JP6040789B2 - Pure water production method and apparatus - Google Patents

Pure water production method and apparatus Download PDF

Info

Publication number
JP6040789B2
JP6040789B2 JP2013017164A JP2013017164A JP6040789B2 JP 6040789 B2 JP6040789 B2 JP 6040789B2 JP 2013017164 A JP2013017164 A JP 2013017164A JP 2013017164 A JP2013017164 A JP 2013017164A JP 6040789 B2 JP6040789 B2 JP 6040789B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
anion exchange
silica concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013017164A
Other languages
Japanese (ja)
Other versions
JP2014147871A (en
Inventor
佐藤 伸
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013017164A priority Critical patent/JP6040789B2/en
Publication of JP2014147871A publication Critical patent/JP2014147871A/en
Application granted granted Critical
Publication of JP6040789B2 publication Critical patent/JP6040789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、電気式脱イオン装置を用いた純水製造方法及び純水製造装置に係り、特に電気式脱イオン装置へのシリカ蓄積を防止する純水製造方法及び装置に関する。   The present invention relates to a pure water production method and a pure water production device using an electric deionization apparatus, and more particularly to a pure water production method and apparatus for preventing silica accumulation in an electric deionization apparatus.

原水を電気式脱イオン装置によって脱イオン処理して純水を製造する方法及び装置は、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において広く使用されている(例えば特許文献1〜5)。   A method and apparatus for producing pure water by deionizing raw water with an electric deionization apparatus are used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. Etc. (for example, Patent Documents 1 to 5).

電気式脱イオン装置により脱イオン処理する場合、シリカ、ホウ素等のイオン解離度の低いイオンの除去性能が低い。そこで、特許文献1では、原水を多段に設けた逆浸透膜装置(RO装置)によって処理することにより、電気式脱イオン装置への給水中のシリカ濃度を500ppb以下とすることが記載されている。特許文献2には、電気式脱イオン装置の陰極水を濃縮室の流入側に戻すことによりシリカの除去率を向上させることが記載されている。なお、特許文献2の実施例1では、原水のシリカ濃度は490μg/Lである。   In the case of deionizing with an electric deionizer, the removal performance of ions having a low degree of ion dissociation such as silica and boron is low. Therefore, Patent Document 1 describes that the silica concentration in the feed water to the electric deionization apparatus is 500 ppb or less by treating the raw water with a reverse osmosis membrane apparatus (RO apparatus) provided in multiple stages. . Patent Document 2 describes that the removal rate of silica is improved by returning the cathode water of the electric deionization device to the inflow side of the concentration chamber. In Example 1 of Patent Document 2, the silica concentration of raw water is 490 μg / L.

特許文献3には、原水を逆浸透膜で処理し、次いでアニオン交換樹脂でアニオン交換処理した後、電気式脱イオン装置に通水することにより、電気式脱イオン装置におけるスケール発生を防止することが記載されている。特許文献3の0031段落には、アニオン交換樹脂としてOH型アニオン交換樹脂を用いるとシリカが除去されることが記載されている。   Patent Document 3 discloses that raw water is treated with a reverse osmosis membrane, then anion exchange treatment with an anion exchange resin, and then passed through an electrical deionization device to prevent scale generation in the electrical deionization device. Is described. In paragraph 0031 of Patent Document 3, it is described that silica is removed when an OH type anion exchange resin is used as an anion exchange resin.

特許文献4には、原水を除濁及び脱気処理した後、アニオン交換樹脂塔に通水し、次いでRO処理した後、電気式脱イオン装置に通水することが記載されている。   Patent Document 4 describes that raw water is deturbed and degassed, then passed through an anion exchange resin tower, then RO-treated, and then passed through an electric deionizer.

特許文献5には、電気式脱イオン装置の濃縮室に、原水よりシリカ及びホウ素濃度の低い水を脱塩室における被処理水流水方向と反対方向に通水することにより、シリカ及びホウ素を高度に除去することが記載されている。   In Patent Document 5, water having a silica and boron concentration lower than that of raw water is passed through a concentration chamber of an electric deionization apparatus in a direction opposite to the direction of running water in the demineralization chamber, so that silica and boron are advanced. It is described to be removed.

特開2000−61271JP 2000-61271 A 特開平11−165176JP-A-11-165176 特開2001−219161JP2001-219161 特開平11−262771JP-A-11-262771 特開2002−205069JP2002-205069

電気式脱イオン装置では、電流密度が一定となるように印加電圧を制御して運転が行われる。原水中のシリカ濃度が高いと、シリカが電気式脱イオン装置内のイオン交換樹脂に蓄積し、電気抵抗を増大させ、運転電圧が高くなる。シリカ蓄積量が更に多くなると、電流密度が低下し、処理水質が悪化してしまうこともある。   The electric deionizer is operated by controlling the applied voltage so that the current density is constant. When the silica concentration in the raw water is high, silica accumulates in the ion exchange resin in the electric deionizer, increasing the electrical resistance and increasing the operating voltage. If the amount of accumulated silica is further increased, the current density may be reduced, and the quality of the treated water may be deteriorated.

