JP2004261648A - Electrodeionization apparatus, and operating method thereof - Google Patents

Electrodeionization apparatus, and operating method thereof Download PDF

Info

Publication number
JP2004261648A
JP2004261648A JP2003043701A JP2003043701A JP2004261648A JP 2004261648 A JP2004261648 A JP 2004261648A JP 2003043701 A JP2003043701 A JP 2003043701A JP 2003043701 A JP2003043701 A JP 2003043701A JP 2004261648 A JP2004261648 A JP 2004261648A
Authority
JP
Japan
Prior art keywords
water
chamber
concentration
anion
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003043701A
Other languages
Japanese (ja)
Other versions
JP3901107B2 (en
Inventor
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003043701A priority Critical patent/JP3901107B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to TW093103541A priority patent/TW200427636A/en
Priority to PCT/JP2004/001528 priority patent/WO2004071968A1/en
Priority to EP04711002A priority patent/EP1598318A4/en
Priority to CN2004800100555A priority patent/CN1774403B/en
Priority to KR1020057014837A priority patent/KR101066939B1/en
Publication of JP2004261648A publication Critical patent/JP2004261648A/en
Priority to US11/197,313 priority patent/US20060027457A1/en
Application granted granted Critical
Publication of JP3901107B2 publication Critical patent/JP3901107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeionization apparatus which suppresses the concentration diffusion of carbonate ions from a concentrating chambers, so that production water having an extremely low carbonate ion concentration can be obtained, and to provide an operating method therefor. <P>SOLUTION: Raw water is introduced into a desalting chambers 16, and produced water is discharged from desalting chambers 16. Part of the produced water is passed to a concentrating chambers 15 in a direction reverse to the water passing direction in the desalting chambers 16 in a counter-current single pass system, and outflow water of the concentrating chambers 15 is discharged outside the system. The discharge side of the produced water in each desalting chamber 16 is provided with the inflow port of each concentrating chamber 15, and the inflow side of the raw water in each desalting chamber 16 is provided with the outflow port of each concentrating chamber 15. Anions of a part of the treated water are removed by using an anion removal means 9, and is passed to each concentrating chamber 15. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アニオン濃度の低い生産水を生産するための電気脱イオン装置及びその運転方法に関する。
【0002】
【従来の技術】
純水、超純水等を製造する分野などにおいて電気脱イオン装置が用いられている。プレートアンドフレーム型の電気脱イオン装置は、陽極と、陰極と、該陽極、陰極間に濃縮室と脱塩室(希釈室)とを交互に形成するように交互に配置された平膜状の陽イオン交換膜及び陰イオン交換膜を有する。脱塩室にはイオン交換樹脂等のイオン交換体が充填されている。この脱塩室に脱塩処理すべき水が流通され、水中のイオンがイオン交換膜を透過して脱塩室から濃縮室に移動する。
【0003】
特開2002−205069号には、シリカ濃度及びホウ素濃度の低い生産水を生産するために、濃縮水として、原水よりシリカ又はホウ素濃度の低い水を、脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、該濃縮室のうち脱塩室の原水入口に近い側から流出させ、この濃縮室から流出した濃縮水の少なくとも一部を系外へ排出することが記載されている。
【0004】
同号公報では、濃縮水として原水よりシリカ又はホウ素濃度の低い水を用い、しかも、このように水質の良好な水を、脱塩室の脱イオン水(生産水)取り出し側から原水流入側へ向かう方向に濃縮室に通水することにより、シリカ、ホウ素濃度を極低濃度にまで低減した高水質の生産水を得ることができる。
【0005】
【特許文献1】
特開2002−205069号公報
【0006】
【発明が解決しようとする課題】
