JP2012206073A - Deionized water production system - Google Patents

Deionized water production system Download PDF

Info

Publication number
JP2012206073A
JP2012206073A JP2011075541A JP2011075541A JP2012206073A JP 2012206073 A JP2012206073 A JP 2012206073A JP 2011075541 A JP2011075541 A JP 2011075541A JP 2011075541 A JP2011075541 A JP 2011075541A JP 2012206073 A JP2012206073 A JP 2012206073A
Authority
JP
Japan
Prior art keywords
water
concentrated water
deionized water
concentrated
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011075541A
Other languages
Japanese (ja)
Inventor
Kunihiro Hayakawa
邦洋 早川
Hideki Itabashi
英樹 板橋
Hiroyuki Ikeda
宏之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011075541A priority Critical patent/JP2012206073A/en
Publication of JP2012206073A publication Critical patent/JP2012206073A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a deionized water production system, capable of efficiently recovering water as the whole without discharging clear water out of the system.SOLUTION: The system includes: a condensed water return pipe (6) for circulating part of condensed water from a reverse osmosis membrane device (23) to a tank (21); a condensed water discharge pipe (7) for discharging the residue out of the system; a water quality measuring means (11) which measures the quality of condensed water; and circulation amount control means (8, 30) which adjusts, based on a measurement value of the quality of condensed water by the water quality measuring means, the circulation amount of condensed water to the condensed water return pipe and the discharge amount thereof to the condensed water discharge pipe.

Description

本発明は、逆浸透膜装置を用いた脱イオン水製造システムに係り、特に回収率の向上を図る技術に関する。   The present invention relates to a deionized water production system using a reverse osmosis membrane device, and more particularly to a technique for improving the recovery rate.

純水や超純水などを製造する脱イオン水製造システムでは、水が滞留すると構成部材(配管、各水処理装置)などからの不純物の溶出や微生物の発生などにより水質が低下する。従って、実際に使用される量よりも多く脱イオン水を製造し、使用されなかった剰余水は、脱イオン製造システムの前段に戻されて循環処理される場合がある。循環される水の量は脱イオン水の使用量(ユースポイントでの使用量)によって変化し、使用量が多ければ循環水量は減少し、使用量が少なければ循環水量は増大する。なお、脱イオン水を一定の水質に保つためには、脱イオン水が使用されていない場合であっても、絶えず循環して脱イオン水製造システムを稼働させておく必要がある。   In a deionized water production system that produces pure water, ultrapure water, or the like, when water is accumulated, the water quality deteriorates due to elution of impurities from constituent members (piping, each water treatment device) and the generation of microorganisms. Therefore, deionized water is produced more than the amount actually used, and surplus water that has not been used may be returned to the previous stage of the deionization production system and circulated. The amount of water to be circulated varies depending on the amount of deionized water used (the amount used at the point of use). If the amount used is large, the amount of circulating water decreases, and if the amount used is small, the amount of circulating water increases. In order to keep the deionized water at a constant water quality, it is necessary to continuously circulate and operate the deionized water production system even when the deionized water is not used.

一方、出願人は特許文献1に示すような簡易な超純水製造システムを開発している。この特許文献1に示すような逆浸透膜装置(図1参照)では、特に図示されていないが、濃縮水の濃度が高くなりすぎると濃縮水側にスケール成分が生成する場合があることから、一般に濃縮水を系外へ排出するための濃縮水排出路を設けるようにしている。
また、一般に逆浸透膜装置は前段の逆浸透膜モジュールの濃縮水を後段の給水として処理するよう多段に構成されており、被処理水は一過式で処理されている。
On the other hand, the applicant has developed a simple ultrapure water production system as shown in Patent Document 1. In the reverse osmosis membrane device (see FIG. 1) as shown in Patent Document 1, although not particularly illustrated, if the concentration of concentrated water becomes too high, a scale component may be generated on the concentrated water side. In general, a concentrated water discharge path for discharging concentrated water out of the system is provided.
In general, the reverse osmosis membrane apparatus is configured in multiple stages so as to treat the concentrated water of the reverse osmosis membrane module in the previous stage as the feed water in the subsequent stage, and the water to be treated is treated in a transient manner.

特許第4250922号公報Japanese Patent No. 4250922

ところで、上記従来の超純水製造システムに用いられている逆浸透膜を用いた脱イオン製造システムでは、通常は回収率(=処理水量/原水量)が一定となるように運転されている。
しかしながら、回収率が一定であると、ユースポイントでの使用量が少ない場合などでは、未使用の脱イオン水が多量にタンクに戻されることになるため、濃縮水が比較的清澄であっても系外へ排出されてしまい、全体としては水を効率的に回収していないことになり、好ましいことではない。
By the way, the deionization production system using the reverse osmosis membrane used in the conventional ultrapure water production system is usually operated so that the recovery rate (= treatment water amount / raw water amount) is constant.
However, if the recovery rate is constant, a large amount of unused deionized water is returned to the tank when the amount used at the point of use is small, so even if the concentrated water is relatively clear. It is discharged out of the system, and as a whole, water is not efficiently recovered, which is not preferable.

本発明は、上述した課題を解決すべくなされたものであり、その目的とするところは、清澄な水を系外へ排出せず、全体として水を効率的に回収、使用することの可能な脱イオン水製造システムを提供することにある。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is not to discharge clear water out of the system but to collect and use water efficiently as a whole. It is to provide a deionized water production system.

上記の目的を達成するべく、請求項1の脱イオン水製造システムは、原水が導入される前処理部と、該前処理部で処理された前処理水が導入される脱イオン水製造部と、該脱イオン水製造部で製造された脱イオン水をユースポイントに送水し、余剰の脱イオン水を該脱イオン水製造部に戻す端末配管とを備え、該脱イオン水製造部は、少なくとも前処理水が導入されるタンクと、タンクからの水を処理する逆浸透膜装置とを有し、該端末配管から余剰の脱イオン水が該タンクに戻される脱イオン水製造システムであって、前記逆浸透膜装置からの濃縮水の一部を該タンクに循環させるための濃縮水返送管と、残部を系外へ排出するための濃縮水排出管と、濃縮水の水質を測定する水質測定手段と、該水質測定手段による濃縮水の水質の測定値に基づき濃縮水の前記濃縮水返送管への循環量と前記濃縮水排出管への排出量とを調整する循環量制御手段とを備えたことを特徴とする。   In order to achieve the above object, a deionized water production system according to claim 1 includes a pretreatment unit into which raw water is introduced, and a deionized water production unit into which pretreatment water treated in the pretreatment unit is introduced. A deionized water production unit comprising a terminal pipe for feeding deionized water produced in the deionized water production unit to a point of use and returning surplus deionized water to the deionized water production unit. A deionized water production system having a tank into which pretreated water is introduced, and a reverse osmosis membrane device for treating water from the tank, wherein excess deionized water is returned from the terminal pipe to the tank; Concentrated water return pipe for circulating a part of the concentrated water from the reverse osmosis membrane device to the tank, a concentrated water discharge pipe for discharging the remainder out of the system, and water quality measurement for measuring the quality of the concentrated water And a measured value of the water quality of the concentrated water by the water quality measuring means. Characterized in that a circulation quantity control means for adjusting the circulation rate of the concentrated water return pipe of concentrated water and the emission of the the concentrated water discharge pipe based.

