JP2019107592A - Method for producing permeation water, water treatment device and method for operating the water treatment device - Google Patents

Method for producing permeation water, water treatment device and method for operating the water treatment device Download PDF

Info

Publication number
JP2019107592A
JP2019107592A JP2017240988A JP2017240988A JP2019107592A JP 2019107592 A JP2019107592 A JP 2019107592A JP 2017240988 A JP2017240988 A JP 2017240988A JP 2017240988 A JP2017240988 A JP 2017240988A JP 2019107592 A JP2019107592 A JP 2019107592A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
ppm
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240988A
Other languages
Japanese (ja)
Other versions
JP6968682B2 (en
Inventor
和史 近藤
Kazushi Kondo
和史 近藤
光 石橋
Hikari Ishibashi
光 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2017240988A priority Critical patent/JP6968682B2/en
Publication of JP2019107592A publication Critical patent/JP2019107592A/en
Application granted granted Critical
Publication of JP6968682B2 publication Critical patent/JP6968682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

To provide a method for producing permeation water that directly introduces underground water into a reverse osmosis membrane without performing any pretreatment.SOLUTION: The present invention provides a method for producing permeation water by supplying underground water directly into a reverse osmosis membrane, and treating the water so that the concentration water of the reverse osmosis membrane is 7.0 or less in pH.SELECTED DRAWING: Figure 1

Description

本発明は、地下水を、逆浸透膜を用いて処理する水処理方法に関する。   The present invention relates to a water treatment method for treating groundwater using a reverse osmosis membrane.

逆浸透膜は、エネルギー消費量が少ない水処理膜として知られており、様々な分野で使用され、排水、海水、地下水などの処理にも使用されている。
また、従来より、地下水に含まれる溶存鉄、溶存マンガン、炭酸塩、アンモニア性窒素を除去する水処理システムが知られている。
例えば特許文献1には、地下水を化学的手段又は物理的手段により還元状態に調整する還元処理装置と、還元状態に調整された地下水をナノろ過膜又は逆浸透膜により処理し、透過水を製造する膜分離装置とを備えた水処理システムが開示されている。
Reverse osmosis membranes are known as water treatment membranes with low energy consumption, are used in various fields, and are also used in the treatment of drainage, seawater, groundwater and the like.
Also, conventionally, there has been known a water treatment system for removing dissolved iron, dissolved manganese, carbonate, and ammonia nitrogen contained in groundwater.
For example, in Patent Document 1, a reduction treatment apparatus for adjusting ground water to a reduced state by a chemical means or a physical means, and groundwater adjusted to a reduced state is treated with a nanofiltration membrane or a reverse osmosis membrane to produce permeated water. A water treatment system is disclosed, comprising a membrane separation device.

特開2011−189242号公報JP, 2011-189242, A

逆浸透膜を用いる場合、逆浸透膜に導入する被処理水については、被処理水中の不純物等の総量を一定量以下とすることが推奨されている。そのため、逆浸透膜に導入する被処理水は、予め前処理を実施することが通常である。特許文献1では、逆浸透膜へ被処理水を導入する前に、サンドセパレータ、カチオン交換体、紫外線照射、フィルター濾過などの前処理を行っている。   When a reverse osmosis membrane is used, it is recommended that the total amount of impurities and the like in the water to be treated be a certain amount or less for the water to be treated introduced into the reverse osmosis membrane. Therefore, it is normal to pre-treat the water to be treated introduced into the reverse osmosis membrane. In patent document 1, before introduce | transducing a to-be-processed water to a reverse osmosis membrane, pretreatments, such as a sand separator, a cation exchanger, ultraviolet irradiation, and filter filtration, are performed.

本発明者らが、地下水を処理するに際し、上記特許文献で行われているような前処理を実施せず、地下水を直接逆浸透膜へ導入することを検討したところ、炭酸ガス、アンモニアガス、酸化鉄、酸化マンガン成分の除去が不十分であり、以下の問題が生じることが判明した。
第一に、地下水を化学的手段によりpH7.0以下に調整し、逆浸透膜の被処理水とした場合、被処理水中の遊離炭酸が増加し、これを逆浸透膜で処理すると、炭酸ガスを多く含む透過水が製造される。炭酸ガスを多く含む透過水は、腐食性が高く、逆浸透膜以降の装置等にダメージを与える。
第二に、地下水を物理的手段により還元状態に調整し、逆浸透膜の被処理水とした場合、被処理水中の溶存酸素が除去されるとともに、遊離炭酸も除去されるが、脱炭酸の効果により被処理水のpHがアルカリサイドにシフトし、pH7.0より高くなるに従い、被処理水中のアンモニアガスの割合が、アンモニウムイオンの割合より高い状態となり、これを逆浸透膜で処理すると、アンモニアガスを多く含む透過水が製造される。アンモニアガスを多く含む透過水は、これを飲料水として使用するために添加される次亜塩素酸ソーダの注入量の増加を招く。
第三に、被処理水が逆浸透膜で処理され、炭酸ガスが透過水側に透過することで、濃縮水のpHがアルカリサイドにシフトし、pH7.0より高くなった場合、溶存鉄及び溶存マンガン成分が酸化析出し、逆浸透膜への膜ファウリングを招く。
本発明は、前処理を実施せず、地下水を逆浸透膜へ導入する透過水の製造方法における上記課題を解決する。
When treating the groundwater, the present inventors examined introducing the groundwater directly to the reverse osmosis membrane without performing the pretreatment as described in the above-mentioned patent documents, carbon dioxide gas, ammonia gas, It was found that the removal of iron oxide and manganese oxide components is insufficient and the following problems occur.
First, when ground water is adjusted to pH 7.0 or less by chemical means to be treated water of reverse osmosis membrane, when free carbonic acid in the treated water increases, and this is treated with reverse osmosis membrane, carbon dioxide gas Permeate containing a large amount of water is produced. The permeated water containing a large amount of carbon dioxide gas is highly corrosive and damages the devices after the reverse osmosis membrane.
Second, when the ground water is adjusted to a reduced state by physical means and treated as reverse osmosis membrane treated water, dissolved oxygen in the treated water is removed and free carbon dioxide is also removed. As the pH of the water to be treated shifts to the alkali side due to the effect and becomes higher than pH 7.0, the proportion of ammonia gas in the water to be treated becomes higher than the proportion of ammonium ions, and this is treated with a reverse osmosis membrane, A permeate containing a large amount of ammonia gas is produced. The permeate containing a large amount of ammonia gas causes an increase in the injection amount of sodium hypochlorite added to use it as drinking water.
Thirdly, when the water to be treated is treated with the reverse osmosis membrane and carbon dioxide gas permeates to the permeate side, the pH of the concentrated water shifts to the alkali side and becomes higher than pH 7.0, the dissolved iron and The dissolved manganese component oxidizes and precipitates, causing membrane fouling to the reverse osmosis membrane.
The present invention solves the above-mentioned problems in a method of producing permeated water in which groundwater is introduced into a reverse osmosis membrane without performing pretreatment.