本発明は、濃縮室からの炭酸イオン等のアニオンの濃度拡散を十分に抑制し、これにより極低炭酸濃度の生産水を得ることができる電気脱イオン装置の運転方法と電気脱イオン装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の電気脱イオン装置の運転方法は、脱イオン装置の運転方法であって、被処理水を該脱塩室に流通させ、濃縮水を該濃縮室に流通させる運転方法において、該濃縮水として、アニオン除去処理手段で処理された低アニオン濃度水を、脱塩室出口に近い側から該濃縮室に流入させると共に、脱塩室入口に近い側から流出させるように該濃縮室に流通させることを特徴とするものである。
【0008】
また、本発明の電気脱イオン装置は、陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、被処理水が該脱塩室に流通され、濃縮水が該濃縮室に流通される電気脱イオン装置において、該濃縮水を脱塩室出口に近い側から該濃縮室に流入させると共に脱塩室入口に近い側から流出させるように濃縮水導入手段及び流出手段が設けられており、且つ、該濃縮室に流入する濃縮水からアニオンを除去する手段が設けられていることを特徴とするものである。
【0009】
本発明では、炭酸等のアニオン濃度が著しく低い高純度の生産水の製造するために、濃縮室に供給される濃縮水の炭酸等のアニオン濃度を低くする。
【0010】
これにより、濃縮室の出口近傍においても濃縮室から脱塩室に向うアニオン濃度勾配が比較的小さくなり、濃縮室から脱塩室への炭酸の拡散が抑制され、生産水の炭酸濃度を低くすることができる。
【0011】
本発明では、濃縮室に流入する濃縮水の全無機炭酸濃度を50ppb以下とすることにより、濃縮室から脱塩室への炭酸イオンの濃度勾配による拡散を抑制し、全無機炭酸濃度が著しく低い生産水を生産することが可能となる。
【0012】
本発明では、同様に、濃縮室に流入する濃縮水のシリカ濃度を100ppb以下とし、またホウ素濃度を10ppb以下とすることにより、これらのイオンの濃縮室から脱塩室への濃度勾配による拡散を抑制し、生産水中のシリカ濃度及びホウ素を著しく低くすることができる。
【0013】
濃縮水に流入する濃縮水中の全無機炭酸濃度や、シリカ濃度あるいはホウ素濃度を低下させるために、脱塩室から流出する生産水の一部を濃縮水として用いてもよい。また、濃縮室に供給する水をイオン交換装置や電気脱イオン装置で処理してもよい。
【0014】
濃縮室に流入する濃縮水中の全無機炭酸濃度を低下させるために、脱気膜装置などの脱気手段を用いてもよい。
【0015】
本発明では、原水をアニオン除去処理した後、脱塩室に供給してもよく、これにより、生産水のアニオン濃度をさらに低下させることができる。このアニオン除去処理としては、逆浸透処理及び脱気処理が好適であり、特に多段に逆浸透処理し、さらに脱気処理することが好適である。
【0016】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0017】
図1は本発明の実施の形態を示す電気脱イオン装置の模式的な断面図である。この電気脱イオン装置10は、電極(陽極11、陰極12)の間に複数のアニオン交換膜(A膜)13及びカチオン交換膜(C膜)14を交互に配列して濃縮室15と脱塩室16とを交互に形成したものであり、脱塩室16には、イオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体が混合もしくは複層状に充填されている。
【0018】
また、濃縮室15と、陽極室17及び陰極室18にも、イオン交換体、活性炭又は金属等の電気導電体が充填されてもよい。
【0019】
被処理水は脱塩室16に導入され、脱塩室16からは生産水が取り出される。被処理水の一部はアニオン除去手段9に送られ、アニオン除去処理される。このアニオン除去処理手段9でアニオンが除去された水は、濃縮室15に脱塩室16の通水方向とは逆方向に向流一過式で通水され、濃縮室15の流出水は系外へ排出される。この電気脱イオン装置では、濃縮室15と脱塩室16とが交互に並設され、脱塩室16の生産水取り出し側に濃縮室15の流入口が設けられており、脱塩室16の原水流入側に濃縮室15の流出口が設けられている。これにより、濃縮水は濃縮室15に対し脱塩室出口側(図1の下側)から流入し、脱塩室入口側(図1の上側)から流出する。
【0020】
また、アニオン除去手段9から流出した水の一部は陽極室17の入口側に送給され、そして、陽極室17の流出水は、陰極室18の入口側へ送給され、陰極室18の流出水は排水として系外へ排出される。なお、陽極室17の入口水はアニオン除去手段を経ない被処理水でも良い。
【0021】
このように、濃縮室15にアニオン除去処理水を脱塩室16と向流一過式で通水することにより、生産水取り出し側ほど濃縮室15内の濃縮水の濃度が低いものとなり、濃度拡散による脱塩室16への影響が小さくなり、強アニオンのみならず炭酸、シリカ、ホウ素等の弱アニオンの除去率も飛躍的に高めることができる。この電気脱イオン装置によれば、比抵抗が18MΩ・cm以上の生産水を生産することが可能である。
【0022】
なお、濃縮室に通水されるアニオン除去処理水の導電率が低く、電気脱イオン装置の電気抵抗が高くなるときには、濃縮室にイオン交換体等の導電体を充填する。これにより、濃縮水に食塩等の電解質を添加し電気抵抗を下げることが不要となる。電極室17,18にも、電流確保のために、イオン交換体や活性炭、又は電気導電体である金属等を充填することが好ましい。これにより、超純水等の高水質の水を通水しても必要電流を確保することが可能となる。
【0023】
電極室では、特に陽極室での塩素やオゾン等の酸化剤の発生が起こるため、充填物としては、長期的にはイオン交換樹脂等を用いるよりも、活性炭を用いることが好ましい。また、電極室へ図1のように生産水を供給することは、電極室供給水にClが殆ど無いため、塩素の発生を防止できるので、充填物や電極の長期安定化のためには望ましい。
【0024】
図2は、この図1の電気脱イオン装置の脱塩室及び濃縮室への通水系統を簡略化して示したものである。図示の通り、被処理水が脱塩室16に通水されて生産水となる。被処理水の一部がアニオン除去処理後、濃縮室15に通水され、濃縮排水として排出される。濃縮室内の水の流れ方向は脱塩室16内の反対(向流)である。
【0025】
このアニオン除去手段9により、全無機炭酸濃度を50ppb以下好ましくは30ppb以下とすることにより、生産水中の全無機炭酸濃度が著しく低くなる。また、アニオン除去手段9により、シリカ濃度を100ppb以下好ましくは80ppb以下とし、ホウ素濃度を10ppb以下、好ましくは8ppb以下とすることにより、生産水中のシリカ濃度及びホウ素濃度を著しく低下させることができる。
【0026】
前記アニオン除去手段9としては、脱気膜装置、脱炭酸塔、真空脱気塔などの脱気装置のほか、逆浸透膜分離装置、電気透析装置、アニオン交換体を含むイオン交換樹脂塔等のイオン交換装置または電気脱イオン装置が例示される。
【0027】
なお、炭酸除去のために、脱気膜、脱炭酸塔、真空脱気塔等の脱気手段を含むことが望ましい。特に真空吸引方式(例えば20Torr以下)、または窒素等によるスイープ方式、あるいは両者を行う脱気膜処理装置は炭酸除去効率に優れている。
【0028】
