JP4973853B2 - Pure water production system - Google Patents

Pure water production system Download PDF

Info

Publication number
JP4973853B2
JP4973853B2 JP2007073145A JP2007073145A JP4973853B2 JP 4973853 B2 JP4973853 B2 JP 4973853B2 JP 2007073145 A JP2007073145 A JP 2007073145A JP 2007073145 A JP2007073145 A JP 2007073145A JP 4973853 B2 JP4973853 B2 JP 4973853B2
Authority
JP
Japan
Prior art keywords
water
treated water
reverse osmosis
osmosis membrane
electrodeionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007073145A
Other languages
Japanese (ja)
Other versions
JP2008229506A (en
Inventor
邦博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007073145A priority Critical patent/JP4973853B2/en
Publication of JP2008229506A publication Critical patent/JP2008229506A/en
Application granted granted Critical
Publication of JP4973853B2 publication Critical patent/JP4973853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、逆浸透膜モジュールと電気脱イオン装置とを備えた純水製造システムに関し、特に電気脱イオン装置のスケール障害が抑制され、原水質が変動しても所定のレベルの純水を供給することの可能な純水製造システムに関する。   The present invention relates to a pure water production system including a reverse osmosis membrane module and an electrodeionization device, and in particular, scale failure of the electrodeionization device is suppressed and a predetermined level of pure water is supplied even if the raw water quality fluctuates. It is related with the pure water manufacturing system which can be performed.

近年、半導体製造工場や液晶製造工場等の電子産業分野や研究開発分野において、超純水を製造する手段として電気脱イオン装置が定着しつつある。この電気脱イオン装置では、電気脱イオン装置に供給される水のシリカ濃度が制限されている。電気脱イオン装置に供給される水のシリカ濃度が高いと、シリカスケールが発生して電気抵抗が増すので、電気脱イオン装置を運転する際の電圧が上昇し、処理水の水質の低下を招くことになる。   In recent years, in the electronics industry field and research and development field such as a semiconductor manufacturing factory and a liquid crystal manufacturing factory, an electrodeionization apparatus has been established as a means for manufacturing ultrapure water. In this electrodeionization apparatus, the silica concentration of water supplied to the electrodeionization apparatus is limited. If the silica concentration in the water supplied to the electrodeionization device is high, silica scale is generated and the electric resistance increases, so that the voltage when operating the electrodeionization device rises and the quality of the treated water is lowered. It will be.

従来、2段構成の逆浸透膜モジュールにより構成される前処理装置を設けて、シリカを除去することで対応していたが、上記構成の前処理装置は、非常に大掛かりなものであり、シリカは所定の水準値以下であれば問題はないにもかかわらず必要以上に除去されることになる一方、システム構成が過剰であるため、設置スペースが限られる場合には適用できないという問題点があった。   Conventionally, a pretreatment device constituted by a two-stage reverse osmosis membrane module has been provided and silica has been removed, but the pretreatment device having the above configuration is very large, However, if there is no problem if the installation space is limited, there is a problem that it cannot be applied when the installation space is limited. It was.

そこで、図2に示すように逆浸透膜を用いた超純水製造装置により対応している。この超純水製造装置は、原水槽T、前処理装置、純水製造システム及びサブシステムから構成されており、前処理装置は、膜式前処理装置21及び活性炭塔22からなるシンプルな構成となっており、純水製造システムは、ろ過水槽23から逆浸透膜モジュール(RO装置)24、膜脱気装置25、電気脱イオン装置26をそれぞれ直列的に設けてなる。そして、サブシステムは、サブタンク27、デミナー(非再生型イオン交換樹脂塔)28と紫外線処理装置29とフィルタ装置(UF)30とからなる。   Therefore, as shown in FIG. 2, the ultrapure water production apparatus using the reverse osmosis membrane is used. This ultrapure water production apparatus is composed of a raw water tank T, a pretreatment apparatus, a pure water production system and a subsystem, and the pretreatment apparatus has a simple structure comprising a membrane pretreatment apparatus 21 and an activated carbon tower 22. The pure water production system includes a filtered water tank 23, a reverse osmosis membrane module (RO device) 24, a membrane deaeration device 25, and an electrodeionization device 26 that are provided in series. The sub system includes a sub tank 27, a deminer (non-regenerative ion exchange resin tower) 28, an ultraviolet treatment device 29, and a filter device (UF) 30.

上述したような超純水製造装置では、原水槽Tから供給された原水W0を膜式前処理装置21及び活性炭塔22で前処理したRO原水W1に対し、RO装置24によりシリカを所定の給水条件値以下まで除去し、このRO処理水W2を膜脱気装置25において脱気処理した後、電気脱イオン装置26に導入する。この電気脱イオン装置26でイオン性の不純物を十分に除去した処理水W3をデミナー28、紫外線処理装置29及びUF30を経由してユースポイント31に超純水として供給するものである。このような構成にすることで前処理装置をシンプルにして、コンパクトな超純水製造装置とすることができる。   In the ultrapure water production apparatus as described above, silica is supplied to the RO raw water W1 obtained by pretreating the raw water W0 supplied from the raw water tank T by the membrane pretreatment device 21 and the activated carbon tower 22 by the RO device 24. The RO treated water W <b> 2 is removed to a condition value or less and deaerated in the membrane deaerator 25, and then introduced into the electrodeionization device 26. The treated water W3 from which ionic impurities have been sufficiently removed by the electrodeionization device 26 is supplied as ultrapure water to the use point 31 via the deminer 28, the ultraviolet treatment device 29 and the UF30. With such a configuration, the pretreatment apparatus can be simplified and a compact ultrapure water production apparatus can be obtained.