本発明者らは、地下水を直接逆浸透膜へ導入する場合における上記課題を解決すべく、
炭酸ガス、アンモニアガス、酸化鉄および酸化マンガン成分の除去について更に検討し、逆浸透膜の濃縮水のpH値が7.0以下になるように水処理を行うことで、課題を解決できることを見出した。
本発明は、以下のものを含む。
[1]地下水を直接逆浸透膜に供給し、逆浸透膜の濃縮水のpHが7.0以下となるように水処理をして得る、透過水の製造方法。
[2]地下水に酸成分を添加することで、前記濃縮水のpHを7.0以下とする、[1]に記載の透過水の製造方法。
[3]脱炭酸処理工程を更に有する、[1]または[2]に記載の透過水の製造方法。
[4]前記脱炭酸処理工程は、曝気による脱炭酸及び/又は脱気膜による脱炭酸である、[3]に記載の透過水の製造方法。
[5]地下水を直接逆浸透膜で処理するための水処理装置であって、地下水に酸成分を添加する酸添加手段と、逆浸透膜と、地下水の少なくとも一部を排水し得る排水手段と、を有する、水処理装置。
[6]前記水処理装置は、地下水を移送する配管の少なくとも一部が、塩化ビニル管である、[5]に記載の水処理装置。
[7][5]または[6]に記載の水処理装置の運転方法であって、水処理装置を一時停止させた後再稼働する際、地下水を逆浸透膜に移送する配管中に滞留した滞留水を排水するように運転する、水処理装置の運転方法。
[8]FI値が3以上、鉄イオン濃度が0.01ppm以上、マンガンイオン濃度が0.01ppm以上、アンモニア性窒素濃度が0.5ppm以上および有機物濃度が10ppm以上である被処理水を逆浸透膜に供給し、逆浸透膜の濃縮水のpHが7.0以下となるように水処理を行う、透過水の製造方法。
In order to solve the above problems in the case of introducing groundwater directly to the reverse osmosis membrane, the present inventors
We further investigated the removal of carbon dioxide gas, ammonia gas, iron oxide and manganese oxide components, and found that the problem can be solved by conducting water treatment so that the pH value of the concentrated water of the reverse osmosis membrane is 7.0 or less. The
The present invention includes the following.
[1] A method for producing permeated water, which is obtained by directly supplying groundwater to a reverse osmosis membrane, and treating the water so that the pH of concentrated water of the reverse osmosis membrane becomes 7.0 or less.
[2] The method for producing permeated water according to [1], wherein the pH of the concentrated water is 7.0 or less by adding an acid component to groundwater.
[3] The method for producing permeated water according to [1] or [2], further comprising a decarboxylation treatment step.
[4] The method for producing permeated water according to [3], wherein the decarboxylation treatment step is decarboxylation by aeration and / or by degassing membrane.
[5] A water treatment apparatus for treating ground water directly with a reverse osmosis membrane, which comprises an acid addition means for adding an acid component to ground water, a reverse osmosis membrane, and a drainage means capable of draining at least a part of ground water And a water treatment device.
[6] The water treatment apparatus according to [5], wherein at least a part of the pipe for transferring groundwater is a vinyl chloride pipe.
[7] The operating method of the water treatment apparatus according to [5] or [6], wherein when the water treatment apparatus is temporarily stopped and then reactivated, it is retained in the pipe for transferring the ground water to the reverse osmosis membrane A method of operating a water treatment system, operating to drain stagnant water.
[8] Reverse osmosis of treated water having an FI value of 3 or more, an iron ion concentration of 0.01 ppm or more, a manganese ion concentration of 0.01 ppm or more, an ammoniacal nitrogen concentration of 0.5 ppm or more, and an organic matter concentration of 10 ppm or more A method for producing permeated water, which is supplied to a membrane and subjected to water treatment such that the pH of concentrated water of the reverse osmosis membrane is 7.0 or less.

本発明により、透過水への炭酸ガスの透過を抑制するため、逆浸透膜以降の装置等の腐食を抑制できる。また、透過水へのアンモニアガスの透過を抑制するため、後処理で使用する次亜塩素酸ソーダ量を低減することができ、かつ、透過水の品質を維持できる。さらに、濃縮水からの溶存鉄および溶存マンガン成分の酸化析出を抑制するため、逆浸透膜への膜ファウリングが抑制できる。また、水処理装置の一時停止後再稼働する際、装置中に滞留した滞留水を排水するように運転することでも、溶存鉄および溶存マンガン成分の酸化析出を抑制するため、逆浸透膜への膜ファウリングが抑制できる。逆浸透膜への膜ファウリングを抑制することで、装置を長期間運転することが可能となる。これらに加え、地下水を直接逆浸透膜へ導入する場合においては、前処理装置が不要となるため、水処理装置を簡素化できる。   According to the present invention, since the permeation of carbon dioxide gas to the permeated water is suppressed, the corrosion of the devices after the reverse osmosis membrane can be suppressed. In addition, since the permeation of ammonia gas to the permeated water is suppressed, the amount of sodium hypochlorite used in the post-treatment can be reduced, and the quality of the permeated water can be maintained. Furthermore, since the oxidation precipitation of the dissolved iron and the dissolved manganese component from the concentrated water is suppressed, the membrane fouling to the reverse osmosis membrane can be suppressed. In addition, when the water treatment apparatus is restarted after being temporarily stopped, operation to drain the stagnant water retained in the apparatus also suppresses oxidation and precipitation of the dissolved iron and the dissolved manganese components, so that the reverse osmosis membrane Membrane fouling can be suppressed. By suppressing membrane fouling to the reverse osmosis membrane, the device can be operated for a long time. In addition to these, when introducing groundwater directly to the reverse osmosis membrane, the water treatment system can be simplified because the pretreatment system is not required.

本発明の一実施形態を示す、処理フロー図である。FIG. 5 is a process flow diagram illustrating an embodiment of the present invention. 実験1の結果を示すグラフである。7 is a graph showing the results of Experiment 1. 実験2の結果を示すグラフである。7 is a graph showing the results of Experiment 2.

以下、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に限定されない。   Hereinafter, embodiments of the present invention will be described in detail. The description of the configuration requirements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents as long as the gist of the invention is not exceeded.

図1は、本発明の一実施形態を示す、処理フロー図である。当該処理フローが適用される水処理装置100の一形態では、酸添加手段1、スプレーノズル2、原水槽3、曝気ブロワ4、循環ポンプ5A、供給ポンプ5B、pH計6、切替弁7、逆浸透膜8、脱気膜9を含む。これら以外の手段や計測器を含んでもよい。その他の手段としては、透過水を水
道水として使用する場合に必要なアンモニア除去及び/又は滅菌のための次亜塩素酸添加装置などがあげられる。
FIG. 1 is a process flow diagram illustrating an embodiment of the present invention. In one form of the water treatment apparatus 100 to which the treatment flow is applied, the acid addition means 1, the spray nozzle 2, the raw water tank 3, the aeration blower 4, the circulation pump 5A, the supply pump 5B, the pH meter 6, the switching valve 7, and the reverse A permeable membrane 8 and a degassing membrane 9 are included. Other means or measuring instruments may be included. Another means is, for example, a hypochlorous acid addition device for ammonia removal and / or sterilization which is necessary when using permeated water as tap water.

水処理装置100は、汲み上げられた地下水10が、直接逆浸透膜8に供給され得る。
地下水は、地中に存在する水であって、地層中の間隙を満たして存在している水であり、地域により水質が若干異なるものの、地域によって又は国によって特段限定されるものではない。
In the water treatment apparatus 100, the pumped up groundwater 10 can be directly supplied to the reverse osmosis membrane 8.
Groundwater is water existing in the ground, and is water that fills gaps in the formation, and although the water quality differs slightly depending on the region, it is not particularly limited depending on the region or country.

地下水10には、様々な物質が含まれる。本実施形態の透過水の製造方法、水処理装置および水処理装置の運転方法は、溶存鉄、溶存マンガン、炭酸塩、アンモニア性窒素および有機物を含有する地下水に好適に使用できる。
溶存鉄を含有する場合には、その濃度が50ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることが更に好ましい。下限は特段限定されず、例えば0.01ppm以上であってよく、0.1ppm以上であってよく、1ppm以上であってよい。
溶存鉄を上記範囲で含有する場合、本実施形態中に含まれる逆浸透膜8による溶存鉄成分の除去が好適に行われる。
溶存マンガンを含有する場合には、その濃度が50ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることが更に好ましい。下限は特段限定されず、例えば0.01ppm以上であってよく、0.1ppm以上であってよく、1ppm以上であってよい。
溶存マンガンを上記範囲で含有する場合、本実施形態中に含まれる逆浸透膜8による溶存マンガン成分の除去が好適に行われる。
炭酸塩を含有する場合には、その濃度が500ppm以下であることが好ましく、200ppm以下であることがより好ましく、100ppm以下であることが更に好ましい。下限は特段限定されず、例えば1ppm以上であってよく、10ppm以上であってよく、50ppm以上であってよい。
炭酸塩を上記範囲で含有する場合、本実施形態中に含まれる脱炭酸処理工程により遊離炭酸の除去が好適に行われる。
アンモニア性窒素を含有する場合には、その濃度が50ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることが更に好ましい。下限は特段限定されず、例えば0.5ppm以上であってよく、1ppm以上であってよく、2ppm以上であってよい。
アンモニア性窒素を上記範囲で含有する場合、本実施形態中に含まれる逆浸透膜8によりアンモニアガスの除去が好適に行われる。
有機物を含有する場合には、その濃度が200ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることが更に好ましい。下限は特段限定されず、例えば0.3ppm以上であってよく、1ppm以上であってよく、3ppm以上であってよく、10ppm以上であってよい。
有機物を上記範囲で含有する場合、本実施形態中に含まれる逆浸透膜8により有機物の除去が好適に行われる。
その他、地下水は鉱物などに由来する各種ミネラル、例えばカルシウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、塩化物イオン、硫酸イオン、シリカなどを含んでいてもよい。
また、地下水は、FI値が6.5以下であることが好ましく、6以下であることが更に好ましく、0以上であることが好ましく、3以上であることが更に好ましい。なお、FI値とは、逆浸透法において,モジュールへの供給水中の微量な懸濁物質を定量化する指標の値である。
The groundwater 10 contains various substances. The method for producing permeated water, the water treatment apparatus and the operation method of the water treatment apparatus of the present embodiment can be suitably used for underground water containing dissolved iron, dissolved manganese, carbonate, ammonia nitrogen and organic matter.
When the dissolved iron is contained, the concentration is preferably 50 ppm or less, more preferably 20 ppm or less, and still more preferably 10 ppm or less. The lower limit is not particularly limited, and may be, for example, 0.01 ppm or more, may be 0.1 ppm or more, and may be 1 ppm or more.
When dissolved iron is contained in the said range, removal of the dissolved iron component by the reverse osmosis membrane 8 contained in this embodiment is performed suitably.
When the dissolved manganese is contained, its concentration is preferably 50 ppm or less, more preferably 20 ppm or less, and still more preferably 10 ppm or less. The lower limit is not particularly limited, and may be, for example, 0.01 ppm or more, may be 0.1 ppm or more, and may be 1 ppm or more.
When the dissolved manganese is contained in the above range, removal of the dissolved manganese component by the reverse osmosis membrane 8 included in the present embodiment is suitably performed.
When the carbonate is contained, its concentration is preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less. The lower limit is not particularly limited, and may be, for example, 1 ppm or more, 10 ppm or more, or 50 ppm or more.
When the carbonate is contained in the above range, removal of free carbonic acid is suitably performed by the decarboxylation step included in the present embodiment.
When the ammonia nitrogen is contained, the concentration is preferably 50 ppm or less, more preferably 20 ppm or less, and still more preferably 10 ppm or less. The lower limit is not particularly limited, and may be, for example, 0.5 ppm or more, 1 ppm or more, or 2 ppm or more.
When the ammoniacal nitrogen is contained in the above range, removal of ammonia gas is suitably performed by the reverse osmosis membrane 8 included in the present embodiment.
When the organic substance is contained, the concentration is preferably 200 ppm or less, more preferably 100 ppm or less, and still more preferably 50 ppm or less. The lower limit is not particularly limited, and may be, for example, 0.3 ppm or more, 1 ppm or more, 3 ppm or more, or 10 ppm or more.
When the organic matter is contained in the above range, removal of the organic matter is suitably performed by the reverse osmosis membrane 8 included in the present embodiment.
In addition, the groundwater may contain various minerals derived from minerals and the like, such as calcium ion, sodium ion, potassium ion, magnesium ion, chloride ion, sulfate ion, silica and the like.
The ground water preferably has an FI value of 6.5 or less, more preferably 6 or less, preferably 0 or more, and still more preferably 3 or more. In addition, FI value is a value of the index which quantifies the trace amount suspended substance in the feed water to a module in a reverse osmosis method.