図3は、アニオン除去手段9として電気脱イオン装置8を採用した場合の一例を示す系統図である。この電気脱イオン装置8は陽極と陰極との間にアニオン膜8aとカチオン膜8cとによって脱塩室8Dと濃縮室8A,8Bを形成したものである。被処理水は各室8A,8B,8Dに並流にて流通され、脱塩室8Dからの脱塩水と濃縮室8Bからの濃縮水とが電気脱イオン装置10の濃縮水15の脱塩室出口側に供給され、脱塩室入口側から流出する。この電気脱イオン装置8では脱塩室8Dのアニオン膜8a側の濃縮室8Aとカチオン膜8c側の濃縮室8Bがあり、濃縮室8Aに濃縮されたアニオン成分のみ排出され、カチオンが濃縮された濃縮室8Bは脱塩室8Dからの脱塩水と共に、電気脱イオン装置10の濃縮室15に供給される。この電気脱イオン装置8は、このようにアニオン成分のみを除去、低減するものである。
【0029】
本発明では、脱塩室に供給される被処理水としてアニオン除去処理されたものを用いてもよく、このようにすることにより、脱塩室のアニオン負荷が軽減されるので、弱アニオン濃度がさらに低レベルとなった生産水を得ることができる。このアニオン除去処理としては、脱気処理、逆浸透処理等が好適である。活性炭により有機成分を吸着除去したり、塩素をイオン化することも好適である。
【0030】
脱塩室への給水からアニオン除去処理により炭酸イオンを除去する場合には、アニオン除去手段として、脱気手段(特に膜脱気装置)を用いることが特に好ましい。また、脱気処理水の一部を、脱気装置入口に再循環させて炭酸除去効率を上げることが望ましい。
【0031】
炭酸除去のための脱気処理においては、流入水を酸性好ましくはpH4〜6、更に好ましくはpH4〜5に調整して、炭酸除去効率を上げることが望ましい。
【0032】
また、脱気膜のガス側を真空ポンプで吸引する場合は、真空度を50Torr以下、更に好ましくは20Torr以下とすることが、炭酸除去効率を上げる点で望ましい。
【0033】
原水を逆浸透処理(以下RO処理ということがある。)する場合、多段、例えば2段に処理を行うことにより、炭酸、シリカ、ホウ素等の弱アニオン成分を十分に低減させることが望ましい。
【0034】
この場合、1段目及び/又は2段目のRO入口水をアルカリ性(pH8〜10)とすることにより、弱アニオン成分の除去効率が向上する。
【0035】
また、このアルカリ性とするためのアルカリ生成手段として、特開2001−113281号で示されている脱塩室厚さ7mm以上(好ましくは15mm)でアニオン/カチオンの混合イオン交換体を充填した電気脱イオン装置を用いてもよい。このようにすると、アルカリ生成と同時に、弱アニオン成分も低減される。このような電気脱イオン装置は、1段目と2段目のRO装置の間に配置されるのが望ましい。
【0036】
前処理としては、上記2段RO処理と脱気処理を含むことが、超高純度の超純水、例えば比抵抗18.2MΩ・cm以上、シリカ濃度0.05ppb以下、ホウ素0.005ppb以下の処理水を得るには特に好適である。
【0037】
上述の前処理装置を電気脱イオン装置10の前段に配置した構成例を図4〜7に示す。
【0038】
図4では、原水を脱気膜装置1によって脱気して電気脱イオン装置10の被処理水としている。なお、脱気膜装置1の脱気処理水の一部は該装置1の上流側に返送され、繰り返し処理されている。
【0039】
図5では、原水を活性炭吸着塔2と2段のRO装置3,3に通水して被処理水としている。
【0040】
図6では、原水を活性炭吸着塔2、第1のRO装置3、電気脱イオン装置4、第2のRO装置3によって処理して電気脱イオン装置10の被処理水としている。なお、電気脱イオン装置4としては例えば特開2001−113281号の電気脱イオン装置を用いることができるが、これに限定されるものではない。
【0041】
図7では、原水を活性炭吸着塔2、2段のRO装置3,3、脱気膜装置1によって処理し、電気脱イオン装置10の被処理水としている。
【0042】
本発明では、濃縮室に供給される濃縮水からアニオンを除去する手段は、電気脱イオン装置10そのものであってもよい。即ち、図8のように、被処理水の全量を電気脱イオン装置10の脱塩室16に流通させ、その生産水の一部を濃縮室15に脱塩室出口側から脱塩室入口側に向って流通させてもよい。
【0043】
本発明では、電気脱イオン装置10を多段に設置し、原水を多段に脱イオン処理してもよい。
【0044】
図9は、このように電気脱イオン装置10(10A,10B)を多段に設置した電気脱イオンシステムの通水系統図であり、第1の電気脱イオン装置10Aと第2の電気脱イオン装置10Bとを直列に接続している。
【0045】
図9の電気脱イオンシステムでは、被処理水が第1の電気脱イオン装置10Aの脱塩室16Aに通水されて1次生産水となる。この1次生産水が第2の電気脱イオン装置の脱塩室16Bに流通される。濃縮室15A,15Bの濃縮水の流通方向は脱塩室16A,16Bと向流方向である。該脱塩室16Bからの2次生産水(生産水)が取り出され、その一部が濃縮室15Bに供給される。第2の電気脱イオン装置2の濃縮室15Bから流出する濃縮水はアニオン濃度が低いものであり、該濃縮室15Aに供給される。
【0046】
第1の電気脱イオン装置1の濃縮室15Aからの流出水は、濃縮排水として排出される。
【0047】
本発明では、脱塩室の厚さは2〜7mm、流速はLV=60〜120m/h、SV=100〜200/hが好ましい。濃縮室の厚さは2〜7mm、流速はLV=10〜30m/h、SV=25〜50/hが好ましい。また、脱塩室、濃縮室ともにイオン交換体が充填され、特にアニオンカチオンの混合で充填されており、電流密度300〜700mA/dmで運転されることが好ましい。濃縮室に供給する水は、循環ポンプ等で濃縮室入口に再循環させずに、一過式様とすることが望ましい。
【0048】
また、図9のように複数の脱塩室に直列に通水する場合には、特に最終段の脱塩室にて、上記となるようにすることが望ましい。
【0049】
【発明の効果】
以上の通り、本発明の電気脱イオン装置及びその運転方法によるとアニオン濃度特に全無機炭酸濃度が著しく低い生産水を確実に生産することが可能となる。
【図面の簡単な説明】
【図1】実施の形態に係る電気脱イオン装置の模式的な断面図である。
【図2】図1の電気脱イオン装置の通水系統図である。
【図3】別の実施の形態に係る電気脱イオンシステムの通水系統図である。
【図4】さらに別の実施の形態に係る電気脱イオンシステムの通水系統図である。
【図5】異なる実施の形態に係る電気脱イオンシステムの通水系統図である。
【図6】実施の形態に係る電気脱イオンシステムの通水系統図である。
【図7】実施の形態に係る電気脱イオンシステムの通水系統図である。
【図8】実施の形態に係る電気脱イオンシステムの通水系統図である。
【図9】実施の形態に係る電気脱イオンシステムの通水系統図である。
【符号の説明】
10 電気脱イオン装置
11 陽極
12 陰極
15,15A,15B 濃縮室
16,16A,16B 脱塩室
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrodeionization apparatus for producing product water having a low anion concentration and a method of operating the same.