しかしながら、上記超純水製造装置では、定常運転時には、問題なく電気脱イオン装置26を運転できるが、電気脱イオン装置26への給水が基準値を超えるのは定常運転時ではなく、予測を大きく超えるカルシウム濃度、シリカ濃度及び炭酸イオン濃度の原水W0が供給される場合や、RO装置24が経時的に劣化した場合等の非定常運転時である。上記超純水製造装置では、このような場合に十分に対応できないため、非定常運転が長期間継続した場合には、電気脱イオン装置26の濃縮室にスケールを生じるおそれがあるという問題点があった。   However, in the above ultrapure water production apparatus, the electrodeionization device 26 can be operated without any problem during steady operation, but the water supply to the electrodeionization device 26 exceeds the reference value during the steady operation, and the prediction is greatly increased. This is a non-stationary operation such as when raw water W0 having a calcium concentration, silica concentration or carbonate ion concentration exceeding the above is supplied, or when the RO device 24 deteriorates over time. Since the above ultrapure water production apparatus cannot sufficiently cope with such a case, if the unsteady operation is continued for a long period of time, there is a problem that scale may be generated in the concentration chamber of the electrodeionization apparatus 26. there were.

本発明は上記課題に鑑みてなされたものであり、最小限の前処理装置の構成を維持したまま、非定常運転時においても電気脱イオン装置のスケール障害を生じることなく、所定のレベルの純水を供給することの可能な純水製造システムを提供することを目的とする。   The present invention has been made in view of the above problems, and maintains a minimum pre-treatment device configuration, and does not cause a scale failure of the electrodeionization device even during unsteady operation. An object is to provide a pure water production system capable of supplying water.

上記課題を解決するために、本発明は、逆浸透膜モジュールからの処理水ラインに電気脱イオン装置を設けた純水製造システムであって、前記逆浸透膜モジュールの処理水ラインの前記電気脱イオン装置より上流側に水質測定器を設けるとともに、前記逆浸透膜モジュールの処理水ライン又は電気脱イオン装置の処理水ラインに流量調整可能な分流機構を設け、この分流機構に逆浸透膜モジュールの原水槽への循環ラインを接続するとともに、前記分流機構の制御機構を設けたことを特徴とする純水製造システムを提供する(発明1)。 In order to solve the above-mentioned problems, the present invention provides a pure water production system in which an electrodeionization apparatus is provided in a treated water line from a reverse osmosis membrane module, and the electrodesorption of the treated water line of the reverse osmosis membrane module. A water quality measuring device is provided upstream from the ion device, and a flow dividing mechanism is provided in the treated water line of the reverse osmosis membrane module or the treated water line of the electrodeionization device. Provided is a pure water production system characterized in that a circulation line to a raw water tank is connected and a control mechanism for the diversion mechanism is provided ( invention 1).

上記発明(発明1)によれば、非定常運転時に逆浸透膜モジュールから電気脱イオン装置への給水の水質が設定値(基準値)を超えたら、逆浸透膜モジュールの処理水又は電気脱イオン装置の処理水の一部を逆浸透膜モジュールの原水槽(ろ過水槽)へ戻して、シリカ濃度の低い水を原水側に合流させることで、原水の水質を改善し、この結果電気脱イオン装置への給水の水質を改善することができる。 According to the above invention ( Invention 1), when the quality of the water supplied from the reverse osmosis membrane module to the electrodeionization device exceeds the set value (reference value) during non-steady operation, the treated water or electrodeionization of the reverse osmosis membrane module A part of the treated water of the equipment is returned to the raw water tank (filtered water tank) of the reverse osmosis membrane module, and the water with low silica concentration is merged with the raw water side to improve the quality of the raw water. As a result, the electrodeionization equipment Can improve the quality of the water supply.

上記発明(発明1)においては、前記制御機構は、前記水質測定器の計測値が設定値を超えていたら、前記逆浸透膜モジュールの処理水の一部又は電気脱イオン装置の一部を逆浸透膜モジュールの原水槽へ前記循環ラインから所定流量を戻すように前記分流機構を制御することが好ましい(発明2)。 In the above invention ( Invention 1), the control mechanism reverses a part of the treated water of the reverse osmosis membrane module or a part of the electrodeionization device when the measured value of the water quality measuring instrument exceeds a set value. It is preferable to control the diversion mechanism so that a predetermined flow rate is returned from the circulation line to the raw water tank of the osmosis membrane module ( Invention 2).

上記発明(発明2)によれば、水質測定器により計測されるシリカ等の濃度が設定値(基準値)を超えたときのみ必要一定量の処理水をろ過水槽へ戻すことで、逆浸透膜モジュールでの処理水の水質を改善し、この結果、電気脱イオン装置への給水の水質を改善することができる。さらに、水質測定器の測定結果に基づき迅速に必要一定量の循環水をろ過水槽へ戻すことができるので、電気脱イオン装置を安全に運転することができる。 According to the above invention ( Invention 2), the reverse osmosis membrane is obtained by returning the necessary fixed amount of treated water to the filtered water tank only when the concentration of silica or the like measured by the water quality measuring instrument exceeds the set value (reference value). The quality of the treated water in the module can be improved, and as a result, the quality of the water supplied to the electrodeionization device can be improved. Furthermore, since a necessary fixed amount of circulating water can be quickly returned to the filtered water tank based on the measurement result of the water quality measuring instrument, the electrodeionization apparatus can be operated safely.