本実施形態では、地下水が直接逆浸透膜に供給される。ここでいう「直接」とは、通常
地下水を逆浸透膜に導入する際に行う前処理、例えば金属除去、有機物除去、滅菌などを目的として行われる処理をすることなく、地下水を逆浸透膜に導入することを意味する。
逆浸透膜を用いる場合、逆浸透膜に導入する被処理水を、被処理水中の不純物等の総量を一定量以下としてから逆浸透膜に導入することが推奨されている。これは、不純物等の総量が低減されないまま逆浸透膜に導入されることで、逆浸透膜に詰まりが生じて透過能が減少する、透過能を維持するため圧力差を大きくすることで逆浸透膜が破損する、などの恐れがあるためである。しかしながら本発明者らは、逆浸透膜の濃縮水のpHを一定の値以下に制御し、地下水を連続的に直接逆浸透膜に供給し処理できる結論に至った。
In the present embodiment, groundwater is directly supplied to the reverse osmosis membrane. The term "directly" as used herein means that the reverse osmosis membrane is used to treat the groundwater without performing the pretreatment for introducing the underground water into the reverse osmosis membrane, for example, for removing metals, removing organic substances, and sterilization. It means to introduce.
When a reverse osmosis membrane is used, it is recommended to introduce the water to be treated introduced into the reverse osmosis membrane into the reverse osmosis membrane after setting the total amount of impurities and the like in the water to be treated to a certain amount or less. This is because the reverse osmosis membrane is clogged and reduced in permeability by being introduced into the reverse osmosis membrane while the total amount of impurities and the like is not reduced, and the reverse osmosis is achieved by increasing the pressure difference to maintain the permeability. This is because there is a risk that the membrane may be broken. However, the present inventors reached the conclusion that the pH of the concentrated water of the reverse osmosis membrane can be controlled to a certain value or less, and groundwater can be continuously supplied directly to the reverse osmosis membrane and treated.

本実施形態における透過水の製造方法は、地下水10を直接逆浸透膜8に供給し、逆浸透膜の濃縮水12のpHが7.0以下となるように水処理をして得る、透過水11の製造方法である。
逆浸透膜8は特段限定されず、市販のものを用いることができる。また、通常逆浸透膜と称される膜よりも孔径が若干大きいナノろ過膜(NF膜ともいう)も、本実施形態において逆浸透膜に含まれる。
In the method for producing permeated water in the present embodiment, the groundwater 10 is directly supplied to the reverse osmosis membrane 8, and the permeated water is obtained by performing water treatment so that the pH of the concentrated water 12 of the reverse osmosis membrane becomes 7.0 or less. 11 is a manufacturing method.
The reverse osmosis membrane 8 is not particularly limited, and a commercially available one can be used. In addition, a nanofiltration membrane (also referred to as an NF membrane) having a slightly larger pore diameter than a membrane usually referred to as a reverse osmosis membrane is also included in the reverse osmosis membrane in the present embodiment.

地下水10は、逆浸透膜の濃縮水12のpHが7.0以下となるよう、酸添加手段1により酸成分を添加されてもよい。酸添加手段1は、後述する逆浸透膜8における透過水への、遊離炭酸の透過抑制、および、アンモニアガスの透過抑制、ならびに、逆浸透膜への酸化鉄および酸化マンガンの膜ファウリング抑制の観点から、地下水10が逆浸透膜8に供給される前段に備えられることが好ましく、地下水10がスプレーノズル2により原水槽3にスプレー噴霧される前段及び/又は後段に備えられることが好ましい。   The underground water 10 may be added with an acid component by the acid addition means 1 so that the pH of the concentrated water 12 of the reverse osmosis membrane is 7.0 or less. The acid addition means 1 suppresses the permeation of free carbonic acid to permeated water in the reverse osmosis membrane 8 described later, and the permeation suppression of ammonia gas, and the membrane fouling suppression of iron oxide and manganese oxide to the reverse osmosis membrane. From the viewpoint, it is preferable that the ground water 10 be provided at a front stage supplied to the reverse osmosis membrane 8 and that the ground water 10 be provided at a front stage and / or a rear stage where the spray nozzle 2 sprays the raw water tank 3.

酸添加手段1により添加される酸成分としては、地下水10および濃縮水12のpHを低下させるものであれば特に制限されないが、例えば硫酸、塩酸、硝酸、炭酸等の無機酸、有機酸があげられるが、無機酸が好ましく、硫酸がより好ましい。酸の添加量は地下水10および濃縮水12のpHの数値により適宜設定することから、pH計6に示されるpHの値を確認しながら酸を添加し、地下水10および濃縮水12のpHを7.0以下とすることが好ましく、6.5以下とすることがより好ましく、6.0以下とすることがさらに好ましく、5.5以下とすることが最も好ましい。   The acid component to be added by the acid addition means 1 is not particularly limited as long as it lowers the pH of the ground water 10 and the concentrated water 12. For example, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and carbonic acid, and organic acids are exemplified. Although inorganic acids are preferred, sulfuric acid is more preferred. Since the amount of acid added is appropriately set by the pH value of the groundwater 10 and the concentrated water 12, the acid is added while confirming the value of pH indicated by the pH meter 6, and the pH of the groundwater 10 and the concentrated water 12 is 7 It is preferable to set it to .0 or less, more preferably to 6.5 or less, further preferably to 6.0 or less, and most preferably to 5.5 or less.

地下水10および濃縮水12のpHが7.0以下になると、地下水10および濃縮水12中の溶存鉄、溶存マンガン、炭酸塩およびアンモニア性窒素に対し、以下の効果が得られる。
溶存鉄と溶存マンガンは、それぞれ酸化鉄と酸化マンガンとして酸化析出することが抑制され、逆浸透膜8への膜ファウリングが抑制される。また、炭酸塩は、遊離炭酸、重炭酸イオン、炭酸イオンのうち、遊離炭酸の割合が多い状態となり、後述する脱炭酸処理工程により遊離炭酸が効率的に除去される。さらに、アンモニア性窒素は、アンモニウムイオンとアンモニアガスのうち、アンモニウムイオンの割合が多い状態となり、逆浸透膜8を透過して得られる透過水11へのアンモニウムイオンの透過が抑制される。
When the pH of the ground water 10 and the concentrated water 12 is 7.0 or less, the following effects can be obtained on the dissolved iron, dissolved manganese, carbonate and ammonia nitrogen in the ground water 10 and the concentrated water 12.
The dissolved iron and the dissolved manganese are suppressed from being oxidized and precipitated as iron oxide and manganese oxide, respectively, and the membrane fouling to the reverse osmosis membrane 8 is suppressed. In the carbonate, the ratio of free carbonic acid among the free carbonic acid, the bicarbonate ion and the carbonate ion is high, and the free carbonic acid is efficiently removed by the decarboxylation step described later. Furthermore, the ammoniacal nitrogen is in a state in which the ratio of ammonium ions is high among the ammonium ions and the ammonia gas, and the permeation of ammonium ions to the permeated water 11 obtained through the reverse osmosis membrane 8 is suppressed.

本実施形態における透過水11の製造方法は、更に脱炭酸処理工程を有してもよい。
脱炭酸処理工程のおける脱炭酸手段は、地下水10、透過水11および濃縮水12中の遊離炭酸を除去することができれば特に制限されないが、例えば、曝気による脱炭酸、減圧による脱炭酸、脱気膜による脱炭酸、またはこれら脱炭酸手段の組み合わせなどがあげられる。
The method of producing the permeated water 11 in the present embodiment may further include a decarboxylation step.
The decarboxylation means in the decarboxylation step is not particularly limited as long as free carbon dioxide in the ground water 10, the permeate water 11 and the concentrated water 12 can be removed, for example, decarboxylation by aeration, decarboxylation by reduced pressure, degassing The decarboxylation by a membrane, or the combination of these decarboxylation means etc. is mentioned.

本実施形態の脱炭酸処理工程は、曝気による脱炭酸及び/又は脱気膜による脱炭酸であってもよい。
曝気による脱炭酸は、曝気ブロワ4により、地下水10に気体を吹き込むことで行われ
る。吹き込まれる気体は、遊離炭酸を地下水10から除去することができるものであれば特に制限されないが、例えば窒素ガス等の不活性ガスや空気などがあげられる。また、曝気による脱炭酸は、逆浸透膜8の前段に行われるのが好ましく、地下水10に酸成分が添加された後段に行われるのが好ましい。
一方、脱気膜による脱炭酸は、地下水10及び/又は透過水12を移送する配管に設置された脱気膜9により行われる。脱気膜9は、遊離炭酸を地下水10および透過水12から除去することができるものであれば特に制限されず、典型的には、中空糸膜が用いられるが、これに限定されない。また、脱気膜による脱炭酸は、逆浸透膜8の前段で行われてもよく、逆浸透膜8の後段で行われてもよく、逆浸透膜8の前段および後段の双方で行われてもよく、地下水10に酸成分が添加された後段に行われるのが好ましい。
The decarboxylation step of the present embodiment may be decarboxylation by aeration and / or decarboxylation by a degassed membrane.
Decarboxylation by aeration is performed by blowing gas into the groundwater 10 by the aeration blower 4. The gas to be blown is not particularly limited as long as it can remove free carbonic acid from the ground water 10, and examples thereof include inert gas such as nitrogen gas and air. Moreover, it is preferable to perform decarboxylation by aeration in the front | former stage of the reverse osmosis membrane 8, and it is preferable to be performed in the back | latter stage to which the acid component was added to the ground water 10. FIG.
On the other hand, the decarbonation by the degassing membrane is performed by the degassing membrane 9 installed in the pipe for transferring the ground water 10 and / or the permeated water 12. The degassing membrane 9 is not particularly limited as long as free carbon dioxide can be removed from the ground water 10 and the permeate water 12. Typically, a hollow fiber membrane is used, but is not limited thereto. In addition, decarboxylation by the degassing membrane may be performed at the former stage of the reverse osmosis membrane 8 or may be performed at the latter stage of the reverse osmosis membrane 8, and performed at both of the former stage and the latter stage of the reverse osmosis membrane 8. It is also preferable to be performed in the latter stage where the acid component is added to the groundwater 10.

逆浸透膜8に供給される地下水10及び/又は逆浸透膜8を透過して得られる透過水12は、上記酸処理および上記脱炭酸工程により、遊離炭酸が効率的に除去されるため、腐食性の高い水になることが抑制される。   The permeated water 12 obtained through the groundwater 10 and / or the reverse osmosis membrane 8 supplied to the reverse osmosis membrane 8 is corroded because the free carbonic acid is efficiently removed by the acid treatment and the decarboxylation step. It is suppressed that it becomes highly sexual water.

本実施形態における水処理装置100は、地下水の少なくとも一部を排水し得る排水手段を更に有してもよい。
排水手段は、逆浸透膜8の前段に設置されたものであれば特に制限されないが、例えば地下水10を移送する配管中に設置された切替弁7などがあげられる。
排水手段を設置することで、水処理装置100を一時停止させた後再稼働する際、地下水10を原水槽3に移送する配管中に滞留した滞留水中の溶存鉄が酸化析出しても、滞留水を排水する運転方法が可能になるため、逆浸透膜8への膜ファウリングが抑制できる。
The water treatment apparatus 100 in the present embodiment may further include a drainage means capable of draining at least a part of the ground water.
The drainage means is not particularly limited as long as it is installed at the front stage of the reverse osmosis membrane 8, and for example, the switching valve 7 installed in piping for transferring the ground water 10 may be mentioned.
By installing the drainage means, when the water treatment apparatus 100 is temporarily stopped and then restarted, even if the dissolved iron in the staying water retained in the pipe for transferring the groundwater 10 to the raw water tank 3 is oxidized and deposited, Since an operation method for draining water is possible, membrane fouling to the reverse osmosis membrane 8 can be suppressed.

本実施形態における水処理装置100の地下水10を移送する配管の少なくとも一部は、塩化ビニル管であってもよい。
地下水10を移送する配管の少なくとも一部が塩化ビニル管にすることで、地下水10の遊離炭酸による配管の腐食を抑制することができる。
At least a part of the pipe for transferring the underground water 10 of the water treatment apparatus 100 in the present embodiment may be a vinyl chloride pipe.
By making at least a part of the piping for transferring the ground water 10 a vinyl chloride pipe, it is possible to suppress the corrosion of the piping due to the free carbonation of the ground water 10.

本実施形態における水処理装置100は、地下水10を循環させるための循環ポンプ5Aを有してもよい。循環ポンプ5Aは逆浸透膜8の前段に設置されていればよく、原水槽3に貯留された地下水10を循環できるように設置されていることが好ましい。
循環ポンプ5Aは本実施形態において必須の構成ではないが、逆浸透膜8に供給される地下水10中の遊離炭酸が多く脱炭酸が不十分な場合に、循環ポンプ5が稼働し、原水槽3の地下水10を循環させることで、地下水10に、酸添加手段1による酸処理および曝気ブロワ4による脱炭酸処理を追加的に行う運転方法が可能になるため、有することが好ましい。
The water treatment apparatus 100 in the present embodiment may have a circulation pump 5A for circulating the ground water 10. It is preferable that the circulation pump 5A be installed at the front stage of the reverse osmosis membrane 8 and be installed so as to be able to circulate the underground water 10 stored in the raw water tank 3.
The circulation pump 5A is not an essential component in the present embodiment, but the circulation pump 5 is operated when there is a large amount of free carbon dioxide in the ground water 10 supplied to the reverse osmosis membrane 8 and the decarboxylation is insufficient. It is preferable to have the operation method in which the acid treatment by the acid addition unit 1 and the decarboxylation treatment by the aeration blower 4 can be additionally performed in the ground water 10 by circulating the ground water 10 in the above.

本実施形態における水処理装置100は、地下水10を逆浸透膜に供給するための供給ポンプ5Bを有してもよい。供給ポンプ5Bは逆浸透膜8の前段に設置されていればよく、原水槽3に貯留された地下水10を逆浸透膜に供給できるように設置されていることが好ましい。
供給ポンプ5Bは本実施形態において必須の構成ではないが、逆浸透膜8に供給される地下水10の流量や圧力を一定に保つ運転方法が可能になるため、有することが好ましい。
The water treatment apparatus 100 in the present embodiment may have a supply pump 5B for supplying the ground water 10 to the reverse osmosis membrane. It is preferable that the supply pump 5B be installed in the front stage of the reverse osmosis membrane 8 and be installed so that the groundwater 10 stored in the raw water tank 3 can be supplied to the reverse osmosis membrane.
Although the supply pump 5B is not an essential component in the present embodiment, it is preferable to have an operation method for keeping the flow rate and pressure of the ground water 10 supplied to the reverse osmosis membrane 8 constant.