[0002]
[Prior art]
2. Description of the Related Art Electrodeionization devices are used in fields such as producing pure water and ultrapure water. The plate and frame type electrodeionization apparatus has a flat membrane shape in which an anode, a cathode, and a concentration chamber and a desalination chamber (dilution chamber) are alternately formed between the anode and the cathode. It has a cation exchange membrane and an anion exchange membrane. The desalting chamber is filled with an ion exchanger such as an ion exchange resin. Water to be subjected to a desalination treatment is circulated through the desalting chamber, and ions in the water pass through the ion exchange membrane and move from the desalting chamber to the concentration chamber.
[0003]
Japanese Patent Application Laid-Open No. 2002-205069 discloses that in order to produce product water having a low silica concentration and low boron concentration, water having a lower silica or boron concentration than raw water is used as concentrated water near a deionized water outlet of a desalination chamber. It is described that the condensate is introduced into the concentrating chamber from the side and is discharged from the side of the concentrating chamber that is closer to the raw water inlet of the desalting chamber, and at least a part of the condensed water flowing out of the concentrating chamber is discharged out of the system. ing.
[0004]
In the same publication, water having a lower silica or boron concentration than raw water is used as concentrated water, and water having such a good water quality is supplied from the deionized water (production water) extraction side of the desalination chamber to the raw water inflow side. By passing the water through the concentrating chamber in the direction toward it, it is possible to obtain high-quality water with reduced silica and boron concentrations to extremely low concentrations.
[0005]
[Patent Document 1]
JP-A-2002-205069
[Problems to be solved by the invention]
The present invention provides an operation method of an electrodeionization apparatus and an electrodeionization apparatus capable of sufficiently suppressing the concentration diffusion of anions such as carbonate ions from a concentration chamber and thereby obtaining product water having an extremely low carbonate concentration. The purpose is to do.
[0007]
[Means for Solving the Problems]
The operation method of the electrodeionization apparatus of the present invention is an operation method of the deionization apparatus, wherein the water to be treated flows through the desalting chamber and the concentrated water flows through the concentration chamber. The low-anion-concentration water treated by the anion removal treatment means flows into the concentrating chamber from the side near the outlet of the desalting chamber and flows through the concentrating chamber so as to flow out from the side near the inlet of the desalting chamber. It is characterized by the following.
[0008]
Also, in the electrodeionization apparatus of the present invention, the concentration chamber and the desalination chamber are partitioned by the ion exchange membrane between the anode and the cathode, and the water to be treated is circulated to the desalination chamber, and the concentrated water is concentrated. In the electrodeionization apparatus circulated through the chamber, the concentrated water introduction means and the outflow means are arranged so that the concentrated water flows into the concentration chamber from a side near the outlet of the desalination chamber and flows out from a side near the entrance of the desalination chamber. And a means for removing anions from the concentrated water flowing into the concentration chamber.
[0009]
In the present invention, in order to produce high-purity production water having an extremely low concentration of anions such as carbonic acid, the concentration of anions such as carbonic acid in the concentrated water supplied to the concentration chamber is reduced.
[0010]
Thereby, even in the vicinity of the outlet of the concentration chamber, the anion concentration gradient from the concentration chamber to the desalination chamber becomes relatively small, the diffusion of carbonic acid from the concentration chamber to the desalination chamber is suppressed, and the carbon dioxide concentration of the produced water is reduced. be able to.
[0011]
In the present invention, by setting the total inorganic carbonic acid concentration of the concentrated water flowing into the concentrating chamber to 50 ppb or less, diffusion of carbonate ions from the concentrating chamber to the desalting chamber due to the concentration gradient is suppressed, and the total inorganic carbonic acid concentration is extremely low. Production water can be produced.
[0012]
In the present invention, similarly, by setting the silica concentration of the concentrated water flowing into the concentration chamber to 100 ppb or less and the boron concentration to 10 ppb or less, the diffusion of these ions from the concentration chamber to the desalination chamber due to the concentration gradient is prevented. It is possible to significantly reduce the silica concentration and boron in the production water.