上記発明(発明1,2)においては、前記水質測定器が、シリカ、カルシウム又は炭酸濃度を測定するものであることが好ましい(発明3)。かかる発明(発明3)によれば、シリカ、カルシウム又は炭酸等の被処理水である原水において変動しやすい水質を計測することで、電気脱イオン装置を安全に運転することができる。 In the said invention ( invention 1 and 2), it is preferable that the said water quality measuring device measures a silica, calcium, or carbonic acid density | concentration ( invention 3). According to this invention ( invention 3), the electrodeionization apparatus can be safely operated by measuring the water quality that is likely to fluctuate in the raw water that is the treated water such as silica, calcium, or carbonic acid.

上記発明(発明1〜3)においては、前記分流機構が、三方弁であることが好ましい(発明4)。かかる発明(発明4)によれば、制御機構で三方弁を切り替えるだけで逆浸透膜モジュールの処理水ライン又は電気脱イオン装置の処理水ラインの処理水を逆浸透膜モジュールの原水槽(ろ過水槽)へ戻すことができる。 In the said invention ( invention 1-3), it is preferable that the said diversion mechanism is a three-way valve ( invention 4). According to this invention ( invention 4), the treated water in the treated water line of the reverse osmosis membrane module or the treated water line of the electrodeionization device can be removed from the raw water tank (filtered water tank) of the reverse osmosis membrane module simply by switching the three-way valve with the control mechanism ).

本発明によれば、非定常運転時に逆浸透膜モジュールからの電気脱イオン装置への給水の水質測定器による水質が設定値(基準値)を超えたら、逆浸透膜モジュール又は電気脱イオン処理水の一部を逆浸透膜モジュールの原水槽(ろ過水槽)へ戻して、シリカ濃度の低い水を原水側に合流させて原水の水質を改善することで、最小限の前処理装置の構成を維持したまま非定常運転時においても電気脱イオン装置のスケール障害を生じることなく、所定のレベルの純水を電気脱イオン装置に供給することのできる純水製造システムを提供することができる。   According to the present invention, the reverse osmosis membrane module or the electrodeionized water is treated when the water quality measured by the water quality meter for the water supplied from the reverse osmosis membrane module to the electrodeionization device during the unsteady operation exceeds a set value (reference value). A part of the water is returned to the raw water tank (filtered water tank) of the reverse osmosis membrane module, and water of low silica concentration is merged with the raw water side to improve the quality of the raw water, thereby maintaining the minimum pretreatment device configuration. Thus, it is possible to provide a pure water production system capable of supplying a predetermined level of pure water to the electrodeionization device without causing a scale failure of the electrodeionization device even during non-steady operation.

以下、本発明の一実施形態に係る純水製造システムについて、図面に基づいて詳細に説明する。図1は、本実施形態に係る純水製造システムを有する超純水製造装置のフロー図を示す。   Hereinafter, a pure water production system according to an embodiment of the present invention will be described in detail based on the drawings. FIG. 1 shows a flow chart of an ultrapure water production apparatus having a pure water production system according to this embodiment.

図1に示すように、超純水製造装置は、原水槽Tと前処理装置と純水製造システムとサブシステムとから構成されている。前処理装置は、膜式前処理装置1と活性炭塔2のみにより構成されている。   As shown in FIG. 1, the ultrapure water production apparatus includes a raw water tank T, a pretreatment device, a pure water production system, and a subsystem. The pretreatment device is composed of only the membrane pretreatment device 1 and the activated carbon tower 2.

純水製造システムは、この活性炭塔2の処理水を続けて処理するものであり、逆浸透膜モジュールの原水槽たるろ過水槽3と、逆浸透膜モジュールたるRO装置4と、膜脱気装置5と、電気脱イオン装置6とを備え、RO装置4の処理水ラインL1の電気脱イオン装置6より上流側には、水質測定器としてのシリカセンサ7が設けられている。また、電気脱イオン装置6の処理水ラインL2には、分流機構としての流量コントロール機能を備えた三方弁8が設けられており、サブシステムへの送水ラインL3とろ過水槽3への循環ラインL4とに分岐している。   The pure water production system continuously treats the treated water of the activated carbon tower 2, and includes a filtered water tank 3 that is a raw water tank of a reverse osmosis membrane module, an RO device 4 that is a reverse osmosis membrane module, and a membrane deaeration device 5. And a silica sensor 7 as a water quality measuring device is provided upstream of the electrodeionization device 6 in the treated water line L1 of the RO device 4. The treated water line L2 of the electrodeionization apparatus 6 is provided with a three-way valve 8 having a flow rate control function as a branching mechanism. A water supply line L3 to the subsystem and a circulation line L4 to the filtered water tank 3 are provided. And branching.

