JP2009136824A - Electric deionized water production device and deionized water production method - Google Patents

Electric deionized water production device and deionized water production method Download PDF

Info

Publication number
JP2009136824A
JP2009136824A JP2007318124A JP2007318124A JP2009136824A JP 2009136824 A JP2009136824 A JP 2009136824A JP 2007318124 A JP2007318124 A JP 2007318124A JP 2007318124 A JP2007318124 A JP 2007318124A JP 2009136824 A JP2009136824 A JP 2009136824A
Authority
JP
Japan
Prior art keywords
exchange membrane
anion
deionized water
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007318124A
Other languages
Japanese (ja)
Inventor
Tomoji Asakawa
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2007318124A priority Critical patent/JP2009136824A/en
Publication of JP2009136824A publication Critical patent/JP2009136824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric deionized water production device and a deionized water production method which can suppress the generation of back diffusion of carbonic acid to obtain deionized water of high water quality. <P>SOLUTION: In the electric deionized water production device, desalting chambers each filled with an ion exchanger and partitioned by a cation exchange membrane on one side and an anion exchange membrane on the other side, and concentration chambers filled with an anion exchanger and provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane are disposed between an anode and a cathode, so that a supply means is provided which supplies concentrated water to the concentration chamber. The concentrated water is a solution containing anions whose ion selectivity order by the anion exchanger is higher than a bicarbonate ion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体、液晶、製薬、食品工業等の各種産業、民生用ないし研究施設等において利用される電気式脱イオン水製造装置及び脱イオン水の製造方法の技術に関する。   The present invention relates to a technique for an electric deionized water production apparatus and a deionized water production method used in various industries such as semiconductors, liquid crystals, pharmaceuticals, and food industries, consumer use, and research facilities.

脱イオン水を製造する方法として、従来からイオン交換樹脂に被処理水を通して脱イオンを行う方法が知られている。しかし、この方法では、イオン交換樹脂がイオンで飽和されたときに、通常薬剤によって再生を行う。このような再生処理は、処理操作上の不利であり、このような点を解消するため、薬剤による再生が不要な電気式脱イオン法による脱イオン水製造方法が確立され、実用化に至っている。   As a method for producing deionized water, a method of performing deionization by passing water to be treated through an ion exchange resin has been known. However, in this method, when the ion exchange resin is saturated with ions, regeneration is usually performed with a drug. Such regeneration treatment is disadvantageous in processing operation, and in order to eliminate such a point, a deionized water production method by an electric deionization method that does not require regeneration by a chemical agent has been established and has been put into practical use. .

このような脱塩処理を行う電気式脱イオン水製造装置(EDI)においては、陽極と陰との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、カチオン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮室とが配置される。通常、脱塩室及び濃縮室は複数組配置される。そして、電気式脱イオン水製造装置によって脱イオン水を製造する場合、陽極と陰極間に直流電流を流した状態で、イオン交換体が充填された脱塩室内に被処理水を、濃縮室に濃縮水を通水させることによって、被処理水中のイオンを濃縮水中に移動させ、脱イオン水を得る。   In an electric deionized water production apparatus (EDI) that performs such desalting treatment, an ion exchanger is partitioned between an anode and a shade by a cation exchange membrane on one side and an anion exchange membrane on the other side. And a concentrating chamber on both sides of the desalting chamber via a cation exchange membrane and an anion exchange membrane. Usually, a plurality of sets of desalting chambers and concentrating chambers are arranged. When deionized water is produced by an electric deionized water production apparatus, water to be treated is placed in a demineralization chamber filled with an ion exchanger in a state where a direct current is passed between the anode and the cathode. By passing the concentrated water, ions in the water to be treated are moved into the concentrated water to obtain deionized water.

ここで、脱塩室に流入させる被処理水中の硬度が高い場合、例えば、水道水または水道水をRO膜処理した水を被処理水として用いると、濃縮室のアニオン交換膜面に硬度スケールが発生しやすい。すなわち、被処理水中に炭酸成分と硬度成分が含まれていると、電気式脱イオン水製造装置の濃縮室に移動したカルシウムイオンやマグネシウムイオンが濃縮室のアニオン交換膜面で炭酸イオン等と結合し、炭酸カルシウムや炭酸マグネシウム等の硬度スケールを生じやすい。   Here, when the hardness of the water to be treated flowing into the desalination chamber is high, for example, when tap water or water obtained by subjecting tap water to RO membrane treatment is used as the water to be treated, a hardness scale is formed on the anion exchange membrane surface of the concentration chamber. Likely to happen. In other words, if the water to be treated contains a carbonate component and a hardness component, calcium ions and magnesium ions that have moved to the concentration chamber of the electric deionized water production apparatus are combined with carbonate ions etc. on the anion exchange membrane surface of the concentration chamber. However, it is easy to produce hardness scales such as calcium carbonate and magnesium carbonate.

特許文献1には、濃縮室のアニオン交換膜側に特定構造のアニオン交換体を配置する電気式脱イオン水製造装置が提案されている。この特許文献1の装置によれば、OHイオンの濃縮液への拡散希釈が、多孔性アニオン交換体表面より促進され、多孔性アニオン交換体表面におけるOHイオン濃度の速やかな低減が図られる。他方、硬度成分イオンは、多孔性アニオン交換体の内部に侵入し難くなり、OHイオンと硬度成分イオンとが接触し反応する機会が低減されるため、硬度成分の析出や蓄積が抑制される。   Patent Document 1 proposes an electric deionized water production apparatus in which an anion exchanger having a specific structure is disposed on the anion exchange membrane side of a concentration chamber. According to the apparatus of Patent Document 1, diffusion dilution of OH ions into a concentrated liquid is promoted from the surface of the porous anion exchanger, and the OH ion concentration on the surface of the porous anion exchanger can be quickly reduced. On the other hand, hardness component ions are less likely to enter the interior of the porous anion exchanger, and the opportunity for OH ions and hardness component ions to contact and react with each other is reduced, so that precipitation and accumulation of hardness components are suppressed.

しかし、被処理水中の炭酸(遊離炭酸、重炭酸イオン、炭酸イオンの総称)が脱塩室から陽極側のアニオン交換膜を介して濃縮室へ移動すると、(詳細は後述するが)濃縮室内のアニオン交換体はHCO形となる。そして、HCO形のアニオン交換体に電流が流れると、HCO (及びCO 2−)が電場によってカチオン交換膜近傍まで引き寄せられるが、カチオン交換膜を透過することはできず、カチオン交換膜近傍で濃縮される。また、水素イオンがカチオン交換膜を透過してくるため、カチオン交換膜付近のpHは低くなる。そうすると、水と炭酸ガス(CO)が発生し、カチオン交換膜近傍に高濃度炭酸ガス含有水溶液層が形成される。そして、炭酸ガスは、拡散によってカチオン交換膜10を透過して脱塩室へ移動(逆拡散)してしまう。すなわち、一旦被処理水中から除去された炭酸が、炭酸ガスとして被処理水中に再度溶解される、いわゆる炭酸の逆拡散が発生し、脱塩室から排出される処理水が炭酸成分で汚染される。 However, when carbonic acid in the water to be treated (generic name for free carbonate, bicarbonate ion, carbonate ion) moves from the desalting chamber to the concentration chamber via the anion exchange membrane on the anode side (details will be described later), The anion exchanger is in the HCO 3 form. Then, a current flows through the anion exchanger of HCO 3 form, HCO 3 - (and CO 3 2-) but are attracted to the cation exchange membrane near by the electric field, can not be transmitted through the cation exchange membrane, a cation exchange It is concentrated near the membrane. Further, since hydrogen ions permeate the cation exchange membrane, the pH in the vicinity of the cation exchange membrane is lowered. Then, water and carbon dioxide (CO 2 ) are generated, and a high-concentration carbon dioxide-containing aqueous solution layer is formed in the vicinity of the cation exchange membrane. Then, the carbon dioxide gas permeates through the cation exchange membrane 10 by diffusion and moves (back diffuses) to the desalting chamber. That is, carbon dioxide once removed from the water to be treated is dissolved again as carbon dioxide gas in the water to be treated, so-called reverse diffusion of carbonic acid occurs, and the treated water discharged from the desalting chamber is contaminated with carbonic acid components. .

特許文献2では、濃縮室に充填されたアニオン交換樹脂とカチオン交換膜との間に強塩基性アニオン基を有さない水透過性体を設けることにより、炭酸の逆拡散の発生を抑制する電気式脱イオン水製造装置が提案されている。この特許文献2の装置によれば、HCO 等が水透過性体でブロックされ、カチオン交換膜近傍にまで拡散することを防止して、炭酸の逆拡散を防止することができる。 In Patent Document 2, by providing a water permeable body having no strongly basic anion group between an anion exchange resin and a cation exchange membrane filled in a concentrating chamber, A deionized water production apparatus has been proposed. According to the apparatus of Patent Document 2, it is possible to prevent the reverse diffusion of carbonic acid by preventing HCO 3 − and the like from being blocked by the water permeable material and diffusing to the vicinity of the cation exchange membrane.