また、請求項2の脱イオン水製造システムでは、請求項1において、前記循環量制御手段は、前記水質測定手段による濃縮水の水質の測定値がスケール成分を析出しない範囲内となるよう前記濃縮水返送管への循環量と前記濃縮水排出管への排出量とを調整することを特徴とする。   Further, in the deionized water production system according to claim 2, in claim 1, the circulation amount control unit is configured to increase the concentration of the concentrated water by the water quality measurement unit within a range in which no scale component is deposited. The circulation amount to the water return pipe and the discharge amount to the concentrated water discharge pipe are adjusted.

また、請求項3の脱イオン水製造システムでは、請求項1または2において、前記循環量制御手段は、自動バルブを含み、前記水質測定手段による濃縮水の水質の測定値に応じて該自動バルブを制御して前記濃縮水返送管への循環量と前記濃縮水排出管への排出量とを調整することを特徴とする。
また、請求項4の脱イオン水製造システムでは、請求項1乃至3のいずれかにおいて、前記水質測定手段は、濃縮水の導電率を測定することを特徴とする。
The deionized water production system according to claim 3 is the deionized water production system according to claim 1 or 2, wherein the circulation amount control means includes an automatic valve, and the automatic valve according to a measured value of the quality of the concentrated water by the water quality measurement means. Is controlled to adjust the circulation amount to the concentrated water return pipe and the discharge amount to the concentrated water discharge pipe.
Further, in the deionized water production system according to a fourth aspect, in any one of the first to third aspects, the water quality measuring means measures the conductivity of the concentrated water.

請求項1の脱イオン水製造システムによれば、水質測定手段による濃縮水の水質の測定値に基づき濃縮水を循環させることで、濃縮水を効率よく回収して再度逆浸透膜装置にて濾過することが可能となり、未使用脱イオン水が多量に循環されている場合等において、未使用の脱イオン水を多量に含有する濃縮水の系外への排出量を抑制し、回収率を向上させることができる。
請求項2の脱イオン水製造システムによれば、逆浸透膜装置内でスケール成分が析出しない濃縮水の濃度ひいては水質の範囲内において、回収率を高く維持することができる。
According to the deionized water production system of claim 1, the concentrated water is efficiently recovered by circulating the concentrated water based on the measured value of the quality of the concentrated water by the water quality measuring means and filtered again by the reverse osmosis membrane device. In the case where a large amount of unused deionized water is circulated, the amount of concentrated deionized water that contains a large amount of unused deionized water is reduced and the recovery rate is improved. Can be made.
According to the deionized water production system of the second aspect, it is possible to maintain a high recovery rate within the range of the concentration of the concentrated water in which the scale component does not precipitate in the reverse osmosis membrane apparatus, and the water quality.

請求項3の脱イオン水製造システムによれば、濃縮水の水質の測定値の変動に応じて自動バルブを制御して濃縮水の循環量及び排出量を調整することで、常に最適な回収率を維持することができる。
請求項4の脱イオン水製造システムによれば、濃縮水の導電率を測定することにより、簡易な構成にして濃縮水の濃度ひいては水質を測定できる。
According to the deionized water production system of claim 3, the optimum recovery rate is always obtained by controlling the automatic valve according to the fluctuation of the measured value of the concentrated water quality and adjusting the circulation amount and discharge amount of the concentrated water. Can be maintained.
According to the deionized water production system of the fourth aspect, by measuring the conductivity of the concentrated water, it is possible to measure the concentration of the concentrated water and thus the water quality with a simple configuration.

本発明に係る脱イオン水製造システムの系統図である。1 is a system diagram of a deionized water production system according to the present invention. 本発明に係る脱イオン水製造システムの系統図の一例である。It is an example of the systematic diagram of the deionized water manufacturing system which concerns on this invention. 実施例1に係る脱イオン水製造システムの系統図である。1 is a system diagram of a deionized water production system according to Example 1. FIG. 実施例1における回収率、濃縮水導電率の推移を示す図である。It is a figure which shows transition of the collection | recovery rate in Example 1, and concentrated water electrical conductivity. 実施例2に係る脱イオン水製造システムの系統図である。It is a systematic diagram of the deionized water manufacturing system which concerns on Example 2. FIG. 実施例2における回収率、濃縮水導電率の推移を示す図である。It is a figure which shows transition of the collection | recovery rate in Example 2, and concentrated water electrical conductivity.

以下、図面を参照して本発明に係る脱イオン水製造システムの実施の形態を詳細に説明する。
図1には、本発明に係る脱イオン水製造システムの系統図が示されている。
図1に示す脱イオン水製造システムは、大きくは、市水、工水、河川水及び井水等の原水が導入される前処理部1、前処理部1で処理された前処理水が導入される脱イオン水製造部2、脱イオン水製造部2で製造された脱イオン水をユースポイント(POU)4に送水し、余剰水を脱イオン水製造部2に戻す端末配管3、脱イオン水製造部2で製造した脱イオン水以外の濃縮された濃縮水(逆浸透膜装置23の濃縮水)の一部を脱イオン水製造部2に戻すとともに濃縮水の残部を系外へ排出する濃縮水処理部5とから構成されている。
Hereinafter, embodiments of a deionized water production system according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a system diagram of a deionized water production system according to the present invention.
The deionized water production system shown in FIG. 1 mainly includes a pretreatment unit 1 into which raw water such as city water, industrial water, river water, and well water is introduced, and pretreatment water treated by the pretreatment unit 1 is introduced. Deionized water production unit 2, deionized water produced in deionized water production unit 2 is sent to use point (POU) 4, and terminal pipe 3 for returning surplus water to deionized water production unit 2, deionized A part of the concentrated water (concentrated water of the reverse osmosis membrane device 23) other than the deionized water produced in the water production unit 2 is returned to the deionized water production unit 2 and the remaining concentrated water is discharged out of the system. Concentrated water treatment unit 5.

