JP2014000575A - Apparatus and method for producing purified water - Google Patents

Apparatus and method for producing purified water Download PDF

Info

Publication number
JP2014000575A
JP2014000575A JP2013213246A JP2013213246A JP2014000575A JP 2014000575 A JP2014000575 A JP 2014000575A JP 2013213246 A JP2013213246 A JP 2013213246A JP 2013213246 A JP2013213246 A JP 2013213246A JP 2014000575 A JP2014000575 A JP 2014000575A
Authority
JP
Japan
Prior art keywords
water
electrodeionization
concentration
pure water
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013213246A
Other languages
Japanese (ja)
Inventor
Kunihiro Iwasaki
邦博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013213246A priority Critical patent/JP2014000575A/en
Publication of JP2014000575A publication Critical patent/JP2014000575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing purified water capable of efficiently producing a purified water having a low boron concentration.SOLUTION: There is provided an ultrapure water producing apparatus which comprises: an activated carbon device 1; a heater 2; a membrane type filtration device 3; a raw water tank 4; a pretreatment device 5; an electrically deionizing device 6; and a subtank 7 for primary purified water. Further, the pretreatment device 5 comprises: a first reverse osmosis membrane (RO) device 8; a second reverse osmosis membrane (RO) device 9; and a decarbonation membrane device 10. The pretreatment device 5 is designed so that treated water W1 having a chloride ion concentration of 100 ppb or less may be introduced into a desalination chamber in the electrically deionizing device 6 according to water quality of raw water W0.

Description

本発明は、超純水製造システム等に組み込むのに好適な純水製造装置に関し、特にホウ素濃度の低い純水を製造するための純水製造装置に関する。また、本発明は、超純水製造システム等に好適な純水製造方法に関し、特にホウ素濃度の低い純水を製造するための純水製造方法に関する。   The present invention relates to a pure water production apparatus suitable for incorporation into an ultrapure water production system or the like, and more particularly to a pure water production apparatus for producing pure water having a low boron concentration. The present invention also relates to a pure water production method suitable for an ultrapure water production system or the like, and more particularly to a pure water production method for producing pure water having a low boron concentration.

超純水製造システムは、通常、前処理システム、一次純水システム、及びサブシステムより構成される。前処理システムは、凝集濾過、MF膜(精密濾過膜)、UF膜(限外濾過膜)等による除濁処理装置、活性炭等による脱塩素処理装置により構成される。   The ultrapure water production system is generally composed of a pretreatment system, a primary pure water system, and a subsystem. The pretreatment system is composed of a turbidity treatment device such as coagulation filtration, MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), etc., and a dechlorination treatment device such as activated carbon.

一次純水システムは、RO(逆浸透膜)装置、脱気膜装置、電気脱イオン装置等により構成され、ほとんどのイオン成分やTOC成分が除去される。また、サブシステムは、UV装置(紫外線酸化装置)、非再生型イオン交換装置、UF装置(限外濾過装置)等により構成され、微量イオンの除去、特に低分子の微量有機物の除去、微粒子の除去が行われる。このサブシステムで作られた超純水は、ユースポイントに送水され、余剰の超純水はサブシステムの前段のタンクに返送されるのが一般的である。   The primary pure water system is composed of an RO (reverse osmosis membrane) device, a degassing membrane device, an electrodeionization device, and the like, and most of ionic components and TOC components are removed. In addition, the subsystem is composed of a UV device (ultraviolet oxidation device), a non-regenerative ion exchange device, a UF device (ultrafiltration device), etc., and removes trace ions, particularly low-molecular trace organic substances, and particulates. Removal is performed. In general, the ultrapure water produced by this subsystem is sent to the point of use, and the excess ultrapure water is generally returned to the tank in the previous stage of the subsystem.

ところで、超純水の要求水質は年々厳しくなり、現在、最先端の電子産業分野ではホウ素濃度10ppt以下の超純水が要求されるようになってきている。このホウ素は、超純水中ではほとんどホウ酸イオンとして存在することになるが、このホウ酸イオンは弱イオンであるので除去するのが難しい。そこで、ホウ素濃度の低い純水を製造するために、RO装置の給水をpH10以上にしてRO装置でのホウ素除去率を向上させることが提案されている(特許文献1参照)。   By the way, the required water quality of ultrapure water becomes stricter year by year, and ultrapure water having a boron concentration of 10 ppt or less is now required in the state-of-the-art electronics industry. This boron exists almost as borate ions in ultrapure water, but these borate ions are weak ions and are difficult to remove. Therefore, in order to produce pure water with a low boron concentration, it has been proposed to improve the boron removal rate in the RO device by setting the water supply of the RO device to pH 10 or higher (see Patent Document 1).

また、前処理後の処理水をホウ素選択性イオン交換樹脂と接触させること(特許文献2参照)、原水をRO装置等の脱塩装置で脱塩した後、ホウ素吸着樹脂塔に通水することが提案されている(特許文献3参照)。   Also, the treated water after pretreatment is brought into contact with a boron-selective ion exchange resin (see Patent Document 2), and the raw water is desalted with a desalinator such as an RO device and then passed through a boron adsorption resin tower. Has been proposed (see Patent Document 3).

さらに、原水を前処理装置、2段RO装置、電気再生式脱塩装置等を通水した処理水を、ホウ素選択性イオン交換樹脂に接触させる超純水製造装置が提案されている(特許文献4参照)。
特許第3321179号公報 特許第3200301号公報 特開平8−89956号公報 特開平9−192661号公報
Furthermore, an ultrapure water production apparatus has been proposed in which treated water obtained by passing raw water through a pretreatment device, a two-stage RO device, an electric regenerative desalination device, etc. is brought into contact with a boron-selective ion exchange resin (Patent Literature). 4).
Japanese Patent No. 3321179 Japanese Patent No. 3200301 JP-A-8-89956 JP-A-9-192661

特許文献1に記載された純水製造方法では、RO装置の給水をpH10以上に調整するためにアルカリを使用するか、アニオン交換樹脂塔を設ける必要があり、薬品コスト又は装置的負荷がかかる上に、連続運転ができないという問題点がある。   In the pure water production method described in Patent Document 1, it is necessary to use an alkali or to provide an anion exchange resin tower in order to adjust the feed water of the RO device to pH 10 or higher, which increases chemical costs or equipment load. However, there is a problem that continuous operation is not possible.

また、特許文献2〜4に記載された純水製造方法は、処理水をホウ素選択性イオン交換樹脂やホウ素吸着樹脂に流通することにより、ホウ素を除去するものであるが、被処理水のホウ素濃度が高いと、これらホウ素吸着樹脂等が短期間で破過してしまう一方、被処理水のホウ素濃度が、例えば10ppb以下程度の低濃度であると除去率が低下してしまうという問題点がある。さらに、ホウ素吸着樹脂からのTOCの溶出のおそれもあるので、ホウ素吸着樹脂の洗浄、コンディショニングが必要であるという問題点もある。   Moreover, although the pure water manufacturing method described in patent documents 2-4 distribute | circulates treated water to boron selective ion exchange resin or boron adsorption resin, it removes boron, When the concentration is high, these boron adsorbing resins and the like break through in a short period of time, while the removal rate decreases when the boron concentration of the water to be treated is low, for example, about 10 ppb or less. is there. Further, since there is a risk of TOC elution from the boron adsorption resin, there is a problem that the boron adsorption resin needs to be cleaned and conditioned.

さらに、電気脱イオン装置により、陰イオンであるホウ酸イオンを同時に除去してやることが考えられるが、ホウ酸イオンは弱イオンであるので、電気脱イオン装置の電流密度を上げて運転しても除去率を90%以上にすることは困難である。また、RO装置を組み合わせてもホウ素除去率を98%以上にすることはできない。   Furthermore, it is conceivable to remove borate ions, which are anions, simultaneously with an electrodeionization device. However, since borate ions are weak ions, they can also be removed by increasing the current density of the electrodeionization device. It is difficult to make the rate 90% or more. Moreover, even if the RO device is combined, the boron removal rate cannot be increased to 98% or more.

すなわち、近年、超純水の要求水質は年々厳しくなり、ホウ素濃度100ppt以下、最先端の電子産業分野ではホウ素濃度10ppt以下、場合によっては1ppt以下の水質が要求されるにもかかわらず、簡単な構造でこれを達成できる純水製造装置はなかった。これを電気脱イオン装置において達成するためには少なくとも電気脱イオン装置におけるホウ素除去率を99%以上、特に99.5%以上にすることが必要である。   That is, in recent years, the required water quality of ultrapure water has become stricter year by year, and even though the water concentration of boron concentration of 100 ppt or less, the boron concentration of 10 ppt or less, and in some cases 1 ppt or less is required in the state-of-the-art electronics industry, There was no pure water production system that could achieve this with a structure. In order to achieve this in the electrodeionization apparatus, at least the boron removal rate in the electrodeionization apparatus needs to be 99% or more, particularly 99.5% or more.

本発明は、上記課題に鑑みてなされたものであり、ホウ素濃度の低い純水を効率よく製造することができる純水製造装置を提供することを目的とする。また、本発明は、ホウ素濃度の低い純水を効率よく製造することができる純水製造方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the pure water manufacturing apparatus which can manufacture the pure water with a low boron concentration efficiently. Moreover, an object of this invention is to provide the pure water manufacturing method which can manufacture the pure water with a low boron concentration efficiently.

上記課題を解決するために、第一に本発明は、前処理装置と、前記前処理装置の処理水を脱塩室に受け入れて脱イオン処理を行う電気脱イオン装置とを有する純水製造装置であって、前記前処理装置が、前記電気脱イオン装置の脱塩室に導入する処理水の塩化物イオン濃度を100ppb以下にすることを特徴とする純水製造装置を提供する(発明1)。   In order to solve the above-mentioned problems, firstly, the present invention provides a pure water production apparatus having a pretreatment device and an electrodeionization device that receives treatment water of the pretreatment device in a demineralization chamber and performs deionization treatment. And the said pre-processing apparatus provides the pure water manufacturing apparatus characterized by making the chloride ion density | concentration of the treated water introduce | transduced into the demineralization chamber of the said electrodeionization apparatus into 100 ppb or less (invention 1). .

上記発明(発明1)によれば、塩化物イオンはホウ素よりもその除去が容易であり、電気脱イオン装置に導入する処理水の塩化物イオン濃度を100ppb以下にするだけで、電気脱イオン装置におけるホウ素の除去率を99%以上と大幅に向上することができる。   According to the above invention (Invention 1), chloride ions are easier to remove than boron, and the electrode ionization device can be obtained by reducing the chloride ion concentration of treated water introduced into the electrodeionization device to 100 ppb or less. The removal rate of boron can be significantly improved to 99% or more.

上記発明(発明1)においては、前記前処理装置が、1又は2以上のRO膜装置を備え、前記電気脱イオン装置の脱塩室に導入する処理水の炭酸濃度を1ppm以下にするのが好ましく(発明2)、かかる発明(発明2)においては、前記前処理装置が、1又は2以上のイオン交換樹脂塔をさらに備えるのが好ましく、かかる発明(発明3)においては、前記前処理装置が、脱炭酸膜装置、脱炭酸塔又は真空脱気塔をさらに備えるのが好ましい(発明4)。   In the said invention (invention 1), the said pre-processing apparatus is equipped with 1 or 2 or more RO membrane apparatuses, and the carbonic acid concentration of the treated water introduced into the demineralization chamber of the said electrodeionization apparatus shall be 1 ppm or less. Preferably (Invention 2), in the invention (Invention 2), the pretreatment apparatus preferably further comprises one or more ion exchange resin towers. In the invention (Invention 3), the pretreatment apparatus However, it is preferable to further comprise a decarbonation membrane device, a decarbonation tower or a vacuum degassing tower (Invention 4).

上記発明(発明2〜4)によれば、電気脱イオン装置の脱塩室に導入される処理水の塩化物イオン濃度及び炭酸イオン濃度をさらに低減することができ、電気脱イオン装置におけるホウ素の除去率をさらに向上させることができる。   According to the said invention (invention 2-4), the chloride ion density | concentration and carbonate ion density | concentration of the treated water introduce | transduced into the demineralization chamber of an electrodeionization apparatus can further be reduced, The removal rate can be further improved.

上記発明(発明1〜4)においては、前記電気脱イオン装置の脱塩水の一部を、前記電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から導入するのが好ましい(発明5)。   In the said invention (invention 1-4), a part of demineralized water of the said electrodeionization apparatus is introduce | transduced into the concentration chamber of the said electrodeionization apparatus from the opposite direction to the introduction direction of the treated water to the said demineralization chamber. (Invention 5)

上記発明(発明5)によれば、水質の良好な脱塩室の排出水(脱塩水)を脱塩室の出口側から入口側の方向に向けて濃縮室に流通することにより、脱塩室と濃度室との間のホウ素の濃度勾配が緩和されるので、電気脱イオン装置でのホウ素の除去率をさらに向上させることができる。   According to the above invention (Invention 5), the drainage water (desalted water) of the desalting chamber with good water quality is circulated from the outlet side of the desalting chamber toward the inlet side to the concentration chamber, whereby the desalting chamber Since the concentration gradient of boron between the concentration chamber and the concentration chamber is relaxed, the boron removal rate in the electrodeionization apparatus can be further improved.

上記発明(発明1〜5)においては、前記電気脱イオン装置が、複数段直列に設けられているのが好ましい(発明6)。かかる発明(発明6)によれば、ホウ素の除去率を99.99%にまで高めることができるので、ホウ素イオン濃度1ppt以下の超純水の供給も可能となる。   In the said invention (invention 1-5), it is preferable that the said electrodeionization apparatus is provided in multiple stages in series (invention 6). According to this invention (Invention 6), since the removal rate of boron can be increased to 99.99%, ultrapure water having a boron ion concentration of 1 ppt or less can be supplied.

第二に本発明は、原水を前処理装置で処理し、この処理水を電気脱イオン装置の脱塩室に導入して脱イオン処理を行う純水の製造方法であって、前記前処理装置にて塩化物イオン濃度を100ppb以下にした処理水を、前記電気脱イオン装置の脱塩室に導入することを特徴とする純水製造方法を提供する(発明7)。   Secondly, the present invention is a method for producing pure water in which raw water is treated with a pretreatment device, and the treated water is introduced into a demineralization chamber of an electrodeionization device to perform deionization treatment, the pretreatment device A pure water production method is provided in which treated water having a chloride ion concentration of 100 ppb or less is introduced into a demineralization chamber of the electrodeionization apparatus (Invention 7).

上記発明(発明7)によれば、塩化物イオンはホウ素よりもその除去が容易であり、電気脱イオンに導入する処理水の塩化物イオン濃度を100ppb以下にするだけで、電気脱イオン装置におけるホウ素の除去率を99%以上と大幅に向上することができる。   According to the above invention (Invention 7), chloride ions are easier to remove than boron, and the concentration of chloride ions in the treated water to be introduced into the electrodeionization is 100 ppb or less. The removal rate of boron can be greatly improved to 99% or more.

上記発明(発明7)においては、前記電気脱イオン装置の脱塩水の一部を、前記電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から導入するのが好ましい(発明8)。   In the above invention (Invention 7), a portion of the deionized water of the electrodeionization device is introduced into the concentration chamber of the electrodeionization device from the direction opposite to the direction of introduction of treated water into the demineralization chamber. Preferred (Invention 8).

上記発明(発明8)によれば、水質の良好な脱塩室の排出水(脱塩水)を脱塩室の出口側から入口側の方向に向けて濃縮室に流通することにより、脱塩室と濃度室との間のホウ素の濃度勾配が緩和されるので、電気脱イオン装置でのホウ素の除去率をさらに向上させることができる。   According to the above invention (Invention 8), the drainage water (demineralized water) of the desalting chamber with good water quality is circulated from the outlet side of the desalting chamber toward the inlet side to the concentrating chamber. Since the concentration gradient of boron between the concentration chamber and the concentration chamber is relaxed, the boron removal rate in the electrodeionization apparatus can be further improved.

上記発明(発明7,8)においては、前記電気脱イオン装置が、複数段直列に設けられているのが好ましい(発明9)。かかる発明(発明9)によれば、ホウ素の除去率を99.99%にまで高めることができるので、ホウ素イオン濃度1ppt以下の超純水の供給も可能となる。   In the said invention (invention 7 and 8), it is preferable that the said electrodeionization apparatus is provided in multiple stages in series (invention 9). According to this invention (Invention 9), since the removal rate of boron can be increased to 99.99%, ultrapure water having a boron ion concentration of 1 ppt or less can be supplied.

上記発明(発明9)においては、前記複数段の電気脱イオン装置のうち最後段の電気脱イオン装置の濃縮水を、前記処理水とともに1段目の電気脱イオン装置の脱塩室に導入するのが好ましい(発明10)。   In the said invention (invention 9), the concentrated water of the last-stage electrodeionization apparatus is introduce | transduced into the demineralization chamber of the first-stage electrodeionization apparatus with the said treated water among the said multiple-stage electrodeionization apparatuses. (Invention 10)

上記発明(発明10)によれば、最後の電気脱イオン装置の濃縮水は、前処理装置で処理した後の処理水よりもホウ素濃度が低いだけでなく、塩化物イオン濃度が大幅に低いので、これを1段目の電気脱イオン装置の脱塩室に導入することにより、装置の基本構成はそのままで1段目の電気脱イオン装置の脱塩室からの処理水のホウ素濃度をさらに改善することができる。   According to the above invention (Invention 10), the concentrated water of the last electrodeionization device not only has a lower boron concentration than the treated water after being treated by the pretreatment device, but also has a significantly lower chloride ion concentration. By introducing this into the demineralization chamber of the first-stage electrodeionization apparatus, the boron concentration of the treated water from the demineralization chamber of the first-stage electrodeionization apparatus is further improved while maintaining the basic configuration of the apparatus. can do.

本発明の純水製造装置によれば、塩化物イオンはホウ素よりもその除去が容易であり、電気脱イオン装置に導入する処理水の塩化物イオン濃度100ppb以下にするだけで、電気脱イオン装置におけるホウ素の除去率を99%以上と大幅に向上することができる。本発明によれば、電気脱イオン装置によりホウ素の大幅な除去が可能となるので、連続運転が可能となるばかりか、アルカリなどの薬品を使わないので環境負荷が少なく、給水(原水)のホウ素濃度の広い領域に対応可能である。また、ホウ素吸着樹脂等に比べて破過が生じないので、数年間に渡り安定的にホウ素濃度の低い純水の供給が可能となる。しかも、電気脱イオン装置を複数段直列に設けることにより、ホウ素イオン濃度を1ppt以下の超純水も供給することが可能となる。   According to the pure water production apparatus of the present invention, chloride ions are easier to remove than boron, and the electrode ionization apparatus can be obtained by reducing the chloride ion concentration of treated water introduced into the electrodeionization apparatus to 100 ppb or less. The removal rate of boron can be significantly improved to 99% or more. According to the present invention, since boron can be removed greatly by the electrodeionization apparatus, not only continuous operation is possible, but also chemicals such as alkali are not used, so there is little environmental load and boron in feed water (raw water) It is possible to deal with a wide concentration range. Further, since breakthrough does not occur as compared with boron adsorption resin or the like, pure water having a low boron concentration can be stably supplied for several years. Moreover, by providing a plurality of electrodeionization devices in series, ultrapure water having a boron ion concentration of 1 ppt or less can be supplied.

〔第一の実施形態〕
以下、本発明の純水製造装置の第一の実施形態について、図面に基づいて詳細に説明する。
図1は、本実施形態に係る純水製造装置を示すフロー図であり、図2は、本実施形態における電気脱イオン装置を示す概略構成図である。
[First embodiment]
Hereinafter, a first embodiment of a pure water production apparatus of the present invention will be described in detail based on the drawings.
FIG. 1 is a flowchart showing a pure water production apparatus according to the present embodiment, and FIG. 2 is a schematic configuration diagram showing an electrodeionization apparatus according to the present embodiment.

図1に示すように、超純水製造装置は、活性炭装置1と、ヒータ2と、膜式濾過装置3と、原水タンク4と、前処理装置5と、電気脱イオン装置6と、一次純水のサブタンク7とから構成されている。そして、本実施形態においては、前処理装置5は、第1の逆浸透膜(RO)装置8と、第2の逆浸透膜(RO)装置9と、脱炭酸膜装置10とにより構成されている。この前処理装置5は、原水W0の水質に応じて、塩化物イオン濃度100ppb以下の処理水W1が電気脱イオン装置6の脱塩室に導入されるように設計されている。   As shown in FIG. 1, the ultrapure water production apparatus includes an activated carbon device 1, a heater 2, a membrane filtration device 3, a raw water tank 4, a pretreatment device 5, an electrodeionization device 6, and a primary pure water. And a sub-tank 7 for water. In this embodiment, the pretreatment device 5 includes a first reverse osmosis membrane (RO) device 8, a second reverse osmosis membrane (RO) device 9, and a decarbonation membrane device 10. Yes. This pretreatment device 5 is designed such that treated water W1 having a chloride ion concentration of 100 ppb or less is introduced into the demineralization chamber of the electrodeionization device 6 according to the quality of the raw water W0.