また、特許文献3には、濃縮室にアニオン交換樹脂及びカチオン交換樹脂を充填することにより、炭酸の逆拡散の発生を抑制する電気式脱イオン水製造装置が提案されている。この特許文献3の装置によれば、カチオンおよびアニオンの両方が濃縮室内で移動可能になり、炭酸の逆拡散を比較的小さくして、かつスケールの発生も少なくできる。   Patent Document 3 proposes an electric deionized water production apparatus that suppresses the occurrence of reverse diffusion of carbonic acid by filling an anion exchange resin and a cation exchange resin in a concentration chamber. According to the apparatus of Patent Document 3, both the cation and the anion can move in the concentration chamber, so that the reverse diffusion of carbon dioxide can be made relatively small and the generation of scale can be reduced.

特開2001−225078号公報Japanese Patent Laid-Open No. 2001-225078 特開2004−358440号公報JP 2004-358440 A 特開2004−34004号公報JP 2004-34004 A

本発明の目的は、上記と異なる方法で炭酸の逆拡散の発生を抑制し、高水質の脱イオン水を得ることができる電気式脱イオン水製造装置及び脱イオン水の製造方法を提供することにある。   An object of the present invention is to provide an electric deionized water production apparatus and a deionized water production method capable of suppressing the occurrence of reverse diffusion of carbonic acid by a method different from the above and obtaining high-quality deionized water. It is in.

本発明は、陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とを配置し、前記濃縮室に濃縮水を供給する供給手段を有する電気式脱イオン水製造装置であって、前記濃縮水は、前記アニオン交換体のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液である。   The present invention includes a desalting chamber partitioned between an anode and a cathode by a cation exchange membrane on one side and an anion exchange membrane on the other side and filled with an ion exchanger, the cation exchange membrane, and the anion exchange An electric deionized water production apparatus comprising a concentration chamber provided on both sides of the demineralization chamber through a membrane and filled with an anion exchanger, and having a supply means for supplying concentrated water to the concentration chamber. The concentrated water is a solution containing anions having higher ion selectivity than the bicarbonate ions.

また、前記電気式脱イオン水製造装置において、前記供給手段は、前記濃縮室内の前記アニオンのイオン濃度が前記濃縮室内の炭酸濃度以上となるように前記濃縮水を供給することが好ましい。   Moreover, in the electric deionized water production apparatus, it is preferable that the supply means supplies the concentrated water such that an ion concentration of the anion in the concentration chamber is equal to or higher than a carbonic acid concentration in the concentration chamber.

また、前記電気式脱イオン水製造装置において、前記アニオンは、塩素イオンであることが好ましい。   In the electric deionized water production apparatus, the anion is preferably a chlorine ion.

また、本発明は、陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とを配置し、前記濃縮室に濃縮水を供給する電気式脱イオン水製造装置を利用して脱イオン水を製造する脱イオン水の製造方法であって、前記濃縮水は、前記アニオン交換体のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液である。   Further, the present invention provides a desalting chamber partitioned between an anode and a cathode by a cation exchange membrane on one side and an anion exchange membrane on the other side and filled with an ion exchanger, the cation exchange membrane, An electric deionized water production apparatus is provided on both sides of the demineralization chamber via an anion exchange membrane, and a concentration chamber filled with an anion exchanger and supplying concentrated water to the concentration chamber. In the method for producing deionized water, the concentrated water is a solution containing anions having higher ion selectivity than the bicarbonate ions in the anion exchanger.

また、前記脱イオン水の製造方法において、前記濃縮室内の前記アニオンのイオン濃度が前記濃縮室内の炭酸濃度以上となるように前記濃縮水を供給することが好ましい。   In the method for producing deionized water, the concentrated water is preferably supplied so that the ion concentration of the anion in the concentration chamber is equal to or higher than the carbonic acid concentration in the concentration chamber.

また、前記脱イオン水の製造方法において、前記アニオンは、塩素イオンであることが好ましい。   In the method for producing deionized water, the anion is preferably a chlorine ion.

本発明は、陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とを設け、前記濃縮室に濃縮水を供給する供給手段とを有する電気式脱イオン水製造装置において、前記濃縮水は、前記アニオン交換体のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液である。これによって、炭酸の逆拡散の発生を抑制し、高水質の脱イオン水を得ることができる。   The present invention includes a desalting chamber partitioned between an anode and a cathode by a cation exchange membrane on one side and an anion exchange membrane on the other side and filled with an ion exchanger, the cation exchange membrane, and the anion exchange In an electric deionized water production apparatus having a concentration chamber provided on both sides of the demineralization chamber through a membrane and provided with a concentration chamber filled with an anion exchanger, and having a supply means for supplying concentrated water to the concentration chamber, The concentrated water is a solution containing anions whose ion selectivity ranks higher than bicarbonate ions. Thereby, generation | occurrence | production of the reverse diffusion of a carbonic acid can be suppressed and high-quality deionized water can be obtained.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本実施形態に係る電気式脱イオン水製造装置には、陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とが配置される。ここで、本実施形態に係る電気式脱イオン水製造装置の脱塩室は、上記構成を有するものであれば、単一の脱塩室であっても、例えば、当該カチオン交換膜と当該アニオン交換膜との間に位置する中間イオン交換膜により2つの小脱塩室に区画された脱塩室であって、被処理水が2つの小脱塩室を順次流れるように構成されたものであってもよい。この2つの小脱塩室に区画された脱塩室を用いると、被処理水の脱塩処理を効率よく行うことが可能になる。   In the electric deionized water production apparatus according to the present embodiment, a desalting solution is partitioned between an anode and a cathode by a cation exchange membrane on one side and an anion exchange membrane on the other side and filled with an ion exchanger. A chamber and a concentration chamber provided on both sides of the desalting chamber via the cation exchange membrane and the anion exchange membrane and filled with an anion exchanger are disposed. Here, as long as the demineralization chamber of the electric deionized water production apparatus according to the present embodiment has the above configuration, for example, the cation exchange membrane and the anion A desalination chamber partitioned into two small desalination chambers by an intermediate ion exchange membrane positioned between the exchange membranes and configured to allow water to be treated to flow sequentially through the two small desalination chambers. There may be. If the desalting chamber divided into these two small desalting chambers is used, it becomes possible to efficiently perform desalting treatment of the water to be treated.

以下に説明する本実施形態では、カチオン交換膜とアニオン交換膜との間に位置する中間イオン交換膜により2つの小脱塩室に区画された脱塩室を例とする。   In the present embodiment described below, a desalting chamber divided into two small desalting chambers by an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane is taken as an example.

図1は、本実施形態に係る電気式脱イオン水製造装置の概略構成図である。電気式脱イオン水製造装置1には、カチオン交換膜10と、中間イオン交換膜12と、アニオン交換膜14とが互いに離間して交互に配置され、中間イオン交換膜12とアニオン交換膜14とで区画される第一小脱塩室d1,d3,d5及びカチオン交換膜10と中間イオン交換膜12とで区画される第二小脱塩室d2,d4,d6が形成されている。第一小脱塩室d1と第二小脱塩室d2とで脱塩室D1、第一小脱塩室d3と第二小脱塩室d4とで脱塩室D2、第一小脱塩室d5と第二小脱塩室d6とで脱塩室D3とする。また、脱塩室D1とD2、D2とD3のそれぞれの間に位置するアニオン交換膜14とカチオン交換膜10とで形成される部分は、濃縮水を流すための濃縮室16(16a,16b)とする。これを順次に併設して図1中、左より脱塩室D1、濃縮室16a、脱塩室D2、濃縮室16b、脱塩室D3が形成されている。なお、図1の脱塩室及び濃縮室の数は一例であって、これに限定されない。また、濃縮室は、必要に応じて脱塩室と後述する電極室との間にも設けられる。   FIG. 1 is a schematic configuration diagram of an electric deionized water production apparatus according to this embodiment. In the electric deionized water production apparatus 1, the cation exchange membrane 10, the intermediate ion exchange membrane 12, and the anion exchange membrane 14 are alternately arranged apart from each other, and the intermediate ion exchange membrane 12, the anion exchange membrane 14, The first small desalting chambers d1, d3, d5 and the second small desalting chambers d2, d4, d6 partitioned by the cation exchange membrane 10 and the intermediate ion exchange membrane 12 are formed. The first small desalination chamber d1 and the second small desalination chamber d2 are the desalination chamber D1, the first small desalination chamber d3 and the second small desalination chamber d4 are the desalination chamber D2, and the first small desalination chamber d2. A desalting chamber D3 is defined by d5 and the second small desalting chamber d6. A portion formed by the anion exchange membrane 14 and the cation exchange membrane 10 located between the desalting chambers D1 and D2 and D2 and D3 is a concentration chamber 16 (16a, 16b) for flowing concentrated water. And By sequentially arranging these, a desalting chamber D1, a concentrating chamber 16a, a desalting chamber D2, a concentrating chamber 16b, and a desalting chamber D3 are formed from the left in FIG. In addition, the number of the desalting chambers and the concentration chambers in FIG. 1 is an example, and is not limited thereto. Further, the concentration chamber is also provided between the desalting chamber and an electrode chamber, which will be described later, as necessary.