前処理部1は、例えば除濁装置と活性炭吸着装置等からなり、これにより前処理水が生成される。
脱イオン水製造部2は、例えばタンク21、ポンプP1、保安フィルタ22、ポンプP2及び逆浸透膜装置23が順に配置されてなり、これにより前処理水がタンク21に供給され、タンク21内の前処理水が、ポンプP1により保安フィルタ22に通水されてフィルタ処理され、ポンプP2で昇圧された後、逆浸透膜装置23で処理され、脱イオン水が得られる。
The pretreatment unit 1 includes, for example, a turbidity device and an activated carbon adsorption device, and thereby pretreatment water is generated.
The deionized water production unit 2 includes, for example, a tank 21, a pump P 1, a safety filter 22, a pump P 2, and a reverse osmosis membrane device 23, so that pretreated water is supplied to the tank 21. The pretreated water is passed through the safety filter 22 by the pump P1, filtered, boosted by the pump P2, and then processed by the reverse osmosis membrane device 23 to obtain deionized water.

保安フィルタ22は、異物除去を目的としたフィルタである。また、逆浸透膜装置23はイオン種を除去できる膜濾過装置であり、本発明において、逆浸透膜には逆浸透膜、ルーズRO膜、ナノ濾過膜等のイオン種を除去できるものも含むものとする。膜モジュールの形状としては特に制限はないが、スパイラル型、中空糸型が好ましい。そして、逆浸透膜装置23には加圧状態でクロスフロー方式により通水される。
端末配管3は、脱イオン水をユースポイント4に送水するための送水配管31と余剰水をタンク21に戻す戻り配管32とからなり、これによりユースポイント4で使用されなかった余剰水が適宜脱イオン水製造部2のタンク21に戻される。
The security filter 22 is a filter for the purpose of removing foreign substances. The reverse osmosis membrane device 23 is a membrane filtration device capable of removing ionic species. In the present invention, the reverse osmosis membrane includes those capable of removing ionic species such as a reverse osmosis membrane, a loose RO membrane, and a nanofiltration membrane. . Although there is no restriction | limiting in particular as a shape of a membrane module, A spiral type and a hollow fiber type are preferable. Then, water is passed through the reverse osmosis membrane device 23 in a pressurized state by a cross flow method.
The terminal pipe 3 includes a water supply pipe 31 for supplying deionized water to the use point 4 and a return pipe 32 for returning surplus water to the tank 21, whereby excess water not used at the use point 4 is appropriately removed. It is returned to the tank 21 of the ionized water production unit 2.

濃縮水処理部5は、濃縮水の一部を脱イオン水製造部2に戻す濃縮水返送管6と濃縮水の残部を系外へ排出する濃縮水排出管7と分流装置8とからなっている。また、濃縮水返送管6には、濃縮水の水質(濃度等)を計測する水質測定器(水質測定手段)11が設けられている。水質測定器11としては、導電率計、TOC計、シリカ計、イオン濃度計等を用いることができるが、スケール成分の成分濃度と導電率は比例するとみなせるため、導電率で判定するのが簡便であり、簡易に水質を測定できるという点で導電率計が好ましい。水質測定器11はコントローラ30の入力側に電気的に接続されており、分流装置8はコントローラ30の出力側に電気的に接続されている(循環量制御手段)。   The concentrated water treatment unit 5 includes a concentrated water return pipe 6 that returns a part of the concentrated water to the deionized water production unit 2, a concentrated water discharge pipe 7 that discharges the remainder of the concentrated water to the outside of the system, and a branching device 8. Yes. The concentrated water return pipe 6 is provided with a water quality measuring device (water quality measuring means) 11 for measuring the quality (concentration, etc.) of the concentrated water. As the water quality measuring device 11, a conductivity meter, a TOC meter, a silica meter, an ion concentration meter or the like can be used. However, since the component concentration of the scale component and the conductivity can be considered to be proportional, it is easy to determine by the conductivity. The conductivity meter is preferable in that the water quality can be easily measured. The water quality measuring device 11 is electrically connected to the input side of the controller 30, and the diversion device 8 is electrically connected to the output side of the controller 30 (circulation amount control means).

そして、このよう構成された本発明に係る脱イオン水製造システムでは、上述のように脱イオン水製造部2で脱イオン水が製造される一方、余剰水が脱イオン水製造部2のタンク21に戻され、さらに分流装置8の分流度合いに応じて脱イオン水以外の濃縮された濃縮水の一部が脱イオン水製造部2のタンク21に戻され、濃縮水の残部が系外へ排出される。
本実施の形態では、逆浸透膜装置23の膜分離水がそのままユースポイント4に送水されているが、ユースポイントでの要求水質によっては、逆浸透膜装置23の処理水(膜分離水)は、電気脱イオン装置、イオン交換樹脂塔、紫外線酸化装置、紫外線殺菌装置、脱気膜、逆浸透膜装置、或いは、限外濾過又は精密濾過を有する膜濾過装置の1種以上によって処理される。
And in the deionized water manufacturing system based on this invention comprised in this way, while deionized water is manufactured by the deionized water manufacturing part 2 as mentioned above, surplus water is the tank 21 of the deionized water manufacturing part 2. In accordance with the diversion degree of the diversion device 8, a part of the concentrated water other than the deionized water is returned to the tank 21 of the deionized water production unit 2 and the remaining part of the concentrated water is discharged out of the system. Is done.
In this embodiment, the membrane separation water of the reverse osmosis membrane device 23 is sent to the use point 4 as it is, but depending on the required water quality at the use point, the treated water (membrane separation water) of the reverse osmosis membrane device 23 is It is processed by one or more of an electrodeionization apparatus, an ion exchange resin tower, an ultraviolet oxidation apparatus, an ultraviolet sterilization apparatus, a degassing membrane, a reverse osmosis membrane apparatus, or a membrane filtration apparatus having ultrafiltration or microfiltration.

以下、本発明に係る脱イオン水製造システムにおけるコントローラ30による濃縮水の循環量制御について説明する。
先ず、原水水質と回収率に応じた濃縮水の水質、水質測定項目(導電率、イオン濃度等)の関係を予め把握しておき、スケール成分が析出しない濃度の範囲内で水質に応じた濃縮水の循環量及び排出量の制御値をそれぞれ設定する。
Hereinafter, the circulation amount control of the concentrated water by the controller 30 in the deionized water production system according to the present invention will be described.
First, the relationship between the raw water quality and the quality of the concentrated water according to the recovery rate and the relationship between the water quality measurement items (conductivity, ion concentration, etc.) are determined in advance, and the concentration according to the water quality is within the concentration range where the scale components do not precipitate. Set control values for water circulation and discharge.