上述したような超純水製造装置において、電気脱イオン装置6は、図2に示すように脱塩室11と濃縮室12とを備え、脱塩室11には、前処理装置5の処理水W1の流路R1が接続される一方、脱塩室11の出口側は脱塩水W2の流路R2となっている。この流路R2からは分岐流路R3が分岐していて、脱塩室11の脱塩水W2の一部を、脱塩室11の出口側から入口側の方向に向けて濃縮室12に導入し、すなわち脱塩室11における処理水W1の流通方向と反対方向から濃縮室12に導入して濃縮水W3を吐出する構成となっている。   In the ultrapure water production apparatus as described above, the electrodeionization apparatus 6 includes a demineralization chamber 11 and a concentration chamber 12 as shown in FIG. 2, and the demineralization chamber 11 includes treated water of the pretreatment device 5. While the flow path R1 of W1 is connected, the outlet side of the desalting chamber 11 is a flow path R2 of demineralized water W2. A branch channel R3 branches from this channel R2, and a portion of the desalted water W2 in the desalting chamber 11 is introduced into the concentration chamber 12 from the outlet side of the desalting chamber 11 toward the inlet side. That is, it is the structure which introduce | transduces into the concentration chamber 12 from the direction opposite to the distribution direction of the treated water W1 in the desalination chamber 11, and discharges the concentrated water W3.

このような構成を有する超純水製造装置について、その作用を説明する。
まず、原水W0を活性炭装置1において有機物を除去した後、ヒータ2において所定の温度にまで加温した後、膜式濾過装置3で固体微粒子を除去して原水タンク4に一旦貯留する。続いて、この原水W0について前処理装置5で処理を行う。
The effect | action is demonstrated about the ultrapure water manufacturing apparatus which has such a structure.
First, after removing organic matter from the raw water W0 in the activated carbon device 1 and then heating up to a predetermined temperature in the heater 2, the solid fine particles are removed by the membrane filtration device 3 and temporarily stored in the raw water tank 4. Subsequently, the raw water W0 is treated by the pretreatment device 5.

この前処理装置5では、第1の逆浸透膜(RO)装置8と、第2の逆浸透膜(RO)装置9とにより強イオン性の不純物が除去され、さらに、脱炭酸膜装置10により炭酸イオン(CO)が除去される。 In the pretreatment device 5, strong ionic impurities are removed by the first reverse osmosis membrane (RO) device 8 and the second reverse osmosis membrane (RO) device 9, and further, by the decarbonation membrane device 10. Carbonate ions (CO 2 ) are removed.

この前処理装置5は、処理水W1中の塩化物イオン濃度が100ppb以下、好ましくは50ppb以下、特に好ましくは30ppb以下となるように設計する。処理水W1中の塩化物イオン濃度が100ppbを超えていると、後続の電気脱イオン装置6でのホウ素の除去率を99%以上にすることができなくなる。   The pretreatment device 5 is designed so that the chloride ion concentration in the treated water W1 is 100 ppb or less, preferably 50 ppb or less, particularly preferably 30 ppb or less. If the chloride ion concentration in the treated water W1 exceeds 100 ppb, the boron removal rate in the subsequent electrodeionization apparatus 6 cannot be made 99% or more.

また、処理水W1中のCO濃度は1ppm以下とするのが好ましい。処理水W1中のCO濃度が1ppmを超えると、ホウ素の除去率が99%未満、場合によっては90%未満にまで低下してしまうおそれがある。 Moreover, CO 2 concentration in the treated water W1 is preferably set to 1ppm or less. If the CO 2 concentration in the treated water W1 exceeds 1 ppm, the boron removal rate may decrease to less than 99%, and in some cases to less than 90%.

そして、このような処理水W1を電気脱イオン装置6で処理する。この電気脱イオン装置6では、電流密度300mA/dm以上で運転するのが好ましい。このような電流密度で運転を行うことにより、電気脱イオン装置の性能にもよるが、従来の電気脱イオン装置では達成できなかった99%以上、特に99.5%以上のホウ素除去率とすることができる。 And such treated water W1 is processed with the electrodeionization apparatus 6. FIG. The electrodeionization apparatus 6 is preferably operated at a current density of 300 mA / dm 2 or more. By operating at such a current density, although depending on the performance of the electrodeionization apparatus, a boron removal rate of 99% or more, particularly 99.5% or more, which could not be achieved by the conventional electrodeionization apparatus. be able to.

このように本実施形態に係る純水製造装置によれば、処理水W1のホウ素濃度が10ppb以下であれば確実にホウ素濃度100ppt以下の脱塩水W2を得ることができる。また、本実施形態に係る純水製造装置のホウ素除去率が99.5%であれば、処理水W1のホウ素濃度が20ppbで、さらに、ホウ素除去率99.8%以上であれば処理水W1のホウ素濃度が50ppbでホウ素濃度100ppt以下の脱塩水W2を得ることができる。しかも、電気脱イオン装置6によりホウ素の十分な除去が可能となるので、連続運転が可能となるばかりか、アルカリ等の薬品を使用しないので環境負荷が少ない。しかも、給水(原水)のホウ素濃度の広い領域に対応可能であり、また、ホウ素吸着樹脂等に比べて破過が生じないので、数年間に渡り安定的にホウ素濃度の低い純水の供給が可能となる。   Thus, according to the pure water manufacturing apparatus which concerns on this embodiment, if the boron concentration of the treated water W1 is 10 ppb or less, the desalted water W2 with a boron concentration of 100 ppt or less can be obtained reliably. Further, if the boron removal rate of the pure water producing apparatus according to the present embodiment is 99.5%, the treated water W1 has a boron concentration of 20 ppb, and if the boron removal rate is 99.8% or more, the treated water W1. The demineralized water W2 having a boron concentration of 50 ppb and a boron concentration of 100 ppt or less can be obtained. In addition, since the boron can be sufficiently removed by the electrodeionization apparatus 6, not only continuous operation is possible, but also no chemical such as alkali is used, so the environmental load is small. Moreover, it can handle a wide range of boron concentrations in the feed water (raw water) and does not cause breakthrough compared to boron-adsorbing resins, etc., so it can supply pure water with a low boron concentration stably for several years. It becomes possible.

〔第二の実施形態〕
次に本発明の純水製造装置の第二の実施形態について、図3に基づいて説明する。
図3は、第二の実施形態に係る純水製造装置を示すフロー図である。
[Second Embodiment]
Next, 2nd embodiment of the pure water manufacturing apparatus of this invention is described based on FIG.
FIG. 3 is a flowchart showing the pure water production apparatus according to the second embodiment.