[0013]
In order to reduce the total inorganic carbonic acid concentration, the silica concentration or the boron concentration in the concentrated water flowing into the concentrated water, a part of the production water flowing out of the desalting chamber may be used as the concentrated water. Further, the water supplied to the concentration chamber may be treated by an ion exchange device or an electrodeionization device.
[0014]
In order to reduce the total inorganic carbonic acid concentration in the concentrated water flowing into the concentration chamber, a degassing means such as a degassing membrane device may be used.
[0015]
In the present invention, after the raw water has been subjected to the anion removal treatment, it may be supplied to the desalting chamber, whereby the anion concentration of the produced water can be further reduced. As the anion removing treatment, a reverse osmosis treatment and a deaeration treatment are preferable, and in particular, a multistage reverse osmosis treatment and a further deaeration treatment are preferable.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a schematic sectional view of an electrodeionization apparatus showing an embodiment of the present invention. In this electrodeionization apparatus 10, a plurality of anion exchange membranes (A membranes) 13 and a plurality of cation exchange membranes (C membranes) 14 are alternately arranged between electrodes (anode 11 and cathode 12) to form a concentration chamber 15 and desalination. The chamber 16 is formed alternately, and the desalting chamber 16 is filled with an anion exchanger and a cation exchanger composed of an ion exchange resin, an ion exchange fiber, a graft exchanger, or the like in a mixed or multilayered manner. .
[0018]
Further, the concentration chamber 15, the anode chamber 17 and the cathode chamber 18 may also be filled with an electric conductor such as an ion exchanger, activated carbon or metal.
[0019]
The water to be treated is introduced into the desalting chamber 16, from which product water is taken out. Part of the water to be treated is sent to the anion removing means 9 and subjected to anion removing treatment. The water from which anions have been removed by the anion removal treatment means 9 is passed through the concentrating chamber 15 in a countercurrent one-way manner in the direction opposite to the water flowing direction of the desalting chamber 16. It is discharged outside. In this electrodeionization apparatus, the concentration chambers 15 and the desalination chambers 16 are alternately arranged side by side, and the inlet of the concentration chamber 15 is provided on the product water take-out side of the desalination chamber 16. The outlet of the concentration chamber 15 is provided on the raw water inflow side. Thereby, the concentrated water flows into the concentration chamber 15 from the outlet side of the desalting chamber (lower side in FIG. 1) and flows out from the inlet side of the desalination chamber (upper side in FIG. 1).
[0020]
A part of the water flowing out of the anion removing means 9 is supplied to the inlet side of the anode chamber 17, and the water flowing out of the anode chamber 17 is supplied to the inlet side of the cathode chamber 18, The effluent is discharged out of the system as wastewater. In addition, the inlet water of the anode chamber 17 may be water to be treated which does not pass through the anion removing means.
[0021]
In this way, by passing the anion-removed treated water through the condensing chamber 15 and the desalting chamber 16 in a countercurrent, the concentration of the condensed water in the concentrating chamber 15 becomes lower toward the production water takeout side. The influence of the diffusion on the desalting chamber 16 is reduced, and the removal rate of not only strong anions but also weak anions such as carbonic acid, silica, and boron can be dramatically increased. According to this electrodeionization apparatus, it is possible to produce production water having a specific resistance of 18 MΩ · cm or more.
[0022]
When the conductivity of the anion-removed water passed through the concentrating chamber is low and the electric resistance of the electrodeionization apparatus is high, the concentrating chamber is filled with a conductor such as an ion exchanger. This eliminates the need to add an electrolyte such as salt to the concentrated water to lower the electric resistance. It is preferable that the electrode chambers 17 and 18 are also filled with an ion exchanger, activated carbon, or a metal that is an electric conductor in order to secure a current. This makes it possible to secure a necessary current even when high-quality water such as ultrapure water is passed.
[0023]
In the electrode chamber, an oxidizing agent such as chlorine and ozone is generated particularly in the anode chamber. Therefore, in the long term, it is preferable to use activated carbon as the filler rather than using an ion exchange resin or the like. In addition, supplying the production water to the electrode chamber as shown in FIG. 1 can prevent chlorine from being generated because the water supplied to the electrode chamber hardly contains Cl −. desirable.
[0024]
FIG. 2 is a simplified illustration of a water flow system to the desalination chamber and the concentration chamber of the electrodeionization apparatus of FIG. As shown in the figure, the water to be treated is passed through the desalination chamber 16 to become the product water. Part of the water to be treated is passed through the concentration chamber 15 after the anion removal treatment, and is discharged as concentrated wastewater. The flow direction of the water in the concentrating chamber is opposite (countercurrent) in the desalting chamber 16.
[0025]
By setting the total inorganic carbonic acid concentration to 50 ppb or less, preferably 30 ppb or less by the anion removing means 9, the total inorganic carbonic acid concentration in the production water is significantly reduced. Further, by setting the silica concentration to 100 ppb or less, preferably 80 ppb or less and the boron concentration to 10 ppb or less, preferably 8 ppb or less by the anion removing means 9, the silica concentration and the boron concentration in the production water can be remarkably reduced.
[0026]
Examples of the anion removing means 9 include a degassing device such as a degassing membrane device, a decarbonation column, and a vacuum degassing column, a reverse osmosis membrane separation device, an electrodialysis device, and an ion exchange resin column containing an anion exchanger. An ion exchange device or an electrodeionization device is exemplified.
[0027]
In order to remove carbonic acid, it is desirable to include deaeration means such as a deaeration film, a decarbonation tower, and a vacuum deaeration tower. In particular, a degassing membrane processing apparatus that performs a vacuum suction method (for example, 20 Torr or less), a sweep method using nitrogen or the like, or both, has excellent carbonic acid removal efficiency.