特許文献1では、原水を2段又は3段のRO装置によって処理することにより電気式脱イオン装置給水中のシリカ濃度を低下させているが、このようにRO装置を多段に設けることはコスト高であると共に、原水のシリカ濃度が高く且つpHが低いときには、RO装置を多段に設置してもシリカ濃度を十分に低くすることができないことがある。   In Patent Document 1, the raw water is treated with a two-stage or three-stage RO device to reduce the silica concentration in the water supply of the electric deionization device. However, providing the RO device in multiple stages in this way is costly. In addition, when the silica concentration of the raw water is high and the pH is low, the silica concentration may not be sufficiently lowered even if the RO apparatus is installed in multiple stages.

この場合、RO給水のpHを高くすると(例えば9〜10以上)、シリカのROでの除去率が上がるため用いられることがある。ただし、カルシウムスケールができやすくなるため、カルシウム濃度等に留意すると共に、十分な前処理(軟化処理等)を検討する必要がある。   In this case, when the pH of the RO water supply is increased (for example, 9 to 10 or more), the removal rate of silica with RO may be increased, which may be used. However, since calcium scale can be easily formed, it is necessary to pay attention to the calcium concentration and to consider sufficient pretreatment (softening treatment etc.).

特許文献3では、RO処理水を常にアニオン交換樹脂で処理するため、アニオン交換樹脂の再生又は交換頻度が多くなり、この結果、処理コストが高くなる。   In Patent Document 3, since the RO-treated water is always treated with an anion exchange resin, the frequency of regeneration or exchange of the anion exchange resin is increased, and as a result, the treatment cost is increased.

特許文献4では、アニオン交換樹脂塔をRO装置の前段に配置しているため、アニオン交換樹脂塔へのイオン負荷が大きく、アニオン交換樹脂の再生又は交換頻度が多くなり、この結果、処理コストが高くなる。   In Patent Document 4, since the anion exchange resin tower is arranged at the front stage of the RO apparatus, the ion load on the anion exchange resin tower is large, and the frequency of regeneration or exchange of the anion exchange resin is increased. As a result, the processing cost is reduced. Get higher.

本発明は上記従来の問題点を解消し、湖沼水などシリカ濃度が一時的に高くなる場合に、電気式脱イオン装置へのシリカの蓄積を低コストにて防止することができる純水製造方法及び装置を提供することを目的とする。   The present invention eliminates the above-mentioned conventional problems, and when silica concentration such as lake water becomes temporarily high, a method for producing pure water that can prevent silica from accumulating in an electric deionizer at low cost And an apparatus.

本発明の純水製造方法は、被処理水を逆浸透膜で処理した後、電気式脱イオン装置で処理する純水製造方法において、逆浸透膜流入水中及び/又は逆浸透膜処理水中のシリカ濃度が基準値よりも高い場合には、逆浸透膜水をアニオン交換手段によってアニオン交換処理した後、前記電気式脱イオン装置で処理し、逆浸透膜流入水中及び/又は逆浸透膜処理水中のシリカ濃度が基準値よりも低い場合には逆浸透膜処理水を該アニオン交換手段に通水することなく前記電気式脱イオン装置で処理することを特徴とするものである。   The pure water production method of the present invention is a pure water production method in which water to be treated is treated with a reverse osmosis membrane and then treated with an electric deionization apparatus. In the pure water production method, silica in reverse osmosis membrane inflow water and / or reverse osmosis membrane treatment water is used. If the concentration is higher than the reference value, the reverse osmosis membrane water is subjected to anion exchange treatment by an anion exchange means, and then treated with the electric deionization device, and the reverse osmosis membrane inflow water and / or reverse osmosis membrane treatment water When the silica concentration is lower than the reference value, the reverse osmosis membrane treated water is treated by the electric deionizer without passing through the anion exchange means.

本発明の純水製造装置は、原水を逆浸透膜装置で処理した後、電気式脱イオン装置で処理する純水製造装置において、原水中及び/又は逆浸透膜処理水中のシリカ濃度を測定するシリカ濃度測定手段を有し、該シリカ濃度測定手段で測定されたシリカ濃度が基準値よりも高い場合には逆浸透膜処理水をアニオン交換手段によってアニオン交換処理した後、前記電気式脱イオン装置に供給し、該シリカ濃度測定手段で測定されたシリカ濃度が基準値よりも低い場合には逆浸透膜処理水を該アニオン交換手段に通水することなく前記電気式脱イオン装置に供給するように構成されていることを特徴とするものである。   The pure water production apparatus of the present invention measures the silica concentration in raw water and / or reverse osmosis membrane treated water in a pure water production apparatus that treats raw water with a reverse osmosis membrane device and then treats it with an electrical deionization device. An electric deionization device comprising a silica concentration measuring means, and when the silica concentration measured by the silica concentration measuring means is higher than a reference value, the reverse osmosis membrane treated water is subjected to anion exchange treatment by an anion exchange means; When the silica concentration measured by the silica concentration measuring means is lower than the reference value, the reverse osmosis membrane treated water is supplied to the electric deionizer without passing through the anion exchange means. It is comprised by these.

この純水製造装置は、前記逆浸透膜処理水を該アニオン交換手段に供給する流路選択と、該逆浸透膜処理水を該アニオン交換手段を迂回させて前記電気式脱イオン装置に供給する流路選択とを切り替える流路切替手段を備えることが好ましい。   This pure water production apparatus selects a flow path for supplying the reverse osmosis membrane treated water to the anion exchange means, and supplies the reverse osmosis membrane treated water to the electric deionizer by bypassing the anion exchange means. It is preferable to provide a flow path switching means for switching between flow path selection.