以下に、逆浸透膜を設けるに際し、諸条件を検討した実験結果を示す。
<実験1:脱炭酸処理前の地下水のpHとアルカリ度除去率の関係>
脱炭酸処理をする前の地下水のpHを変化させ、実験としてはプロセスのマージンを考慮し、pHが変動してもOH析出しないよう設定するため、地下水のpHが6.5になるまで曝気による脱炭酸処理を行い、地下水からのアルカリ度の除去率を測定した結果を
図2に示す。なお、アルカリ度とは水中に含まれる炭酸水素塩、炭酸塩又は水酸化物等のアルカリ分の量をこれに対応する炭酸カルシウム(CaCO)の濃度で表したものであり、地下水のような自然水の場合、炭酸塩又は炭酸水素塩が主体をなすことが知られている。
図2に示すとおり、アルカリ度の除去率は、脱炭酸処理を行う前の地下水のpHが5.5以下であるときに、75%以上となることが理解できる。したがって、脱炭酸処理前の地下水は、pHを5.5以下とし、地下水のpHが7.0になるまで脱炭酸処理を行うことが好ましい。
Below, the experimental result which examined various conditions in providing a reverse osmosis membrane is shown.
<Experiment 1: Relationship between pH and alkalinity removal rate of groundwater before decarboxylation treatment>
In order to change the pH of the ground water before decarboxylation treatment and to consider the margin of the process as an experiment and to prevent OH - precipitation even if the pH fluctuates, aeration is performed until the pH of the ground water reaches 6.5. The result of having measured the removal rate of the alkalinity from groundwater was shown in FIG. The alkalinity is the amount of alkali component such as hydrogen carbonate, carbonate or hydroxide contained in water, which is expressed by the concentration of calcium carbonate (CaCO 3 ) corresponding to it, like ground water. In the case of natural water, it is known that carbonate or bicarbonate is the main component.
As shown in FIG. 2, it can be understood that the removal rate of alkalinity is 75% or more when the pH of the groundwater before the decarboxylation treatment is 5.5 or less. Therefore, it is preferable that the pH of the groundwater before the decarboxylation treatment is 5.5 or less, and the decarboxylation treatment is performed until the pH of the groundwater reaches 7.0.

<実験2:逆浸透膜に供給する地下水のpHと透過水に含まれるアンモニア性窒素濃度の関係>
アンモニア性窒素濃度4.5mg/Lの地下水のpHを変化させ、回収率70%の条件で逆浸透膜(日東電工製 ESPA2)に供給し、透過水に含まれるアンモニア性窒素濃度を測定した結果を図3に示す。
図3に示すとおり、地下水のpHが高くなるにつれ、透過水に含まれるアンモニア性窒素濃度が高くなることが理解できる。したがって、アンモニア性窒素は、地下水のpHが7以下であると逆浸透膜による阻止率が上昇し、一方で地下水のpHが7.0より高くなるにつれ逆浸透膜による阻止率が低下する。
<Experiment 2: Relationship between pH of groundwater supplied to reverse osmosis membrane and concentration of ammonia nitrogen contained in permeate>
The pH of groundwater with an ammoniacal nitrogen concentration of 4.5 mg / L was changed, and the recovery rate was 70%. The result was supplied to the reverse osmosis membrane (Nippon Denko ESPA 2) and the concentration of ammoniacal nitrogen contained in the permeate was measured. Is shown in FIG.
As shown in FIG. 3, it can be understood that the concentration of ammonia nitrogen contained in the permeate increases as the pH of the groundwater increases. Therefore, when the pH of the groundwater is 7 or less, the blocking rate by the reverse osmosis membrane is increased, while the blocking rate by the reverse osmosis membrane is decreased as the pH of the groundwater is higher than 7.0.

100 水処理装置
10 地下水
11 透過水
12 濃縮水
13 排水
1 酸添加手段
2 スプレーノズル
3 原水槽
4 曝気ブロワ
5A 循環ポンプ
5B 供給ポンプ
6 pH計
7 切替弁
8 逆浸透膜
9 脱気膜
100 water treatment apparatus 10 ground water 11 permeate 12 concentrated water 13 drainage 1 acid addition means 2 spray nozzle 3 raw water tank 4 aeration blower 5A circulation pump 5B supply pump 6 pH meter 7 switching valve 8 reverse osmosis membrane 9 deaeration membrane

Claims (8)