[0028]
FIG. 3 is a system diagram showing an example when the electrodeionization device 8 is employed as the anion removal means 9. The electrodeionization apparatus 8 has a deionization chamber 8D and concentration chambers 8A and 8B formed between an anode and a cathode by an anion membrane 8a and a cation membrane 8c. The water to be treated is circulated in the respective chambers 8A, 8B, 8D in a parallel flow, and the desalinated water from the desalting chamber 8D and the concentrated water from the concentrating chamber 8B are combined with the deionized water of the concentrated water 15 of the electrodeionization apparatus 10. It is supplied to the outlet side and flows out from the inlet side of the desalting chamber. The electrodeionization apparatus 8 includes a concentration chamber 8A on the anion membrane 8a side of the desalting chamber 8D and a concentration chamber 8B on the cation membrane 8c side. Only the anion component concentrated in the concentration chamber 8A is discharged, and the cations are concentrated. The concentrating chamber 8B is supplied to the concentrating chamber 15 of the electrodeionization apparatus 10 together with the desalinated water from the desalting chamber 8D. The electrodeionization device 8 removes and reduces only the anion component as described above.
[0029]
In the present invention, the water to be treated supplied to the desalting chamber may be the one subjected to the anion removal treatment. By doing so, the anion load in the desalting chamber is reduced. Further, it is possible to obtain a lower level of production water. As the anion removing treatment, a degassing treatment, a reverse osmosis treatment, or the like is preferable. It is also preferable to adsorb and remove organic components by activated carbon and ionize chlorine.
[0030]
In the case where carbonate ions are removed from the water supplied to the deionization chamber by anion removal treatment, it is particularly preferable to use deaeration means (particularly a membrane deaerator) as anion removal means. In addition, it is desirable to recirculate a part of the deaerated treatment water to the deaerator inlet to increase the carbon dioxide removal efficiency.
[0031]
In the deaeration treatment for removing carbonic acid, it is desirable to adjust the inflow water to acidic, preferably pH 4 to 6, and more preferably to pH 4 to 5 to increase the carbonic acid removal efficiency.
[0032]
When the gas side of the degassing film is sucked by a vacuum pump, the degree of vacuum is desirably 50 Torr or less, and more desirably 20 Torr or less, from the viewpoint of increasing the efficiency of removing carbon dioxide.
[0033]
When raw water is subjected to reverse osmosis treatment (hereinafter sometimes referred to as RO treatment), it is desirable to sufficiently reduce weak anion components such as carbonic acid, silica, and boron by performing treatment in multiple stages, for example, two stages.
[0034]
In this case, by making the RO inlet water of the first and / or second stage alkaline (pH 8 to 10), the efficiency of removing the weak anion component is improved.
[0035]
Further, as an alkali generating means for making the alkalinity, there is disclosed an electrodeposition device disclosed in JP-A-2001-113281, in which a desalination chamber has a thickness of 7 mm or more (preferably 15 mm) and is filled with a mixed anion / cation ion exchanger. An ion device may be used. With this, the weak anion component is reduced at the same time as the generation of alkali. Such an electrodeionization device is desirably arranged between the first and second stage RO devices.
[0036]
The pretreatment may include the above-described two-stage RO treatment and deaeration treatment, and may be performed using ultrapure ultrapure water, for example, having a specific resistance of 18.2 MΩ · cm or more, a silica concentration of 0.05 ppb or less, and a boron concentration of 0.005 ppb or less. It is particularly suitable for obtaining treated water.
[0037]
FIGS. 4 to 7 show configuration examples in which the above-described pretreatment device is arranged in a stage preceding the electrodeionization device 10.
[0038]
In FIG. 4, raw water is degassed by the degassing membrane device 1 and used as the water to be treated by the electrodeionization device 10. In addition, a part of the degassing treatment water of the degassing membrane device 1 is returned to the upstream side of the degassing membrane device 1 and is repeatedly treated.
[0039]
In FIG. 5, raw water is passed through the activated carbon adsorption tower 2 and the two-stage RO devices 3 to 3 to be treated water.
[0040]
In FIG. 6, raw water is treated by the activated carbon adsorption tower 2, the first RO device 3, the electrodeionization device 4, and the second RO device 3 to be treated water of the electrodeionization device 10. In addition, as the electrodeionization apparatus 4, for example, an electrodeionization apparatus described in JP-A-2001-113281 can be used, but the invention is not limited to this.
[0041]
In FIG. 7, the raw water is treated by the activated carbon adsorption tower 2, the two-stage RO apparatuses 3 and 3, and the degassing membrane apparatus 1, and used as the water to be treated by the electrodeionization apparatus 10.
[0042]
In the present invention, the means for removing anions from the concentrated water supplied to the concentration chamber may be the electrodeionization apparatus 10 itself. That is, as shown in FIG. 8, the entire amount of the water to be treated is circulated to the desalting chamber 16 of the electrodeionization apparatus 10, and a part of the produced water is transferred from the outlet of the desalting chamber to the inlet of the desalting chamber. May be distributed to the public.
[0043]
In the present invention, the electrodeionization apparatus 10 may be installed in multiple stages, and the raw water may be deionized in multiple stages.
[0044]
FIG. 9 is a water flow diagram of an electrodeionization system in which the electrodeionization devices 10 (10A, 10B) are installed in multiple stages as described above, and shows a first electrodeionization device 10A and a second electrodeionization device. 10B are connected in series.