本発明の純水製造方法及び装置では、逆浸透膜への流入水のシリカ濃度が基準値よりも高いときには、逆浸透膜透過水をアニオン交換手段に通水してアニオン除去処理するので、電気式脱イオン装置の流入水中のシリカ濃度が低くなり、電気式脱イオン装置におけるシリカ蓄積が防止される。   In the pure water production method and apparatus of the present invention, when the silica concentration of the inflow water to the reverse osmosis membrane is higher than the reference value, the reverse osmosis membrane permeated water is passed through the anion exchange means for anion removal treatment. The silica concentration in the inflow water of the type deionizer is lowered, and silica accumulation in the electric deionizer is prevented.

また、逆浸透膜への流入水中のシリカ濃度が基準値よりも低いときには、逆浸透膜透過水をアニオン交換樹脂手段に通水せずに電気式脱イオン装置で処理するので、アニオン交換樹脂の再生又は交換頻度が小さくなり、アニオン交換樹脂塔のメンテナンスコストが低くなる。   Further, when the silica concentration in the inflow water to the reverse osmosis membrane is lower than the reference value, the reverse osmosis membrane permeated water is treated with an electric deionizer without passing through the anion exchange resin means. The frequency of regeneration or exchange is reduced, and the maintenance cost of the anion exchange resin tower is reduced.

このように、本発明によると、電気式脱イオン装置内部へのシリカ蓄積を防止し、電圧上昇を防ぎ、これによる性能低下(処理水の水質悪化)を防ぐことができる。また、湖沼水等での季節的原水水質悪化等に対し、簡易で経済的に対処することができる。   Thus, according to the present invention, silica accumulation in the electric deionization apparatus can be prevented, voltage rise can be prevented, and performance degradation (deterioration of treated water quality) due to this can be prevented. In addition, it is possible to easily and economically cope with seasonal raw water quality deterioration due to lake water.

本発明では、逆浸透膜処理水を該アニオン交換手段に供給する流路選択と、該逆浸透膜処理水を該アニオン交換手段を迂回させて前記電気式脱イオン装置に供給する流路選択とを切り替える流路切替手段を採用することにより、アニオン交換手段への通水と迂回(バイパス)との切り替えを容易に行うことができる。   In the present invention, the flow path selection for supplying the reverse osmosis membrane treated water to the anion exchange means, and the flow path selection for supplying the reverse osmosis membrane treated water to the electric deionization device bypassing the anion exchange means, By adopting the flow path switching means for switching between, it is possible to easily switch between water flow to the anion exchange means and bypass (bypass).

実施の形態に係る純水製造装置のブロック図である。It is a block diagram of the pure water manufacturing apparatus which concerns on embodiment. 実施の形態に係る純水製造装置のブロック図である。It is a block diagram of the pure water manufacturing apparatus which concerns on embodiment. 給水シリカ濃度と水温の関係を示すグラフである。It is a graph which shows the relationship between a water supply silica density | concentration and water temperature. 給水シリカ濃度と脱塩セル流量の関係を示すグラフである。It is a graph which shows the relationship between a feed water silica density | concentration and a desalination cell flow volume.

以下、図面を参照して実施の形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は本発明の第1の実施の形態に係る純水製造装置を示すものであり、原水は前処理装置1で処理された後、配管2を介して逆浸透膜装置(RO装置)3へ供給される。前処理装置1としては、凝集沈殿、砂濾過、活性炭濾過、加圧浮上、膜式前処理などの1又は2以上の処理が挙げられる。原水の水質によっては、この前処理は省略されてもよい。なお、本発明は、湖沼水などシリカ濃度が季節等に応じて変動する原水を処理するのに好適である。湖沼水のシリカ濃度の範囲は20〜100ppm(μg/L)程度である。   FIG. 1 shows a pure water production apparatus according to a first embodiment of the present invention. Raw water is treated by a pretreatment apparatus 1 and then reverse osmosis membrane apparatus (RO apparatus) 3 through a pipe 2. Supplied to. Examples of the pretreatment device 1 include one or more treatments such as coagulation sedimentation, sand filtration, activated carbon filtration, pressurized flotation, and membrane pretreatment. Depending on the quality of the raw water, this pretreatment may be omitted. In addition, this invention is suitable for processing raw | natural water whose silica density | concentration fluctuates according to a season etc., such as lake water. The range of silica concentration in lake water is about 20 to 100 ppm (μg / L).

RO装置3の濃縮水の少なくとも一部は前処理装置1に返送されるのが好ましい。RO装置3の透過水は、配管4を介してアニオン交換樹脂塔5に通水され、アニオン交換樹脂によってアニオン除去処理が行われる。アニオン交換樹脂塔5の流出水は、配管6を介して電気式脱イオン装置7に通水され、処理水(生産水)が純水として配管8を介して取り出される。なお、この生産水をさらに処理して高水質の純水としてもよい。   It is preferable that at least a part of the concentrated water of the RO device 3 is returned to the pretreatment device 1. The permeated water of the RO device 3 is passed through the pipe 4 to the anion exchange resin tower 5 and anion removal treatment is performed by the anion exchange resin. The effluent water from the anion exchange resin tower 5 is passed through the pipe 6 to the electric deionizer 7 and treated water (product water) is taken out as pure water through the pipe 8. The produced water may be further processed to obtain high quality pure water.