地下水を直接逆浸透膜に供給し、逆浸透膜の濃縮水のpHが7.0以下となるように水処理をして得る、透過水の製造方法。   A method for producing permeated water, which is obtained by directly supplying underground water to a reverse osmosis membrane, and treating the water so that the pH of the concentrate of the reverse osmosis membrane becomes 7.0 or less. 地下水に酸成分を添加することで、前記濃縮水のpHを7.0以下とする、請求項1に記載の透過水の製造方法。   The manufacturing method of the permeated water of Claim 1 which makes pH of the said concentrated water 7.0 or less by adding an acid component to underground water. 脱炭酸処理工程を更に有する、請求項1または2に記載の透過水の製造方法。   The manufacturing method of the permeated water of Claim 1 or 2 which further has a decarboxylation treatment process. 前記脱炭酸処理工程は、曝気による脱炭酸及び/又は脱気膜による脱炭酸である、請求項3に記載の透過水の製造方法。   The method for producing permeated water according to claim 3, wherein the decarboxylation treatment step is decarboxylation by aeration and / or by degassing membrane. 地下水を直接逆浸透膜で処理するための水処理装置であって、地下水に酸成分を添加する酸添加手段と、逆浸透膜と、地下水の少なくとも一部を排水し得る排水手段と、を有する、水処理装置。   A water treatment apparatus for treating ground water directly with a reverse osmosis membrane, comprising an acid addition means for adding an acid component to ground water, a reverse osmosis membrane, and a drainage means capable of draining at least a part of the ground water. , Water treatment equipment. 前記水処理装置は、地下水を移送する配管の少なくとも一部が、塩化ビニル管である、請求項5に記載の水処理装置。   The water treatment apparatus according to claim 5, wherein in the water treatment apparatus, at least a part of a pipe for transferring ground water is a vinyl chloride pipe. 請求項5または6に記載の水処理装置の運転方法であって、
水処理装置を一時停止させた後再稼働する際、地下水を逆浸透膜に移送する配管中に滞留した滞留水を排水するように運転する、水処理装置の運転方法。
A method of operating a water treatment apparatus according to claim 5 or 6, wherein
A method of operating a water treatment apparatus, which operates so as to drain water staying in a pipe for transferring ground water to a reverse osmosis membrane when the water treatment apparatus is temporarily stopped and then reactivated.
FI値が3以上、鉄イオン濃度が0.01ppm以上、マンガンイオン濃度が0.01ppm以上、アンモニア性窒素濃度が0.5ppm以上および有機物濃度が10ppm以上である被処理水を逆浸透膜に供給し、逆浸透膜の濃縮水のpHが7.0以下となるように水処理を行う、透過水の製造方法。   Supply to the reverse osmosis membrane water to be treated with FI value of 3 or more, iron ion concentration of 0.01 ppm or more, manganese ion concentration of 0.01 ppm or more, ammoniacal nitrogen concentration of 0.5 ppm or more and organic matter concentration of 10 ppm or more And a method of producing permeated water, wherein water treatment is performed so that the pH of the concentrated water of the reverse osmosis membrane is 7.0 or less.
JP2017240988A 2017-12-15 2017-12-15 Manufacturing method of permeated water, water treatment device and operation method of the water treatment device Active JP6968682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240988A JP6968682B2 (en) 2017-12-15 2017-12-15 Manufacturing method of permeated water, water treatment device and operation method of the water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240988A JP6968682B2 (en) 2017-12-15 2017-12-15 Manufacturing method of permeated water, water treatment device and operation method of the water treatment device

Publications (2)

Publication Number Publication Date
JP2019107592A true JP2019107592A (en) 2019-07-04
JP6968682B2 JP6968682B2 (en) 2021-11-17

Family

ID=67178569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240988A Active JP6968682B2 (en) 2017-12-15 2017-12-15 Manufacturing method of permeated water, water treatment device and operation method of the water treatment device

Country Status (1)

Country Link
JP (1) JP6968682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112689A (en) * 2020-01-16 2021-08-05 三菱ケミカルアクア・ソリューションズ株式会社 Operational method of reverse osmosis membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163979A (en) * 1993-12-16 1995-06-27 Japan Organo Co Ltd Reverse osmosis membrane treatment
JPH10337444A (en) * 1997-06-05 1998-12-22 Nitto Denko Corp Liquid separation
US20030173296A1 (en) * 2003-04-14 2003-09-18 Costa Lawrence C High recovery reverse osmosis process and apparatus
JP2006043655A (en) * 2004-08-09 2006-02-16 Japan Organo Co Ltd Water treating apparatus and operation method therefor
JP2008237980A (en) * 2007-03-26 2008-10-09 Kobelco Eco-Solutions Co Ltd Membrane separation apparatus for drinking water production, and its operation method
JP2011189242A (en) * 2010-03-12 2011-09-29 Miura Co Ltd Water treatment system
JP2013132563A (en) * 2011-12-22 2013-07-08 Miura Co Ltd Water treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163979A (en) * 1993-12-16 1995-06-27 Japan Organo Co Ltd Reverse osmosis membrane treatment
JPH10337444A (en) * 1997-06-05 1998-12-22 Nitto Denko Corp Liquid separation
US20030173296A1 (en) * 2003-04-14 2003-09-18 Costa Lawrence C High recovery reverse osmosis process and apparatus
JP2006043655A (en) * 2004-08-09 2006-02-16 Japan Organo Co Ltd Water treating apparatus and operation method therefor
JP2008237980A (en) * 2007-03-26 2008-10-09 Kobelco Eco-Solutions Co Ltd Membrane separation apparatus for drinking water production, and its operation method
JP2011189242A (en) * 2010-03-12 2011-09-29 Miura Co Ltd Water treatment system
JP2013132563A (en) * 2011-12-22 2013-07-08 Miura Co Ltd Water treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112689A (en) * 2020-01-16 2021-08-05 三菱ケミカルアクア・ソリューションズ株式会社 Operational method of reverse osmosis membrane

Also Published As

Publication number Publication date
JP6968682B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP4917581B2 (en) Pure water production method
JP5910675B2 (en) Pure water production apparatus and pure water production method
JP5834492B2 (en) Ultrapure water production equipment
JP2002018437A (en) Treating method and treating device of water containing calcium and silica
JPH11244853A (en) Production of pure water
JP5609174B2 (en) Water treatment system
JP3903746B2 (en) Circulating cooling water treatment method
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JP2007307561A (en) High-purity water producing apparatus and method
JP3137831B2 (en) Membrane processing equipment
JP2014104410A (en) Processing unit of ammonia inclusion discharge water and processing method of ammonia inclusion discharge water
JP2000015257A (en) Apparatus and method for making high purity water
WO2020195217A1 (en) Method and device for treating water containing calcium and organic matter
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
JP5238778B2 (en) Desalination system
JP5678436B2 (en) Ultrapure water production method and apparatus
JPS6336890A (en) Apparatus for producing high-purity water
JP4576760B2 (en) Circulating cooling water treatment method
TWI453168B (en) Treatment method containing surfactant drainage
JP2009160500A (en) Ultrapure water production method and apparatus
WO2020184044A1 (en) Pure-water production device and pure-water production method
JP2002355683A (en) Ultrapure water making method and apparatus
JP2005246158A (en) Method and system for desalinating seawater
JP5782675B2 (en) Water treatment method and ultrapure water production method
JP2002001069A (en) Method for producing pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6968682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150