated and supplied to the RO module 15. A drain valve 19 is interposed in the drain line 18.

このように構成されたRO装置13では、加圧ポンプ16を駆動し、RO膜15aに一次側から浸透圧以上の高圧が負荷されると、溶存塩類やシリカ(SiO)が除去された高純度の透過水が二次側に出水し、これにより処理水を生産する。また、RO膜15aを透過しなかった濃縮水の一部はRO循環水ライン17を介して加圧ポンプ16の上流側に還流され、残りは排水弁19から排水される。 In the RO device 13 configured as described above, when the pressurization pump 16 is driven and a high pressure higher than the osmotic pressure is applied to the RO membrane 15a from the primary side, dissolved salts and silica (SiO 2 ) are removed. Purified permeate flows out to the secondary side, thereby producing treated water. A part of the concentrated water that has not permeated the RO membrane 15 a is returned to the upstream side of the pressurizing pump 16 through the RO circulating water line 17, and the rest is drained from the drain valve 19.

また、EDI装置14は、透過水ライン21を介してRO装置13から供給される透過水を処理するEDI装置本体20を有し、前記透過水ライン21には給水ポンプ22が介装されている。   Further, the EDI device 14 has an EDI device body 20 for processing the permeated water supplied from the RO device 13 via the permeate water line 21, and a water feed pump 22 is interposed in the permeate water line 21. .

EDI装置本体20は、具体的には図2に示すように、陽極23と陰極24とを有し、陽極23と陰極24との間には陰イオン交換膜25と陽イオン交換膜26とが交互に多数列設されている。そして、陽極23と陽極23に隣接する陰イオン交換膜25とで陽極室27を形成し、陰極24と陰極24に隣接する陽イオン交換膜26とで陰極室28を形成し、陰イオン交換膜25と陽イオン交換膜26とで、図中左側から脱塩室29及び濃縮室30が交互に形成され、かつ各脱塩室29には、陽イオン交換体と陰イオン交換体の混合物からなるイオン交換体31が充填されている。また、脱塩室29は処理水ライン6に接続される一方、陽極室27及び陰極室28は電極水ライン32に接続され、電極水は排水弁33を介して系外に排水される。また、濃縮室30は濃縮水ライン34に接続され、濃縮水の一部は透過水ライン21に回収され、残部は排水弁35を介して系外に排水される。尚、濃縮水ライン34からの濃縮水は、被処理水よりも純度が高いので、被処理水タンク3又は被処理水ライン4に合流させ、全量を回収するように構成することもできる。   Specifically, as shown in FIG. 2, the EDI apparatus main body 20 includes an anode 23 and a cathode 24, and an anion exchange membrane 25 and a cation exchange membrane 26 are interposed between the anode 23 and the cathode 24. Many rows are arranged alternately. An anode chamber 27 is formed by the anode 23 and the anion exchange membrane 25 adjacent to the anode 23, and a cathode chamber 28 is formed by the cathode 24 and the cation exchange membrane 26 adjacent to the cathode 24. 25 and the cation exchange membrane 26, a desalting chamber 29 and a concentration chamber 30 are alternately formed from the left side in the figure, and each desalting chamber 29 is composed of a mixture of a cation exchanger and an anion exchanger. An ion exchanger 31 is filled. The desalting chamber 29 is connected to the treated water line 6, while the anode chamber 27 and the cathode chamber 28 are connected to the electrode water line 32, and the electrode water is drained outside the system through the drain valve 33. Further, the concentrating chamber 30 is connected to a concentrated water line 34, a part of the concentrated water is collected in the permeated water line 21, and the remaining part is drained outside the system through a drain valve 35. The concentrated water from the concentrated water line 34 has higher purity than the water to be treated, so that it can be combined with the water tank 3 to be treated or the water line 4 to be collected to collect the entire amount.

このように構成されたEDI装置14では、陽極23と陰極24との間に直流電圧を印加すると、脱塩室29に入水してきた透過水中のイオン成分は、イオン交換体31の表面を電位の方向に移動する。すなわち、陰イオンは陰イオン交換膜25を通過して陽極室27又は濃縮室30に移動し、一方、陽イオンは陽イオン交換膜26を通過して陰極室28又は濃縮室30に移動し、これらイオン成分を含んだ濃縮水は電極水ライン32又は濃縮水ライン34を介して系外に排出される。   In the EDI apparatus 14 configured as described above, when a DC voltage is applied between the anode 23 and the cathode 24, ionic components in the permeated water that has entered the desalting chamber 29 have a potential on the surface of the ion exchanger 31. Move in the direction. That is, the anion passes through the anion exchange membrane 25 and moves to the anode chamber 27 or the concentration chamber 30, while the cation passes through the cation exchange membrane 26 to the cathode chamber 28 or the concentration chamber 30, Concentrated water containing these ionic components is discharged out of the system via the electrode water line 32 or the concentrated water line 34.

尚、図1では陽極室27又は陰極室28内の電極水は電極水ライン32から全量排水されるように構成されているが、濃縮水と同じく被処理水よりも純度が高いので、一部又は全量を被処理水タンク3又は被処理水ライン4に合流するように構成してもよい。   In FIG. 1, the electrode water in the anode chamber 27 or the cathode chamber 28 is drained from the electrode water line 32, but the purity is higher than the water to be treated, like concentrated water. Or you may comprise so that the whole quantity may join the to-be-treated water tank 3 or the to-be-treated water line 4. FIG.

このようにして脱塩室29に供給された微量のイオン成分を含んだ透過水は、脱イオン処理された高純度の純水となり、処理水ライン6から処理水タンク7に給水される。   In this way, the permeated water containing a small amount of ionic components supplied to the desalting chamber 29 becomes deionized high-purity pure water and is supplied from the treated water line 6 to the treated water tank 7.

図3は上記純水製造システムの制御系を示すブロック構成図である。   FIG. 3 is a block diagram showing the control system of the pure water production system.

制御部36は、軟水装置2、RO装置13、EDI装置14との間でインターフェース動作を司り、水位センサ12からの電気信号を受信すると共に、循環弁10や循環ポンプ11に駆動信号を送信する入出力部37と、所定の演算プログラム等が格納されたROM38と、演算結果を一時的に記憶したりワークエリアとして使用されるRAM39と、システム全体を制御するタイマ40aを内蔵したCPU40とを備えている。   The control unit 36 performs interface operations with the water softener 2, the RO device 13, and the EDI device 14, receives an electrical signal from the water level sensor 12, and transmits a drive signal to the circulation valve 10 and the circulation pump 11. An input / output unit 37, a ROM 38 storing a predetermined calculation program, a RAM 39 for temporarily storing calculation results and used as a work area, and a CPU 40 incorporating a timer 40a for controlling the entire system. ing.

上記純水製造システムでは、RO装置13とEDI装置14とが連動して駆動し、これら純水装置5が駆動しているときは処理水ライン6を介して純水が処理水タンク7に給水され、給水ライン8への給水停止等により処理水タンク7の水位が所定の上限水位LHに達したときに純水装置5の駆動が停止するように構成されている。   In the pure water production system, the RO device 13 and the EDI device 14 are driven in conjunction, and when these pure water devices 5 are driven, pure water is supplied to the treated water tank 7 via the treated water line 6. In addition, when the water level of the treated water tank 7 reaches a predetermined upper limit water level LH due to, for example, stoppage of water supply to the water supply line 8, the drive of the pure water device 5 is stopped.

そして、本実施の形態では、制御部36は、処理水タンク7内の水位が所定時間内に変動したか否かを判断する判断手段と、該判断手段により前記水位変動が生じなかったと判断されたときは前記循環手段を駆動させる駆動手段とを有している。   In the present embodiment, the control unit 36 determines whether or not the water level in the treated water tank 7 has fluctuated within a predetermined time, and the determination means determines that the water level has not changed. Drive means for driving the circulation means.

図4は処理水タンク7の水位パターン(第1の水位設定パターン)の一例を示す図であり、循環ポンプ11の停止位置Lが純水装置5の駆動水位LLよりも高く設定されている。   FIG. 4 is a diagram showing an example of the water level pattern (first water level setting pattern) of the treated water tank 7, and the stop position L of the circulation pump 11 is set higher than the drive water level LL of the pure water device 5.

図5及び図6は上記第1の水位設定パターンにおける制御手順を示すフローチャートである。   5 and 6 are flowcharts showing a control procedure in the first water level setting pattern.

ステップS1では、純水装置5のオン・オフ制御を行う。すなわち、純水装置5は、処理水タンク7の水位が上限水位LHに達した時点でオフし、給水ライン8や循環水ラインへの純水の流出により水位が純水装置5の駆動水位LLに達した時点でオンする。   In step S1, on / off control of the pure water device 5 is performed. That is, the deionized water device 5 is turned off when the water level of the treated water tank 7 reaches the upper limit water level LH, and the water level is changed to the driving water level LL of the deionized water device 5 due to the outflow of pure water to the water supply line 8 or the circulating water line. Turns on when reaching.

次いで、ステップS2では、水位センサ12で現在水位を検知し、ステップS3では、タイマ40aが所定時間(例えば、1時間)を計時したか否かを判断する。そして、ステップS3の答が否定(No)のときは所定時間が経過するのを待機し、所定時間が経過したときはステップS4に進み、水位変動があったか否かを判断する。   Next, in step S2, the current water level is detected by the water level sensor 12, and in step S3, it is determined whether or not the timer 40a has counted a predetermined time (for example, 1 hour). If the answer to step S3 is negative (No), the process waits for a predetermined time to elapse. If the predetermined time elapses, the process proceeds to step S4 to determine whether or not a water level change has occurred.

そして、その答が肯定(Yes)の場合はステップS1に戻って、純水装置5のオン・オフ制御を行い、その後、上記ステップS2〜ステップS4の処理を繰り返す。   And when the answer is affirmative (Yes), it returns to step S1, performs on-off control of the pure water apparatus 5, and repeats the process of the said step S2-step S4 after that.

一方、ステップS4の答が否定(No)となって水位変動が生じなかった判断されたときは、図6のステップS5に進み、水位が循環ポンプ11の停止水位L以上か否かを判断する。   On the other hand, if the answer to step S4 is negative (No) and it is determined that the water level does not fluctuate, the process proceeds to step S5 in FIG. 6 to determine whether the water level is equal to or higher than the stop water level L of the circulation pump 11. .

そして、その答が肯定(Yes)のときは、ステップS6に進み循環ポンプ11を駆動させて処理水タンク7内の純水を被処理水タンク3に還流させる。   And when the answer is affirmative (Yes), it progresses to step S6, the circulation pump 11 is driven, and the pure water in the treated water tank 7 is recirculated to the treated water tank 3.

次いで、ステップS7では処理タンク7の水位が循環ポンプ11の停止水位Lに低下したか否かを判断する。そして、その答が否定(No)のときは、処理タンク7の水位が前記停止水位Lに低下するのを待機し、前記水位が前記停止水位Lに低下すると、ステップS8に進んで循環ポンプ11を停止させ、その後ステップS9に進んで、純水装置5を強制的に駆動させる。   Next, in step S7, it is determined whether or not the water level in the processing tank 7 has dropped to the stop water level L of the circulation pump 11. When the answer is negative (No), the process waits for the water level of the processing tank 7 to drop to the stop water level L. When the water level drops to the stop water level L, the process proceeds to step S8 and the circulation pump 11 Then, the process proceeds to step S9 to forcibly drive the pure water device 5.

一方、ステップS5の答が否定(No)のとき、すなわち処理タンク7の水位が循環ポンプ11の停止水位L未満の場合も、ステップS9に進み、純水装置5を強制的に駆動させる。   On the other hand, when the answer to step S5 is negative (No), that is, when the water level of the processing tank 7 is lower than the stop water level L of the circulation pump 11, the process proceeds to step S9 to forcibly drive the pure water device 5.

このように循環ポンプ11の停止直後、及び水位変動がなくても処理水タンク7の水位が循環ポンプ11の停止水位L未満の場合は、純水装置5を強制的に駆動させる。そしてこれにより、この間に外部機器から給水要求が生じた場合でも高純度を維持しつつ所望水質の純水を前記外部機器に給水することが可能となる。   Thus, immediately after the circulation pump 11 is stopped and when the water level in the treated water tank 7 is less than the stop water level L of the circulation pump 11 even if there is no fluctuation in the water level, the pure water device 5 is forcibly driven. This makes it possible to supply pure water of desired water quality to the external device while maintaining high purity even when a water supply request is generated from the external device during this period.

この後、図5のステップS1に戻り、純水装置5のオン・オフ制御を行い、上述した処理を繰り返す。   Then, it returns to step S1 of FIG. 5, performs on-off control of the pure water apparatus 5, and repeats the process mentioned above.

このように本実施の形態では、処理水タンク7の水位が所定時間経過しても変動しなかった場合は、循環ポンプ11を駆動させて被処理水タンク3に強制的に還流させ、再処理を行っているので、処理水タンク7内に純水が長時間滞留するのを回避することができる。したがって大気中のCOが純水中に溶解したり、処理水タンク7の内壁等から金属イオンが溶出して純水中に混入するのを極力回避することができる。そして、これにより処理水タンク7内の純水を常に高純度に維持することが可能となり、所望水質の純水を常時外部機器に給水することが可能となる。 As described above, in this embodiment, when the water level of the treated water tank 7 does not change even after a predetermined time has elapsed, the circulating pump 11 is driven to forcibly return to the treated water tank 3 for reprocessing. Therefore, it is possible to prevent the deionized water from staying in the treated water tank 7 for a long time. Therefore, it is possible to avoid as much as possible that CO 2 in the atmosphere is dissolved in pure water, or metal ions are eluted from the inner wall of the treated water tank 7 and mixed into the pure water. And it becomes possible to always maintain the pure water in the treated water tank 7 with high purity, and it becomes possible to always supply pure water having a desired water quality to an external device.

図7は処理水タンク7の第2の水位設定パターンを示す図であり、循環ポンプ11の停止位置Lが純水装置5の駆動水位LLよりも低く設定されている場合である。   FIG. 7 is a diagram showing a second water level setting pattern of the treated water tank 7, in which the stop position L of the circulation pump 11 is set lower than the drive water level LL of the pure water device 5.