電気式脱イオン装置としては、前記特許文献5に記載のように、陽極を有する陽極室と、陰極を有する陰極室と、これらの陽極室と陰極室との間に複数のアニオン交換膜及びカチオン交換膜を交互に配列することにより交互に形成された濃縮室及び脱塩室とを備え、該脱塩室にイオン交換体が充填され、該濃縮室にイオン交換体、活性炭又は電気導電体が充填されている電気式脱イオン装置を用いることができる。この場合、特許文献5のように、濃縮室に通水する濃縮水として、原水よりシリカ濃度の低い水(例えば生産水)を、脱塩室内における被処理水の流水方向と反対方向に通水するのが好適であるが、これに限定されない。   As described in Patent Document 5, the electric deionization apparatus includes an anode chamber having an anode, a cathode chamber having a cathode, and a plurality of anion exchange membranes and cations between the anode chamber and the cathode chamber. Concentration chambers and desalting chambers alternately formed by alternately arranging exchange membranes are provided, the desalting chambers are filled with ion exchangers, and the ion exchangers, activated carbon or electrical conductors are filled in the concentration chambers. A filled electrical deionizer can be used. In this case, as in Patent Document 5, water having a silica concentration lower than that of raw water (for example, produced water) is passed in the direction opposite to the flow direction of the water to be treated in the desalination chamber as the concentrated water passing through the concentration chamber. However, the present invention is not limited to this.

この実施の形態では、配管4に三方弁9が設けられ、該三方弁9にバイパス配管10の一端側が接続されている。このバイパス配管10は、前記アニオン交換樹脂塔5を迂回するように設置されており、該バイパス配管10の他端側が配管6に接続されている。三方弁9は、RO装置3の透過水をアニオン交換樹脂塔5へ流す流路選択と、バイパス配管10へ流す流路選択とを択一的に切り替えるためのものである。   In this embodiment, a three-way valve 9 is provided in the pipe 4, and one end side of the bypass pipe 10 is connected to the three-way valve 9. The bypass pipe 10 is installed so as to bypass the anion exchange resin tower 5, and the other end side of the bypass pipe 10 is connected to the pipe 6. The three-way valve 9 is for selectively switching between the flow path selection for flowing the permeated water of the RO device 3 to the anion exchange resin tower 5 and the flow path selection for flowing to the bypass pipe 10.

前記配管2にはシリカ濃度を測定するシリカ濃度計11が設けられており、このシリカ濃度計11の検出信号が制御器12に入力され、該制御器12によって三方弁9が切り替えられる。この実施の形態では、シリカ濃度計11によって測定されるシリカ濃度が基準値(第1基準値)よりも高いときには、RO装置3の透過水をアニオン交換樹脂塔5に通水させ、シリカ濃度計11によって測定されるシリカ濃度が基準値よりも低いときにはRO装置3の透過水をバイパス配管10に流し、アニオン交換樹脂塔5を迂回させるように三方弁9が制御器12によって切り替えられる。   The pipe 2 is provided with a silica concentration meter 11 for measuring the silica concentration. A detection signal of the silica concentration meter 11 is input to the controller 12, and the three-way valve 9 is switched by the controller 12. In this embodiment, when the silica concentration measured by the silica densitometer 11 is higher than the reference value (first reference value), the permeated water of the RO device 3 is passed through the anion exchange resin tower 5 and the silica densitometer. When the silica concentration measured by 11 is lower than the reference value, the three-way valve 9 is switched by the controller 12 so that the permeated water of the RO device 3 flows through the bypass pipe 10 and bypasses the anion exchange resin tower 5.

この場合の上記基準値(第1基準値)としては、20000〜100000ppb(20〜100ppm)特に30000〜50000ppb(30〜50ppm)の間から選択された値が好ましい。前処理装置1を設置しない場合も、基準値は上記範囲から選択された値であることが好ましい。   In this case, the reference value (first reference value) is preferably a value selected from 20,000 to 100,000 ppb (20 to 100 ppm), particularly 30,000 to 50,000 ppb (30 to 50 ppm). Even when the pretreatment device 1 is not installed, the reference value is preferably a value selected from the above range.

このように、RO装置3の流入水のシリカ濃度が基準値よりも高いときには、RO装置3の透過水をアニオン交換樹脂塔5に通水してアニオン除去処理するので、電気式脱イオン装置7の流入水中のシリカ濃度が低くなり、電気式脱イオン装置7におけるシリカ蓄積が防止される。   Thus, when the silica concentration of the inflow water of the RO device 3 is higher than the reference value, the permeated water of the RO device 3 is passed through the anion exchange resin tower 5 to perform anion removal treatment. The silica concentration in the inflowing water is reduced, and silica accumulation in the electric deionizer 7 is prevented.

また、RO装置3の流入水中のシリカ濃度が基準値よりも低いときには、RO装置3の透過水をバイパス配管10に流し、アニオン交換樹脂塔5を迂回させるので、アニオン交換樹脂の再生又は交換頻度が小さくなり、アニオン交換樹脂塔5のメンテナンスコストが低くなる。   Further, when the silica concentration in the inflow water of the RO device 3 is lower than the reference value, the permeated water of the RO device 3 flows into the bypass pipe 10 and bypasses the anion exchange resin tower 5, so that the anion exchange resin is regenerated or exchanged. And the maintenance cost of the anion exchange resin tower 5 is reduced.

図1では、シリカ濃度計11を配管2に設置しているが、配管4に設置し、RO装置3からの透過水中のシリカ濃度を測定し、このシリカ濃度が基準値(第2基準値)よりも高いときにはアニオン交換樹脂塔5に通水し、第2基準値よりも低いときにはバイパス配管10に流してアニオン交換樹脂塔5を迂回させてもよい。この第2基準値としては、500〜800ppb特に600〜800ppbの間から選択された値であることが好ましい。なお、電気式脱イオン装置への給水中のシリカ濃度の上限値は水温と流速によって変動する。水温の上昇と給水流量の減少で基準値の上限が上昇するが、25℃、170L/hのときには700ppbをひとつの基準とすることができる。また、20℃のときは600ppb、140L/hのときには800ppbを基準とすることができる。   In FIG. 1, the silica concentration meter 11 is installed in the pipe 2, but the silica concentration meter 11 is installed in the pipe 4 to measure the silica concentration in the permeated water from the RO device 3, and this silica concentration is the reference value (second reference value). If it is higher, the water may be passed through the anion exchange resin tower 5, and if it is lower than the second reference value, the anion exchange resin tower 5 may be bypassed by flowing into the bypass pipe 10. The second reference value is preferably a value selected from 500 to 800 ppb, particularly from 600 to 800 ppb. In addition, the upper limit of the silica concentration in the water supply to the electric deionizer varies depending on the water temperature and the flow rate. Although the upper limit of the reference value increases with an increase in the water temperature and a decrease in the feed water flow rate, 700 ppb can be used as one reference at 25 ° C. and 170 L / h. Further, it can be based on 600 ppb at 20 ° C. and 800 ppb at 140 L / h.

図2は本発明の第2の実施の形態に係る純水製造装置を示すものである。この実施の形態では、配管4の下流端及び配管6の上流端にそれぞれ継手15,16を設けており、アニオン交換樹脂塔5を撤去可能としている。図2(a)では、アニオン交換樹脂塔5が設置されており、RO装置3の透過水がアニオン交換樹脂塔5を通過してから電気式脱イオン装置7に供給される。図2(b)では、アニオン交換樹脂塔5が撤去され、継手4,6が配管17によって直結されている。従って、RO装置3の透過水はアニオン交換処理されることなくそのまま電気式脱イオン装置7に供給される。   FIG. 2 shows a pure water production apparatus according to the second embodiment of the present invention. In this embodiment, joints 15 and 16 are provided at the downstream end of the pipe 4 and the upstream end of the pipe 6, respectively, so that the anion exchange resin tower 5 can be removed. In FIG. 2A, an anion exchange resin tower 5 is installed, and the permeated water of the RO device 3 passes through the anion exchange resin tower 5 before being supplied to the electric deionization device 7. In FIG. 2 (b), the anion exchange resin tower 5 is removed, and the joints 4 and 6 are directly connected by a pipe 17. Therefore, the permeated water of the RO device 3 is supplied to the electric deionization device 7 as it is without being subjected to anion exchange treatment.

RO装置3への流入水中のシリカ濃度が前記第1基準値よりも高いか又はRO装置3の透過水中のシリカ濃度が前記第2基準値よりも高いときには図2(a)のようにアニオン交換樹脂塔5を設置し、シリカ濃度が該基準値よりも低い場合には図2(b)のようにアニオン交換樹脂塔を撤去して配管4,6を配管17によって直結する。湖沼水の場合、1年のうち1週間〜2ヶ月程度シリカ濃度が高くなる時期があるので、このような時期に図2(a)の構成とし、その他の時期には図2(b)の構成とするのが好ましい。撤去したアニオン交換樹脂塔5は工場に持ち返り再生処理をして再び利用したり、あるいは、より純度の低いグレードの純水設備に用いるイオン交換樹脂として使用することができる。   When the silica concentration in the inflow water to the RO device 3 is higher than the first reference value or the silica concentration in the permeated water of the RO device 3 is higher than the second reference value, anion exchange is performed as shown in FIG. When the resin tower 5 is installed and the silica concentration is lower than the reference value, the anion exchange resin tower is removed and the pipes 4 and 6 are directly connected by the pipe 17 as shown in FIG. In the case of lake water, there is a period when the silica concentration becomes high for about one week to two months in one year. Therefore, the structure shown in FIG. 2 (a) is used at such time, and the structure shown in FIG. 2 (b) is used at other times. It is preferable to do this. The removed anion exchange resin tower 5 can be returned to the factory for recycling and reused, or it can be used as an ion exchange resin for use in pure water equipment of a lower purity grade.

図2の場合も、配管2又は4にシリカ濃度計を設け、図2(a),(b)の構成の切り替えを行ってもよいが、RO装置3の流入水又は透過水の水質を定期的に分析し、この結果に応じて図2(a),(b)の構成の切り替えを行ってもよい。   In the case of FIG. 2 as well, a silica densitometer may be provided in the pipe 2 or 4, and the configuration shown in FIGS. 2A and 2B may be switched. Analysis may be performed, and the configuration shown in FIGS. 2A and 2B may be switched according to the result.

本発明では、シリカ濃度以外の水質指標値(例えば電気伝導度)を検出するセンサを配管2又は4に設けておき、このセンサ検出値が基準値(例えば300μS)よりも水質の良い側である(例えば電気伝導度が基準値よりも低い)ときにはアニオン交換樹脂塔5に通水しない構成とし、センサ検出値が基準値よりも水質の悪い側である(例えば電気伝導度が基準値よりも高い)ときにはとりあえずアニオン交換樹脂塔5に通水する構成とし、且つシリカ濃度を分析し、実際のシリカ濃度が前記第1又は第2基準値よりも高いときにはその状態(アニオン交換樹脂塔5への通水)に保ち、実際のシリカ濃度が前記第1又は第2基準値よりも低いときにはアニオン交換樹脂塔5に通水しない構成に戻すようにしてもよい。   In the present invention, a sensor for detecting a water quality index value (for example, electrical conductivity) other than the silica concentration is provided in the pipe 2 or 4, and this sensor detected value is on the better water quality side than the reference value (for example, 300 μS). When the electrical conductivity is lower than the reference value (for example, when the electric conductivity is lower than the reference value), the sensor detection value is on the side of poorer water quality than the reference value (for example, the electric conductivity is higher than the reference value). ) In some cases, water is passed through the anion exchange resin tower 5 for the time being, and the silica concentration is analyzed. When the actual silica concentration is higher than the first or second reference value, the state (passage through the anion exchange resin tower 5) is determined. Water), and when the actual silica concentration is lower than the first or second reference value, it may be returned to a configuration in which water does not pass through the anion exchange resin tower 5.

[実施例1]
湖沼水を原水とし、この原水を前処理及びRO処理した後、電気式脱イオン装置に通水する運転を4月から3月まで12ヶ月間運転した。なお、9月の一ヶ月間の期間だけ、図2(a)のようにアニオン交換樹脂塔を電気式脱イオン装置の前段に設置した。その他の期間は図2(b)のフローとした。
[Example 1]
Lake water was used as raw water, and after this raw water was pretreated and RO treated, the operation of passing water through an electric deionizer was operated for 12 months from April to March. In addition, the anion exchange resin tower was installed in the front stage of the electric deionizer as shown in FIG. The other period is the flow of FIG.

前処理としては、凝集(凝集剤 ポリ塩化アルミニウム)及び濾過(濾過装置 栗田工業株式会社製MF膜濾過装置)後、活性炭塔通水処理を行った。電気式脱イオン装置としては、栗田工業株式会社製KCDI−UPz(登録商標)(定格処理水量15m/h)を用い、電流値は10Aとした。電気式脱イオン装置への通水量は15m/hとした。 As pretreatment, activated carbon tower water passing treatment was performed after aggregation (flocculating agent polyaluminum chloride) and filtration (filtration device MF membrane filtration device manufactured by Kurita Kogyo Co., Ltd.). As an electric deionization apparatus, KCDI-UPz (registered trademark) manufactured by Kurita Kogyo Co., Ltd. (rated treated water volume 15 m 3 / h) was used, and the current value was set to 10A. The amount of water flow to the electric deionizer was 15 m 3 / h.

原水及びRO処理水のシリカ濃度並びに電気式脱イオン装置の電圧と処理水水質の経時変化を表1に示す。   Table 1 shows the silica concentration of the raw water and the RO treated water, the voltage of the electric deionizer, and the changes in the quality of the treated water over time.

[比較例1]
9月でもアニオン交換樹脂塔を設置しなかったこと以外は実施例1と同一条件にて4月から3月まで12ヶ月間処理を行った。結果を表1に示す。
[Comparative Example 1]
The treatment was performed for 12 months from April to March under the same conditions as in Example 1 except that the anion exchange resin tower was not installed in September. The results are shown in Table 1.

Figure 0006040789
Figure 0006040789

表1から明らかな通り、実施例1では、電気式脱イオン装置の電圧値は全期間を通じて300〜310Vで安定し、処理水質も18.2MΩ・cm以上で安定した。   As is apparent from Table 1, in Example 1, the voltage value of the electric deionizer was stable at 300 to 310 V throughout the entire period, and the quality of the treated water was stable at 18.2 MΩ · cm or more.

これに対し、比較例1では、電気式脱イオン装置の電圧は9月に420Vまで上昇した。10月から電圧は低下傾向となったが、12月でも350Vであった。これは、9月に電気式脱イオン装置内にシリカが多く付着したこと、シリカの付着量は徐々に減少するが、その後の3〜4ヶ月間はシリカ付着残留量が多いためであると考えられる。   On the other hand, in Comparative Example 1, the voltage of the electric deionizer rose to 420 V in September. The voltage started to decrease from October, but it was 350V in December. This is thought to be due to the fact that a large amount of silica adhered to the electric deionization apparatus in September, and the amount of silica adhered gradually decreased, but the amount of silica adhered remained for the next 3 to 4 months. It is done.

以下、電気式脱イオン装置への通水条件を変えた場合の結果について説明する。   Hereinafter, the result at the time of changing the water flow conditions to an electrical deionization apparatus is demonstrated.

電気式脱イオン装置として栗田工業株式会社製KCDI−UPz(1m/h)を用いた。原水として工業用水を前記実施例1と同様に凝集、濾過、活性炭処理及びRO処理した水を用いた。この原水を通水し、電流密度が一定となるように印加電圧を制御して電気式脱イオン処理した。 KCDI-UPz (1 m 3 / h) manufactured by Kurita Kogyo Co., Ltd. was used as an electric deionization apparatus. Industrial water was used as raw water in the same manner as in Example 1 except that it was agglomerated, filtered, activated carbon treated and RO treated. This raw water was passed through and subjected to electric deionization while controlling the applied voltage so that the current density was constant.