そして、これらシリカセンサ7及び三方弁8は、パーソナルコンピュータ等の制御機構(図示せず)に接続されており、この制御機構は、シリカセンサ7のシリカ濃度のデータに基づいて三方弁8の流量コントロール機能を制御してろ過水槽3への循環水量を制御可能となっている。   The silica sensor 7 and the three-way valve 8 are connected to a control mechanism (not shown) such as a personal computer. This control mechanism is based on the silica concentration data of the silica sensor 7 and the flow rate of the three-way valve 8. The amount of circulating water to the filtered water tank 3 can be controlled by controlling the control function.

さらに、サブシステムは、電気脱イオン装置6の脱塩水が貯留されるサブタンク9と、デミナー(非再生型イオン交換樹脂塔)10と、紫外線処理装置(UV)11と、フィルタ装置(UF)12とからなり、この処理水Wが超純水としてユースポイント13に供給される。   Further, the sub system includes a sub tank 9 in which deionized water of the electrodeionization device 6 is stored, a deminer (non-regenerative ion exchange resin tower) 10, an ultraviolet treatment device (UV) 11, and a filter device (UF) 12. The treated water W is supplied to the use point 13 as ultrapure water.

なお、図1中において、L5はユースポイント13で未使用の超純水をサブタンク9へ返送する循環ラインである。また、Q1、Q2、Q3、Q4、Q5、Q6及びQ7は、それぞれ原水の水量、RO装置3の供給水量、RO装置3の排出水量、電気脱イオン装置6の供給水量、電気脱イオン装置6の排出水量、ろ過水槽3への循環水量及びサブシステムへの供給水量であり、後述する実施例1におけるそれぞれの流量が記載されている。   In FIG. 1, L5 is a circulation line for returning unused ultrapure water to the sub tank 9 at the use point 13. Q1, Q2, Q3, Q4, Q5, Q6 and Q7 are respectively the amount of raw water, the amount of water supplied by the RO device 3, the amount of discharged water of the RO device 3, the amount of water supplied by the electrodeionization device 6, and the electrodeionization device 6. The amount of discharged water, the amount of water circulated to the filtered water tank 3, and the amount of water supplied to the subsystem, and the respective flow rates in Example 1 described later are described.

このような構成を有する超純水製造装置について、その作用を説明する。
まず、原水槽Tから供給される原水W0に対し、膜式前処理装置1で濁質成分を除去した後、活性炭塔2で有機物を除去する。続いて、この前処理後の被処理水を純水製造システムに導入する。
The effect | action is demonstrated about the ultrapure water manufacturing apparatus which has such a structure.
First, turbid components are removed from the raw water W0 supplied from the raw water tank T by the membrane pretreatment device 1, and then organic substances are removed by the activated carbon tower 2. Subsequently, the pretreated water to be treated is introduced into the pure water production system.

純水製造システムでは、ろ過水槽3に一旦RO原水W1を貯留した後、RO装置3で処理を行い、このRO原水W1中からイオン類、シリカ等を除去する。そして、RO装置4の透過水は、膜脱気装置5で炭酸イオン、溶存酸素が除去されて電気脱イオン装置6に供給される。このとき、RO装置4の処理水ラインL1に設けたシリカセンサ7でRO透過水W2のシリカ濃度を測定し、図示しない制御機構によりこれを監視する。具体的には、シリカ濃度の基準値(例えば、シリカ濃度0.7mg/L(as SiO)、以下同じ。)を設定値として、これを超えているか否かを監視する。 In the pure water production system, the RO raw water W1 is temporarily stored in the filtered water tank 3 and then processed by the RO device 3 to remove ions, silica, and the like from the RO raw water W1. Then, the permeated water of the RO device 4 is supplied to the electrodeionization device 6 after the carbonate ion and dissolved oxygen are removed by the membrane deaeration device 5. At this time, the silica concentration of the RO permeated water W2 is measured by the silica sensor 7 provided in the treated water line L1 of the RO device 4, and this is monitored by a control mechanism (not shown). Specifically, a reference value of the silica concentration (for example, a silica concentration of 0.7 mg / L (as SiO 2 ), the same shall apply hereinafter) is set as a set value, and whether or not this value is exceeded is monitored.

そして、制御機構は以下に詳述する通り、シリカセンサ7の出力に応じて、三方弁8を制御することで、サブシステムへの送水ラインL3と、ろ過水槽3への循環ラインL4との流量を三方弁8でコントロールすることにより処理が行われる。すなわち、シリカセンサ7の出力(RO装置4の透過水W2の水質)が基準値(0.7mg/L)を超えている非定常運転時等の場合、制御機構は、電気脱イオン装置6の処理水ラインL2の三方弁8からろ過水槽3への循環水量を増加するように制御する。   The control mechanism controls the three-way valve 8 in accordance with the output of the silica sensor 7 as will be described in detail below, whereby the flow rate of the water supply line L3 to the subsystem and the circulation line L4 to the filtered water tank 3 is controlled. Is controlled by the three-way valve 8. That is, when the output of the silica sensor 7 (water quality of the permeated water W2 of the RO device 4) exceeds the reference value (0.7 mg / L), the control mechanism is Control is performed so that the amount of circulating water from the three-way valve 8 of the treated water line L2 to the filtered water tank 3 is increased.