そして、水質測定器11によって濃縮水返送管6を流れる濃縮水の水質を測定し、コントローラ30により、濃縮水の水質に応じて排出量及び循環量が上記制御値となるように分流装置8の分流度合いを可変操作する。この際、水質測定器11による測定方法としては連続で測定するようなものであってもよいし、間欠的に測定するようなものであってもよく、オンライン式であってもサンプリング式であってもよいが、オンライン式で連続に測定するのが好ましい。また、濃縮水流量として一定量以上を維持し、濃縮水側末端のベッセルにおいて、1.5m/h/ベッセル(例えば、8インチRO膜の場合)以上を確保することが好ましい。 Then, the quality of the concentrated water flowing through the concentrated water return pipe 6 is measured by the water quality measuring device 11, and the flow rate of the flow dividing device 8 is adjusted by the controller 30 so that the discharge amount and the circulation amount become the above control values according to the quality of the concentrated water. Variable operation of diversion degree. At this time, the measurement method using the water quality measuring device 11 may be a continuous measurement method, an intermittent measurement method, an online method or a sampling method. However, it is preferable to measure continuously by an on-line method. Further, it is preferable that the flow rate of the concentrated water is maintained at a certain amount or more, and 1.5 m 3 / h / vessel (for example, in the case of an 8-inch RO membrane) or more is secured in the vessel at the end of the concentrated water.

濃縮水の排出量を調整する方法としては、どのような方法を用いてもよい。例えば、分流装置8を調整バルブで構成し、バルブ開度を調整してもよい。また、分流装置8として複数の開閉バルブを設け、開閉する台数を変更してもよく、この場合、濃縮水返送管6と濃縮水排出管7の両方にそれぞれ開閉バルブを設置することが好ましい。
水質の制御方法としては、例えば上記循環量の制御値を維持するようにバルブの開閉を常に制御するようにしてもよいし、上記循環量の制御値或いは水質測定項目(導電率、イオン濃度等)の上限値、下限値を定め、上限値を超えたら濃縮水排出管7側の流量が多くなるようにバルブの開度を増やし、下限値を下回ったら濃縮水排出管7側の流量が少なくなるようにバルブの開度を減らすようにしてもよい。下限値は上限値の1〜20%程度小さくなるよう設定することが好ましい。
Any method may be used as a method of adjusting the discharge amount of the concentrated water. For example, the flow dividing device 8 may be configured by an adjustment valve, and the valve opening degree may be adjusted. In addition, a plurality of open / close valves may be provided as the diversion device 8 to change the number of open / close valves. In this case, it is preferable to install open / close valves in both the concentrated water return pipe 6 and the concentrated water discharge pipe 7.
As a water quality control method, for example, the opening / closing of the valve may be always controlled so as to maintain the control value of the circulation amount, or the control value of the circulation amount or the water quality measurement item (conductivity, ion concentration, etc.) ), The valve opening is increased so that the flow rate on the concentrated water discharge pipe 7 side increases when the upper limit value is exceeded, and the flow rate on the concentrated water discharge pipe 7 side decreases when the value falls below the lower limit value. The opening of the valve may be reduced so that The lower limit value is preferably set to be about 1 to 20% smaller than the upper limit value.

なお、逆浸透膜装置23からの濃縮水を除き、原水よりも水質が悪い水、原水よりもスケール成分濃度が高い水が逆浸透膜装置23に被処理水として流入することは好ましいことではない。このような水質の悪い水が逆浸透膜装置23に流入するような場合には、スケール成分を直接測定して分流装置8の分流度合いを可変操作することが好ましい。
逆浸透膜装置23を安定的に運転するためには、pHを調整するようにしてもよく、別途スケール防止剤やスライムコントロール剤を添加してもよい。スケール防止剤やスライムコントロール剤としては市販されているものであればどのようなものでも使用可能である。
Except for the concentrated water from the reverse osmosis membrane device 23, it is not preferable that water having a lower quality than the raw water or water having a higher scale component concentration than the raw water flows into the reverse osmosis membrane device 23 as treated water. . When such poor quality water flows into the reverse osmosis membrane device 23, it is preferable to directly measure the scale component and variably operate the diversion degree of the diversion device 8.
In order to stably operate the reverse osmosis membrane device 23, the pH may be adjusted, or a scale inhibitor or a slime control agent may be added separately. Any commercially available scale inhibitor or slime control agent can be used.

このように、排出量及び循環量が制御値となるように分流装置8を制御することにより、未使用の脱イオン水を多く含むような清澄な濃縮水の排出量を抑制し、逆浸透膜装置23内でスケール成分が析出しない濃度ひいては水質の範囲内において、回収率を高くでき、常に最適な回収率を維持することができる。
分流装置8としては、図2に一例を示すように、濃縮水返送管6に電磁バルブ等の自動バルブ9が介装され、濃縮水排出管7に電磁バルブ等の自動バルブ10が介装され、更に、自動バルブ9、10はコントローラ30に電気的に接続されているものや、後述の実施例1、2で示されるものなどを使用することができる。
Thus, by controlling the flow dividing device 8 so that the discharge amount and the circulation amount become control values, the discharge amount of clear concentrated water containing a large amount of unused deionized water is suppressed, and the reverse osmosis membrane The recovery rate can be increased and the optimum recovery rate can be maintained at all times within the concentration range where the scale component does not precipitate in the apparatus 23 and thus within the water quality range.
As an example of the diversion device 8, as shown in FIG. 2, an automatic valve 9 such as an electromagnetic valve is interposed in the concentrated water return pipe 6, and an automatic valve 10 such as an electromagnetic valve is interposed in the concentrated water discharge pipe 7. Further, the automatic valves 9 and 10 can be electrically connected to the controller 30 or those shown in Examples 1 and 2 to be described later.

[実施例1]
図3示すように、上記図1の分流装置8として、濃縮水返送管6と濃縮水排出管7との間に電磁バルブ等の自動三方コントロールバルブ12が介装されてなる脱イオン水製造システムを用意した。自動三方コントロールバルブ12はコントローラ30に電気的に接続されている。
[Example 1]
As shown in FIG. 3, a deionized water production system in which an automatic three-way control valve 12 such as an electromagnetic valve is interposed between a concentrated water return pipe 6 and a concentrated water discharge pipe 7 as the flow dividing device 8 in FIG. Prepared. The automatic three-way control valve 12 is electrically connected to the controller 30.

この脱イオン水製造システムは、工水を濾過処理して濁質を除去した水を供給水として、脱イオン水製造部2における逆浸透膜を用いて、処理水と濃縮水を得るよう構成されている。逆浸透膜処理水は脱イオン水としてユースポイントに送水される。脱イオン水製造部2のタンク21には使用されなかった脱イオン水が変動しながら流入している。
なお、スライムコントロール剤として保安フィルタ前に、栗田工業(株)製クリバーターEC−503を3ppm注入した。
This deionized water production system is configured to obtain treated water and concentrated water using the reverse osmosis membrane in the deionized water production unit 2 using water from which the turbidity has been removed by filtering the industrial water as feed water. ing. Reverse osmosis membrane treated water is sent to the point of use as deionized water. Deionized water that has not been used flows into the tank 21 of the deionized water production unit 2 while fluctuating.
In addition, 3 ppm of Kurita Kogyo Co., Ltd. Krivator EC-503 was injected as a slime control agent before the safety filter.

また、運転条件は下記の通りであり、水質は表1に示す通りである。
<運転条件>
・逆浸透膜:東レ(株)製SUL−G20 8インチ 1本
・処理水量:1m/h
・総濃縮水量:4m/h以上(循環水量3.3〜3.9m/h、排水量0.1〜0.7m/h)
・回収率:59〜91%
・POU回収水:最大1m/hで不定期に流入
The operating conditions are as follows, and the water quality is as shown in Table 1.
<Operating conditions>
・ Reverse osmosis membrane: One SUL-G20 8 inch manufactured by Toray Industries, Inc. ・ Amount of treated water: 1 m 3 / h
・ Total concentrated water volume: 4 m 3 / h or more (circulated water volume: 3.3-3.9 m 3 / h, drainage volume: 0.1-0.7 m 3 / h)
・ Recovery rate: 59-91%
・ POU recovered water: irregularly flowing at a maximum of 1 m 3 / h

Figure 2012206073
Figure 2012206073

実際には、自動三方コントロールバルブ12で濃縮水の全量を制御しようとすると、自動三方コントロールバルブ12の開度を微調整する必要があり、この微調整は難しい。そこで、図3に示すように、自動三方コントロールバルブ12の上流側に濃縮水返送バイパス管6’と濃縮水排出バイパス管7’とを設け、予め循環水と排出水の一部を分岐させておき、自動三方コントロールバルブ12で調整すべき流量を減らすようにする。また、濃縮水返送管6、濃縮水排出管7、濃縮水返送バイパス管6’及び濃縮水排出バイパス管7’にはそれぞれ手動バルブ13、14、15、16を設けておく。このようにすれば、自動三方コントロールバルブ12のサイズを小さくでき、開度調整を容易なものとし、費用を低減可能である。   Actually, when the total amount of concentrated water is to be controlled by the automatic three-way control valve 12, it is necessary to finely adjust the opening degree of the automatic three-way control valve 12, and this fine adjustment is difficult. Therefore, as shown in FIG. 3, a concentrated water return bypass pipe 6 ′ and a concentrated water discharge bypass pipe 7 ′ are provided upstream of the automatic three-way control valve 12, and a part of the circulating water and the discharged water is branched in advance. The automatic three-way control valve 12 reduces the flow rate to be adjusted. Further, manual valves 13, 14, 15, and 16 are provided in the concentrated water return pipe 6, the concentrated water discharge pipe 7, the concentrated water return bypass pipe 6 ′, and the concentrated water discharge bypass pipe 7 ′, respectively. In this way, the size of the automatic three-way control valve 12 can be reduced, the opening degree can be easily adjusted, and the cost can be reduced.

そして、水質測定器11にて測定した値をもとに、スケール成分の析出を起こさせない回収率になるように三方自動コントロールバルブ12を用いて濃縮水をPID制御により循環水と排出水とに振り分ける。
つまり、回収率を設定する際に問題となるのはスケール成分の析出であり、原水水質からスケール成分が生成しない回収率を設定しておき、この回収率になるように三方自動コントロールバルブ12を制御する。ここに、スケールを形成する成分としてはBa、Ca、Mg、SiO、SO、HCO、CO、PO、Fなどが考えられ、これら成分の濃度と水温、pHなどをあらかじめ水質分析で測定しておき、CaCO、CaSO、Mg(OH)、CaPO、CaF、BaSO、SiOなどが溶解度積、飽和濃度を超えないように回収率を設定しておく。なお、ランジェリア指数などの指数を用いて回収率を設定してもよく、別途平膜試験等から安定的に運転できる回収率を決定してもよい。
Then, based on the value measured by the water quality measuring instrument 11, the concentrated water is converted into circulating water and discharged water by PID control using the three-way automatic control valve 12 so that the recovery rate does not cause precipitation of scale components. Distribute.
In other words, the problem in setting the recovery rate is the precipitation of scale components. The recovery rate is set so that scale components are not generated from the raw water quality, and the three-way automatic control valve 12 is set so as to achieve this recovery rate. Control. Here, as the component forming the scale Ba, Ca, Mg, etc. SiO 2, SO 4, HCO 3 , CO 3, PO 4, F is considered, the water quality analysis of these components of concentration and temperature, pH and the like in advance The recovery rate is set so that CaCO 3 , CaSO 4 , Mg (OH) 2 , CaPO 4 , CaF 2 , BaSO 4 , SiO 2, etc. do not exceed the solubility product and saturation concentration. Note that the recovery rate may be set using an index such as the Langerian index, or a recovery rate that allows stable operation may be determined separately from a flat membrane test or the like.

ここでは、上記の如く8インチの逆浸透膜を用いて1ベッセルに1本のモジュールを装填し、生産水量を1.0m/hとしているので、前述の1.5m/h/ベッセルを確保するためには、濃縮水量は1.5m/hとなる。例えば、仮に回収率を75%とすると、排出水量は0.33m/hとなり、1.17m/hが循環水となる。この回収率を濃縮水の水質測定により90%まで上げることが可能であれば、排出水量は0.11m/hとなり、1.39m/hが循環水量となる。 Here, one module is loaded into one vessel using an 8-inch reverse osmosis membrane as described above, and the production water volume is set to 1.0 m 3 / h. Therefore, the above-mentioned 1.5 m 3 / h / vessel is used. In order to ensure, the amount of concentrated water will be 1.5 m 3 / h. For example, if the recovery rate is 75%, the amount of discharged water is 0.33 m 3 / h, and 1.17 m 3 / h is circulating water. If this recovery rate can be increased to 90% by measuring the quality of concentrated water, the amount of discharged water will be 0.11 m 3 / h, and the amount of circulating water will be 1.39 m 3 / h.