図3は標準処理水量(170L/h/セル)における給水シリカ濃度と水温との関係をプロットしたものである。水温の上昇により限界シリカ許容濃度は上昇し、水温が5℃上昇することによりシリカ許容濃度は10%アップする。しかし、水温のコントロールは難しいため安全率を見て25℃を基準とし、限界シリカ許容濃度を700μg/Lに設定するのがよいことが分かる。   FIG. 3 is a plot of the relationship between the water supply silica concentration and the water temperature at the standard treated water amount (170 L / h / cell). As the water temperature rises, the limit silica allowable concentration increases, and when the water temperature rises by 5 ° C., the silica allowable concentration increases by 10%. However, since it is difficult to control the water temperature, it is understood that it is better to set the limit silica allowable concentration to 700 μg / L based on 25 ° C. in view of the safety factor.

図4は標準処理水温(25℃)における給水シリカ濃度と脱塩セル流量との関係をプロットしたものである。セル流量を170L/hから140L/hへ下げることにより、限界シリカ濃度が800μg/Lを超えて運転しても電圧の上昇は観測されなかった。したがって、設計段階では高流量のコストメリットを勘案し、脱塩セル流量を140L/h以下で設計することにより、限界シリカ許容濃度を800μg/Lに設定することもできる。   FIG. 4 is a plot of the relationship between the silica concentration of the feed water and the desalting cell flow rate at the standard treatment water temperature (25 ° C.). By reducing the cell flow rate from 170 L / h to 140 L / h, no increase in voltage was observed even when the critical silica concentration exceeded 800 μg / L. Therefore, in consideration of the cost merit of high flow rate at the design stage, the allowable limit silica concentration can be set to 800 μg / L by designing the desalting cell flow rate to 140 L / h or less.

図3,4より、水温の上昇と給水流量の減少で基準値の上限が上昇するが、25℃、170/Lのときには700ppmをひとつの基準とすることができる。また、限界シリカ許容濃度の基準値は給水の水温や流量に応じて設定することができ、基準値を上回った場合にアニオン交換手段に通水することにより、電気式脱イオン装置の電圧上昇を抑制し、長期間安定した運転が可能となる。   3 and 4, the upper limit of the reference value increases with an increase in the water temperature and a decrease in the feed water flow rate, but 700 ppm can be used as one reference at 25 ° C. and 170 / L. In addition, the reference value of the allowable limit silica concentration can be set according to the water temperature and flow rate of the feed water, and when the reference value exceeds the reference value, water is passed through the anion exchange means to increase the voltage of the electric deionizer. Suppressing and long-term stable operation is possible.

3 RO装置
5 アニオン交換樹脂塔
7 電気式脱イオン装置
11 シリカ濃度計
15,16 継手
17 配管
3 RO device 5 Anion exchange resin tower 7 Electric deionization device 11 Silica concentration meter 15, 16 Joint 17 Piping

Claims (6)

被処理水を逆浸透膜で処理した後、電気式脱イオン装置で処理する純水製造方法において、逆浸透膜流入水中及び/又は逆浸透膜処理水中のシリカ濃度が基準値よりも高い場合には、逆浸透膜処理水をアニオン交換手段によってアニオン交換処理した後、前記電気式脱イオン装置で処理し、逆浸透膜流入水中及び/又は逆浸透膜処理水中のシリカ濃度が基準値よりも低い場合には逆浸透膜処理水を該アニオン交換手段に通水することなく前記電気式脱イオン装置で処理することを特徴とする純水製造方法。   In a pure water production method in which treated water is treated with a reverse osmosis membrane and then treated with an electrical deionization device, when the silica concentration in the reverse osmosis membrane inflow water and / or reverse osmosis membrane treatment water is higher than the reference value The reverse osmosis membrane treated water is subjected to anion exchange treatment by an anion exchange means and then treated with the electric deionization device, and the silica concentration in the reverse osmosis membrane inflow water and / or reverse osmosis membrane treated water is lower than the reference value. In this case, a process for producing pure water is characterized in that reverse osmosis membrane treated water is treated by the electric deionizer without passing through the anion exchange means. 請求項1において、逆浸透膜流入水中のシリカ濃度の前記基準値が20000〜100000ppbから選ばれた値であり、逆浸透膜処理水中のシリカ濃度の前記基準値が500〜800ppbから選ばれた値であることを特徴とする純水製造方法。   In Claim 1, the said reference value of the silica concentration in reverse osmosis membrane inflow water is a value chosen from 20000-100,000 ppb, and the said reference value of the silica concentration in reverse osmosis membrane treated water is a value chosen from 500-800 ppb A method for producing pure water, wherein 請求項1又は2において、前記原水が湖沼水であることを特徴とする純水製造方法。   3. The pure water manufacturing method according to claim 1, wherein the raw water is lake water. 被処理水を逆浸透膜装置で処理した後、電気式脱イオン装置で処理する純水製造装置において、
原水中及び/又は逆浸透膜処理水中のシリカ濃度を測定するシリカ濃度測定手段を有し、
該シリカ濃度測定手段で測定されたシリカ濃度が基準値よりも高い場合には逆浸透膜処理水をアニオン交換手段によってアニオン交換処理した後、前記電気式脱イオン装置に供給し、該シリカ濃度測定手段で測定されたシリカ濃度が基準値よりも低い場合には逆浸透膜処理水を該アニオン交換手段に通水することなく前記電気式脱イオン装置に供給するように構成されていることを特徴とする純水製造装置。
In a pure water production apparatus that treats water to be treated with a reverse osmosis membrane device and then treats it with an electrical deionization device,
Having silica concentration measuring means for measuring silica concentration in raw water and / or reverse osmosis membrane treated water,
When the silica concentration measured by the silica concentration measuring means is higher than the reference value, the reverse osmosis membrane treated water is subjected to anion exchange treatment by an anion exchange means, and then supplied to the electric deionizer, and the silica concentration measurement is performed. When the silica concentration measured by the means is lower than the reference value, the reverse osmosis membrane treated water is supplied to the electric deionizer without passing through the anion exchange means. Pure water production equipment.
請求項4において、前記逆浸透膜処理水を該アニオン交換手段に供給する流路選択と、該逆浸透膜処理水を該アニオン交換手段を迂回させて前記電気式脱イオン装置に供給する流路選択とを切り替える流路切替手段を備えたことを特徴とする純水製造装置。   5. The flow path selection according to claim 4, wherein the reverse osmosis membrane treated water is supplied to the anion exchange means, and the reverse osmosis membrane treated water is bypassed the anion exchange means and supplied to the electric deionization device. An apparatus for producing pure water, comprising flow path switching means for switching between selection. 請求項4又は5において、逆浸透膜流入水中のシリカ濃度の前記基準値が20000〜100000ppbから選ばれた値であり、逆浸透膜処理水中のシリカ濃度の前記基準値が500〜800ppbから選ばれた値であることを特徴とする純水製造装置。   In Claim 4 or 5, the reference value of the silica concentration in the reverse osmosis membrane inflow water is a value selected from 20000 to 100,000 ppb, and the reference value of the silica concentration in the reverse osmosis membrane treated water is selected from 500 to 800 ppb. A pure water production apparatus characterized by
JP2013017164A 2013-01-31 2013-01-31 Pure water production method and apparatus Active JP6040789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017164A JP6040789B2 (en) 2013-01-31 2013-01-31 Pure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017164A JP6040789B2 (en) 2013-01-31 2013-01-31 Pure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2014147871A JP2014147871A (en) 2014-08-21
JP6040789B2 true JP6040789B2 (en) 2016-12-07

Family

ID=51571343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017164A Active JP6040789B2 (en) 2013-01-31 2013-01-31 Pure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP6040789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044442A1 (en) * 2020-08-27 2022-03-03 株式会社Moresco Water treatment system, control device, water treatment method, and control program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798122B2 (en) * 1997-07-25 2006-07-19 野村マイクロ・サイエンス株式会社 Desalination equipment
JP3473472B2 (en) * 1999-02-05 2003-12-02 栗田工業株式会社 Treatment method for fluorine-containing water
US6649037B2 (en) * 2001-05-29 2003-11-18 United States Filter Corporation Electrodeionization apparatus and method
JP2003010656A (en) * 2001-07-02 2003-01-14 Japan Organo Co Ltd Separation membrane, method for modifying the same, and apparatus and method for membrane separation
AU2003203265B2 (en) * 2002-01-22 2007-10-18 Toray Industries, Inc. Method of generating fresh water and fresh-water generator
US20060243647A1 (en) * 2005-04-29 2006-11-02 Spectrapure Apparatus for providing demineralized water
JP4973853B2 (en) * 2007-03-20 2012-07-11 栗田工業株式会社 Pure water production system
JP2009192194A (en) * 2008-02-18 2009-08-27 Miura Co Ltd Boiler system

Also Published As

Publication number Publication date
JP2014147871A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
Van Limpt et al. Water and chemical savings in cooling towers by using membrane capacitive deionization
JP5177538B2 (en) Pure water production method and pure water production system
TWI391332B (en) Pure water manufacturing device
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
WO2015012054A1 (en) Method and device for treating boron-containing water
KR101748183B1 (en) Desalination apparatus and desalinating method thereof
KR101389450B1 (en) Desalination apparatus and desalinating method thereof
JP2012206073A (en) Deionized water production system
KR20170002047A (en) Purification system for potable water and ultra pure water
EP2735546B1 (en) Treatment of water, particularly for obtaining ultrapure water
JP2008221195A (en) Operation method of pure water production system
WO2016028972A1 (en) Water treatment system and method
JP2014000575A (en) Apparatus and method for producing purified water
JP2005000828A (en) Pure water production apparatus
JP2020078772A (en) Electrodeionization device and method for producing deionized water using the same
JP6040789B2 (en) Pure water production method and apparatus
JP5915295B2 (en) Pure water production method
JP4432583B2 (en) Ultrapure water production equipment
JP4803649B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
US20160368791A1 (en) Methods and Systems for Polarization Control
JP2010253364A (en) Pure water generator
JP7405066B2 (en) Ultrapure water production equipment and ultrapure water production method
JP2018001106A (en) Electrodeionization device and method for operating the same
JP2019188313A (en) Operation method of electric deionization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6040789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150