この電気脱イオン装置6では、イオン性の不純物が十分に除去されており、シリカ濃度が非常に低い(通常10ppb以下)ので、ろ過水槽3中の原水W1の水質が改善されることになる。これが連続的に行われることによりRO処理水W2、すなわち電気脱イオン装置6に供給される処理水のシリカ濃度が0.7mg/L以下になり、非定常運転時においても電気脱イオン装置6のスケール障害を生じることなく、電気脱イオン装置6の運転を継続することができる。   In this electrodeionization apparatus 6, ionic impurities are sufficiently removed and the silica concentration is very low (usually 10 ppb or less), so that the quality of the raw water W1 in the filtered water tank 3 is improved. By performing this continuously, the silica concentration of the RO treated water W2, that is, the treated water supplied to the electrodeionization device 6 is 0.7 mg / L or less, and the electrodeionization device 6 is also in an unsteady operation. The operation of the electrodeionization device 6 can be continued without causing a scale failure.

具体的には、あらかじめRO原水W1のシリカ濃度と、RO処理水W2とのシリカ濃度との関係を制御機構にインプットしておき、RO処理水W2のシリカ濃度が0.7mg/L以下となるような電気脱イオン装置6の処理水W3による希釈率を算出し、この算出された量だけ処理水W3を返送してやればよい。例えば、本実施形態では、希釈率は、下記式により0.75となる。
Q1/(Q1+Q6)=Q1/Q2
Specifically, the relationship between the silica concentration of the RO raw water W1 and the silica concentration of the RO treated water W2 is input to the control mechanism in advance, and the silica concentration of the RO treated water W2 becomes 0.7 mg / L or less. The dilution rate of the electrodeionization apparatus 6 with the treated water W3 may be calculated, and the treated water W3 may be returned by the calculated amount. For example, in this embodiment, the dilution rate is 0.75 according to the following formula.
Q1 / (Q1 + Q6) = Q1 / Q2

ただし、サブシステムへの流量を0にすることはできないこと、RO装置4の濃縮水(Q3)及び電気脱イオン装置6の濃縮水(Q5)は不可避であること、等を考慮すると希釈率は0.5以上とするのが好ましい。   However, considering that the flow rate to the subsystem cannot be zero, the concentrated water (Q3) of the RO device 4 and the concentrated water (Q5) of the electrodeionization device 6 are inevitable, the dilution rate is It is preferably 0.5 or more.

一方、シリカセンサ7の出力(RO装置4の透過水W2の水質)が基準値(0.7mg/L以下)の定常運転時の場合、制御機構は、送水ラインL3の水量を充分に確保し、循環ラインL4の水量をユースポイント13での必要量の余剰分、又は0になるように三方弁8を制御して、必要以上に多く循環させないようにする。   On the other hand, when the output of the silica sensor 7 (water quality of the permeated water W2 of the RO device 4) is in a steady operation at the reference value (0.7 mg / L or less), the control mechanism ensures a sufficient amount of water in the water supply line L3. The three-way valve 8 is controlled so that the amount of water in the circulation line L4 becomes a surplus of the necessary amount at the use point 13, or 0, so that it is not circulated more than necessary.

このように電気脱イオン装置6の処理水をろ過水槽3に戻す量をシリカセンサ7の出力(RO装置4の透過水W2の水質)に基づいて制御することにより、非定常運転時における電気脱イオン装置6の原水(RO処理水)W2自体の水質を改善し、電気脱イオン装置6への給水条件を基準値以下にすることができる。これにより電気脱イオン装置6の処理水W3の水質を所定のレベルに保持することができる。   Thus, by controlling the amount of the treated water of the electrodeionization device 6 returned to the filtered water tank 3 based on the output of the silica sensor 7 (water quality of the permeated water W2 of the RO device 4), the electrodeionization during unsteady operation is performed. The water quality of the raw water (RO treated water) W2 itself of the ion device 6 can be improved, and the water supply condition to the electrodeionization device 6 can be reduced below the reference value. Thereby, the water quality of the treated water W3 of the electrodeionization apparatus 6 can be maintained at a predetermined level.

そして、電気脱イオン装置6に供給されたRO処理水W2は、サブタンク9に一端貯留され、デミナー10、紫外線処理装置11及びフィルタ装置12を経由してユースポイント13に超純水Wとして供給される。なお、ユースポイント13での余剰水は循環ラインL5からサブタンク9に返送される。   The RO treated water W2 supplied to the electrodeionization device 6 is once stored in the sub tank 9 and supplied as ultrapure water W to the use point 13 via the deminer 10, the ultraviolet treatment device 11, and the filter device 12. The The surplus water at the use point 13 is returned to the sub tank 9 from the circulation line L5.

以上、本実施形態に係る純水製造システムについて図面に基づいて説明してきたが、本発明は上記実施形態に限定されることはなく、種々の変更実施が可能である。   As mentioned above, although the pure water manufacturing system which concerns on this embodiment has been demonstrated based on drawing, this invention is not limited to the said embodiment, A various change implementation is possible.

例えば、本実施形態においては、電気脱イオン装置6の処理水をろ過水槽3の希釈水としたが、ろ過水槽3のRO原水W1よりもシリカ濃度が低い水を戻してやればよいことから、RO装置4と電気脱イオン装置6の間に流量コントロール機能を備えた三方弁を設けて、ろ過水槽3への循環水量を制御することで、同様に非定常運転時におけるRO原水W1の水質を改善し、電気脱イオン装置6への給水条件を基準値以下にすることができる。   For example, in the present embodiment, the treated water of the electrodeionization device 6 is diluted water of the filtered water tank 3, but water having a lower silica concentration than the RO raw water W1 of the filtered water tank 3 may be returned. By providing a three-way valve with a flow rate control function between the device 4 and the electrodeionization device 6 and controlling the amount of water circulated to the filtered water tank 3, the quality of the RO raw water W1 during non-steady operation is also improved. And the water supply conditions to the electrodeionization apparatus 6 can be made below a reference value.