そこで、濃縮水排出バイパス管7’の手動バルブ16を操作して予め排出側の一部分岐流量として0.1m/hを確保しておき、濃縮水返送バイパス管6’の手動バルブ15を操作して予め循環側の一部分岐流量として1.0m/hを確保しておき、自動三方コントロールバルブ12により排出側の流量を0.1〜0.2m/hの範囲で、循環側の流量を0.3〜0.39m/hの範囲でコントロールする。このようにすれば自動三方コントロールバルブ12は最大0.59m/hを通水するだけでよい。濃縮水返送バイパス管6’及び濃縮水排出バイパス管7’を設けない場合には、自動三方コントロールバルブ12として1.5m/hを通水可能なコントロールバルブが必要となる。 Therefore, the manual valve 16 of the concentrated water discharge bypass pipe 7 ′ is operated to secure 0.1 m 3 / h as a partial branch flow rate on the discharge side in advance, and the manual valve 15 of the concentrated water return bypass pipe 6 ′ is operated. to advance to ensure 1.0 m 3 / h as partially branched flow of pre-circulation side, the range of the flow rate of the discharge side of 0.1 to 0.2M 3 / h by an automatic three-way control valve 12, the circulation side The flow rate is controlled in the range of 0.3 to 0.39 m 3 / h. In this way, the automatic three-way control valve 12 only needs to pass a maximum of 0.59 m 3 / h. When the concentrated water return bypass pipe 6 ′ and the concentrated water discharge bypass pipe 7 ′ are not provided, a control valve capable of passing 1.5 m 3 / h is required as the automatic three-way control valve 12.

このようにして、逆浸透膜装置23における逆浸透膜の濃縮水を導電率で測定し、循環水量と排水量が導電率に応じた制御値となるよう自動三方コントロールバルブ12を制御した。表1には前処理水水質、POU回収水水質、逆浸透膜装置23の回収率を設定したときの水質分析値が示されているが、 この表1の水質分析値からスケール成分生成の危険性がない回収率を計算すると60%であり、その際の導電率は47.5mS/mであった。そこで、導電率の設定値を47.5mS/mとした。
そして、濃縮水の導電率の設定値に対して自動三方コントロールバルブ12によりPID制御を行い、回収率を59%〜91%の範囲で連続自動的に変化させた。
図4に短期的な運転時の回収率、濃縮水導電率の推移を示す。また表3に720時間後の処理水量と排水量を示す。
In this way, the concentrated water of the reverse osmosis membrane in the reverse osmosis membrane device 23 was measured by the electrical conductivity, and the automatic three-way control valve 12 was controlled so that the circulating water amount and the drainage amount became control values according to the electrical conductivity. Table 1 shows water quality analysis values when pretreatment water quality, POU recovered water quality, and recovery rate of reverse osmosis membrane device 23 are set. Danger of scale component generation from water quality analysis values in Table 1 The recovery rate having no property was calculated to be 60%, and the conductivity at that time was 47.5 mS / m. Therefore, the set value of conductivity was set to 47.5 mS / m.
Then, PID control was performed by the automatic three-way control valve 12 on the set value of the conductivity of the concentrated water, and the recovery rate was continuously and automatically changed in the range of 59% to 91%.
Fig. 4 shows changes in the recovery rate and concentrated water conductivity during short-term operation. Table 3 shows the amount of treated water and the amount of discharged water after 720 hours.

[実施例2]
図5に示すように、実施例1の自動三方コントロールバルブ12を用いず、濃縮水の濃縮水返送管6と濃縮水排出管7にそれぞれ濃縮水返送バイパス管6”及び濃縮水排出バイパス管7”を設け、濃縮水返送管6、濃縮水排出管7、濃縮水返送バイパス管6”及び濃縮水排出バイパス管7”のそれぞれに手動バルブ13、14、15、16を設置し、濃縮水返送管6及び濃縮水返送バイパス管6”のいずれか一方、濃縮水排出管7及び濃縮水排出バイパス管7” のいずれか一方に電磁バルブ等の自動バルブ9、10をそれぞれ設置した。自動バルブ9、10はコントローラ30に電気的に接続されている。
[Example 2]
As shown in FIG. 5, without using the automatic three-way control valve 12 of the first embodiment, the concentrated water return pipe 6 and the concentrated water discharge pipe 7 are connected to the concentrated water return bypass pipe 6 ″ and the concentrated water discharge bypass pipe 7 respectively. ”, The concentrated water return pipe 6, the concentrated water discharge pipe 7, the concentrated water return bypass pipe 6 ″ and the concentrated water discharge bypass pipe 7 ″ are installed with manual valves 13, 14, 15 and 16, respectively. Automatic valves 9 and 10 such as electromagnetic valves were installed on either the pipe 6 or the concentrated water return bypass pipe 6 "and either the concentrated water discharge pipe 7 or the concentrated water discharge bypass pipe 7". The automatic valves 9 and 10 are electrically connected to the controller 30.

スケール成分が析出しないように回収率を設定して制御を行う場合には、スケール成分析出の問題がなく、且つ、効率的に運転できる回収率の導電率の測定値を上限値とする。設定した回収率における導電率の測定値を上限とすることで、回収率がそれ以上になることを防止し、スケール成分析出の危険性を回避することができる。測定値の下限値としてはどのような値でも可能であるが、低くしすぎると効率的な運転ができなくなるため、上限値で設定した測定値よりも1〜20%低い値であるのが好ましい。
なお、98%より大きな回収率を設定すると、濃度上昇が急激に進み、スケール成分形成の危険性が高まるおそれがあることから、回収率の設定値は98%以下であることが好ましい。
上述の通り、表1の水質分析値からスケール成分生成の危険性がない回収率を計算すると60%であり、その際の導電率は47.5mS/mであった。そこで、導電率の上限値を45mS/mとし、下限値を40mS/mとした。
そして、濃縮水の導電率測定値が下限値を下回った場合に循環側の自動バルブ9が開、排出側の自動バルブ10が閉(通水方法1)になり、上限値を上回った場合に循環側の自動バルブ9が閉、排出側の自動バルブ10が開(通水方法2)になるように制御を行った。また、表2のような流量になるように手動バルブ13、14、15、16の開度をそれぞれ調整し、通水を行った。薬品の注入量などは実施例1と同じとした。
When the control is performed by setting the recovery rate so that the scale component does not precipitate, the measured value of the conductivity of the recovery rate which can be operated efficiently without causing the problem of the precipitation of the scale component is set as the upper limit value. By setting the measured value of conductivity at the set recovery rate as the upper limit, it is possible to prevent the recovery rate from becoming higher and avoid the risk of scale component precipitation. Any value can be used as the lower limit value of the measured value, but if the value is too low, efficient operation cannot be performed. Therefore, the value is preferably 1 to 20% lower than the measured value set as the upper limit value. .
Note that if a recovery rate greater than 98% is set, the concentration rises rapidly, and the risk of scale component formation may increase. Therefore, the recovery rate set value is preferably 98% or less.
As described above, when the recovery rate without the risk of scale component generation was calculated from the water quality analysis values in Table 1, it was 60%, and the conductivity at that time was 47.5 mS / m. Therefore, the upper limit value of the conductivity was set to 45 mS / m, and the lower limit value was set to 40 mS / m.
When the measured value of the conductivity of the concentrated water falls below the lower limit, the automatic valve 9 on the circulation side opens and the automatic valve 10 on the discharge side closes (water passing method 1). Control was performed so that the automatic valve 9 on the circulation side was closed and the automatic valve 10 on the discharge side was opened (water flow method 2). Moreover, the opening degree of the manual valves 13, 14, 15, and 16 was adjusted so that the flow rate was as shown in Table 2, and water flow was performed. The amount of chemicals injected was the same as in Example 1.