第二の実施形態に係る純水製造装置は、前述した第一の実施形態において、電気脱イオン装置を第1の電気脱イオン装置6A、及び第2の電気脱イオン装置6Bと2段直列に配置し、第2の電気脱イオン装置6Bの濃縮水W3を第1の電気脱イオン装置6Aの前段に設けられた処理水タンクTに返送する以外同様の構成を有する。   In the pure water production apparatus according to the second embodiment, the electrodeionization apparatus is connected in series with the first electrodeionization apparatus 6A and the second electrodeionization apparatus 6B in the first embodiment described above. It has the same configuration except that the concentrated water W3 of the second electrodeionization device 6B is returned to the treated water tank T provided in the previous stage of the first electrodeionization device 6A.

このような構成を有する超純水製造装置について、その作用を説明する。
まず、原水W0について、活性炭装置1にて有機物の除去処理をした後、ヒータ2にて所定の温度にまで加温した後、膜式濾過装置3にて固体微粒子を除去して原水タンク4に一旦貯留する。そして、この原水W0について前処理装置5で処理を行う。
The effect | action is demonstrated about the ultrapure water manufacturing apparatus which has such a structure.
First, the raw water W0 is subjected to organic substance removal treatment with the activated carbon device 1 and then heated to a predetermined temperature with the heater 2, and then the solid particulates are removed with the membrane filtration device 3 into the raw water tank 4. Once stored. Then, the raw water W0 is treated by the pretreatment device 5.

この前処理装置5では、第1の逆浸透膜(RO)装置8と、第2の逆浸透膜(RO)装置9とにより強イオン性の不純物が除去され、さらに、脱炭酸膜装置10により炭酸イオン(CO)が除去される。 In the pretreatment device 5, strong ionic impurities are removed by the first reverse osmosis membrane (RO) device 8 and the second reverse osmosis membrane (RO) device 9, and further, by the decarbonation membrane device 10. Carbonate ions (CO 2 ) are removed.

この前処理装置5は、処理水W1中の塩化物イオン濃度は100ppb以下、好ましくは50ppb以下、特に好ましくは30ppb以下となるように設計する。処理水W1中の塩化物イオン濃度が100ppbを超えていると、後続の電気脱イオン装置6Aでのホウ素の除去率を99%以上にすることができなくなる。   The pretreatment device 5 is designed so that the chloride ion concentration in the treated water W1 is 100 ppb or less, preferably 50 ppb or less, particularly preferably 30 ppb or less. If the chloride ion concentration in the treated water W1 exceeds 100 ppb, the boron removal rate in the subsequent electrodeionization apparatus 6A cannot be 99% or more.

そして、このような処理水W1を第1の電気脱イオン装置6A及び第2の電気脱イオン装置6Bで連続的に処理するとともに、濃縮水W3を第1の電気脱イオン装置6Aの前段に設けられた処理水タンクTに返送する。   Then, such treated water W1 is continuously treated by the first electrodeionization device 6A and the second electrodeionization device 6B, and the concentrated water W3 is provided upstream of the first electrodeionization device 6A. Return to the treated water tank T.

この電気脱イオン装置6A,6Bを、電流密度300mA/dm以上で運転するのが好ましい。電流密度300mA/dm未満では、ホウ素除去率が99%未満となるので好ましくない。具体的には、第1の電気脱イオン装置6Aでは、99%以上のホウ素が、第2の電気脱イオン装置6Bではさらに99%以上のホウ素が除去されることになる。 The electrodeionization devices 6A and 6B are preferably operated at a current density of 300 mA / dm 2 or more. A current density of less than 300 mA / dm 2 is not preferable because the boron removal rate is less than 99%. Specifically, 99% or more of boron is removed in the first electrodeionization apparatus 6A, and 99% or more of boron is further removed in the second electrodeionization apparatus 6B.

特に、本実施形態においては、第2の電気脱イオン装置6Bの濃縮水W3を第1の電気脱イオン装置6Aの前段に設けられた処理水タンクTに返送しており、この濃縮水W3は処理水W1よりもホウ素濃度が低いので、経時的には処理水タンクTでは、処理水W1よりもさらに塩化物イオン濃度及びホウ素濃度が低下するため、ホウ素濃度1ppt以下の超純水を得ることも可能となる。   In particular, in the present embodiment, the concentrated water W3 of the second electrodeionization apparatus 6B is returned to the treated water tank T provided in the front stage of the first electrodeionization apparatus 6A, and the concentrated water W3 is Since the boron concentration is lower than that of the treated water W1, the chloride ion concentration and the boron concentration are further lowered in the treated water tank T over the treated water W1 over time, so that ultrapure water having a boron concentration of 1 ppt or less is obtained. Is also possible.

以上、本実施形態に係る純水製造システムについて図面に基づいて説明してきたが、本発明は上記実施形態に限定されることはなく、種々の変更実施が可能である。   As mentioned above, although the pure water manufacturing system which concerns on this embodiment has been demonstrated based on drawing, this invention is not limited to the said embodiment, A various change implementation is possible.

例えば、前処理装置5は、電気脱イオン装置6に100ppb以下の塩化物イオン濃度の処理水W1を供給でき、かつ所望とするホウ素濃度の純水が得られるように、原水W0の水質に応じて種々設定することができる。   For example, the pretreatment device 5 can supply treated water W1 having a chloride ion concentration of 100 ppb or less to the electrodeionization device 6 and can obtain pure water having a desired boron concentration according to the quality of the raw water W0. Various settings can be made.

具体的には、前処理装置5を
(1)RO装置+脱炭酸膜装置
(2)第1のRO装置+第2のRO装置+脱炭酸膜装置
(3)イオン交換樹脂装置(2B3T)+RO装置+脱炭酸膜装置
(4)イオン交換樹脂装置(4B5T)+RO装置+脱炭酸膜装置
等とすることができる。
Specifically, the pretreatment device 5 is (1) RO device + decarbonation membrane device (2) first RO device + second RO device + decarbonation membrane device (3) ion exchange resin device (2B3T) + RO. Device + decarbonation membrane device (4) ion exchange resin device (4B5T) + RO device + decarbonation membrane device.

また、電気脱イオン装置6は、1段であってもよいし、2段あるいは3段以上を直列に設けてもよく、3段以上設けた場合には、最終段の電気脱イオン装置6の濃縮水W3を1段目の電気脱イオン装置の処理水W1に合流させればよい。   In addition, the electrodeionization device 6 may be a single stage, or two or more stages may be provided in series. If three or more stages are provided, the final stage of the electrodeionization apparatus 6 The concentrated water W3 may be merged with the treated water W1 of the first stage electrodeionization apparatus.

さらに電気脱イオン装置6としては特に制限はないが、垂直側面は水を透過しないが斜面は水を透過する六角形の部材を脱塩室11に設けたものを好適に用いることができる。   Furthermore, although there is no restriction | limiting in particular as the electrodeionization apparatus 6, What provided the hexagonal member which does not permeate | transmit water on a vertical side surface but permeate | transmits a slope can be used suitably.

以下、実施例及び比較例を挙げて本発明をより具体的に説明する。
なお、本実施例及び比較例においては、下記の試験装置を用いた。
・電気脱イオン装置(栗田工業社製,製品名:KCDI−UPz−150H,処理水量:150m/hr)
・逆浸透膜装置(日東電工社製,製品名:ES−20)
・脱炭酸膜装置(リキセル社製,製品名:X−50)
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In the examples and comparative examples, the following test apparatus was used.
・ Electrodeionization equipment (Kurita Kogyo Co., Ltd., product name: KCDI-UPz-150H, amount of treated water: 150 m 3 / hr)
・ Reverse osmosis membrane device (Nitto Denko, product name: ES-20)
Decarbonation membrane device (Rixel, product name: X-50)

〔実施例1〕
図1及び図2に示すように、前処理装置5を第1の逆浸透膜(RO)装置8と、第2の逆浸透膜(RO)装置9と、脱炭酸膜装置10とにより構成し、電気脱イオン装置6を1段に配置して純水製造装置を製造した。
[Example 1]
As shown in FIGS. 1 and 2, the pretreatment device 5 includes a first reverse osmosis membrane (RO) device 8, a second reverse osmosis membrane (RO) device 9, and a decarbonation membrane device 10. The electrodeionization apparatus 6 was arranged in one stage to manufacture a pure water production apparatus.

この純水製造装置により、ホウ素濃度が25ppb、塩化物イオン濃度が11000ppb、CO濃度が8ppmの原水W0を処理したところ、前処理装置5の処理水W1のホウ素濃度は25ppb、塩化物イオン濃度は10ppb、CO濃度は1ppm以下であった。 When the raw water W0 having a boron concentration of 25 ppb, a chloride ion concentration of 11000 ppb, and a CO 2 concentration of 8 ppm was treated with this pure water production apparatus, the boron concentration of the treated water W1 of the pretreatment apparatus 5 was 25 ppb and the chloride ion concentration Was 10 ppb and the CO 2 concentration was 1 ppm or less.

そして、この処理水W1を電気脱イオン装置6で処理した結果、ホウ素濃度が50ppt、塩化物イオン濃度が0.5ppb以下、CO濃度が0.01ppm以下の脱塩水W2が得られた。この際、電気脱イオン装置6でのホウ素除去率は99.8%であった。 The result of processing the treated water W1 in electrodeionization apparatus 6, the boron concentration is 50 ppt, the chloride ion concentration is 0.5ppb or less, CO 2 concentration is less demineralized water W2 0.01 ppm was obtained. At this time, the boron removal rate in the electrodeionization apparatus 6 was 99.8%.

〔比較例1〕
図4に示すように実施例1において、逆浸透膜(RO)装置を1段構成とした以外は同様の装置構成で純水製造装置を製造した。
[Comparative Example 1]
As shown in FIG. 4, in Example 1, the pure water manufacturing apparatus was manufactured by the same apparatus structure except having the reverse osmosis membrane (RO) apparatus in one stage structure.

この純水製造装置により、実施例1と同じ原水W0を処理したところ、前処理装置5の処理水W1のホウ素濃度は25ppb、塩化物イオン濃度は150ppb、CO濃度は1ppm以下であった。 When the same raw water W0 as that in Example 1 was treated with this pure water production apparatus, the boron concentration of the treated water W1 of the pretreatment apparatus 5 was 25 ppb, the chloride ion concentration was 150 ppb, and the CO 2 concentration was 1 ppm or less.

そして、この処理水W1を電気脱イオン装置6で処理した結果、ホウ素濃度が500ppt、塩化物イオン濃度が0.5ppb以下、CO濃度が0.01ppm以下の脱塩水W2が得られた。この際、電気脱イオン装置6でのホウ素除去率は98%であった。 The result of processing the treated water W1 in electrodeionization apparatus 6, the boron concentration is 500 ppt, the chloride ion concentration is 0.5ppb or less, CO 2 concentration is less demineralized water W2 0.01 ppm was obtained. At this time, the boron removal rate in the electrodeionization apparatus 6 was 98%.

〔比較例2〕
実施例1において、処理水W1に塩化ナトリウムを添加して前処理装置5の処理水W1の塩化物イオン濃度を150ppbとした以外は同様にして処理を行ったところ、ホウ素濃度が400ppt、塩化物イオン濃度が0.5ppb以下、CO濃度が0.01ppm以下の脱塩水W2が得られた。電気脱イオン装置6でのホウ素除去率は98.4%であった。
[Comparative Example 2]
In Example 1, when the treatment was performed in the same manner except that sodium chloride was added to the treated water W1 to change the chloride ion concentration of the treated water W1 of the pretreatment device 5 to 150 ppb, the boron concentration was 400 ppt, the chloride Desalted water W2 having an ion concentration of 0.5 ppb or less and a CO 2 concentration of 0.01 ppm or less was obtained. The boron removal rate in the electrodeionization apparatus 6 was 98.4%.

〔実施例2〕
図3に示すように、前処理装置5を第1の逆浸透膜(RO)装置8と、第2の逆浸透膜(RO)装置9と、脱炭酸膜装置10とにより構成し、電気脱イオン装置を6A,6Bの2段に直列に配置して、第2の電気脱イオン装置6Bの濃縮水W3を第1の電気脱イオン装置6Aの前段に設けられた処理水タンクTに返送する構成として純水製造装置を製造した。
[Example 2]
As shown in FIG. 3, the pretreatment device 5 includes a first reverse osmosis membrane (RO) device 8, a second reverse osmosis membrane (RO) device 9, and a decarbonation membrane device 10. The ion apparatus is arranged in series in two stages of 6A and 6B, and the concentrated water W3 of the second electrodeionization apparatus 6B is returned to the treated water tank T provided in the front stage of the first electrodeionization apparatus 6A. A pure water manufacturing apparatus was manufactured as a configuration.

この純水製造装置により、ホウ素濃度が25ppb、塩化物イオン濃度が11000ppb、CO濃度が8ppmの原水W0を処理したところ、前処理装置5の処理水W1のホウ素濃度は25ppb、塩化物イオン濃度は30ppb、CO濃度は1ppm以下であった。 When the raw water W0 having a boron concentration of 25 ppb, a chloride ion concentration of 11000 ppb, and a CO 2 concentration of 8 ppm was treated with this pure water production apparatus, the boron concentration of the treated water W1 of the pretreatment apparatus 5 was 25 ppb and the chloride ion concentration Was 30 ppb and the CO 2 concentration was 1 ppm or less.