また、本発明は純水製造システムにその特徴を有するものであり、前記実施形態において前処理装置及びサブシステムの構成については特に制限はなく、場合によっては設けなくてもよい。   In addition, the present invention has its characteristics in a pure water production system, and there are no particular restrictions on the configuration of the pretreatment device and the subsystem in the above embodiment, and it may not be provided depending on circumstances.

さらに、本実施形態においては、シリカ濃度を監視したが、シリカセンサ7の代わりに炭酸イオンセンサやカルシウムセンサ等を用いて炭酸イオンやカルシウムの濃度に基づき三方弁8を制御してもよい。   Furthermore, although the silica concentration is monitored in this embodiment, the three-way valve 8 may be controlled based on the carbonate ion or calcium concentration using a carbonate ion sensor, a calcium sensor, or the like instead of the silica sensor 7.

〔参考例〕
図1に示す超純水製造装置において、電気脱イオン装置6の処理水量を25m/hとして、表1に示すシリカ濃度24mg/Lの原水の処理を行ったところ、シリカセンサ7によるRO処理水W2のシリカ濃度が0.7mg/Lであったので、三方弁8を制御して循環ラインL4を閉鎖して定常運転を行った。
[Reference example]
In the ultrapure water production apparatus shown in FIG. 1, when the amount of treated water in the electrodeionization apparatus 6 is 25 m 3 / h and raw water treatment with a silica concentration of 24 mg / L shown in Table 1 is performed, RO treatment by the silica sensor 7 is performed. Since the silica concentration of water W2 was 0.7 mg / L, the three-way valve 8 was controlled to close the circulation line L4 and perform steady operation.

この定常時における原水、RO入口(RO原水)及びRO出口(RO処理水)のシリカ濃度、RO装置4のシリカ除去率及び回収率、電気脱イオン装置6の送水量(Q7)及び循環量(Q6)、原水補給水量(処理量)、原水希釈率、30日間処理した後の電気脱イオン装置6(CDI)の電圧変化、CDI処理水のシリカ濃度、及びCDI処理水の比抵抗値を測定した結果をそれぞれ表1に示す。   The raw water, the silica concentration at the RO inlet (RO raw water) and the RO outlet (RO treated water), the silica removal rate and recovery rate of the RO device 4, the water supply amount (Q 7) and the circulation amount ( Q6), raw water replenishment water amount (treatment amount), raw water dilution rate, voltage change of electrodeionization device 6 (CDI) after 30 days treatment, silica concentration of CDI treated water, and specific resistance value of CDI treated water The results are shown in Table 1.

〔実施例1〕
前記参考例において、シリカ濃度32mg/Lの原水の処理を行ったところ、シリカセンサ7によるRO処理水W2のシリカ濃度が1.0mg/Lと基準値を超えるものであったので、三方弁8を制御して循環ラインL4の水量(Q6)を10m/h(送水ラインL3の水量(Q7)を15m/h)として、連続的に処理を行った。
[Example 1]
In the above reference example, when the raw water having a silica concentration of 32 mg / L was treated, the silica concentration of the RO treated water W2 by the silica sensor 7 was 1.0 mg / L, which exceeded the reference value. And the amount of water (Q6) in the circulation line L4 was set to 10 m 3 / h (the amount of water (Q7) in the water supply line L3 was set to 15 m 3 / h), and the treatment was continuously performed.

この運転時における原水、RO入口(RO原水)及びRO出口(RO処理水)のシリカ濃度、RO装置4のシリカ除去率及び回収率、電気脱イオン装置6の送水量(Q7)及び循環量(Q6)、原水補給水量(処理量)、原水希釈率、30日間処理した後の電気脱イオン装置6(CDI)の電圧変化、CDI処理水のシリカ濃度、及びCDI処理水の比抵抗値を測定した結果をそれぞれ表1にあわせて示す。   During this operation, the raw water, the silica concentration at the RO inlet (RO raw water) and the RO outlet (RO treated water), the silica removal rate and recovery rate of the RO device 4, the water supply amount (Q7) and the circulation rate of the electrodeionization device 6 ( Q6), raw water replenishment water amount (treatment amount), raw water dilution rate, voltage change of electrodeionization device 6 (CDI) after 30 days treatment, silica concentration of CDI treated water, and specific resistance value of CDI treated water The results are shown in Table 1 respectively.

〔比較例1〕
実施例1において、電気脱イオン装置6の処理水W3をろ過水槽3に戻さない(Q6=0)ことにより、模擬的に従来の純水製造システムとして、同様にシリカ濃度32mg/Lの原水の処理を行った。
[Comparative Example 1]
In Example 1, the treated water W3 of the electrodeionization apparatus 6 is not returned to the filtered water tank 3 (Q6 = 0), so that the raw water having a silica concentration of 32 mg / L is similarly simulated as a conventional pure water production system. Processed.