図8及び図9は上記第2の水位設定パターンにおける制御手順を示すフローチャートである。   8 and 9 are flowcharts showing a control procedure in the second water level setting pattern.

ステップS11では、上述と同様、純水装置5のオン・オフ制御を行い、ステップS12では、水位センサ12で現在水位を検知し、ステップS13で所定時間(例えば、1時間)が経過したか否かを判断する。そして、ステップS13の答が否定(No)のときは所定時間が経過するのを待機し、所定時間が経過したときはステップS14に進み、水位変動があったか否かを判断する。   In step S11, on / off control of the deionized water device 5 is performed as described above. In step S12, the current water level is detected by the water level sensor 12, and whether or not a predetermined time (for example, 1 hour) has elapsed in step S13. Determine whether. If the answer to step S13 is negative (No), the process waits for a predetermined time to elapse. If the predetermined time elapses, the process proceeds to step S14 to determine whether the water level has changed.

そして、その答が否定(No)となって水位変動が生じなかったときは、図9のステップS15に進み、循環弁10を開弁して循環ポンプ11を駆動し、続く、ステップS16で処理水タンク水位が純水装置5の駆動水位LLにまで低下したか否かを判断する。   If the answer is negative (No) and the water level does not fluctuate, the process proceeds to step S15 in FIG. 9, the circulation valve 10 is opened and the circulation pump 11 is driven, and the process is continued in step S16. It is determined whether or not the water tank water level has dropped to the driving water level LL of the pure water device 5.

そして、その答が否定(No)のときは、処理水タンク水位が純水装置5の駆動水位LLにまで低下するのを待機し、前記駆動水位LLまで低下するとステップS17に進んで純水装置5を駆動させ、ステップS18に進む。   When the answer is negative (No), the process waits for the treated water tank water level to drop to the driving water level LL of the pure water device 5, and when the water level drops to the driving water level LL, the process proceeds to step S17 and goes to the pure water device. 5 is driven, and the process proceeds to step S18.

一方、図8のステップS14の答が肯定(Yes)の場合、すなわち、所定時間の間に水位変動があった場合は直ちにステップS18に進む。   On the other hand, if the answer to step S14 of FIG. 8 is affirmative (Yes), that is, if the water level fluctuates during a predetermined time, the process immediately proceeds to step S18.

次に、ステップS18では、処理水タンク水位が循環ポンプ11の停止水位Lまで低下したか否かを判断する。そして、その答が否定(No)の場合、すなわち循環ポンプ11の停止水位Lまで低下していない場合は、ステップS11に戻り、純水装置5のオン・オフ制御を行い、上述した処理を繰り返す。   Next, in step S <b> 18, it is determined whether or not the treated water tank water level has decreased to the stop water level L of the circulation pump 11. If the answer is negative (No), that is, if the water level has not dropped to the stop water level L of the circulation pump 11, the process returns to step S11, the on / off control of the pure water device 5 is performed, and the above-described processing is repeated. .

一方、ステップS18の答が肯定(Yes)の場合は、ステップS19に進み、循環ポンプ11が運転中か否かを判断する。そして、その答が否定(No)の場合は外部機器からの給水要求により処理水タンク水位が低下したと判断し、ステップS11に戻り、上述した処理を繰り返す。   On the other hand, if the answer to step S18 is affirmative (Yes), the process proceeds to step S19 to determine whether or not the circulation pump 11 is in operation. If the answer is negative (No), it is determined that the water level of the treated water tank has dropped due to a water supply request from an external device, and the process returns to step S11 to repeat the above-described processing.

また、ステップS19の答が肯定(Yes)の場合は、前記ステップS17で純水装置5を駆動させていることから、ステップS20に進み、循環ポンプ11の駆動を停止させてからステップS11に戻り、上述した処理を繰り返す。   If the answer to step S19 is affirmative (Yes), since the pure water device 5 is driven in step S17, the process proceeds to step S20, the drive of the circulation pump 11 is stopped, and the process returns to step S11. The above process is repeated.

このように第2の水位設定パターンの場合も、処理水タンク7の水位が所定時間変動しなかった場合は、循環ポンプ11を駆動させて被処理水タンク3に強制的に還流させ、再処理を行っているので、処理水タンク7内に純水が長時間滞留するのを回避することができる。したがって、第1の水位設定パターンの場合と同様、大気中のCOが純水中に溶解したり、処理水タンク7の内壁等から金属イオンが溶出して純水中に混入するのを極力回避することができ、これにより処理水タンク7内の純水を常に高純度に維持することが可能となり、所望水質の純水を常に外部機器に給水することが可能となる。 Thus, also in the case of the second water level setting pattern, when the water level of the treated water tank 7 has not changed for a predetermined time, the circulating pump 11 is driven to force the water to be treated to be returned to the treated water tank 3 for reprocessing. Therefore, it is possible to prevent the deionized water from staying in the treated water tank 7 for a long time. Accordingly, as in the case of the first water level setting pattern, CO 2 in the atmosphere is dissolved in pure water, or metal ions are eluted from the inner wall of the treated water tank 7 and mixed in the pure water as much as possible. Accordingly, the pure water in the treated water tank 7 can always be maintained at a high purity, and the pure water having a desired water quality can be always supplied to the external device.

次に、純水装置5の駆動水位LL及び循環ポンプ11の停止水位Lを第1の水位設定パターンとした場合について、種々の変形例を詳述するが、これら駆動水位LL及び停止水位Lを第2の水位設定パターンとした場合も同様である。   Next, various modifications will be described in detail for the case where the drive water level LL of the pure water device 5 and the stop water level L of the circulation pump 11 are the first water level setting pattern. The drive water level LL and the stop water level L are The same applies to the second water level setting pattern.

図10は、本発明に係る純水製造システムに係る第2の実施の形態を示すシステム構成図である。   FIG. 10 is a system configuration diagram showing a second embodiment of the pure water production system according to the present invention.

本第2の実施の形態では、給水ライン8に流量計(流量検出手段)41が介装されており、該流量計41の検出信号を制御部36に送信し、流量計41の検出結果に応じて循環ポンプ11の駆動を制御している。   In the second embodiment, a flow meter (flow rate detection means) 41 is interposed in the water supply line 8, and a detection signal of the flow meter 41 is transmitted to the control unit 36, and the detection result of the flow meter 41 is displayed. Accordingly, the driving of the circulation pump 11 is controlled.

図11は、上記第2の実施の形態の制御手順の要部フローチャートである。   FIG. 11 is a main part flowchart of the control procedure of the second embodiment.

ステップS21では、第1の実施の形態の図5と同様、純水装置5のオン・オフ制御を行う。次いで、ステップS22では、タイマ40aが所定時間(例えば、1時間)を計時したか否かを判断する。そしてステップS22の答が否定(No)のときは所定時間が経過するのを待機し、所定時間が経過したときはステップS23に進み、流量計41が流量を検出したか否かを判断する。   In step S21, on / off control of the deionized water device 5 is performed as in FIG. 5 of the first embodiment. Next, in step S22, it is determined whether or not the timer 40a has counted a predetermined time (for example, 1 hour). If the answer to step S22 is negative (No), the process waits for a predetermined time to elapse. If the predetermined time elapses, the process proceeds to step S23 to determine whether the flow meter 41 has detected a flow rate.

そして、その答が肯定(Yes)の場合、すなわち流量計41により流量が検出された場合は、給水ライン8を介して処理水タンク7内の純水が外部機器に給水されていると判断し、ステップS21に戻って上述の処理を繰り返す。   If the answer is affirmative (Yes), that is, if the flow rate is detected by the flow meter 41, it is determined that the pure water in the treated water tank 7 is supplied to the external device via the water supply line 8. Returning to step S21, the above-described processing is repeated.

一方、ステップS23の答が否定(No)の場合、すなわち流量計41により流量が検出されなかった場合は、純水が外部機器に給水されておらず、所定時間の間、水位変動がなかったと判断し、図6のステップS5に進み、以下、第1の実施の形態と同様の処理を実行する。すなわち、処理水タンク7の水位が循環ポンプ11の停止水位L未満の場合は、純水装置5を強制的に駆動させる一方(S5→S9)、前記水位が循環ポンプ11の停止水位L以上の場合は、循環ポンプ11を駆動させ、前記停止水位Lに低下した時点で循環ポンプを停止し、純水装置5を強制的に駆動させ(S5→S6→S7→S8→S9)、その後ステップS21に戻る。   On the other hand, if the answer to step S23 is negative (No), that is, if the flow rate is not detected by the flow meter 41, pure water is not supplied to the external device, and the water level does not change for a predetermined time. The process proceeds to step S5 in FIG. 6, and thereafter, the same processing as in the first embodiment is executed. That is, when the water level of the treated water tank 7 is less than the stop water level L of the circulation pump 11, the pure water device 5 is forcibly driven (S5 → S9), while the water level is equal to or higher than the stop water level L of the circulation pump 11. In this case, the circulation pump 11 is driven, the circulation pump is stopped when the water level drops to the stop water level L, and the pure water device 5 is forcibly driven (S5 → S6 → S7 → S8 → S9), and then step S21. Return to.

このように第2の実施の形態では、流量計41により、所定時間流量検出されなかった場合は処理水タンク7の水位が所定時間変動しなかったと判断して循環ポンプ11を駆動させ、これにより被処理水タンク3に強制的に還流させて再処理を行っているので、処理水タンク7内に純水が長時間滞留するのを回避することができる。したがって、第1の実施の形態と同様、大気中のCOが純水中に溶解したり、処理水タンク7の内壁等から金属イオンが溶出して純水中に混入するのを回避することができ、これにより処理水タンク7内の純水を常に高純度に維持することが可能となり、所望水質の純水を常時外部機器に給水することが可能となる。 As described above, in the second embodiment, when the flow rate is not detected for a predetermined time by the flow meter 41, it is determined that the water level of the treated water tank 7 has not fluctuated for a predetermined time, and the circulation pump 11 is driven. Since the reprocessing is performed by forcibly returning to the water tank 3 to be treated, it is possible to prevent the deionized water from staying in the water tank 7 for a long time. Therefore, as in the first embodiment, it is avoided that CO 2 in the atmosphere is dissolved in pure water or metal ions are eluted from the inner wall of the treated water tank 7 and mixed in the pure water. As a result, the pure water in the treated water tank 7 can always be maintained at a high purity, and the pure water having a desired water quality can be constantly supplied to the external device.

図12は、本発明に係る純水製造システムに係る第3の実施の形態を示すシステム構成図である。   FIG. 12 is a system configuration diagram showing a third embodiment of the pure water production system according to the present invention.

本第3の実施の形態では、比抵抗計(比抵抗検出手段)42を処理水タンク7に取り付けると共に、該比抵抗計42の検出信号を制御部36に送信し、比抵抗計42の検出結果に応じて循環ポンプ11の駆動を制御している。   In the third embodiment, a specific resistance meter (specific resistance detection means) 42 is attached to the treated water tank 7, and a detection signal of the specific resistance meter 42 is transmitted to the control unit 36 to detect the specific resistance meter 42. The driving of the circulation pump 11 is controlled according to the result.

図13は、上記第3の実施の形態の制御手順の要部フローチャートである。   FIG. 13 is a main part flowchart of the control procedure of the third embodiment.

ステップS31では、第1の実施の形態の図5と同様、純水装置5のオン・オフ制御を行う。次いで、ステップS32では、比抵抗計42で検出された比抵抗が所定値(例えば、10MΩ・cm)以下か否かを判断する。そしてステップS32の答が否定(No)の場合は処理水タンク7内の純水は所望純度を維持していると判断し、ステップS31に戻って純水装置5のオン・オフ制御を行う。   In step S31, the on / off control of the pure water apparatus 5 is performed as in FIG. 5 of the first embodiment. Next, in step S32, it is determined whether or not the specific resistance detected by the specific resistance meter 42 is a predetermined value (for example, 10 MΩ · cm) or less. If the answer to step S32 is negative (No), it is determined that the pure water in the treated water tank 7 maintains the desired purity, and the process returns to step S31 to perform on / off control of the pure water device 5.

一方、ステップS32の答が肯定(Yes)の場合、処理水タンク7内の純水純度が低下していると判断し、図6のステップS5に進み、以下、第1の実施の形態と同様の処理を実行する。すなわち、処理水タンク7の水位が循環ポンプ11の停止水位L未満の場合は、純水装置5を強制的に駆動させる一方(S5→S9)、処理水タンク水位が循環ポンプ11の停止水位L以上の場合は、循環ポンプ11を駆動させ、前記停止水位Lに低下した時点で循環ポンプを停止し、純水装置5を強制的に駆動させ(S5→S6→S7→S8→S9)、その後ステップS21に戻る。   On the other hand, if the answer to step S32 is affirmative (Yes), it is determined that the purity of the pure water in the treated water tank 7 is lowered, and the process proceeds to step S5 in FIG. 6, and the same as in the first embodiment. Execute the process. That is, when the water level of the treated water tank 7 is less than the stop water level L of the circulation pump 11, the pure water device 5 is forcibly driven (S5 → S9), while the treated water tank water level is the stop water level L of the circulation pump 11. In the above case, the circulation pump 11 is driven, the circulation pump is stopped when the water level drops to the stop water level L, the pure water device 5 is forcibly driven (S5 → S6 → S7 → S8 → S9), and then Return to step S21.

このように第3の実施の形態では、比抵抗が所定値以下になったときは、純水純度が所定値以下に低下したと判断して循環ポンプ11を駆動させ、被処理水タンク3に強制的に還流させて再処理を行っているので、処理水タンク7内に純水が長時間滞留するのを回避することができる。したがって、第1及び第2の実施の形態と同様、大気中のCOが純水中に溶解したり、処理水タンク7の内壁等から金属イオンが溶出して純水に混入するのを極力避けることができ、これにより処理水タンク7内の純水を常に高純度に維持することが可能となり、所望の高純度を有する純水を常時外部機器に給水することが可能となる。 As described above, in the third embodiment, when the specific resistance is equal to or lower than the predetermined value, it is determined that the purity of pure water has decreased to the predetermined value or lower, the circulation pump 11 is driven, and the water tank 3 is treated. Since the reprocessing is performed by forcibly refluxing, it is possible to prevent the deionized water from staying in the treated water tank 7 for a long time. Therefore, as in the first and second embodiments, it is as much as possible that CO 2 in the atmosphere is dissolved in pure water or metal ions are eluted from the inner wall of the treated water tank 7 and mixed into the pure water. This makes it possible to always maintain the pure water in the treated water tank 7 with a high purity, and to always supply the pure water having a desired high purity to an external device.

図14は、本発明に係る純水製造システムに係る第4の実施の形態を示すシステム構成図である。   FIG. 14 is a system configuration diagram showing a fourth embodiment of the pure water production system according to the present invention.

本第4の実施の形態では、比抵抗計42に加え、COセンサ(CO濃度検出手段)43及びpHセンサ(pH検出手段)44を処理水タンク7に取り付け、これら比抵抗計42、COセンサ43及びpHセンサ44の検出信号を制御部36に送信し、これらの検出結果に応じて循環ポンプ11の駆動を制御している。 In the fourth embodiment, in addition to the resistivity meter 42, a CO 2 sensor (CO 2 concentration detection means) 43 and a pH sensor (pH detection means) 44 are attached to the treated water tank 7, and these resistivity meters 42, The detection signals of the CO 2 sensor 43 and the pH sensor 44 are transmitted to the control unit 36, and the drive of the circulation pump 11 is controlled according to these detection results.

すなわち、この第4の実施の形態では、純水純度の低下がCO溶解のみに起因するときは、許容範囲内であるような水質要求の場合に、純度低下の要因を推定し、処理水タンク7内の純水の被処理水タンク3への循環を制御している。 That is, in the fourth embodiment, when the decrease in the purity of pure water is caused only by the dissolution of CO 2 , the factor of the decrease in purity is estimated in the case of a water quality requirement that is within the allowable range, and the treated water is The circulation of pure water in the tank 7 to the treated water tank 3 is controlled.

図15は、上記第4の実施の形態の制御手順の要部フローチャートである。   FIG. 15 is a main part flowchart of the control procedure of the fourth embodiment.

ステップS41では、第1の実施の形態の図5と同様、純水装置5のオン・オフ制御を行う。   In step S41, on / off control of the pure water apparatus 5 is performed as in FIG. 5 of the first embodiment.

そして、ステップS42では、COセンサ43及びpHセンサ44でCO濃度及びpH値を検出し、これら検出CO値、検出pH値に基づいてHCO 濃度〔HCO 〕を推算する。 Then, in step S42, detects the CO 2 concentration and pH value in the CO 2 sensor 43 and the pH sensor 44, these detected CO 2 value, HCO 3 based on the detected pH value - to estimate the - concentration [HCO 3].

すなわち、大気中のCOが純水中に溶解すると、化学式(A)で示す平衡反応が生じる。 That is, when CO 2 in the atmosphere is dissolved in pure water, an equilibrium reaction represented by the chemical formula (A) occurs.

Figure 2010172806
Figure 2010172806

したがって、平衡定数Kは数式(1)で表される。   Therefore, the equilibrium constant K is expressed by Equation (1).

Figure 2010172806
Figure 2010172806

よって、HCO 濃度〔HCO 〕は数式(2)で表される。 Therefore, HCO 3 - concentration [HCO 3 -] is represented by the equation (2).

Figure 2010172806
Figure 2010172806

そして、pHは、pH=−log〔H〕であるから、HCO 濃度〔HCO 〕をCO濃度〔CO〕及びpH値で表すと、数式(3)のようになる。 Then, pH, since a pH = -log [H +], HCO 3 - concentration [HCO 3 -] is represented by the CO 2 concentration [CO 2] and pH values is as in Equation (3).

Figure 2010172806
Figure 2010172806

ここで、平衡定数Kは、反応系に固有の定数(1.0×106.4 at25 ℃)であるから、検出CO値及び検出pH値からHCO 濃度〔HCO 〕を推算することができる。 Here, the equilibrium constant K, since it is a constant inherent (1.0 × 10 6.4 at25 ℃) to the reaction system, HCO from the detected CO 2 value and the detected pH value 3 - concentration [HCO 3 -] to estimate the Can do.

このようにしてステップS42では数式(3)に基づき検出CO値及び検出pH値からHCO 濃度〔HCO 〕を推算する。 Thus HCO from the detected CO 2 value and the detected pH value based on at step S42 Equation (3) 3 - to estimate the - concentration [HCO 3].

続く、ステップS43では比抵抗ρを推算する。すなわち、ステップS42で推算されたHCO 濃度〔HCO 〕とHCO の極限モル伝導率Λ(=44.5S・cm/mol)とから電気伝導率κを推算し、該電気伝導率κから比抵抗ρ1(=1/κ)を算出する。 In step S43, the specific resistance ρ is estimated. That, HCO 3, which is estimated in step S42 - the HCO 3 - concentration [HCO 3] - Estimate electric conductivity κ because extreme molar conductivity Λ 0 (= 44.5S · cm 2 / mol) and of the The specific resistance ρ1 (= 1 / κ) is calculated from the electrical conductivity κ.

そして、ステップS44では比抵抗計42で実際の比抵抗ρ2を検出し、続くステップS45で推算値(ρ1)と検出値(ρ2)とを比較する。そして、検出値が推算値以上の場合は、純水の純度低下がCO溶解のみによるものと判断し、純水の被処理水タンク3への循環制御を行うことなくステップS41に戻り、上述の処理を繰り返す。 In step S44, the actual resistivity ρ2 is detected by the resistivity meter 42, and in the subsequent step S45, the estimated value (ρ1) and the detected value (ρ2) are compared. If the detected value is greater than or equal to the estimated value, it is determined that the decrease in purity of pure water is due only to CO 2 dissolution, and the process returns to step S41 without performing circulation control to the treated water tank 3 with pure water. Repeat the process.

一方、ステップS45の答が肯定(Yes)、すなわち、検出値が推算値未満の場合は、CO溶解以外の要因、例えば、処理水タンク7の内壁や処理水タンク7に付設された部品類(水位センサ12、比抵抗計42、COセンサ43、pHセンサ44等)の金属イオンの溶出等により純水の純度が低下していると判断し、図6のステップS5に進んで第1の実施の形態と同様の制御処理を実行する。すなわち、処理水タンク7の水位が循環ポンプ11の停止水位L未満の場合は、純水装置5を強制的に駆動させる一方(S5→S9)、前記水位が循環ポンプ11の停止水位L以上の場合は、循環ポンプ11を駆動させ、前記停止水位Lに低下した時点で循環ポンプを停止し、純水装置5を強制的に駆動させ(S5→S6→S7→S8→S9)、その後ステップS41に戻る。 On the other hand, if the answer to step S45 is affirmative (Yes), that is, if the detected value is less than the estimated value, factors other than CO 2 dissolution, for example, the inner wall of the treated water tank 7 or the parts attached to the treated water tank 7 It is determined that the purity of pure water is reduced due to elution of metal ions (water level sensor 12, specific resistance meter 42, CO 2 sensor 43, pH sensor 44, etc.), and the process proceeds to step S5 in FIG. Control processing similar to that in the embodiment is executed. That is, when the water level of the treated water tank 7 is less than the stop water level L of the circulation pump 11, the pure water device 5 is forcibly driven (S5 → S9), while the water level is equal to or higher than the stop water level L of the circulation pump 11. In this case, the circulation pump 11 is driven, the circulation pump is stopped when the water level drops to the stop water level L, and the pure water device 5 is forcibly driven (S5 → S6 → S7 → S8 → S9), and then step S41. Return to.

このように第4の実施の形態では、比抵抗検出値が比抵抗推算値未満の場合は、第1〜第3の実施の形態と同様、循環ポンプ11を駆動させ、被処理水タンク3に強制的に還流させて再処理を行っているが、比抵抗検出値が比抵抗推算値以上の場合は純水の純度低下がCO溶解のみに起因すると判断し、循環ポンプ11の駆動を停止しているので、水質の要求品質に応じた循環制御を行うことができる。すなわち、不必要な循環ポンプ11の駆動を排してエネルギを節減できると共に、所望水質の純水を外部機器に常に給水することができる。 As described above, in the fourth embodiment, when the specific resistance detection value is less than the specific resistance estimation value, the circulation pump 11 is driven and the water tank 3 to be treated is driven as in the first to third embodiments. Reprocessing is performed by forcibly refluxing, but if the specific resistance detection value is equal to or greater than the specific resistance estimation value, it is determined that the purity reduction of pure water is caused only by CO 2 dissolution, and the driving of the circulation pump 11 is stopped. Therefore, the circulation control according to the required quality of the water quality can be performed. That is, unnecessary driving of the circulation pump 11 can be eliminated to save energy, and pure water having a desired water quality can be constantly supplied to the external device.

さらに、上記実施の形態では、純水装置5はRO装置13とEDI装置14とで構成されているが、これらに限定されるものではないのはいうまでもない。   Furthermore, in the said embodiment, although the pure water apparatus 5 is comprised by the RO apparatus 13 and the EDI apparatus 14, it cannot be overemphasized that it is not limited to these.

図16は、本発明に係る純水製造システムに係る第5の実施の形態を示すシステム構成図である。   FIG. 16 is a system configuration diagram showing a fifth embodiment of the pure water production system according to the present invention.

この第5の実施の形態では、純水装置5′が、複床式又は混床式のイオン交換樹脂塔45とEDI装置14とで構成されている。すなわち、RO装置12に代えてイオン交換樹脂塔45が設けられており、この場合も、上記第1〜第4の実施の形態で説明したいずれかの制御を行うことにより、常に所望水質の純水を外部機器に給水することが可能となる。   In the fifth embodiment, the deionized water device 5 ′ is composed of a double bed type or mixed bed type ion exchange resin tower 45 and an EDI device 14. In other words, an ion exchange resin tower 45 is provided in place of the RO device 12, and in this case as well, by performing any of the controls described in the first to fourth embodiments, the pure water having a desired water quality is always obtained. It becomes possible to supply water to an external device.

このように純水装置としては、種々の形態のものを使用することができる。例えば、上記各実施の形態では、膜ろ過装置としてRO装置12を使用しているが、RO膜15aに替えてナノろ過膜を使用する場合も同様であり、また、電気透析装置等、他の純水装置を使用する場合も同様であるのはいうまでもない。   As described above, various types of pure water devices can be used. For example, in each of the above embodiments, the RO device 12 is used as the membrane filtration device. However, the same applies when a nanofiltration membrane is used instead of the RO membrane 15a. It goes without saying that the same applies when using a pure water apparatus.

また、純水装置は、少なくとも一つ以上備えていればよく、単独、又は複数の種々の組み合わせが可能である。   Moreover, the pure water apparatus should just be equipped with at least 1 or more, and single or several various combinations are possible.

図17は、本発明に係る純水製造システムに係る第6の実施の形態を示すシステム構成図である。   FIG. 17 is a system configuration diagram showing a sixth embodiment of the pure water production system according to the present invention.

本第6の実施の形態では、RO装置12とEDI装置14の間に被処理水タンク3が介装されている。   In the sixth embodiment, the treated water tank 3 is interposed between the RO device 12 and the EDI device 14.

すなわち、上記第1〜第4の実施の形態では、2個の純水装置(RO装置12及びEDI装置14)の最上流の上流側に被処理水タンク3を設けているが、この第6の実施の形態では、2個の純水装置の中間に被処理水タンク3を介装している。   That is, in the first to fourth embodiments, the treated water tank 3 is provided on the upstream side of the uppermost stream of the two pure water devices (RO device 12 and EDI device 14). In the embodiment, the water tank 3 to be treated is interposed between two pure water apparatuses.

このように処理水タンク7内の純水を再処理できればよいのであって、必ずしも最上流の純水装置の上流側でなくてもよく、少なくとも一つの純水装置の上流側に純水を還流できればよい。   As long as the pure water in the treated water tank 7 can be reprocessed in this way, it is not necessarily required to be upstream of the most upstream pure water device, and the pure water is returned to the upstream side of at least one pure water device. I can do it.

図18は、本発明に係る純水製造システムに係る第7の実施の形態を示すシステム構成図である。   FIG. 18 is a system configuration diagram showing a seventh embodiment of the pure water production system according to the present invention.

本第7の実施の形態では、被処理水タンクを設けずに被処理水ライン7に純水を還流している。すなわち、循環水ライン9′は、中間に分岐ライン46が設けられ、かつ該分岐ライン46に排水弁47が介装されている。そして、例えば、純水装置5の停止中に循環ポンプ11が駆動したときは、排水弁47を開弁して排水し、純水装置5の駆動中に循環ポンプ11が駆動したときは、排水弁47を閉弁状態として被処理水ライン7に還流し、これにより純水を循環制御している。   In the seventh embodiment, pure water is recirculated to the treated water line 7 without providing a treated water tank. That is, the circulating water line 9 ′ is provided with a branch line 46 in the middle, and a drain valve 47 is interposed in the branch line 46. For example, when the circulating pump 11 is driven while the pure water device 5 is stopped, the drain valve 47 is opened to drain water, and when the circulating pump 11 is driven while the pure water device 5 is driven, The valve 47 is closed to return to the water line 7 to be treated, thereby controlling the circulation of pure water.

そして、本発明は、更に種々の変形が可能である。上記第3及び第4の実施の形態では、比抵抗計42を使用しているが、該比抵抗計42に代えて電気伝導率センサ(電気伝導率検出手段)を設けてもよい。この場合、電気伝導率は比抵抗の逆数であるから、例えば、第3の実施の形態における図13のステップS32では比抵抗が所定値以下の場合に循環ポンプ11を駆動させているが、電気伝導率センサを使用する場合は電気伝導率が所定値以上の場合に循環ポンプ11を駆動させるようにすればよい。同様に、第4の実施の形態における図15のステップS45では比抵抗検出値が比抵抗推算値未満の場合に循環ポンプ11を駆動させているが、電気伝導率センサを使用する場合は電気伝導率検出値が電気伝導率推算値を超えた場合に循環ポンプ11を駆動させるようにすればよい。   The present invention can be further modified in various ways. Although the specific resistance meter 42 is used in the third and fourth embodiments, an electrical conductivity sensor (electric conductivity detection means) may be provided in place of the specific resistance meter 42. In this case, since the electric conductivity is the reciprocal of the specific resistance, for example, in step S32 of FIG. 13 in the third embodiment, the circulation pump 11 is driven when the specific resistance is equal to or less than a predetermined value. When the conductivity sensor is used, the circulation pump 11 may be driven when the electrical conductivity is equal to or higher than a predetermined value. Similarly, in step S45 of FIG. 15 in the fourth embodiment, the circulation pump 11 is driven when the detected specific resistance value is less than the estimated specific resistance value. However, when the electrical conductivity sensor is used, the electrical conduction is performed. What is necessary is just to drive the circulation pump 11 when a rate detection value exceeds an electrical conductivity estimated value.