[0045]
In the electrodeionization system of FIG. 9, the water to be treated is passed through the desalting chamber 16A of the first electrodeionization device 10A to become primary product water. This primary product water is circulated to the desalting chamber 16B of the second electrodeionization device. The flow direction of the concentrated water in the concentration chambers 15A and 15B is in the countercurrent direction to the desalination chambers 16A and 16B. Secondary production water (production water) is taken out from the desalting chamber 16B, and a part thereof is supplied to the concentration chamber 15B. The concentrated water flowing out of the concentration chamber 15B of the second electrodeionization apparatus 2 has a low anion concentration and is supplied to the concentration chamber 15A.
[0046]
The effluent from the concentration chamber 15A of the first electrodeionization device 1 is discharged as concentrated wastewater.
[0047]
In the present invention, the thickness of the desalting chamber is preferably 2 to 7 mm, and the flow rate is preferably LV = 60 to 120 m / h and SV = 100 to 200 / h. The thickness of the concentration chamber is preferably 2 to 7 mm, and the flow rate is preferably LV = 10 to 30 m / h and SV = 25 to 50 / h. Further, both the desalting chamber and the concentrating chamber are filled with an ion exchanger, particularly filled with a mixture of anion cations, and are preferably operated at a current density of 300 to 700 mA / dm 2 . It is desirable that the water supplied to the concentration chamber be of a one-time type without being recirculated to the inlet of the concentration chamber by a circulation pump or the like.
[0048]
Further, when water is passed in series to a plurality of desalination chambers as shown in FIG.
[0049]
【The invention's effect】
As described above, according to the electrodeionization apparatus and the operation method thereof of the present invention, it is possible to surely produce product water having an anion concentration, particularly a total inorganic carbonate concentration, which is extremely low.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an electrodeionization apparatus according to an embodiment.
FIG. 2 is a water flow diagram of the electrodeionization apparatus of FIG. 1;
FIG. 3 is a water flow diagram of an electrodeionization system according to another embodiment.
FIG. 4 is a water flow diagram of an electrodeionization system according to still another embodiment.
FIG. 5 is a water flow diagram of an electrodeionization system according to another embodiment.
FIG. 6 is a water flow diagram of the electrodeionization system according to the embodiment.
FIG. 7 is a water flow diagram of the electrodeionization system according to the embodiment.
FIG. 8 is a water flow diagram of the electrodeionization system according to the embodiment.
FIG. 9 is a water flow diagram of the electrodeionization system according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electrodeionization apparatus 11 Anode 12 Cathode 15, 15A, 15B Concentration chamber 16, 16A, 16B Deionization chamber

Claims (12)

陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画された電気脱イオン装置の運転方法であって、
被処理水を該脱塩室に流通させ、濃縮水を該濃縮室に流通させる運転方法において、
該濃縮水として、アニオン除去処理手段で処理された低アニオン濃度水を、脱塩室出口に近い側から該濃縮室に流入させると共に、脱塩室入口に近い側から流出させるように該濃縮室に流通させることを特徴とする電気脱イオン装置の運転方法。
An operation method of an electrodeionization apparatus in which a concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between an anode and a cathode,
In the operating method of flowing the water to be treated through the desalting chamber and flowing the concentrated water through the concentrating chamber,
As the concentrated water, the low-anion-concentration water treated by the anion removal treatment means flows into the concentrating chamber from the side near the outlet of the desalting chamber and flows out from the side near the inlet of the desalting chamber. A method for operating an electrodeionization device, characterized in that the device is circulated through a vessel.
請求項1において、前記アニオン除去処理手段で処理された低アニオン濃度水の全無機炭酸濃度が50ppb以下であることを特徴とする電気脱イオン装置の運転方法。2. The method according to claim 1, wherein the total inorganic carbonic acid concentration of the low anion concentration water treated by the anion removal treatment means is 50 ppb or less. 請求項1又は2において、前記アニオン除去処理で処理された低アニオン濃度水のシリカ濃度が100ppb以下であることを特徴とする電気脱イオン装置の運転方法。3. The method for operating an electrodeionization apparatus according to claim 1, wherein the silica concentration of the low anion concentration water treated in the anion removal treatment is 100 ppb or less. 請求項1ないし3のいずれか1項において、前記アニオン除去処理で処理された低アニオン濃度水のホウ素濃度が10ppb以下であることを特徴とする電気脱イオン装置の運転方法。The method of operating an electrodeionization apparatus according to any one of claims 1 to 3, wherein the boron concentration of the low anion concentration water treated in the anion removal treatment is 10 ppb or less. 請求項1ないし4のいずれか1項において、前記脱塩室から流出する生産水の一部を濃縮室に供給することを特徴とする電気脱イオン装置の運転方法。The method according to any one of claims 1 to 4, wherein a part of the production water flowing out of the desalting chamber is supplied to a concentration chamber. 請求項1ないし5のいずれか1項において、前記アニオン除去処理手段が脱気手段を有することを特徴とする電気脱イオン装置の運転方法。The method of operating an electrodeionization apparatus according to any one of claims 1 to 5, wherein the anion removal treatment means includes a deaeration means. 請求項1ないし5のいずれか1項において、前記アニオン除去処理手段がイオン交換装置又は電気脱イオン装置を有することを特徴とする電気脱イオン装置の運転方法。The method for operating an electrodeionization apparatus according to any one of claims 1 to 5, wherein the anion removal treatment means includes an ion exchange device or an electrodeionization device. 請求項1ないし7のいずれか1項において、原水をアニオン除去処理し、この処理水を被処理水として前記脱塩室に供給することを特徴とする電気脱イオン装置の運転方法。The method of operating an electrodeionization apparatus according to any one of claims 1 to 7, wherein raw water is subjected to anion removal treatment, and the treated water is supplied to the desalination chamber as treated water. 請求項8において、該原水を逆浸透処理及び脱気処理によりアニオン除去処理することを特徴とする電気脱イオン装置の運転方法。The method according to claim 8, wherein the raw water is subjected to anion removal treatment by reverse osmosis treatment and degassing treatment. 陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、
被処理水が該脱塩室に流通され、濃縮水が該濃縮室に流通される電気脱イオン装置において、
該濃縮水を脱塩室出口に近い側から該濃縮室に流入させると共に脱塩室入口に近い側から流出させるように濃縮水導入手段及び流出手段が設けられており、
且つ、該濃縮室に流入する濃縮水からアニオンを除去する手段が設けられていることを特徴とする電気脱イオン装置。
A concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between the anode and the cathode,
The water to be treated is circulated to the desalting chamber, and the concentrated water is circulated to the concentrating chamber.