図1に示す第一小脱塩室d1,d3,d5には、アニオン交換体20が充填され、第二小脱塩室d2,d4,d6には、アニオン交換体及びカチオン交換体の混合体18(以下、混合体18と呼ぶ)が充填されている。しかし、第一小脱塩室d1,d3,d5及び第二小脱塩室d2,d4,d6に充填されるイオン交換体は、必ずしも上記に制限されるものではなく、脱塩処理の目的に応じて適宜選択されればよい。   The first small desalting chambers d1, d3, and d5 shown in FIG. 1 are filled with an anion exchanger 20, and the second small desalting chambers d2, d4, and d6 are a mixture of an anion exchanger and a cation exchanger. 18 (hereinafter referred to as the mixture 18). However, the ion exchanger filled in the first small desalting chambers d1, d3, d5 and the second small desalting chambers d2, d4, d6 is not necessarily limited to the above, and for the purpose of desalting treatment. It may be appropriately selected depending on the case.

本実施形態の中間イオン交換膜12はアニオン交換膜であるが、特に制限されるものではない。   The intermediate ion exchange membrane 12 of the present embodiment is an anion exchange membrane, but is not particularly limited.

また、濃縮室16a,16bにはアニオン交換体22が充填されている。濃縮室16a,16bにアニオン交換体22を充填することで、濃縮室16a,16bのカチオン交換膜10面に炭酸が拡散して、カチオン交換膜10面に硬度スケールが発生するのを防止でき、また、高伝導度のアニオン交換体22が存在することで印加電圧を低電圧化することができる。   The concentration chambers 16a and 16b are filled with an anion exchanger 22. By filling the concentration chambers 16a and 16b with the anion exchanger 22, it is possible to prevent carbon dioxide from diffusing on the surface of the cation exchange membrane 10 of the concentration chambers 16a and 16b and generating a hardness scale on the surface of the cation exchange membrane 10, Further, the presence of the high conductivity anion exchanger 22 can reduce the applied voltage.

また、両端の脱塩室D1,D3の両外側と両電極(陰極24,陽極26)との間の空間をそれぞれ電極室28,30として、ここに電極水(本実施形態では被処理水)が通水される。なお、電極室28,30には、必要に応じてカチオン交換体、アニオン交換体等が充填されてもよい。図1の例では、電極室28にアニオン交換体32が、電極室30にカチオン交換体34が充填されているが、これに限らない。   In addition, the spaces between the outer sides of the desalting chambers D1 and D3 at both ends and the electrodes (cathode 24, anode 26) are set as electrode chambers 28 and 30, respectively, and electrode water (treated water in this embodiment) is used here. Is passed. The electrode chambers 28 and 30 may be filled with a cation exchanger, an anion exchanger, or the like as necessary. In the example of FIG. 1, the anion exchanger 32 is filled in the electrode chamber 28 and the cation exchanger 34 is filled in the electrode chamber 30, but this is not restrictive.

図1の電気式脱イオン水製造装置1において、被処理水が流入するための第一流入ライン36が、第一小脱塩室d1,d3,d5の入口にそれぞれ接続され、第一小脱塩室d1,d3,d5の出口からの被処理水が流出するための第一流出ライン38が、第二小脱塩室d2,d4,d6の入口へ被処理水が流入するための第二流入ライン40に接続されている。処理水が流出するための第二流出ライン42が、第二小脱塩室d2,d4,d6の出口にそれぞれ接続されている。上記構成によって、被処理水は、まず、第一小脱塩室d1,d3,d5に供給され、脱塩処理される。そして、第一小脱塩室d1,d3,d5を通過した被処理水が、第二小脱塩室d2,d4,d6に供給され、さらに脱塩処理されて処理水として排出される。なお、被処理水の通水経路は、上記に制限されるものではなく、例えば、混合体18が充填された第二小脱塩室d2,d4,d6からアニオン交換体20が充填された第一小脱塩室d1,d3,d5へ被処理水が通水されてもよい。   In the electric deionized water production apparatus 1 of FIG. 1, first inflow lines 36 through which treated water flows are connected to the inlets of the first small demineralization chambers d1, d3, d5, respectively. A first outflow line 38 for flowing out the water to be treated from the outlets of the salt chambers d1, d3, d5 is a second for flowing the water to be treated into the inlets of the second small desalting chambers d2, d4, d6. It is connected to the inflow line 40. A second outflow line 42 through which the treated water flows out is connected to the outlets of the second small desalting chambers d2, d4, d6, respectively. With the above configuration, the water to be treated is first supplied to the first small desalting chambers d1, d3, and d5 and desalted. And the to-be-processed water which passed 1st small desalination chamber d1, d3, d5 is supplied to 2nd small desalination chamber d2, d4, d6, is further desalted, and is discharged | emitted as treated water. The flow path of the water to be treated is not limited to the above, and for example, the second anion exchanger 20 filled with the anion exchanger 20 from the second small desalting chambers d2, d4, d6 filled with the mixture 18 is used. The treated water may be passed through the small desalting chambers d1, d3, and d5.

また、本実施形態の電気式脱イオン水製造装置1には、濃縮室に濃縮水を供給する濃縮水供給手段として、アニオン交換体22のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液(例えば、後述する食塩溶液等)が収容されたタンク44、当該溶液を送水するポンプ46、当該溶液の流路となるサブ流入ライン47、サブ流入ライン47を開閉させる開閉弁49、当該溶液及び被処理水の混合液(すなわち濃縮水)の流路となる濃縮水流入ライン48、濃縮水流入ライン48と第一流入ライン36とを接続させ、被処理水の一部を濃縮水流入ライン48に流入させるバイパスライン51が設けられる。タンク44に収容された当該溶液を濃縮水流入ライン48へ自然流下させる場合等では、ポンプ46は、必要ではない。濃縮水流入ライン48は、バイパスライン51と濃縮室16a,16bの入口にそれぞれ接続されている。また、サブ流入ライン47は、当該溶液が濃縮室16a,16bに供給されるように濃縮水流入ライン48とタンク44の出口に接続されている。また、濃縮水流出ライン50は、濃縮室16a,16bの出口にそれぞれ接続されている。本実施形態において、アニオン交換体22のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液として後述するRO原液を用いる場合には、RO原液を濃縮水流入ライン48へ供給するためのサブ流入ライン47及び開閉弁49を有していればよく、タンク44、ポンプ46は必ずしも必要ではない。また、電極水流入ラインは、第一流入ライン36と同一のラインとし、電極室28,30の入口にそれぞれ接続され、電極水流出ライン53は、電極室28,30の出口にそれぞれ接続されている。本実施形態では、電極水流入ライン及び第一流入ライン36を同一のラインとしているが、異なるラインとしてもよい。また、被処理水及び電極水として流入させる溶液を同じものとして通水させているが、これに限られず、被処理水及び電極水を異なる溶液としてもよい。   Moreover, the electric deionized water production apparatus 1 according to the present embodiment includes an anion having an ion selectivity higher than the bicarbonate ion as the concentrated water supply means for supplying the concentrated water to the concentration chamber. A tank 44 containing a solution (for example, a salt solution described later), a pump 46 for feeding the solution, a sub inflow line 47 serving as a flow path for the solution, an on-off valve 49 for opening / closing the sub inflow line 47, the solution And the concentrated water inflow line 48, which is a flow path of the mixed liquid (that is, concentrated water), and the concentrated water inflow line 48 and the first inflow line 36 are connected, and a part of the treated water is connected to the concentrated water inflow line. A bypass line 51 is provided to flow into 48. In the case where the solution stored in the tank 44 is allowed to flow naturally down to the concentrated water inflow line 48, the pump 46 is not necessary. The concentrated water inflow line 48 is connected to the bypass line 51 and the inlets of the concentration chambers 16a and 16b, respectively. The sub inflow line 47 is connected to the concentrated water inflow line 48 and the outlet of the tank 44 so that the solution is supplied to the concentration chambers 16a and 16b. The concentrated water outflow line 50 is connected to the outlets of the concentration chambers 16a and 16b, respectively. In the present embodiment, when the RO stock solution described later is used as a solution containing anions having an ion selectivity higher than that of bicarbonate ions in the anion exchanger 22, a sub for supplying the RO stock solution to the concentrated water inflow line 48. The tank 44 and the pump 46 are not necessarily required as long as the inflow line 47 and the opening / closing valve 49 are provided. The electrode water inflow line is the same line as the first inflow line 36 and is connected to the inlets of the electrode chambers 28 and 30, respectively. The electrode water outflow line 53 is connected to the outlets of the electrode chambers 28 and 30, respectively. Yes. In the present embodiment, the electrode water inflow line and the first inflow line 36 are the same line, but may be different lines. Moreover, although the solution made to flow in as treated water and electrode water is made to flow through as the same thing, it is not restricted to this, It is good also considering treated water and electrode water as different solutions.

また、本実施形態では、第一小脱塩室d1,d3,d5に流入する被処理水の流れ方向及び第二小脱塩室d2,d4,d6に流入する被処理水の流れ方向は共に下降方向であり、濃縮水の流れ方向はその逆の上昇方向であるが、これに制限されない。   In this embodiment, the flow direction of the water to be treated flowing into the first small desalination chambers d1, d3, d5 and the flow direction of the water to be treated flowing into the second small desalination chambers d2, d4, d6 are both. Although it is a downward direction, the flow direction of concentrated water is the reverse upward direction, but is not limited thereto.

本実施形態に係る電気式脱イオン水製造装置1によって、脱イオン水を製造する場合の運転方法の一例を以下に説明する。まず、陰極24と陽極26間に直流電流を流した状態で、第一流入ライン36から被処理水を流入させ、また、バイパスライン51を介して濃縮水流入ライン48へ被処理水を流入させると共に、ポンプ46を稼働させ、開閉弁49を開き、タンク44からサブ流入ライン47を介して、アニオン交換体22のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液(例えば、後述する食塩溶液等)を濃縮水流入ライン48へ流入させる。第一流入ライン36から流入した被処理水は、第一小脱塩室d1,d3,d5を流れ、アニオン交換体20の充填層を通過する際に炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)、シリカ等のアニオンが除去される。更に、第一小脱塩室d1,d3,d5の第一流出ライン38を通った被処理水は、第二小脱塩室d2,d4,d6の第二流入ライン40を流れ、混合体18の充填層を通過する際にカチオン及びアニオンが除去され、処理水(脱イオン水)が第二流出ライン42から得られる。また、タンク44から濃縮水流入ライン48へ流入した当該溶液及びバイパスライン51から濃縮水流入ライン48へ流入した被処理水の混合液(本実施形態に係る濃縮水)は、各濃縮室16a,16bを流れ、カチオン交換膜10及びアニオン交換膜14を介して移動してくるイオンを受取り、イオンを濃縮した濃縮水として濃縮水流出ライン50から流出される。さらに、第一流入ライン36(電極水流入ライン)から流入した電極水は、電極水流出ライン53から流出される。上述の運転によって、被処理水中のイオンが除去された処理水(脱イオン水)が得られる。   An example of an operation method in the case of producing deionized water by the electric deionized water production apparatus 1 according to this embodiment will be described below. First, in a state where a direct current is passed between the cathode 24 and the anode 26, the water to be treated is caused to flow from the first inflow line 36, and the water to be treated is caused to flow into the concentrated water inflow line 48 via the bypass line 51. At the same time, the pump 46 is operated, the on-off valve 49 is opened, and a solution containing an anion having an ion selectivity higher than the bicarbonate ion from the tank 44 through the sub inflow line 47 (for example, described later). Salt solution or the like) is introduced into the concentrated water inflow line 48. The water to be treated that flows in from the first inflow line 36 flows through the first small desalting chambers d1, d3, and d5, and is carbonated (free carbonic acid, bicarbonate ions, carbonate ions when passing through the packed bed of the anion exchanger 20). ), Anions such as silica are removed. Furthermore, the water to be treated that has passed through the first outflow line 38 of the first small desalting chambers d1, d3, d5 flows through the second inflow line 40 of the second small desalting chambers d2, d4, d6, and the mixture 18. When passing through the packed bed, cations and anions are removed, and treated water (deionized water) is obtained from the second outflow line 42. In addition, the solution flowing from the tank 44 to the concentrated water inflow line 48 and the mixed solution of the water to be treated (flowing water according to the present embodiment) flowing from the bypass line 51 to the concentrated water inflow line 48 are supplied to the respective concentration chambers 16a, 16a, The ions that flow through 16b and move through the cation exchange membrane 10 and the anion exchange membrane 14 are received and flowed out from the concentrated water outflow line 50 as concentrated water obtained by concentrating the ions. Furthermore, the electrode water flowing in from the first inflow line 36 (electrode water inflow line) flows out from the electrode water outflow line 53. By the above operation, treated water (deionized water) from which ions in the water to be treated have been removed is obtained.

先に流入する第一小脱塩室d1,d3,d5のアニオン交換体20にて捕捉される炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)は、水酸化物イオンやアニオン交換体20に捕捉された他のアニオン成分と共に陽極側のアニオン交換膜14を通過し、濃縮室16a,16bへと移動する。ここで、濃縮室16a,16bに供給される濃縮水として、従来のRO膜等で処理した水又は従来の電気式脱イオン水製造装置にて処理された処理水等が用いられると、濃縮室16a,16bのアニオン交換体22は、移動してきた炭酸によりHCO形のアニオン交換体となる。HCO形のアニオン交換体に電流が流れると、HCO (及びCO 2−)は電場によってカチオン交換膜10近傍まで引き寄せられるが、カチオン交換膜10を透過することはできず、カチオン交換膜10近傍で濃縮される。これによって、カチオン交換膜10を隔てて、濃縮室16a,16b(濃厚側)と第二小脱塩室d4,d6(希薄側)との間にHCO (及びCO 2−)の急な濃度勾配が発生する。また、カチオン交換膜10からは水素イオンが透過してくるため、濃縮室16a,16bのカチオン交換膜10近傍のpHは低くなる。そうすると、水と炭酸ガス(CO)が発生し、カチオン交換膜10近傍に高濃度炭酸ガス含有水溶液層が形成され、炭酸ガスは、拡散によってカチオン交換膜10を透過して第二小脱塩室d4,d6へ移動(逆拡散)してしまう。これにより第二小脱塩室d4,d6から排出される最終処理水が炭酸で汚染されることになる。 Carbonic acid (free carbonic acid, bicarbonate ion, carbonate ion) trapped by the anion exchanger 20 in the first small desalting chambers d1, d3, d5 flowing in first is captured by the hydroxide ion or the anion exchanger 20. It passes through the anion exchange membrane 14 on the anode side together with the other anion components thus formed, and moves to the concentration chambers 16a and 16b. Here, when the concentrated water supplied to the concentration chambers 16a and 16b is water treated with a conventional RO membrane or the like, or treated water treated with a conventional electric deionized water production apparatus, the concentration chamber The anion exchangers 22 of 16a and 16b become HCO 3 type anion exchangers by the carbon dioxide that has moved. When a current flows through the anion exchanger of HCO 3 form, HCO 3 - (and CO 3 2-) is attracted to the cation exchange membrane 10 near by the electric field, it can not be transmitted through the cation exchange membrane 10, a cation exchange It is concentrated near the membrane 10. Thus, at a cation exchange membrane 10, concentrating chambers 16a, 16b (thick side) and a second small depletion chamber d4, d6 HCO between (lean side) 3 - (and CO 3 2-) steep Concentration gradient occurs. Further, since hydrogen ions permeate from the cation exchange membrane 10, the pH in the vicinity of the cation exchange membrane 10 in the concentration chambers 16a and 16b is lowered. Then, water and carbon dioxide (CO 2 ) are generated, and a high-concentration carbon dioxide-containing aqueous solution layer is formed in the vicinity of the cation exchange membrane 10, and the carbon dioxide permeates through the cation exchange membrane 10 by diffusion and becomes the second small desalting. It moves (reverse diffusion) to the chambers d4 and d6. As a result, the final treated water discharged from the second small desalting chambers d4 and d6 is contaminated with carbonic acid.

これに対し、本実施形態では、濃縮水流入ライン48を流れる濃縮水には、アニオン交換体22のイオン選択性の順位が重炭酸イオン(HCO )より高いアニオンを含む溶液が用いられる。アニオン交換体22のイオン選択性の順位が重炭酸イオンより高いアニオンは、例えば、Cl,NO ,SO 2−等が挙げられる。Cl,NO ,SO 2−等のアニオンを含む溶液としては、例えば、食塩溶液、塩酸溶液、硝酸溶液、硫酸溶液、RO原液等が挙げられる。電気式脱イオン水製造装置1の耐久性や取り扱いやすさ等の点で、食塩溶液等のClを含む溶液を濃縮水として用いることが好ましい。 On the other hand, in this embodiment, a solution containing an anion having an ion selectivity higher than that of bicarbonate ion (HCO 3 ) is used for the concentrated water flowing through the concentrated water inflow line 48. Examples of the anion having an ion selectivity higher than the bicarbonate ion of the anion exchanger 22 include Cl , NO 3 , SO 4 2− and the like. Examples of the solution containing anions such as Cl , NO 3 and SO 4 2− include a salt solution, a hydrochloric acid solution, a nitric acid solution, a sulfuric acid solution, and an RO stock solution. From the viewpoint of durability and ease of handling of the electric deionized water production apparatus 1, it is preferable to use a solution containing Cl such as a salt solution as concentrated water.

上記食塩溶液等のClを含む溶液が各濃縮室16a,16bに流入すると、濃縮室16a,16bのアニオン交換体22は、重炭酸イオンよりイオン選択性の順位の高いアニオン形、例えばCl形、NO形、SO形等のアニオン交換体となるため、第一小脱塩室d1,d3からアニオン交換膜14を通過して濃縮室16a,16bへ移動する炭酸は、アニオン交換体22に捕捉されずに、濃縮水とともに濃縮水流出ライン50へ排出される。その結果、濃縮室16a,16b側のカチオン交換膜10近傍における高濃度炭酸ガス含有水溶液層の発生を防止することができる。すなわち、炭酸ガスがカチオン交換膜10を介して第二小脱塩室d4,d6へ移動し、被処理水中に逆拡散することを抑制することができる。また、重炭酸イオンより選択性の高いアニオン形のアニオン交換体に電流が流れると、当該アニオンは電場によってカチオン交換膜10近傍まで引き寄せられ濃縮される。しかし、カチオン交換膜10近傍では、カチオン交換膜10を透過した水素イオンと当該アニオンとの高濃度液層が形成されるだけで、当該アニオンがカチオン交換膜10を透過して第二小脱塩室d4,d6へ移動することはない。 When a solution containing Cl such as the salt solution flows into the concentration chambers 16a and 16b, the anion exchanger 22 in the concentration chambers 16a and 16b is in an anion form having higher ion selectivity than bicarbonate ions, for example, a Cl form. , NO 3 form, SO 4 form, etc., the carbon dioxide moving from the first small desalting chambers d 1, d 3 through the anion exchange membrane 14 to the concentration chambers 16 a, 16 b is converted into the anion exchanger 22. Without being captured by the water, it is discharged together with the concentrated water to the concentrated water outflow line 50. As a result, it is possible to prevent the generation of a high-concentration carbon dioxide-containing aqueous solution layer in the vicinity of the cation exchange membrane 10 on the concentration chambers 16a and 16b side. That is, it is possible to suppress the carbon dioxide gas from moving to the second small desalting chambers d4 and d6 through the cation exchange membrane 10 and backdiffusing into the water to be treated. Further, when an electric current flows through an anion-type anion exchanger having higher selectivity than bicarbonate ions, the anions are attracted and concentrated near the cation-exchange membrane 10 by an electric field. However, in the vicinity of the cation exchange membrane 10, only a high-concentration liquid layer of hydrogen ions that permeate the cation exchange membrane 10 and the anion is formed, and the anion permeates the cation exchange membrane 10 to form the second small desalting. It does not move to the chambers d4 and d6.

このように、被処理水を第一小脱塩室に充填されたアニオン交換体から第二小脱塩室に充填された混合体(アニオン交換体及びカチオン交換体)の順で接触させる構成では、炭酸の逆拡散現象が起こると、最終処理の第二小脱塩室に炭酸が移動するため、処理水が炭酸で汚染され易い。しかし、上記濃縮水を用いることにより、炭酸の逆拡散現象が抑制されるため、このような構成でも最終処理水の炭酸汚染を防止することができる。また、脱塩室に充填された混合体によって、アニオン及びカチオンの両方のイオン除去が行え、高品位の脱イオン水を得ることができる。   In this way, in the configuration in which the water to be treated is brought into contact in the order of the anion exchanger filled in the first small desalting chamber to the mixture (anion exchanger and cation exchanger) filled in the second small desalting chamber. When the reverse diffusion phenomenon of carbonic acid occurs, the carbonic acid moves to the second small desalting chamber of the final treatment, so that the treated water is easily contaminated with carbonic acid. However, since the reverse diffusion phenomenon of carbonic acid is suppressed by using the concentrated water, carbonic acid contamination of the final treated water can be prevented even with such a configuration. In addition, the mixture filled in the desalting chamber can remove both anions and cations, and high-quality deionized water can be obtained.

また、本実施形態では、濃縮室16a,16b内の濃縮水のイオン濃度において、アニオン交換体22のイオン選択性の順位のうち重炭酸イオンより高いアニオンのイオン濃度が、濃縮室16a,16b内の炭酸濃度以上となるように、濃縮室16a,16bに濃縮水を供給することが好ましい。上記のイオン濃度状態にするには、例えば、脱塩室及び濃縮室に入る炭酸量又は濃縮室から排出される炭酸量を検出して、当該炭酸量より濃縮水中のアニオン濃度が高濃度になるように、濃縮室へ供給される当該アニオンを含む溶液の添加量を増加させることにより達成される。以下に、その一例を説明する。これにより、濃縮室16a,16bのアニオン交換体22は重炭酸イオンより選択性の高いアニオン形のアニオン交換体になりやすく、効率的に炭酸の逆拡散を抑制することができる。   Moreover, in this embodiment, the ion concentration of the anion higher than the bicarbonate ion in the ion selectivity rank of the anion exchanger 22 in the ion concentration of the concentrated water in the concentration chambers 16a and 16b is within the concentration chambers 16a and 16b. It is preferable to supply concentrated water to the concentration chambers 16a and 16b so as to be equal to or higher than the carbonic acid concentration. In order to achieve the above ion concentration state, for example, the amount of carbonic acid entering the desalting chamber and the concentration chamber or the amount of carbonic acid discharged from the concentration chamber is detected, and the anion concentration in the concentrated water becomes higher than the amount of carbonic acid. As described above, this is achieved by increasing the amount of the solution containing the anion supplied to the concentration chamber. An example is described below. Thereby, the anion exchanger 22 of the concentrating chambers 16a and 16b is likely to be an anion-type anion exchanger having higher selectivity than bicarbonate ions, and can efficiently suppress reverse diffusion of carbonic acid.

図2は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図2に示す電気式脱イオン水製造装置2において、図1に示す電気式脱イオン水製造装置1と同様の構成については同一の符合を付し、図1と同様の構成についての説明は省略する。図2に示す電気式脱イオン水製造装置2は、濃縮水流出ライン50に設置されたイオンセンサ52を有する。イオンセンサ52は、調節器(図示せず)等を介してポンプ46と電気的に接続されている。イオンセンサ52は、濃縮水流出ライン50を通る濃縮水中の炭酸及びCl等のアニオン濃度を検出することができるものである。 FIG. 2 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. In the electric deionized water production apparatus 2 shown in FIG. 2, the same components as those in the electric deionized water production apparatus 1 shown in FIG. To do. The electric deionized water production apparatus 2 shown in FIG. 2 has an ion sensor 52 installed in the concentrated water outflow line 50. The ion sensor 52 is electrically connected to the pump 46 via a regulator (not shown) or the like. The ion sensor 52 can detect the concentration of anions such as carbonic acid and Cl 2 − in the concentrated water passing through the concentrated water outflow line 50.

濃縮室16a,16b内のアニオン交換体22がCl等のアニオン形になっていない(すなわちHCO形になっている)と、炭酸の逆拡散が発生する。そこで、本実施形態では、上記イオンセンサ52により検出された炭酸及びCl等のアニオン濃度の比が所定値以上ずれた場合には、ポンプ46の流量を上げるようにイオンセンサ52から指示が送られ、濃縮室16a,16bに供給されるCl等のアニオンを含む溶液の添加量を増加させる。上記によって、濃縮室16a,16bに供給するCl等のアニオンを含む溶液の添加量を適切に制御しながら、濃縮室16a,16b内の濃縮水のCl等のアニオン濃度を濃縮室16a,16b内の炭酸濃度以上にすることができ、効率的に炭酸の逆拡散を抑制することができる。 Concentrating chamber 16a, the anion exchanger 22 in 16b is Cl - not in anion form, such as (i.e. has become HCO 3 form) despreading the carbonate occurs. Therefore, in the present embodiment, when the ratio of the concentration of anions such as carbonic acid and Cl detected by the ion sensor 52 deviates by a predetermined value or more, an instruction is sent from the ion sensor 52 to increase the flow rate of the pump 46. The amount of the solution containing anions such as Cl supplied to the concentration chambers 16a and 16b is increased. Above by, concentrating chamber 16a, Cl supplied to 16b - while appropriately controlling the addition amount of a solution containing such anion concentration compartments 16a, the concentrated water in 16b Cl - anions concentration such as concentration compartments 16a, The carbonic acid concentration in 16b can be increased, and the reverse diffusion of carbonic acid can be efficiently suppressed.

上記これらの実施形態では、被処理水を第一小脱塩室d1,d3,d5に充填されたアニオン交換体20から接触させる構成を例示している。本実施形態では、脱塩室に充填されたイオン交換体の通水順序及び脱塩室に充填されるイオン交換体等は特に制限されるものではないが、下記に第一小脱塩室にカチオン交換体を充填し、第二小脱塩室にアニオン交換体を充填し、被処理水をカチオン交換体からアニオン交換体の順で接触させる電気式脱イオン水製造装置について説明する。   In these embodiments, the configuration in which the water to be treated is brought into contact with the anion exchanger 20 filled in the first small desalting chambers d1, d3, d5 is illustrated. In the present embodiment, the water flow order of the ion exchanger filled in the desalting chamber and the ion exchanger filled in the desalting chamber are not particularly limited, but are described below in the first small desalting chamber. An electric deionized water production apparatus will be described in which a cation exchanger is filled, an anion exchanger is filled in the second small desalting chamber, and the water to be treated is brought into contact in the order of the cation exchanger to the anion exchanger.

図3は、本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。図3に示す第一小脱塩室d1,d3,d5は、カチオン交換膜10と中間イオン交換膜12とで区画され、第二小脱塩室d2,d4,d6は、中間イオン交換膜12とアニオン交換膜14とで区画されている。また、第一小脱塩室d1,d3,d5には、カチオン交換体54が充填され、第二小脱塩室d2,d4,d6には、アニオン交換体20が充填されている。また、本実施形態において、中間イオン交換膜12は、アニオン交換膜であるが、アニオン交換膜に制限されるものではない。また、濃縮室16a,16b及び電極室28,30は、図1の電気式脱イオン水製造装置1と同様の構成であるため説明を省略する。   FIG. 3 is a schematic configuration diagram of an electric deionized water production apparatus according to another embodiment of the present invention. The first small desalting chambers d1, d3, d5 shown in FIG. 3 are partitioned by the cation exchange membrane 10 and the intermediate ion exchange membrane 12, and the second small desalting chambers d2, d4, d6 are the intermediate ion exchange membrane 12. And an anion exchange membrane 14. The first small desalting chambers d1, d3, d5 are filled with a cation exchanger 54, and the second small desalting chambers d2, d4, d6 are filled with an anion exchanger 20. In the present embodiment, the intermediate ion exchange membrane 12 is an anion exchange membrane, but is not limited to an anion exchange membrane. Moreover, since the concentration chambers 16a and 16b and the electrode chambers 28 and 30 have the same configuration as the electric deionized water production apparatus 1 in FIG.

図3の電気式脱イオン水製造装置3において、被処理水が流入するための第一流入ライン36が、第一小脱塩室d1,d3,d5の入口にそれぞれ接続され、第一小脱塩室d1,d3,d5の出口からの被処理水が流出するための第一流出ライン38が、第二小脱塩室d2,d4,d6の入口へ被処理水が流入するための第二流入ライン40に接続されている。処理水が流出するための第二流出ライン42が、第二小脱塩室d2,d4,d6の出口にそれぞれ接続されている。上記構成によって、被処理水は、まず、第一小脱塩室d1,d3,d5に供給され、脱塩処理される。そして、第一小脱塩室d1,d3,d5を通過した被処理水が、第二小脱塩室d2,d4,d6に供給され、さらに脱塩処理されて処理水として排出される。また、濃縮室16a,16bに濃縮水を供給する供給手段としてのタンク44、ポンプ46、濃縮水流入ライン48等の構成は、図1の電気式脱イオン水製造装置1と同様の構成であるため説明を省略する。   In the electric deionized water production apparatus 3 of FIG. 3, the first inflow lines 36 through which the water to be treated flows are connected to the inlets of the first small demineralization chambers d1, d3, d5, respectively. A first outflow line 38 for flowing out the water to be treated from the outlets of the salt chambers d1, d3, d5 is a second for flowing the water to be treated into the inlets of the second small desalting chambers d2, d4, d6. It is connected to the inflow line 40. A second outflow line 42 through which the treated water flows out is connected to the outlets of the second small desalting chambers d2, d4, d6, respectively. With the above configuration, the water to be treated is first supplied to the first small desalting chambers d1, d3, and d5 and desalted. And the to-be-processed water which passed 1st small desalination chamber d1, d3, d5 is supplied to 2nd small desalination chamber d2, d4, d6, is further desalted, and is discharged | emitted as treated water. Moreover, the structure of the tank 44, the pump 46, the concentrated water inflow line 48, etc. as a supply means which supplies concentrated water to the concentration chamber 16a, 16b is the same structure as the electric deionized water production apparatus 1 of FIG. Therefore, explanation is omitted.

本実施形態に係る電気式脱イオン水製造装置3によって脱イオン水を製造する場合の運転方法の一例を以下に説明する。まず、陰極24と陽極26間に直流電流を流した状態で、第一流入ライン36から被処理水を流入させ、また、バイパスライン51を介して濃縮水流入ライン48へ被処理水を流入させると共に、ポンプ46を稼働させ、開閉弁49を開き、タンク44からサブ流入ライン47を介して、アニオン交換体22のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液(例えば、後述する食塩溶液等)を濃縮水流入ライン48へ流入させる。第一流入ライン36から流入した被処理水は、第一小脱塩室d1,d3,d5を流れ、カチオン交換体54の充填層を通過する際にカチオンが除去される。更に、第一小脱塩室d1,d3,d5の第一流出ライン38を通った被処理水は、第二小脱塩室d2,d4,d6の第二流入ライン40を通って、第二小脱塩室d2,d4,d6を流れ、アニオン交換体20の充填層を通過する際に炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)、シリカ等のアニオンが除去され、処理水(脱イオン水)が第二流出ライン42から得られる。また、タンク44から濃縮水流入ライン48へ流入した当該溶液及びバイパスライン51から濃縮水流入ライン48へ流入した被処理水の混合液(本実施形態に係る濃縮水)は、各濃縮室16a,16bを流れ、カチオン交換膜10及びアニオン交換膜14を介して移動してくるイオンを受取り、イオンを濃縮した濃縮水として濃縮水流出ライン50から流出される。さらに、第一流入ライン36(電極水流入ライン)から流入した電極水は、電極水流出ライン53から流出される。   An example of an operation method in the case of producing deionized water by the electric deionized water production apparatus 3 according to this embodiment will be described below. First, in a state where a direct current is passed between the cathode 24 and the anode 26, the water to be treated is caused to flow from the first inflow line 36, and the water to be treated is caused to flow into the concentrated water inflow line 48 via the bypass line 51. At the same time, the pump 46 is operated, the on-off valve 49 is opened, and a solution containing an anion having an ion selectivity higher than the bicarbonate ion from the tank 44 through the sub inflow line 47 (for example, described later). Salt solution or the like) is introduced into the concentrated water inflow line 48. The treated water that has flowed in from the first inflow line 36 flows through the first small desalting chambers d1, d3, and d5, and the cations are removed when passing through the packed bed of the cation exchanger 54. Furthermore, the treated water that has passed through the first outflow line 38 of the first small desalting chambers d1, d3, d5 passes through the second inflow line 40 of the second small desalting chambers d2, d4, d6, When flowing through the small desalting chambers d2, d4, d6 and passing through the packed bed of the anion exchanger 20, anions such as carbonic acid (free carbonic acid, bicarbonate ion, carbonate ion), silica and the like are removed, and treated water (deionized) Water) is obtained from the second outlet line 42. Further, the solution flowing from the tank 44 to the concentrated water inflow line 48 and the mixed solution of the water to be treated (flowing water according to the present embodiment) flowing from the bypass line 51 to the concentrated water inflow line 48 are supplied to the respective concentration chambers 16a, The ions that flow through 16b and move through the cation exchange membrane 10 and the anion exchange membrane 14 are received and flowed out from the concentrated water outflow line 50 as concentrated water obtained by concentrating the ions. Furthermore, the electrode water flowing in from the first inflow line 36 (electrode water inflow line) flows out from the electrode water outflow line 53.

上記で説明したように、第二小脱塩室d2,d4,d6のアニオン交換体20にて捕捉される炭酸(遊離炭酸、重炭酸イオン、炭酸イオン)は、水酸化物イオンやアニオン交換体20に捕捉された他のアニオン成分と共に陽極側のアニオン交換膜14を通過し、濃縮室16a,16bへと移動する。本実施形態では、アニオン交換体22のイオン選択性の順位のうち重炭酸イオンより高いアニオンを含む溶液が濃縮室16a,16bに供給されるため、濃縮室16a,16bへ移動した炭酸は、重炭酸イオンに対する選択性より高いアニオン形のアニオン交換体には捕捉されずに、濃縮水とともに濃縮水流出ライン50へ排出される。したがって、炭酸ガスがカチオン交換膜10を介して第一小脱塩室d3,d5へ移動し、被処理水中に逆拡散することを抑制することができる。   As explained above, carbonic acid (free carbonic acid, bicarbonate ion, carbonate ion) trapped by the anion exchanger 20 in the second small desalting chambers d2, d4, d6 is hydroxide ions or anion exchangers. The other anion component trapped by 20 passes through the anion exchange membrane 14 on the anode side and moves to the concentration chambers 16a and 16b. In the present embodiment, since a solution containing anions higher than bicarbonate ions in the order of ion selectivity of the anion exchanger 22 is supplied to the concentration chambers 16a and 16b, the carbon dioxide that has moved to the concentration chambers 16a and 16b It is not trapped by the anion exchanger in the anionic form, which has higher selectivity for carbonate ions, and is discharged together with the concentrated water to the concentrated water outlet line 50. Therefore, it is possible to suppress the carbon dioxide gas from moving to the first small desalting chambers d3 and d5 through the cation exchange membrane 10 and backdiffusing into the water to be treated.

本実施形態において、第一小脱塩室d1,d3,d5または第二小脱塩室d2,d4,d6の厚さは特に制限されないが、第一小脱塩室d1,d3,d5の厚さを0.8〜600mm、好ましくは2〜100mm、第二小脱塩室d2,d4,d6の厚さを0.8〜600mm、好ましくは6〜100mmとすれば、低い電気抵抗及び高い電流効率が得られる点で好適である。第一小脱塩室d1,d3,d5の厚さが0.8mm未満では滞留時間を充分に確保できず、水質が悪化しやすい。また、600mmを越えると電気抵抗が大きすぎて装置の安定運転に支障を来しやすくなる。また、同様に第二小脱塩室d2,d4,d6の厚さが0.8mm未満では滞留時間を充分に確保できず、水質が悪化しやすい。また、600mmを越えると電流効率の上昇に比べて電気抵抗の上昇が顕著となりやすい。   In the present embodiment, the thickness of the first small desalting chambers d1, d3, d5 or the second small desalting chambers d2, d4, d6 is not particularly limited, but the thickness of the first small desalting chambers d1, d3, d5. If the thickness is 0.8 to 600 mm, preferably 2 to 100 mm, and the thickness of the second small desalting chambers d2, d4, and d6 is 0.8 to 600 mm, preferably 6 to 100 mm, low electrical resistance and high current This is preferable in that efficiency can be obtained. If the thickness of the first small desalting chambers d1, d3, d5 is less than 0.8 mm, sufficient residence time cannot be secured, and the water quality tends to deteriorate. On the other hand, if it exceeds 600 mm, the electric resistance is too large, and the stable operation of the apparatus tends to be hindered. Similarly, if the thickness of the second small desalting chambers d2, d4, d6 is less than 0.8 mm, sufficient residence time cannot be secured, and the water quality tends to deteriorate. On the other hand, if it exceeds 600 mm, the increase in electrical resistance tends to be more significant than the increase in current efficiency.

アニオン交換体(20,32)、カチオン交換体(34,54)として用いられるイオン交換体としては、イオン交換樹脂、イオン交換繊維などイオン交換機能を有する物質であればいずれでもよく、また、それらを組み合わせたものであってもよい。   The ion exchanger used as the anion exchanger (20, 32) and cation exchanger (34, 54) may be any substance as long as it has an ion exchange function, such as an ion exchange resin and an ion exchange fiber. May be combined.

濃縮室16a,16bに充填されるアニオン交換体22としては、例えば強塩基性アニオン交換体が挙げられる。また、アニオン交換体の形態としては、アニオン交換樹脂、アニオン交換繊維及び特開2002−306976号公報記載の有機多孔質アニオン交換体等が挙げられる。強塩基性アニオン交換体は一部に弱塩基性アニオン交換基が含まれていてもよい。アニオン交換樹脂は、遊離炭酸濃度が低くても反応が十分におき、スケール発生を抑制できるという利点を有する。また、アニオン交換樹脂の粒径が均一であると、濃縮室の差圧が低くなる点で好ましい。   Examples of the anion exchanger 22 filled in the concentration chambers 16a and 16b include a strongly basic anion exchanger. Examples of the anion exchanger include anion exchange resins, anion exchange fibers, and organic porous anion exchangers described in JP-A No. 2002-306976. The strong basic anion exchanger may partially contain a weak basic anion exchange group. The anion exchange resin has an advantage that the reaction is sufficiently performed even when the free carbonic acid concentration is low, and scale generation can be suppressed. Moreover, it is preferable that the particle size of the anion exchange resin is uniform in that the differential pressure in the concentration chamber is reduced.

濃縮室16a,16bの厚さとしては、0.5mm〜60mmが好ましく、特に1mm〜10mmが好ましい。0.5mm未満であると、たとえアニオン交換体22を充填してもスケール発生抑制効果が得られにくくなり、通水差圧も上昇しやすい。一方、60mmを越えると、電気抵抗が高くなり、消費電力が増大しやすくなる。   As thickness of the concentration chambers 16a and 16b, 0.5 mm-60 mm are preferable, and 1 mm-10 mm are especially preferable. If it is less than 0.5 mm, even if the anion exchanger 22 is filled, it becomes difficult to obtain an effect of suppressing the occurrence of scale, and the water flow differential pressure tends to increase. On the other hand, if it exceeds 60 mm, the electrical resistance increases and the power consumption tends to increase.

なお、電気式脱イオン水製造装置において、処理量(SV、LV)、通電量、その他運転条件は、被処理水の性状などに応じて適宜設定することができる。   In the electric deionized water production apparatus, the treatment amount (SV, LV), the energization amount, and other operating conditions can be appropriately set according to the properties of the water to be treated.

本実施形態において、処理対象となる被処理水としては特に制限はないが、炭酸成分を多く含む被処理水であっても、最終処理水の炭酸汚染を防止することができる。炭酸成分を多く含む被処理水としては、例えば水道水または水道水をRO膜等で処理した水等が挙げられる。国内の水道水では通常炭酸成分の他に硬度成分が含まれるが、本実施形態によれば、濃縮室16a,16bへアニオン交換体22が充填されているため、濃縮室16a,16bに移動したCa2+イオンやMg2+イオンが濃縮室16a,16bのアニオン交換膜14面で炭酸イオン(CO 2−)と結合して硬度スケールを生じることはほとんどなく、濃縮室16a,16bにおいて流路閉塞などが起こることもほとんどない。 In the present embodiment, the water to be treated that is to be treated is not particularly limited, but even water to be treated that contains a large amount of carbonic acid components can prevent carbonation of the final treated water. Examples of water to be treated containing a large amount of carbonic acid component include tap water or water obtained by treating tap water with an RO membrane or the like. Domestic tap water usually contains a hardness component in addition to a carbonic acid component, but according to the present embodiment, the anion exchanger 22 is filled in the concentrating chambers 16a and 16b, so that they have moved to the concentrating chambers 16a and 16b. Ca 2+ ions and Mg 2+ ions are hardly combined with carbonate ions (CO 3 2− ) on the surface of the anion exchange membrane 14 in the concentration chambers 16a and 16b to form a hardness scale, and the flow path is blocked in the concentration chambers 16a and 16b. There is almost no such thing.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

図4は、濃縮室から脱塩室に移動する炭酸成分量を測定するための試験セルを示す概略構成図である。図4に示すように、アニオン交換樹脂56が充填された陰極室58と、カチオン交換樹脂60が充填された陽極室62との間に、アニオン交換膜64及び第一カチオン交換膜66で区画され、アニオン交換樹脂56が充填された濃縮室68、第一カチオン交換膜66及び第二カチオン交換膜70で区画され、カチオン交換樹脂60が充填された脱塩室72とを有する試験セル4を準備し、以下の条件で濃縮室68から脱塩室72に移動する炭酸成分量を測定した。脱塩室72及び電極室(58,62)には超純水を通水させると共に、濃縮室68にはNaCl+NaHCO溶液(炭酸イオン濃度30mg−CaCO/L、[Cl]50%、[HCO]50%)を通水させ、これを実施例とした。
<使用したイオン交換体>
カチオン交換樹脂:ロームアンドハース社製、アンバーライトIRA402BL
アニオン交換樹脂:ロームアンドハース社製、アンバーライトIRA402BL
第一カチオン交換膜、第二カチオン交換膜:株式会社アストム製、C66−10F
アニオン交換膜:株式会社アストム製、AHA
<EDIサイズ>
試験セル:縦10cm×幅10cm×厚さ8mm
<流量条件>
超純水、NaCl+NaHCO溶液:8000ml/hr
<電流条件>
定電流:0.5A/dm
FIG. 4 is a schematic configuration diagram showing a test cell for measuring the amount of carbonic acid components moving from the concentration chamber to the desalting chamber. As shown in FIG. 4, an anion exchange membrane 64 and a first cation exchange membrane 66 are partitioned between a cathode chamber 58 filled with an anion exchange resin 56 and an anode chamber 62 filled with a cation exchange resin 60. A test cell 4 having a concentration chamber 68 filled with an anion exchange resin 56, a first cation exchange membrane 66 and a second cation exchange membrane 70, and a desalting chamber 72 filled with a cation exchange resin 60 is prepared. Then, the amount of carbonic acid component moving from the concentration chamber 68 to the desalting chamber 72 was measured under the following conditions. Ultrapure water is passed through the desalting chamber 72 and the electrode chambers (58, 62), and a NaCl + NaHCO 3 solution (carbonate concentration 30 mg-CaCO 3 / L, [Cl] 50%, [HCO 3 ] 50%), and this was taken as an example.
<Ion exchanger used>
Cation exchange resin: Rohm and Haas, Amberlite IRA402BL
Anion exchange resin: Rohm and Haas, Amberlite IRA402BL
First cation exchange membrane, second cation exchange membrane: manufactured by Astom Co., Ltd., C66-10F
Anion exchange membrane: AHA made by Astom Co., Ltd.
<EDI size>
Test cell: 10cm long x 10cm wide x 8mm thick
<Flow conditions>
Ultrapure water, NaCl + NaHCO 3 solution: 8000 ml / hr
<Current conditions>
Constant current: 0.5 A / dm 2

(比較例)
NaCl+NaHCO溶液に代えて炭酸水([HCO]100%)を濃縮室68に通水させた以外は、実施例と同様の条件で行ったものを比較例とした。
(Comparative example)
A comparative example was prepared under the same conditions as in Example except that carbonated water ([HCO 3 ] 100%) was passed through the concentration chamber 68 instead of the NaCl + NaHCO 3 solution.

実施例及び比較例の脱塩室から排出される処理水(超純水)中の炭酸量を測定した。具体的には、アルテナ社製のTOC計(A−1000)にて処理水中の無機炭素(IC)を測定し、これを炭酸として、処理水中の炭酸量を測定した。比較例の脱塩室から排出される処理水には、8400μg−CaCO/hrの炭酸成分が含まれていた。一方、実施例の脱塩室から排出される処理水には、700μg−CaCO/hrの炭酸成分が含まれていたが、比較例より炭酸成分の量が大幅に抑えられていた。すなわち、アニオン交換樹脂のイオン選択性の順位が重炭酸イオンより高いアニオン(実施例では、塩素イオン)を含む溶液を濃縮室に供給することによって、濃縮室の炭酸成分がカチオン交換膜を介して脱塩室に移動することを抑制できることを確認した。 The amount of carbonic acid in the treated water (ultra pure water) discharged from the desalting chambers of Examples and Comparative Examples was measured. Specifically, inorganic carbon (IC) in the treated water was measured with a TOC meter (A-1000) manufactured by Altena, and the amount of carbonic acid in the treated water was measured using this as carbonic acid. The treated water discharged from the desalting chamber of the comparative example contained 8400 μg-CaCO 3 / hr of a carbonic acid component. On the other hand, the treated water discharged from the desalting chamber of the example contained 700 μg-CaCO 3 / hr of a carbonic acid component, but the amount of the carbonic acid component was significantly suppressed as compared with the comparative example. That is, by supplying a solution containing an anion (in the embodiment, chlorine ion) having an ion selectivity higher than that of bicarbonate ion to the concentration chamber, the carbon component in the concentration chamber is passed through the cation exchange membrane. It was confirmed that movement to the desalting chamber can be suppressed.

本実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on this embodiment. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on other embodiment of this invention. 濃縮室から脱塩室に移動する炭酸成分量を測定するための試験セルを示す概略構成図である。It is a schematic block diagram which shows the test cell for measuring the amount of carbonic acid components which moves to a desalination chamber from a concentration chamber.

符号の説明Explanation of symbols

1〜3 電気式脱イオン水製造装置、4 試験セル、10,66,70 カチオン交換膜、12 中間イオン交換膜、14,64 アニオン交換膜、16a,16b,68 濃縮室、18 混合体、20,22,32 アニオン交換体、34、54 カチオン交換体、24 陰極、26 陽極、28,30,58,62 電極室、36 第一流入ライン、38 第一流出ライン、40 第二流入ライン、42 第二流出ライン、44 タンク、46 ポンプ、47 サブ流入ライン、48 濃縮水流入ライン、49 開閉弁、50 濃縮水流出ライン、51 バイパスライン、52 イオンセンサ、53 電極水流出ライン、56 アニオン交換樹脂、60 カチオン交換樹脂、72,D1,D2,D3 脱塩室、d1,d3,d5 第一小脱塩室、d2,d4,d6 第二小脱塩室。   1-3 Electric deionized water production apparatus, 4 test cells, 10, 66, 70 cation exchange membrane, 12 intermediate ion exchange membrane, 14, 64 anion exchange membrane, 16a, 16b, 68 concentration chamber, 18 mixture, 20 , 22, 32 Anion exchanger, 34, 54 Cation exchanger, 24 cathode, 26 anode, 28, 30, 58, 62 electrode chamber, 36 first inlet line, 38 first outlet line, 40 second inlet line, 42 Second Outflow Line, 44 Tank, 46 Pump, 47 Sub Inflow Line, 48 Concentrated Water Inflow Line, 49 Open / Close Valve, 50 Concentrated Water Outflow Line, 51 Bypass Line, 52 Ion Sensor, 53 Electrode Water Outflow Line, 56 Anion Exchange Resin , 60 cation exchange resin, 72, D1, D2, D3 desalting chamber, d1, d3, d5 first small desalting chamber, d2, d4 d6 Second small desalination chamber.

Claims (6)

陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とを配置し、前記濃縮室に濃縮水を供給する供給手段を有する電気式脱イオン水製造装置であって、
前記濃縮水は、前記アニオン交換体のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液であることを特徴とする電気式脱イオン水製造装置。
Between the anode and the cathode, it is partitioned by a cation exchange membrane on one side and an anion exchange membrane on the other side, and a desalting chamber filled with an ion exchanger, through the cation exchange membrane and the anion exchange membrane An electric deionized water production apparatus having a supply unit provided on both sides of the demineralization chamber and having a concentration chamber filled with an anion exchanger, and supplying concentrated water to the concentration chamber;
The concentrated deionized water is a solution containing anions having an ion selectivity higher than that of bicarbonate ions in the anion exchanger.
請求項1記載の電気式脱イオン水製造装置であって、前記供給手段は、前記濃縮室内の前記アニオンのイオン濃度が前記濃縮室内の炭酸濃度以上となるように前記濃縮水を供給することを特徴とする電気式脱イオン水製造装置。   2. The electric deionized water production apparatus according to claim 1, wherein the supply means supplies the concentrated water so that an ion concentration of the anion in the concentration chamber is equal to or higher than a carbonic acid concentration in the concentration chamber. An electrical deionized water production apparatus. 請求項1又は2記載の電気式脱イオン水製造装置であって、前記アニオンは、塩素イオンであることを特徴とする電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1 or 2, wherein the anion is a chlorine ion. 陽極と陰極との間に、一側のカチオン交換膜と他側のアニオン交換膜とで区画され、イオン交換体が充填された脱塩室と、前記カチオン交換膜、前記アニオン交換膜を介して前記脱塩室の両側に設けられ、アニオン交換体が充填された濃縮室とを配置し、前記濃縮室に濃縮水を供給する電気式脱イオン水製造装置を利用して脱イオン水を製造する脱イオン水の製造方法であって、
前記濃縮水は、前記アニオン交換体のイオン選択性の順位が重炭酸イオンより高いアニオンを含む溶液であることを特徴とする脱イオン水の製造方法。
Between the anode and the cathode, it is partitioned by a cation exchange membrane on one side and an anion exchange membrane on the other side, and a desalting chamber filled with an ion exchanger, through the cation exchange membrane and the anion exchange membrane A deionized water is produced by using an electric deionized water production apparatus that is provided on both sides of the demineralization chamber and is provided with a concentration chamber filled with an anion exchanger and supplies the concentrated water to the concentration chamber. A method for producing deionized water comprising:
The method for producing deionized water, wherein the concentrated water is a solution containing anions having higher ion selectivity than the bicarbonate ions.
請求項4記載の脱イオン水の製造方法であって、前記濃縮室内の前記アニオンのイオン濃度が前記濃縮室内の炭酸濃度以上となるように前記濃縮水を供給することを特徴とする脱イオン水の製造方法。   5. The method for producing deionized water according to claim 4, wherein the concentrated water is supplied so that an ion concentration of the anion in the concentration chamber is equal to or higher than a carbonic acid concentration in the concentration chamber. Manufacturing method. 請求項4又は5記載の脱イオン水の製造方法であって、前記アニオンは、塩素イオンであることを特徴とする脱イオン水の製造方法。   6. The method for producing deionized water according to claim 4, wherein the anion is a chlorine ion.
JP2007318124A 2007-12-10 2007-12-10 Electric deionized water production device and deionized water production method Pending JP2009136824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318124A JP2009136824A (en) 2007-12-10 2007-12-10 Electric deionized water production device and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318124A JP2009136824A (en) 2007-12-10 2007-12-10 Electric deionized water production device and deionized water production method

Publications (1)

Publication Number Publication Date
JP2009136824A true JP2009136824A (en) 2009-06-25

Family

ID=40868034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318124A Pending JP2009136824A (en) 2007-12-10 2007-12-10 Electric deionized water production device and deionized water production method

Country Status (1)

Country Link
JP (1) JP2009136824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088085A (en) * 2009-10-23 2011-05-06 Japan Organo Co Ltd Electric deionized water making apparatus
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088085A (en) * 2009-10-23 2011-05-06 Japan Organo Co Ltd Electric deionized water making apparatus
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water

Similar Documents

Publication Publication Date Title
US6929748B2 (en) Apparatus and method for continuous electrodeionization
US6398965B1 (en) Water treatment system and process
JP4363587B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP3161750U (en) Water treatment with low scale potential
JP2005512794A (en) Separation deionization treatment
WO2008016055A1 (en) Electrodeionizer
JP4960288B2 (en) Electric deionized water production apparatus and deionized water production method
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
EP2951334A1 (en) Rechargeable electrochemical cells
JP2009541032A (en) Water treatment with low scale generation capacity
JP4856617B2 (en) Electric deionized water production apparatus and operation method thereof
US20080251461A1 (en) Water treatment process
JP2002143854A (en) Electrochemical water treating device
JP5673225B2 (en) Water treatment method and water treatment system
JP2009136824A (en) Electric deionized water production device and deionized water production method
JP2009297670A (en) Electric deionized water making apparatus
JP2008296204A (en) Electro-deionization apparatus and method for operating electro-deionization apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP4505965B2 (en) Pure water production method
JP4552273B2 (en) Electrodeionization equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP4869297B2 (en) Electric deionized water production equipment
JP5186605B2 (en) Electric deionized water production apparatus and deionized water production method
JP4624066B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method