Figure 2012206073
Figure 2012206073

図6に短期的な運転時の回収率、濃縮水導電率の推移を示す。また、表3に720時間後の処理水量と排水量を併せて示す。
[比較例1]
濃縮水の循環量制御を行わず、排出水量を0.7m/hで固定して回収率を59%として通水すること以外は実施例1と同様の処理を行った。その結果の処理水量、排水量を表3に併せて示す。
Fig. 6 shows changes in the recovery rate and concentrated water conductivity during short-term operation. Table 3 also shows the amount of treated water and the amount of discharged water after 720 hours.
[Comparative Example 1]
The same treatment as in Example 1 was carried out except that the flow rate of the concentrated water was not controlled, and the discharged water amount was fixed at 0.7 m 3 / h and the recovery rate was 59%. The amount of treated water and the amount of discharged water are shown in Table 3 together.

[比較例2]
濃縮水の循環量制御を行わず、排出水置を0.33m/hで固定して回収率を75%として通水すること以外は実施例1と同様の処理を行った。なお、通水に伴い水量が低下したため、100時間毎に圧力を上昇させ、水量を1m/hに調整しながら通水を行った。通水500時間以降はポンプの揚程が限界となったため、以降は通水量を低下させながら通水を行った。その結果の処理水量、排水量を表3に併せて示す。
[Comparative Example 2]
The same treatment as in Example 1 was performed except that the circulation amount control of the concentrated water was not performed, the drainage device was fixed at 0.33 m 3 / h, and the recovery rate was 75%. In addition, since the amount of water decreased with water flow, the pressure was increased every 100 hours, and water flow was performed while adjusting the water amount to 1 m 3 / h. Since the pump head reached its limit after 500 hours of water flow, water flow was performed while reducing the water flow rate thereafter. The amount of treated water and the amount of discharged water are shown in Table 3 together.

Figure 2012206073
Figure 2012206073

このように、比較例1、2と比べ、濃縮水の循環量制御を行う本発明の実施例1、2では、スケール成分を析出させないようにしながら、排水量を少なくし、回収率を向上させることができた。   Thus, compared with Comparative Examples 1 and 2, in Examples 1 and 2 of the present invention that controls the circulation amount of concentrated water, the amount of waste water is reduced and the recovery rate is improved while preventing the scale components from precipitating. I was able to.

1 前処理部
2 脱イオン水製造部
3 端末配管
4 ユースポイント(POU)
5 濃縮水処理部
6 濃縮水返送管
6’、6” 濃縮水返送バイパス管
7 濃縮水排出管
7’、7” 濃縮水排出バイパス管
8 分流装置
9、10 自動バルブ
11 水質測定器
12 自動三方コントロールバルブ
13〜16 手動バルブ
21 タンク
22 保安フィルタ
23 逆浸透膜装置
30 コントローラ
1 Pretreatment Department 2 Deionized Water Production Department 3 Terminal Piping 4 Use Point (POU)
5 Concentrated water treatment section 6 Concentrated water return pipe 6 ', 6 "Concentrated water return bypass pipe 7 Concentrated water discharge pipe 7', 7" Concentrated water discharge bypass pipe 8 Splitting device 9, 10 Automatic valve 11 Water quality measuring instrument 12 Automatic three-way Control valve 13-16 Manual valve 21 Tank 22 Security filter 23 Reverse osmosis membrane device 30 Controller

Claims (4)

原水が導入される前処理部と、該前処理部で処理された前処理水が導入される脱イオン水製造部と、該脱イオン水製造部で製造された脱イオン水をユースポイントに送水し、余剰の脱イオン水を該脱イオン水製造部に戻す端末配管とを備え、該脱イオン水製造部は、少なくとも前処理水が導入されるタンクと、タンクからの水を処理する逆浸透膜装置とを有し、該端末配管から余剰の脱イオン水が該タンクに戻される脱イオン水製造システムであって、
前記逆浸透膜装置からの濃縮水の一部を該タンクに循環させるための濃縮水返送管と、残部を系外へ排出するための濃縮水排出管と、
濃縮水の水質を測定する水質測定手段と、
該水質測定手段による濃縮水の水質の測定値に基づき濃縮水の前記濃縮水返送管への循環量と前記濃縮水排出管への排出量とを調整する循環量制御手段と、
を備えたことを特徴とする脱イオン水製造システム。
A pre-treatment unit into which raw water is introduced, a deionized water production unit into which pre-treatment water treated in the pre-treatment unit is introduced, and deionized water produced in the deionized water production unit is sent to a use point And terminal piping for returning surplus deionized water to the deionized water production unit, the deionized water production unit comprising at least a tank into which pretreated water is introduced, and reverse osmosis for treating water from the tank A deionized water production system in which surplus deionized water is returned to the tank from the terminal pipe,
A concentrated water return pipe for circulating a part of the concentrated water from the reverse osmosis membrane device to the tank, a concentrated water discharge pipe for discharging the remainder out of the system,
Water quality measuring means for measuring the quality of the concentrated water;
A circulation amount control means for adjusting a circulation amount of the concentrated water to the concentrated water return pipe and a discharge amount to the concentrated water discharge pipe based on a measured value of the water quality of the concentrated water by the water quality measurement means;
A deionized water production system comprising:
前記循環量制御手段は、前記水質測定手段による濃縮水の水質の測定値がスケール成分を析出しない範囲内となるよう前記濃縮水返送管への循環量と前記濃縮水排出管への排出量とを調整することを特徴とする、請求項1記載の脱イオン水製造システム。   The circulating amount control means includes a circulating amount to the concentrated water return pipe and a discharged amount to the concentrated water discharge pipe so that the measured value of the concentrated water quality by the water quality measuring means is within a range in which no scale component is deposited. The deionized water production system according to claim 1, wherein the deionized water is adjusted. 前記循環量制御手段は、自動バルブを含み、前記水質測定手段による濃縮水の水質の測定値に応じて該自動バルブを制御して前記濃縮水返送管への循環量と前記濃縮水排出管への排出量とを調整することを特徴とする、請求項1または2記載の脱イオン水製造システム。   The circulation amount control means includes an automatic valve, and controls the automatic valve in accordance with a measured value of the water quality of the concentrated water by the water quality measurement means to return the circulation amount to the concentrated water return pipe and the concentrated water discharge pipe. The deionized water production system according to claim 1 or 2, wherein the amount of discharge is adjusted. 前記水質測定手段は、濃縮水の導電率を測定することを特徴とする、請求項1乃至3のいずれか記載の脱イオン水製造システム。   The deionized water production system according to any one of claims 1 to 3, wherein the water quality measuring means measures the conductivity of the concentrated water.
JP2011075541A 2011-03-30 2011-03-30 Deionized water production system Withdrawn JP2012206073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011075541A JP2012206073A (en) 2011-03-30 2011-03-30 Deionized water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011075541A JP2012206073A (en) 2011-03-30 2011-03-30 Deionized water production system

Publications (1)

Publication Number Publication Date
JP2012206073A true JP2012206073A (en) 2012-10-25

Family

ID=47186341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011075541A Withdrawn JP2012206073A (en) 2011-03-30 2011-03-30 Deionized water production system

Country Status (1)

Country Link
JP (1) JP2012206073A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014188439A (en) * 2013-03-27 2014-10-06 Miura Co Ltd Reverse osmosis membrane separation apparatus
KR101447838B1 (en) 2013-12-31 2014-10-08 (주)청담이엠텍 Treatment apparatus of wastewater using reverse osmosis membrane and treatment method using the same
CN105217821A (en) * 2015-10-13 2016-01-06 北京四季沐歌太阳能技术集团有限公司 A kind of efficient reverse osmosis water manufacturing system of Intelligent adjustment
KR20160012265A (en) * 2014-07-23 2016-02-03 코웨이 주식회사 Water treatment apparatus
JP2016120466A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
CN105858986A (en) * 2016-06-07 2016-08-17 武汉市熊谷科技有限公司 Ultra-pure water preparation system
WO2016151669A1 (en) * 2015-03-20 2016-09-29 三菱重工業株式会社 Water treatment device
JP2019177338A (en) * 2018-03-30 2019-10-17 三菱ケミカルアクア・ソリューションズ株式会社 Fresh water treatment apparatus equipped with reverse osmosis membrane and operation method of fresh water treatment apparatus equipped with reverse osmosis membrane
WO2020004542A1 (en) * 2018-06-27 2020-01-02 栗田工業株式会社 Pure-water production device, and pure-water production method
JP2020037088A (en) * 2018-09-05 2020-03-12 栗田工業株式会社 Operational method of ultrapure water production apparatus
WO2020166276A1 (en) * 2019-02-15 2020-08-20 栗田工業株式会社 Control method for reverse osmosis system
JP2021536348A (en) * 2018-08-29 2021-12-27 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート High recovery rate variable capacity reverse osmosis membrane system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014188439A (en) * 2013-03-27 2014-10-06 Miura Co Ltd Reverse osmosis membrane separation apparatus
KR101447838B1 (en) 2013-12-31 2014-10-08 (주)청담이엠텍 Treatment apparatus of wastewater using reverse osmosis membrane and treatment method using the same
KR102190124B1 (en) 2014-07-23 2020-12-14 코웨이 주식회사 Water treatment apparatus
KR20160012265A (en) * 2014-07-23 2016-02-03 코웨이 주식회사 Water treatment apparatus
JP2016120466A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
WO2016151669A1 (en) * 2015-03-20 2016-09-29 三菱重工業株式会社 Water treatment device
CN105217821A (en) * 2015-10-13 2016-01-06 北京四季沐歌太阳能技术集团有限公司 A kind of efficient reverse osmosis water manufacturing system of Intelligent adjustment
CN105858986A (en) * 2016-06-07 2016-08-17 武汉市熊谷科技有限公司 Ultra-pure water preparation system
JP2019177338A (en) * 2018-03-30 2019-10-17 三菱ケミカルアクア・ソリューションズ株式会社 Fresh water treatment apparatus equipped with reverse osmosis membrane and operation method of fresh water treatment apparatus equipped with reverse osmosis membrane
JP2020000984A (en) * 2018-06-27 2020-01-09 栗田工業株式会社 Pure water production device, and pure water production method
WO2020004542A1 (en) * 2018-06-27 2020-01-02 栗田工業株式会社 Pure-water production device, and pure-water production method
JP2021536348A (en) * 2018-08-29 2021-12-27 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート High recovery rate variable capacity reverse osmosis membrane system
JP7308928B2 (en) 2018-08-29 2023-07-14 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート High recovery rate variable capacity reverse osmosis membrane system
JP2020037088A (en) * 2018-09-05 2020-03-12 栗田工業株式会社 Operational method of ultrapure water production apparatus
JP7031538B2 (en) 2018-09-05 2022-03-08 栗田工業株式会社 How to operate the ultrapure water production equipment
WO2020166276A1 (en) * 2019-02-15 2020-08-20 栗田工業株式会社 Control method for reverse osmosis system
JP2020131087A (en) * 2019-02-15 2020-08-31 栗田工業株式会社 Control method for reverse osmosis system

Similar Documents

Publication Publication Date Title
JP2012206073A (en) Deionized water production system
US20240109038A1 (en) Water Purification System And Method
JPS614591A (en) Reverse osmosis system
JP2019155275A (en) Water treatment control device, and method of monitoring water quality
KR20190043588A (en) Reverse osmosis membrane treatment system and operation method of reverse osmosis membrane treatment system
JP2012101176A (en) Water treatment apparatus
WO2019239853A1 (en) Ultrapure water producing device and ultrapure water producing method
JP2008221195A (en) Operation method of pure water production system
JP5953726B2 (en) Ultrapure water production method and apparatus
KR20130061062A (en) Reverse osmosis desalination system coupled with real time electric power price and method for operating the same
JP6344457B2 (en) Fresh water generation method
JP5962135B2 (en) Ultrapure water production equipment
KR20150077086A (en) Water treating apparatus including water quality detecting means
JP4432583B2 (en) Ultrapure water production equipment
JP2013193004A (en) Pure water production method
JP2020171892A (en) Hollow fiber membrane damage detector and ultra pure water manufacturing apparatus, and hollow fiber membrane damage detection method
JP4654526B2 (en) Specific resistance adjustment water production equipment
JP2021126644A (en) Ultrapure water production device and ultrapure water production method
JP2020199436A (en) Ultrapure water production device, and ultrapure water production method
CN111344257A (en) Water dispensing device for dispensing water having a consistent taste
KR101649741B1 (en) an apparatus for concentrating sap
JP3990601B2 (en) Method and apparatus for removing nitrate nitrogen
JP7044848B1 (en) Liquid treatment equipment, pure water production system and liquid treatment method
CN219384958U (en) Adjustable demineralized water removes TOC device
US20230271138A1 (en) Apparatus for producing ultrapure water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603