この運転時における原水、RO入口(RO原水)及びRO出口(RO処理水)のシリカ濃度、RO装置4のシリカ除去率及び回収率、電気脱イオン装置6の送水量(Q7)及び循環量(Q6)、原水補給水量(処理量)、原水希釈率、30日間処理した後の電気脱イオン装置6(CDI)の電圧変化、CDI処理水のシリカ濃度、及びCDI処理水の比抵抗値を測定した結果をそれぞれ表1にあわせて示す。   During this operation, the raw water, the silica concentration at the RO inlet (RO raw water) and the RO outlet (RO treated water), the silica removal rate and recovery rate of the RO device 4, the water supply amount (Q7) and the circulation rate of the electrodeionization device 6 ( Q6), raw water replenishment water amount (treatment amount), raw water dilution rate, voltage change of electrodeionization device 6 (CDI) after 30 days treatment, silica concentration of CDI treated water, and specific resistance value of CDI treated water The results are shown in Table 1 respectively.

Figure 0004973853
Figure 0004973853

表1から明らかなように、実施例1の装置では、30日間運転後でも電気脱イオン装置6の電圧の変化がなく、RO処理水W2のシリカ濃度も0.7mg/Lと基準値以下であり、比抵抗値も大きく処理水の純度も高く、参考例である定常運転と同様の水質で運転が可能であった。これは、RO原水W1のシリカ濃度が低くなったためであると考えられる。これに対し、電気脱イオン装置6の処理水をろ過水槽3へ戻さなかった比較例1では、RO処理水W2のシリカ濃度が1.0mg/Lと基準値を超えるものであり、30日運転後の電気脱イオン装置6の電圧上昇、シリカ濃度の上昇、及び比抵抗値の低下が認められた。   As is apparent from Table 1, in the apparatus of Example 1, the voltage of the electrodeionization apparatus 6 did not change even after 30 days of operation, and the silica concentration of the RO-treated water W2 was 0.7 mg / L, which is below the reference value. In addition, the specific resistance value was large and the purity of the treated water was high, and it was possible to operate with the same water quality as in the steady operation as a reference example. This is considered to be because the silica concentration of the RO raw water W1 is low. On the other hand, in the comparative example 1 which did not return the treated water of the electrodeionization apparatus 6 to the filtration water tank 3, the silica concentration of RO treated water W2 exceeds 1.0 mg / L and a reference value, and it operates for 30 days. A voltage increase, a silica concentration increase, and a specific resistance value of the subsequent electrodeionization apparatus 6 were observed.

本発明の一実施形態による純水製造システムを含む超純水製造装置を示すフロー図である。It is a flowchart which shows the ultrapure water manufacturing apparatus containing the pure water manufacturing system by one Embodiment of this invention. 従来の純水製造システムを含む超純水製造装置を示すフロー図である。It is a flowchart which shows the ultrapure water manufacturing apparatus containing the conventional pure water manufacturing system.

符号の説明Explanation of symbols

3…ろ過水槽(原水槽)
4…RO装置(逆浸透膜モジュール)
6…電気脱イオン装置
7…シリカセンサ(水質測定器)
8…三方弁(分流機構)
L2…処理水ライン
L3…送水ライン
L4…循環ライン
W1…RO原水
W2…RO処理水(電気脱イオン装置原水)
W…純水
3 ... Filtration water tank (raw water tank)
4. RO device (reverse osmosis membrane module)
6 ... Electrodeionization device 7 ... Silica sensor (water quality measuring device)
8 ... Three-way valve (diversion mechanism)
L2 ... treated water line L3 ... water supply line L4 ... circulation line W1 ... RO raw water W2 ... RO treated water (electric deionizer raw water)
W ... Pure water

Claims (3)

逆浸透膜モジュールからの処理水ラインに電気脱イオン装置を設けた純水製造システムであって、
前記逆浸透膜モジュールの処理水ラインの前記電気脱イオン装置より上流側にシリカ、カルシウム又は炭酸濃度を測定する水質測定器を設けるとともに、前記逆浸透膜モジュールの処理水ライン又は電気脱イオン装置の処理水ラインに流量調整可能な分流機構を設け、この分流機構に逆浸透膜モジュールの原水槽への循環ラインを接続するとともに、前記分流機構の制御機構を設け
前記制御機構は、前記水質測定器の計測値が設定値を超えていたら、前記逆浸透膜モジュールの処理水の一部又は電気脱イオン装置の処理水の一部を逆浸透膜モジュールの前記原水槽へ前記循環ラインから所定流量を戻し、もって前記原水槽へ供給される原水を前記循環ラインから戻される処理水によって希釈し、前記計測値が前記設定値を超えないように前記分流機構を制御することを特徴とする純水製造システム。
A pure water production system provided with an electrodeionization device in a treated water line from a reverse osmosis membrane module
A water quality measuring device for measuring silica, calcium or carbonic acid concentration is provided upstream of the electrodeionization device in the treated water line of the reverse osmosis membrane module, and the treated water line or electrodeionization device of the reverse osmosis membrane module A diversion mechanism capable of adjusting the flow rate is provided in the treated water line, and a circulation line to the raw water tank of the reverse osmosis membrane module is connected to this diversion mechanism, and a control mechanism for the diversion mechanism is provided ,
When the measured value of the water quality measuring instrument exceeds a set value, the control mechanism converts a part of the treated water of the reverse osmosis membrane module or a part of the treated water of the electrodeionization device to the original of the reverse osmosis membrane module. A predetermined flow rate is returned from the circulation line to the water tank, and the raw water supplied to the raw water tank is diluted with treated water returned from the circulation line, and the diversion mechanism is controlled so that the measured value does not exceed the set value. A pure water production system characterized by:
前記原水槽へ供給される原水を前記循環ラインから戻される処理水によって希釈する際の希釈率が0.5以上であることを特徴とする請求項1に記載の純水製造システム。2. The pure water production system according to claim 1, wherein a dilution rate when the raw water supplied to the raw water tank is diluted with treated water returned from the circulation line is 0.5 or more. 前記分流機構が、三方弁であることを特徴とする請求項1又は2に記載の純水製造システム。 Water purification system according to claim 1 or 2 wherein the diverter mechanism, characterized in that it is a three-way valve.
JP2007073145A 2007-03-20 2007-03-20 Pure water production system Active JP4973853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073145A JP4973853B2 (en) 2007-03-20 2007-03-20 Pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073145A JP4973853B2 (en) 2007-03-20 2007-03-20 Pure water production system