そして、この処理水W1を電気脱イオン装置6A,6Bで連続的に処理した結果、15時間経過後では、処理水タンクTの処理水のホウ素濃度は20ppb、塩化物イオン濃度は24ppb、CO濃度は0.6ppmであり、1段目の電気脱イオン装置6Aの脱塩水のホウ素濃度は40ppt、塩化物イオン濃度は0.5ppb以下、CO濃度は0.01ppm以下であり、電気脱イオン装置6Aでのホウ素除去率は99.8%であった。さらに2段目の電気脱イオン装置6Bの脱塩水のホウ素濃度は0.4ppt、塩化物イオン濃度は0.5ppb以下、CO濃度は0.01ppm以下であり、電気脱イオン装置6Bでのホウ素除去率は99%であった。 As a result of continuously treating the treated water W1 with the electrodeionization devices 6A and 6B, the boron concentration of the treated water in the treated water tank T is 20 ppb, the chloride ion concentration is 24 ppb, and CO 2 after 15 hours. The concentration is 0.6 ppm, the boron concentration of the demineralized water of the first-stage electrodeionization device 6A is 40 ppt, the chloride ion concentration is 0.5 ppb or less, the CO 2 concentration is 0.01 ppm or less, The boron removal rate in the apparatus 6A was 99.8%. Furthermore, the boron concentration of the demineralized water of the second-stage electrodeionization apparatus 6B is 0.4 ppt, the chloride ion concentration is 0.5 ppb or less, and the CO 2 concentration is 0.01 ppm or less. The removal rate was 99%.

〔比較例3〕
実施例2において、処理水タンクTに塩化ナトリウムを添加して電気脱イオン装置6の処理水W1の塩化物イオン濃度を150ppbとした以外は同様にして処理を行ったところ、第1の電気脱イオン装置6Aの脱塩水のホウ素濃度は400ppt、塩化物イオン濃度は0.5ppb以下、CO濃度は0.01ppm以下であり、第1の電気脱イオン装置6Aでのホウ素除去率は98%であった。また、第2の電気脱イオン装置6Bの脱塩水のホウ素濃度は2ppt、塩化物イオン濃度は0.5ppb以下、CO濃度は0.01ppm以下であり、第2の電気脱イオン装置6Bでのホウ素除去率は99.5%であった。
[Comparative Example 3]
In Example 2, treatment was performed in the same manner except that sodium chloride was added to the treated water tank T so that the chloride ion concentration of the treated water W1 of the electrodeionization apparatus 6 was 150 ppb. The boron concentration of the deionized water of the ion device 6A is 400 ppt, the chloride ion concentration is 0.5 ppb or less, the CO 2 concentration is 0.01 ppm or less, and the boron removal rate in the first electrodeionization device 6A is 98%. there were. In addition, the boron concentration of the demineralized water of the second electrodeionization apparatus 6B is 2 ppt, the chloride ion concentration is 0.5 ppb or less, and the CO 2 concentration is 0.01 ppm or less. The boron removal rate was 99.5%.

本発明の第一の実施形態に係る純水製造装置を示すフロー図である。It is a flowchart which shows the pure water manufacturing apparatus which concerns on 1st embodiment of this invention. 前記実施形態の電気脱イオン装置の脱塩室及び濃縮室を示す概略構成図である。It is a schematic block diagram which shows the demineralization chamber and the concentration chamber of the electrodeionization apparatus of the said embodiment. 本発明の第二の実施形態に係る純水製造装置を示すフロー図である。It is a flowchart which shows the pure water manufacturing apparatus which concerns on 2nd embodiment of this invention. 比較例1の純水製造装置を示すフロー図である。It is a flowchart which shows the pure water manufacturing apparatus of the comparative example 1.

5…前処理装置
6…電気脱イオン装置
6A…第1の電気脱イオン装置
6B…第2の電気脱イオン装置
8…第1の逆浸透膜(RO)装置(前処理装置)
9…第2の逆浸透膜(RO)装置(前処理装置)
10…脱炭酸膜装置(前処理装置)
11…脱塩室
12…濃縮室
W3…濃縮水
T…処理水タンク
5 ... Pretreatment device 6 ... Electrodeionization device 6A ... First electrodeionization device 6B ... Second electrodeionization device 8 ... First reverse osmosis membrane (RO) device (pretreatment device)
9. Second reverse osmosis membrane (RO) device (pretreatment device)
10. Decarbonation membrane device (pretreatment device)
11 ... Desalination chamber 12 ... Concentration chamber W3 ... Concentrated water T ... Treated water tank

Claims (10)

前処理装置と、前記前処理装置の処理水を脱塩室に受け入れて脱イオン処理を行う電気脱イオン装置とを有する純水製造装置であって、
前記前処理装置が、前記電気脱イオン装置の脱塩室に導入する処理水の塩化物イオン濃度を100ppb以下にすることを特徴とする純水製造装置。
A deionized water production apparatus comprising: a pretreatment device; and an electrodeionization device that performs deionization treatment by receiving treated water from the pretreatment device in a demineralization chamber,
An apparatus for producing pure water, wherein the pretreatment device makes a chloride ion concentration of treated water introduced into a demineralization chamber of the electrodeionization device to 100 ppb or less.
前記前処理装置が、1又は2以上のRO膜装置を備え、前記電気脱イオン装置の脱塩室に導入する処理水の炭酸濃度を1ppm以下にすることを特徴とする請求項1に記載の純水製造装置。   The said pre-processing apparatus is provided with 1 or 2 or more RO membrane apparatus, The carbonic acid concentration of the treated water introduced into the demineralization chamber of the said electrodeionization apparatus shall be 1 ppm or less. Pure water production equipment. 前記前処理装置が、1又は2以上のイオン交換樹脂塔をさらに備えることを特徴とする請求項2に記載の純水製造装置。   The pure water production apparatus according to claim 2, wherein the pretreatment apparatus further includes one or more ion exchange resin towers. 前記前処理装置が、脱炭酸膜装置、脱炭酸塔又は真空脱気塔をさらに備えることを特徴とする請求項3に記載の純水製造装置。   The pure water production apparatus according to claim 3, wherein the pretreatment device further includes a decarbonation membrane device, a decarbonation tower, or a vacuum degassing tower. 前記電気脱イオン装置の脱塩水の一部を、前記電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から導入することを特徴とする請求項1〜4のいずれかに記載の純水製造装置。   The part of the demineralized water of the electrodeionization apparatus is introduced into the concentration chamber of the electrodeionization apparatus from a direction opposite to the introduction direction of the treated water into the demineralization chamber. The pure water manufacturing apparatus in any one. 前記電気脱イオン装置が、複数段直列に設けられていることを特徴とする請求項1〜5のいずれかに記載の純水製造装置。   The pure water production apparatus according to claim 1, wherein the electrodeionization apparatus is provided in a plurality of stages in series. 原水を前処理装置で処理し、この処理水を電気脱イオン装置の脱塩室に導入して脱イオン処理を行う純水の製造方法であって、
前記前処理装置にて塩化物イオン濃度を100ppb以下にした処理水を、前記電気脱イオン装置の脱塩室に導入することを特徴とする純水製造方法。
A method for producing pure water, in which raw water is treated with a pretreatment device, and the treated water is introduced into a demineralization chamber of an electrodeionization device to perform deionization treatment,
A pure water production method, wherein treated water having a chloride ion concentration of 100 ppb or less in the pretreatment device is introduced into a demineralization chamber of the electrodeionization device.
前記電気脱イオン装置の脱塩水の一部を、前記電気脱イオン装置の濃縮室に前記脱塩室への処理水の導入方向と反対方向から導入することを特徴とする請求項7に記載の純水の製造方法。   The part of the demineralized water of the electrodeionization apparatus is introduced into the concentration chamber of the electrodeionization apparatus from a direction opposite to the direction of introduction of treated water into the demineralization chamber. A method for producing pure water. 前記電気脱イオン装置が、複数段直列に設けられていることを特徴とする請求項7又は8に記載の純水の製造方法。   The method for producing pure water according to claim 7 or 8, wherein the electrodeionization apparatus is provided in a plurality of stages in series. 前記複数段の電気脱イオン装置のうち最後段の電気脱イオン装置の濃縮水を、前記処理水とともに1段目の電気脱イオン装置の脱塩室に導入することを特徴とする請求項9に記載の純水の製造方法。   The concentrated water of the last-stage electrodeionization device among the plurality of-stage electrodeionization devices is introduced into the demineralization chamber of the first-stage electrodeionization device together with the treated water. The manufacturing method of the pure water of description.
JP2013213246A 2013-10-10 2013-10-10 Apparatus and method for producing purified water Pending JP2014000575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213246A JP2014000575A (en) 2013-10-10 2013-10-10 Apparatus and method for producing purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213246A JP2014000575A (en) 2013-10-10 2013-10-10 Apparatus and method for producing purified water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007198084A Division JP2009028695A (en) 2007-07-30 2007-07-30 Apparatus and method for manufacturing pure water