本発明は、処理水タンク内の純水を常に所望純度に維持して所望水質の純水を冷熱機器等の外部機器に給水するシステムに有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a system that always maintains pure water in a treated water tank at a desired purity and supplies pure water having a desired water quality to an external device such as a cooling / heating device.

5 純水装置
7 処理水タンク(純水タンク)
11 循環ポンプ(循環手段)
12 水位センサ(水位検出手段)
13 RO装置
14 EDI装置
36 制御部(判断手段、駆動手段、駆動制御手段)
41 流量計(流量検出手段)
42 比抵抗計(比抵抗検出手段)
43 COセンサ(CO検出手段)
44 pHセンサ(pH検出手段)
45 イオン交換樹脂塔
5 Pure water equipment 7 Treated water tank (pure water tank)
11 Circulation pump (circulation means)
12 Water level sensor (water level detection means)
13 RO device 14 EDI device 36 Control unit (determination means, drive means, drive control means)
41 Flow meter (flow rate detection means)
42 Resistivity meter (resistivity detection means)
43 CO 2 sensor (CO 2 detection means)
44 pH sensor (pH detection means)
45 Ion exchange resin tower

Claims (10)

純水を生成する少なくとも一つ以上の純水装置と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンクの水位を検出する水位検出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記水位が所定時間内に変動したか否かを判断する判断手段と、該判断手段により前記水位変動が生じなかったと判断されたときは前記循環手段を駆動させる駆動手段とを有していることを特徴とする純水製造システム。   At least one or more pure water apparatuses that generate pure water, a pure water tank that stores pure water generated by the pure water apparatus, a water level detection unit that detects a water level of the pure water tank, and the pure water A circulating means for circulating pure water in the tank into the system; a judging means for judging whether or not the water level has fluctuated within a predetermined time; and when the judging means determines that the water level has not fluctuated. A pure water production system comprising drive means for driving the circulation means. 純水を生成する少なくとも一つ以上の純水装置と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンクと外部機器との間に介装されて該外部機器に給水される純水流量を検出する流量検出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記流量検出手段が所定時間内に前記純水流量を検出したか否かを判断する判断手段と、該判断手段により前記純水流量を検出しなかったと判断されたときは前記循環手段を駆動させる駆動手段とを有していることを特徴とする純水製造システム。   At least one or more pure water devices that generate pure water, a pure water tank that stores pure water generated by the pure water device, and the external device interposed between the pure water tank and an external device. A flow rate detecting means for detecting a flow rate of pure water supplied to the device, a circulating means for circulating pure water in the pure water tank into the system, and the flow rate detecting means detected the pure water flow rate within a predetermined time. A pure water production comprising: a judging means for judging whether or not the pure water flow rate is not detected by the judging means; and a driving means for driving the circulating means system. 純水を生成する少なくとも一つ以上の純水装置と、該純水装置で生成された純水を貯留する純水タンクと、該純水タンク内の純水の水質を検出する水質検出手段と、前記純水タンク内の純水を系内に循環させる循環手段と、前記水質検出手段の検出結果に応じて前記循環手段の駆動を制御する制御手段とを備えていることを特徴とする純水製造システム。   At least one or more pure water devices that generate pure water, a pure water tank that stores pure water generated by the pure water device, and water quality detection means that detects the quality of pure water in the pure water tank A pure means for circulating pure water in the pure water tank into the system; and a control means for controlling the driving of the circulating means in accordance with the detection result of the water quality detecting means. Water production system. 前記水質検出手段は、前記純水タンク内での前記純水の比抵抗を検出する比抵抗検出手段を有し、
前記制御手段は、前記比抵抗が所定値以下か否かを判断する判断手段と、該判断手段により前記比抵抗が前記所定値以下であると判断されたときに前記循環手段を駆動手段とを有していることを特徴とする請求項3記載の純水製造システム。
The water quality detection means has a specific resistance detection means for detecting a specific resistance of the pure water in the pure water tank,
The control means includes a judging means for judging whether or not the specific resistance is not more than a predetermined value, and a driving means for driving the circulation means when the judging means judges that the specific resistance is not more than the predetermined value. The pure water production system according to claim 3, wherein the pure water production system is provided.
前記水質検出手段は、前記純水タンク内での前記純水の電気伝導率を検出する電気伝導率検出手段を有し、
前記制御手段は、前記電気伝導率が所定値以上か否かを判断する判断手段と、該判断手段により前記電気伝導率が前記所定値以上であると判断されたときに前記循環手段を駆動する駆動手段とを有していることを特徴とする請求項3記載の純水製造システム。
The water quality detection means has electrical conductivity detection means for detecting electrical conductivity of the pure water in the pure water tank,
The control means determines whether or not the electrical conductivity is greater than or equal to a predetermined value, and drives the circulation means when the determination means determines that the electrical conductivity is greater than or equal to the predetermined value. The pure water manufacturing system according to claim 3, further comprising a driving unit.
前記水質検出手段は、前記純水タンク内での前記純水の比抵抗を検出する比抵抗検出手段と、前記純水に含有されるCO濃度を検出するCO濃度検出手段と、前記純水のpH値を検出するpH検出手段とを有し、
前記制御手段は、前記CO濃度検出手段及び前記pH検出手段の各検出結果に基づいて比抵抗を推算する比抵抗推算手段と、前記比抵抗検出手段の検出結果が前記比抵抗推算手段の推算結果よりも小さいときに前記循環手段を駆動する駆動手段とを有していることを特徴とする請求項3記載の純水製造システム。
The water quality detection means, said a specific resistance detecting means, wherein detecting the resistivity of the pure water in the pure water tank, a CO 2 concentration detection means for detecting a CO 2 concentration contained in the pure water, the pure PH detecting means for detecting the pH value of water,
The control means includes a specific resistance estimation means for estimating specific resistance based on detection results of the CO 2 concentration detection means and the pH detection means, and a detection result of the specific resistance detection means is estimated by the specific resistance estimation means. 4. The pure water production system according to claim 3, further comprising a drive unit that drives the circulation unit when the result is smaller than the result.
前記水質検出手段は、前記純水タンク内での前記純水の電気伝導率を検出する電気伝導率検出手段と、前記純水に含有されるCO濃度を検出するCO濃度検出手段と、前記純水のpH値を検出するpH検出手段とを有し、
前記制御手段は、前記CO濃度検出手段及び前記pH検出手段の各検出結果に基づいて電気伝導率を推算する電気伝導率推算手段と、前記電気伝導率検出手段の検出結果が前記電気伝導率推算手段の推算結果よりも大きいときに前記循環手段を駆動する駆動手段とを有していることを特徴とする請求項3記載の純水製造システム。
The water quality detection means, the electrical conductivity detecting unit operable to detect the electrical conductivity of the pure water in the pure water tank, a CO 2 concentration detection means for detecting a CO 2 concentration contained in the pure water, PH detecting means for detecting the pH value of the pure water,
The control means includes an electrical conductivity estimation means for estimating electrical conductivity based on the detection results of the CO 2 concentration detection means and the pH detection means, and the detection result of the electrical conductivity detection means indicates the electrical conductivity. 4. The pure water production system according to claim 3, further comprising a drive unit that drives the circulation unit when the estimation result is larger than an estimation result of the estimation unit.
前記純水装置は、電気再生式脱塩装置、膜ろ過装置、及びイオン交換樹脂塔のうちの少なくとも一つ以上を含むことを特徴とする請求項1乃至請求項7のいずれかに記載の純水製造システム。   The pure water apparatus according to any one of claims 1 to 7, wherein the pure water apparatus includes at least one of an electric regenerative desalting apparatus, a membrane filtration apparatus, and an ion exchange resin tower. Water production system. 前記純水装置の上流側に被処理水タンクが設けられ、前記循環手段は前記被処理水タンクに接続されていることを特徴とする請求項1乃至請求項8のいずれかに記載の純水製造システム。   The pure water according to any one of claims 1 to 8, wherein a water tank to be treated is provided upstream of the pure water device, and the circulation means is connected to the water tank to be treated. Manufacturing system. 前記純水装置が複数設けられている場合は、最上流の純水装置の上流側又は前記純水装置間に被処理水タンクが設けられ、前記循環手段は前記被処理水タンクに接続されていることを特徴とする請求項1乃至請求項8のいずれかに記載の純水製造システム。   In the case where a plurality of the pure water devices are provided, a treated water tank is provided upstream of the most upstream pure water device or between the pure water devices, and the circulating means is connected to the treated water tank. The pure water production system according to any one of claims 1 to 8, wherein the pure water production system is provided.
JP2009016789A 2009-01-28 2009-01-28 Pure water production system Active JP5277995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009016789A JP5277995B2 (en) 2009-01-28 2009-01-28 Pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009016789A JP5277995B2 (en) 2009-01-28 2009-01-28 Pure water production system

Publications (2)

Publication Number Publication Date
JP2010172806A true JP2010172806A (en) 2010-08-12
JP5277995B2 JP5277995B2 (en) 2013-08-28

Family

ID=42704270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009016789A Active JP5277995B2 (en) 2009-01-28 2009-01-28 Pure water production system

Country Status (1)

Country Link
JP (1) JP5277995B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170834A (en) * 2011-02-17 2012-09-10 Miura Co Ltd Water treatment system
CN103508520A (en) * 2012-06-27 2014-01-15 扬州鑫晶光伏科技有限公司 Pure water equipment with EDI (Electrodeionization) device capable of being backwashed
JP2014172008A (en) * 2013-03-12 2014-09-22 Chugoku Electric Power Co Inc:The Conductivity reduction system and method
JP2014184353A (en) * 2013-03-21 2014-10-02 Miura Co Ltd Pure water production apparatus
JP2014188398A (en) * 2013-03-26 2014-10-06 Miura Co Ltd Pure water manufacturing apparatus
CN105078249A (en) * 2015-09-10 2015-11-25 珠海格力电器股份有限公司 Pipeline machine and control method thereof
EP3275843A1 (en) * 2016-07-26 2018-01-31 Ng, Tat Yung Water quality optimization system
WO2020179426A1 (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Pure water production device and operation method of pure water production device
CN118699023A (en) * 2024-08-29 2024-09-27 安徽新宇环保科技股份有限公司 A pure water supply and replenishment system and method based on online water quality monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water
JPH0783805A (en) * 1993-09-11 1995-03-31 Horiba Ltd Method for supplying zero water for far ultraviolet ray absorbance meter
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JP2004276937A (en) * 2003-03-13 2004-10-07 Saginomiya Seisakusho Inc Fluid tank and pure water production apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water
JPH0783805A (en) * 1993-09-11 1995-03-31 Horiba Ltd Method for supplying zero water for far ultraviolet ray absorbance meter
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JP2004276937A (en) * 2003-03-13 2004-10-07 Saginomiya Seisakusho Inc Fluid tank and pure water production apparatus using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170834A (en) * 2011-02-17 2012-09-10 Miura Co Ltd Water treatment system
CN103508520A (en) * 2012-06-27 2014-01-15 扬州鑫晶光伏科技有限公司 Pure water equipment with EDI (Electrodeionization) device capable of being backwashed
JP2014172008A (en) * 2013-03-12 2014-09-22 Chugoku Electric Power Co Inc:The Conductivity reduction system and method
JP2014184353A (en) * 2013-03-21 2014-10-02 Miura Co Ltd Pure water production apparatus
JP2014188398A (en) * 2013-03-26 2014-10-06 Miura Co Ltd Pure water manufacturing apparatus
CN105078249A (en) * 2015-09-10 2015-11-25 珠海格力电器股份有限公司 Pipeline machine and control method thereof
CN105078249B (en) * 2015-09-10 2018-06-22 珠海格力电器股份有限公司 Pipeline machine and control method thereof
EP3275843A1 (en) * 2016-07-26 2018-01-31 Ng, Tat Yung Water quality optimization system
WO2020179426A1 (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Pure water production device and operation method of pure water production device
JP2020142178A (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Operation method of ultrapure water production equipment and ultrapure water production equipment
CN118699023A (en) * 2024-08-29 2024-09-27 安徽新宇环保科技股份有限公司 A pure water supply and replenishment system and method based on online water quality monitoring

Also Published As

Publication number Publication date
JP5277995B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5277995B2 (en) Pure water production system
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
US6274019B1 (en) Electrodeionization apparatus
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
AU2014212394B2 (en) Rechargeable electrochemical cells
JP5768961B2 (en) Water treatment equipment
JP5357836B2 (en) Purified water production equipment and its use
JP2008259961A (en) Electrodeionization apparatus and operation method thereof
JP5295753B2 (en) Ozone water generator
JP2011020029A (en) Pure water production system
JP5305243B2 (en) Water treatment system
JP5673225B2 (en) Water treatment method and water treatment system
WO2014120871A1 (en) Electrochemical cells for supply of acid water
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2004033977A (en) Operating method of electrodeionization equipment
JP5786376B2 (en) Water treatment method and water treatment system
JP6061446B2 (en) Water treatment method and water treatment system
JP4505965B2 (en) Pure water production method
JP5640825B2 (en) Water treatment method and water treatment system
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2022072527A (en) Water softening apparatus
JP6061445B2 (en) Water treatment method and water treatment system
JP3894039B2 (en) Operation method of electrodeionization equipment
JP5333487B2 (en) Water treatment method and water treatment system
JP2009136824A (en) Electric deionized water production device and deionized water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250