Publications (2)

Publication Number Publication Date
JP2008229506A JP2008229506A (en) 2008-10-02
JP4973853B2 true JP4973853B2 (en) 2012-07-11

Family

ID=39902938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073145A Active JP4973853B2 (en) 2007-03-20 2007-03-20 Pure water production system

Country Status (1)

Country Link
JP (1) JP4973853B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626266A (en) * 2012-08-27 2014-03-12 侯梦斌 Electro-adsorption water treatment device and technology with activated carbon fiber cloth as electrode

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978593B2 (en) * 2008-09-01 2012-07-18 三浦工業株式会社 Pure water production system
KR100953085B1 (en) * 2009-09-09 2010-04-19 제이에이건설주식회사 Sewage water and waste water treating system using capacitive deionization
JP2011255347A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator
KR101155931B1 (en) 2011-06-21 2012-06-20 제이에이건설주식회사 Waste water treating system using capacitive deionization
JP5834687B2 (en) * 2011-09-22 2015-12-24 三浦工業株式会社 Water treatment system
JP5853621B2 (en) * 2011-11-15 2016-02-09 三浦工業株式会社 Water treatment system
JP6040789B2 (en) * 2013-01-31 2016-12-07 栗田工業株式会社 Pure water production method and apparatus
CN104058537B (en) * 2014-04-30 2015-08-05 浙江工业大学 A kind of method processing Cephalexin Monohydrate Micro/Compacted enzymatic clarification mother liquor waste water
JP6916702B2 (en) * 2017-09-25 2021-08-11 オルガノ株式会社 Measurement method and measurement system for conductivity of decationized water
WO2023234415A1 (en) * 2022-06-03 2023-12-07 東レ株式会社 Composite semipermeable membrane and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558804A (en) * 1978-07-03 1980-01-22 Japan Organo Co Ltd Treatment of water by reverse osmotic membrane apparatus
JPS5564804A (en) * 1978-11-09 1980-05-15 Toray Ind Inc Liquid separating method
JP3273718B2 (en) * 1995-08-22 2002-04-15 オルガノ株式会社 Method for treating water to be treated by electrodeionization and apparatus used for the method
JP2000051865A (en) * 1998-08-06 2000-02-22 Kurita Water Ind Ltd Electric regeneration type desalting apparatus
JP3830098B2 (en) * 2002-08-22 2006-10-04 オルガノ株式会社 Method and apparatus for producing purified water for pharmaceuticals
JP2008221195A (en) * 2007-03-16 2008-09-25 Miura Co Ltd Operation method of pure water production system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626266A (en) * 2012-08-27 2014-03-12 侯梦斌 Electro-adsorption water treatment device and technology with activated carbon fiber cloth as electrode
CN103626266B (en) * 2012-08-27 2015-12-02 侯梦斌 A kind of take active carbon fiber fabrics as electro-adsorption water treating equipment and the technique of electrode

Also Published As

Publication number Publication date
JP2008229506A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4973853B2 (en) Pure water production system
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
JP2016107249A (en) Ultrapure water production system and method
JP5768961B2 (en) Water treatment equipment
JP2014188439A (en) Reverse osmosis membrane separation apparatus
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP5280038B2 (en) Ultrapure water production equipment
JP5320665B2 (en) Ultrapure water production apparatus and method
JP4432583B2 (en) Ultrapure water production equipment
TWI739540B (en) Water treatment system, ultrapure water production system, and water treatment method
JP5212585B2 (en) Pure water production system
JP2018038943A (en) Washing machine of non-regeneration type ion exchange resin and ultrapure water production system
JP5211414B2 (en) Ultrapure water production equipment
JP5382282B2 (en) Pure water production equipment
KR20230081716A (en) Pure water production system and pure water production method
JP4848641B2 (en) Pure water production method and apparatus
JP7147291B2 (en) Pure water production device, pure water production method
JP7103467B1 (en) Control method of electric deionization system and electric deionization system
JP2020000983A (en) Pure water production apparatus and method of producing pure water
JP2019107592A (en) Method for producing permeation water, water treatment device and method for operating the water treatment device
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPH10309566A (en) Ultrapure water production device
WO2023238731A1 (en) Water treatment device
JP7383141B2 (en) TOC removal device and TOC removal method
WO2022014221A1 (en) Apparatus for producing ultrapure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4973853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3