Publications (1)

Publication Number Publication Date
JP2014000575A true JP2014000575A (en) 2014-01-09

Family

ID=50034261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213246A Pending JP2014000575A (en) 2013-10-10 2013-10-10 Apparatus and method for producing purified water

Country Status (1)

Country Link
JP (1) JP2014000575A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170328A (en) * 2016-03-23 2017-09-28 栗田工業株式会社 Pure water production apparatus and operation method of pure water production apparatus
JP2018086657A (en) * 2018-02-21 2018-06-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water producing method
CN109534562A (en) * 2019-01-15 2019-03-29 浙江浙能兰溪发电有限责任公司 Prepare the processing system of boiler feedwater
WO2020003831A1 (en) * 2018-06-27 2020-01-02 野村マイクロ・サイエンス株式会社 Electrical deionization apparatus, ultrapure water manufacturing system, and ultrapure water manufacturing method
KR102192071B1 (en) * 2020-01-06 2020-12-17 비케이이엔지 주식회사 the method of manufacturing pure water
KR20220114527A (en) 2019-12-25 2022-08-17 노무라마이크로사이엔스가부시키가이샤 Pure water manufacturing method, pure water manufacturing system, ultrapure water manufacturing method and ultrapure water manufacturing system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240220A (en) * 1988-07-27 1990-02-09 Kurita Water Ind Ltd Pure water producing device
JPH11188359A (en) * 1997-12-26 1999-07-13 Kurita Water Ind Ltd Pure water producing apparatus
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2001198578A (en) * 2000-01-20 2001-07-24 Kurita Water Ind Ltd Method and device for electrically desalting treatment
JP2004261648A (en) * 2003-02-21 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method thereof
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
WO2004085318A1 (en) * 2003-03-28 2004-10-07 Chemitreat Pte Ltd Apparatus and method for continuous electrodeionization
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240220A (en) * 1988-07-27 1990-02-09 Kurita Water Ind Ltd Pure water producing device
JPH11188359A (en) * 1997-12-26 1999-07-13 Kurita Water Ind Ltd Pure water producing apparatus
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2001198578A (en) * 2000-01-20 2001-07-24 Kurita Water Ind Ltd Method and device for electrically desalting treatment
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
JP2004261648A (en) * 2003-02-21 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method thereof
WO2004085318A1 (en) * 2003-03-28 2004-10-07 Chemitreat Pte Ltd Apparatus and method for continuous electrodeionization
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170328A (en) * 2016-03-23 2017-09-28 栗田工業株式会社 Pure water production apparatus and operation method of pure water production apparatus
JP2018086657A (en) * 2018-02-21 2018-06-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water producing method
WO2020003831A1 (en) * 2018-06-27 2020-01-02 野村マイクロ・サイエンス株式会社 Electrical deionization apparatus, ultrapure water manufacturing system, and ultrapure water manufacturing method
CN112154125A (en) * 2018-06-27 2020-12-29 野村微科学股份有限公司 Electrodeionization device, ultrapure water production system, and ultrapure water production method
KR20210022540A (en) 2018-06-27 2021-03-03 노무라마이크로사이엔스가부시키가이샤 Electric deionization device, ultrapure water production system, and ultrapure water production method
JPWO2020003831A1 (en) * 2018-06-27 2021-08-02 野村マイクロ・サイエンス株式会社 Electric deionizer, ultrapure water production system and ultrapure water production method
TWI801595B (en) * 2018-06-27 2023-05-11 日商野村微科學股份有限公司 Electric deionization device, ultrapure water production system, and ultrapure water production method
JP7314133B2 (en) 2018-06-27 2023-07-25 野村マイクロ・サイエンス株式会社 Electrodeionization apparatus, ultrapure water production system, and ultrapure water production method
KR102637681B1 (en) * 2018-06-27 2024-02-15 노무라마이크로사이엔스가부시키가이샤 Electric deionization device, ultrapure water production system, and ultrapure water production method
CN109534562A (en) * 2019-01-15 2019-03-29 浙江浙能兰溪发电有限责任公司 Prepare the processing system of boiler feedwater
KR20220114527A (en) 2019-12-25 2022-08-17 노무라마이크로사이엔스가부시키가이샤 Pure water manufacturing method, pure water manufacturing system, ultrapure water manufacturing method and ultrapure water manufacturing system
KR102192071B1 (en) * 2020-01-06 2020-12-17 비케이이엔지 주식회사 the method of manufacturing pure water

Similar Documents

Publication Publication Date Title
JP2009028695A (en) Apparatus and method for manufacturing pure water
JP5733351B2 (en) Method and apparatus for treating boron-containing water
JP2014000575A (en) Apparatus and method for producing purified water
WO2016098891A1 (en) Ultrapure water production apparatus and ultrapure water production method
KR101916557B1 (en) Ultrapure water production apparatus and ultrapure water production method
JP6728876B2 (en) Electric deionization device and method for producing deionized water
JP3575271B2 (en) Pure water production method
CN111252971A (en) Ultrapure water manufacturing system and ultrapure water manufacturing method using same
JP4599803B2 (en) Demineralized water production equipment
JP4993136B2 (en) Pure water production apparatus and pure water production method
JP3864934B2 (en) Pure water production equipment
JP5158393B2 (en) Pure water production apparatus and pure water production method
JP2007307561A (en) High-purity water producing apparatus and method
JP2020078772A (en) Electrodeionization device and method for producing deionized water using the same
JP2000051665A (en) Desalination method
CN114616212A (en) Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
WO2023149415A1 (en) Pure water production apparatus and operation method for pure water production apparatus
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
WO2019188965A1 (en) Ultrapure water production system and ultrapure water production method
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
CN112424128B (en) Pure water production system and pure water production method
JP2002001069A (en) Method for producing pure water
JP6561448B2 (en) Method and apparatus for electrodeionization treatment of vanadium-containing water
JP7205576B1 (en) Operation method of pure water production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324