A concentrated water introduction means and an outflow means are provided so that the concentrated water flows into the concentration chamber from a side near the outlet of the desalination chamber and flows out from a side near the entrance of the desalination chamber,
The electrodeionization apparatus further includes means for removing anions from the concentrated water flowing into the concentration chamber.
請求項10において、該アニオンを除去する手段は、アニオン除去処理後の全無機炭酸濃度を50ppb以下とするものであることを特徴とする電気脱イオン装置。11. The electrodeionization apparatus according to claim 10, wherein the means for removing the anion is configured to reduce the total inorganic carbonic acid concentration after the anion removal treatment to 50 ppb or less. 請求項10又は11において、該脱塩室に供給される水からアニオンを除去する手段を備えたことを特徴とする電気脱イオン装置。The electrodeionization apparatus according to claim 10 or 11, further comprising means for removing anions from water supplied to the desalting chamber.
JP2003043701A 2003-02-14 2003-02-21 Electrodeionization apparatus and operation method thereof Expired - Fee Related JP3901107B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003043701A JP3901107B2 (en) 2003-02-21 2003-02-21 Electrodeionization apparatus and operation method thereof
PCT/JP2004/001528 WO2004071968A1 (en) 2003-02-14 2004-02-13 Electric deionization apparatus and method of operating the same
EP04711002A EP1598318A4 (en) 2003-02-14 2004-02-13 Electric deionization apparatus and method of operating the same
CN2004800100555A CN1774403B (en) 2003-02-14 2004-02-13 Apparatus for electrodeionization and method for operating the same
TW093103541A TW200427636A (en) 2003-02-14 2004-02-13 Electric deionization apparatus and method of operating the same
KR1020057014837A KR101066939B1 (en) 2003-02-14 2004-02-13 Electric deionization apparatus and method of operating the same
US11/197,313 US20060027457A1 (en) 2003-02-14 2005-08-05 Apparatus for electrodeionization and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043701A JP3901107B2 (en) 2003-02-21 2003-02-21 Electrodeionization apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004261648A true JP2004261648A (en) 2004-09-24
JP3901107B2 JP3901107B2 (en) 2007-04-04

Family

ID=33112073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043701A Expired - Fee Related JP3901107B2 (en) 2003-02-14 2003-02-21 Electrodeionization apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP3901107B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518758A (en) * 2004-10-29 2008-06-05 ジーイー・モーバイル・ウォーター,インコーポレイテッド Concentration recycle loop with filtration module
WO2009016982A1 (en) * 2007-07-30 2009-02-05 Kurita Water Industries Ltd. Pure water production apparatus and pure water production method
JP2010069399A (en) * 2008-09-17 2010-04-02 Toshiba Corp Boron separation system
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2014000575A (en) * 2013-10-10 2014-01-09 Kurita Water Ind Ltd Apparatus and method for producing purified water
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus
JP7477009B1 (en) 2023-03-30 2024-05-01 栗田工業株式会社 Method for operating an electrodeionization apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518758A (en) * 2004-10-29 2008-06-05 ジーイー・モーバイル・ウォーター,インコーポレイテッド Concentration recycle loop with filtration module
WO2009016982A1 (en) * 2007-07-30 2009-02-05 Kurita Water Industries Ltd. Pure water production apparatus and pure water production method
JP2009028695A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Apparatus and method for manufacturing pure water
KR101563169B1 (en) * 2007-07-30 2015-10-26 쿠리타 고교 가부시키가이샤 Pure water production apparatus and pure water production method
JP2010069399A (en) * 2008-09-17 2010-04-02 Toshiba Corp Boron separation system
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2014000575A (en) * 2013-10-10 2014-01-09 Kurita Water Ind Ltd Apparatus and method for producing purified water
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus
JP7477009B1 (en) 2023-03-30 2024-05-01 栗田工業株式会社 Method for operating an electrodeionization apparatus

Also Published As

Publication number Publication date
JP3901107B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP3969221B2 (en) Method and apparatus for producing deionized water
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
TW200401751A (en) Electrodeionization apparatus
JP3575271B2 (en) Pure water production method
WO2004071968A1 (en) Electric deionization apparatus and method of operating the same
JP2004283710A (en) Pure water producer
JP2004261643A (en) Electrodeionization apparatus, and operating method therefor
JP2000051845A (en) Method for producing pure water
JP2004000919A (en) Apparatus for producing desalted water
JP2007307561A (en) High-purity water producing apparatus and method
JP2002086152A (en) Method for operating electrical deionization device, electrical deionization device and electrical deionization system
JP2020078772A (en) Electrodeionization device and method for producing deionized water using the same
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP3952127B2 (en) Electrodeionization treatment method
JP2004057935A (en) Ultrapure-water making system
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP2000015257A (en) Apparatus and method for making high purity water
JP5379025B2 (en) Electric deionized water production equipment
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
JP2004167423A (en) Apparatus and method for pure water production
JP6807250B2 (en) Water treatment equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Ref document number: 3901107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees