JP5834492B2 - Ultrapure water production equipment - Google Patents

Ultrapure water production equipment Download PDF

Info

Publication number
JP5834492B2
JP5834492B2 JP2011117142A JP2011117142A JP5834492B2 JP 5834492 B2 JP5834492 B2 JP 5834492B2 JP 2011117142 A JP2011117142 A JP 2011117142A JP 2011117142 A JP2011117142 A JP 2011117142A JP 5834492 B2 JP5834492 B2 JP 5834492B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
osmosis membrane
pressure
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117142A
Other languages
Japanese (ja)
Other versions
JP2012245439A (en
Inventor
育野 望
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47466428&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5834492(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011117142A priority Critical patent/JP5834492B2/en
Publication of JP2012245439A publication Critical patent/JP2012245439A/en
Application granted granted Critical
Publication of JP5834492B2 publication Critical patent/JP5834492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は超純水製造装置に係り、特に逆浸透膜分離装置(RO装置)を有する一次純水システムを備えた超純水製造装置に関する。   The present invention relates to an ultrapure water production apparatus, and more particularly to an ultrapure water production apparatus provided with a primary pure water system having a reverse osmosis membrane separation device (RO device).

従来、半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム1、一次純水システム2、サブシステム(二次純水システム)3から構成される超純水製造装置で、原水(工業用水、市水、井水、半導体工場から排出される使用済み超純水(以下「回収水」と称す。)等)を処理することにより製造される。図2において各システムの役割は次の通りである。   Conventionally, as shown in FIG. 2, ultrapure water used as semiconductor cleaning water is ultrapure water production comprising a pretreatment system 1, a primary pure water system 2, and a subsystem (secondary pure water system) 3. It is manufactured by treating raw water (industrial water, city water, well water, used ultrapure water (hereinafter referred to as “recovered water”), etc.) discharged from a semiconductor factory. In FIG. 2, the role of each system is as follows.

凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。   In the pretreatment system 1 composed of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc., suspended substances and colloidal substances in raw water are removed. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.

逆浸透膜分離(RO)装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)を備える一次純水システム2では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素(DO)の除去を行う。   In the primary pure water system 2 including a reverse osmosis membrane separation (RO) device, a deaeration device, and an ion exchange device (such as a mixed bed type or a 4-bed 5-to-column type), ions and organic components in raw water are removed. The reverse osmosis membrane separation apparatus removes salts and ionic and colloidal TOC. The ion exchange apparatus removes salts and removes the TOC component adsorbed or ion exchanged by the ion exchange resin. In the deaerator, inorganic carbon (IC) and dissolved oxygen (DO) are removed.

低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜分離装置を備えるサブシステム3では、一次純水システム2で得られた純水の純度をより一層高めて超純水にする。なお、低圧紫外線酸化装置では、低圧紫外線ランプより出される波長185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換樹脂で除去される。限外濾過膜分離装置では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。 In the subsystem 3 including the low-pressure ultraviolet oxidizer, the ion exchange pure water device, and the ultrafiltration membrane separation device, the purity of the pure water obtained in the primary pure water system 2 is further increased to ultrapure water. In the low-pressure ultraviolet oxidizer, TOC is decomposed to an organic acid and further to CO 2 by ultraviolet rays having a wavelength of 185 nm emitted from a low-pressure ultraviolet lamp. Organic substances and CO 2 produced by the decomposition are removed by an ion exchange resin in the subsequent stage. In the ultrafiltration membrane separation device, the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.

なお、図2では、一次純水システムの逆浸透膜分離装置が前段側と最後段部とに配置されているが、直列に2段に設置することもある。また、図2では、前処理システムが1系統のみ設置されているが、市水、工水等を処理する前処理システムと、半導体製造工程排水などの希薄系排水を処理する希薄系排水回収システムとを並列設置することもある。   In FIG. 2, the reverse osmosis membrane separation device of the primary pure water system is arranged on the front stage side and the last stage part, but it may be installed in two stages in series. In FIG. 2, only one pretreatment system is installed, but a pretreatment system for treating city water, industrial water, etc., and a lean wastewater collection system for treating lean wastewater such as semiconductor manufacturing process wastewater. May be installed in parallel.

特許3468784号公報Japanese Patent No. 3468784

従来、超純水製造システムにおいては有機物濃度低減目的からRO分離装置を直列で2段通水する2段RO方式が一次純水あるいは排水回収システムにおいて主として採用されている。RO膜種としては処理対象となる原水が工業用水、水道水、井戸水あるいは塩類負荷の低い希薄系排水であることから、標準運転圧力0.75MPa、純水フラックス25m/m・D/本(8インチ)以上である超低圧RO膜、あるいは標準運転圧力1.47MPa、純水フラックス25m/m・D/本(8インチ)以上である低圧RO膜を用いるのが一般的であった。 Conventionally, in an ultrapure water production system, a two-stage RO system in which RO separators pass through two stages in series has been mainly adopted in a primary pure water or wastewater recovery system for the purpose of reducing the concentration of organic substances. As the RO membrane type, the raw water to be treated is industrial water, tap water, well water or dilute waste water with low salt load, so standard operating pressure is 0.75 MPa, pure water flux is 25 m 3 / m 2 · D / main. It is common to use an ultra-low pressure RO membrane that is 8 inches or more, or a low-pressure RO membrane that has a standard operating pressure of 1.47 MPa and a pure water flux of 25 m 3 / m 2 · D / tube (8 inches) or more. It was.

しかしながら、このように逆浸透膜分離装置を2段に設置すると、設置スペースが増大すると共に、装置運転管理が煩雑化する。即ち、半導体製造工場の超純水製造プラントでは、規模にもよるが、一次純水システムの第1段目の逆浸透膜分離装置として例えば4〜40個を並列設置し、第2段目にこれと同程度の逆浸透膜分離装置を並列設置しており、逆浸透膜分離装置の設置数が極めて多いものとなっており、逆浸透膜分離装置の設備コスト及びランニングコストが嵩むと共に、設置面積も大きいものとなっている。   However, when the reverse osmosis membrane separation devices are installed in two stages in this way, the installation space increases and the device operation management becomes complicated. That is, in the ultrapure water production plant of the semiconductor manufacturing factory, depending on the scale, for example, 4 to 40 reverse osmosis membrane separation devices in the first stage of the primary pure water system are installed in parallel, and in the second stage. Reverse osmosis membrane separation devices of the same degree are installed in parallel, and the number of reverse osmosis membrane separation devices installed is extremely large, increasing the equipment cost and running cost of reverse osmosis membrane separation devices, and installing them The area is also large.

本発明は、上記従来の問題点を解決し、逆浸透膜分離装置の設置数が少ない超純水製造装置を提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems and to provide an ultrapure water production apparatus in which the number of reverse osmosis membrane separation apparatuses is small.

本発明(請求項1)の超純水製造装置は、一次純水システムと、該一次純水システムの処理水を処理するサブシステムとを備え、少なくとも該一次純水システムに逆浸透膜分離装置が設けられている超純水製造装置において、該一次純水システムに設置された逆浸透膜分離装置が高圧型逆浸透膜分離装置であって、前記高圧型逆浸透膜分離装置は、標準運転圧力におけるNaCl除去率99.5%(NaCl32000mg/L)以上の特性を有し、且つ単段にて設置されていることを特徴とするものである。 The ultrapure water production apparatus of the present invention (Claim 1) includes a primary pure water system and a subsystem for treating treated water of the primary pure water system, and at least the primary pure water system includes a reverse osmosis membrane separation device. in ultrapure water production apparatus is provided with a reverse osmosis membrane separation device that is provided in the primary pure water system I high pressure reverse osmosis membrane separation apparatus der, the high-pressure reverse osmosis membrane separation device, standard It has a characteristic that the NaCl removal rate at the operating pressure is 99.5% (NaCl 32000 mg / L) or more and is installed in a single stage.

請求項2の超純水製造装置は、請求項1において、前記高圧型逆浸透膜分離装置は、標準運転圧力5.52MPa以上、標準運転圧力における純水フラックス0.5m/m・D以上の特性を有することを特徴とするものである。 The ultrapure water production apparatus according to claim 2 is the ultrapure water production apparatus according to claim 1, wherein the high-pressure reverse osmosis membrane separation apparatus has a standard operating pressure of 5.52 MPa or more and a pure water flux of 0.5 m 3 / m 2 · D at the standard operating pressure. it is characterized in that it has the characteristics of the following.

請求項3の超純水製造装置は、請求項1又は2において、原水を処理する前処理システムを有し、該前処理システムの処理水が前記一次純水システム及びサブシステムで順次処理される超純水製造装置であって、前記高圧型逆浸透膜分離装置への給水のTDS(全溶解性物質)が1500mg/L以下であることを特徴とするものである。   The ultrapure water production apparatus of claim 3 has a pretreatment system for treating raw water according to claim 1 or 2, and the treated water of the pretreatment system is sequentially treated by the primary pure water system and the subsystem. In the ultrapure water production apparatus, the TDS (totally soluble substance) of water supplied to the high-pressure reverse osmosis membrane separation apparatus is 1500 mg / L or less.

請求項4の超純水製造装置は、請求項1ないし3のいずれか1項において、前記高圧型逆浸透膜分離装置の膜面有効圧力が1.5〜3MPaであることを特徴とするものである。   The ultrapure water production apparatus according to claim 4 is characterized in that, in any one of claims 1 to 3, the effective pressure on the membrane surface of the high pressure type reverse osmosis membrane separator is 1.5 to 3 MPa. It is.

高圧型逆浸透膜分離装置は、従来、海水淡水化プラントに用いられているものであり、塩分濃度の高い海水を逆浸透膜処理するために膜面有効圧力(1次側圧力と2次側圧力との差)を5.52MPa程度の高圧として使用される。   High pressure type reverse osmosis membrane separation devices are conventionally used in seawater desalination plants, and are effective in membrane surface pressure (primary side pressure and secondary side pressure) to treat seawater with a high salinity concentration by reverse osmosis membranes. The pressure difference) is used as a high pressure of about 5.52 MPa.

本発明では、この高圧型逆浸透膜分離装置を超純水製造装置の一次純水システムに単段(1段)に設置する。一般に、海水淡水化用逆浸透膜は、脱塩や有機物除去に寄与するスキン層の分子構造が緻密であるため、有機物除去率が高い。海水淡水化においては、原水の塩類濃度が高く、これに伴い浸透圧が高くなるため、透過水量を確保するには、膜面有効圧力が5.5MPa以上となる。一方、電子産業分野における一般的なRO膜に適用する原水の塩類濃度は低く、TDS(全溶解性物質)が1500mg/L以下である。このような原水においては、浸透圧が低く、膜面有効圧力わずか2〜3MPa程度で十分な透過水量を得、かつ上述のごとく透過水の水質は、従来の逆浸透膜(超低圧RO膜、低圧RO膜)に比べ格段と向上する。   In the present invention, this high-pressure reverse osmosis membrane separation device is installed in a single stage (one stage) in the primary pure water system of the ultrapure water production apparatus. Generally, reverse osmosis membranes for seawater desalination have a high organic matter removal rate because the molecular structure of the skin layer that contributes to desalting and organic matter removal is dense. In seawater desalination, the salt concentration of raw water is high, and the osmotic pressure increases accordingly. Therefore, in order to ensure the amount of permeated water, the effective membrane surface pressure is 5.5 MPa or more. On the other hand, the salt concentration of raw water applied to a general RO membrane in the electronics industry is low, and the TDS (totally soluble substance) is 1500 mg / L or less. In such raw water, the osmotic pressure is low, a sufficient permeated water amount is obtained at a membrane surface effective pressure of only 2 to 3 MPa, and the water quality of the permeated water is the conventional reverse osmosis membrane (ultra-low pressure RO membrane, Compared to low-pressure RO membrane).

このように一次純水システムに高圧型逆浸透膜分離装置を単段設置することにより、逆浸透膜分離装置の設置数が従来の2段設置の場合に比べて半分となり、逆浸透膜分離装置の設置スペースが半減すると共に、設備コスト、運転管理コストもほぼ半減する。   By installing a high-pressure reverse osmosis membrane separation device in a single stage in the primary pure water system in this way, the number of reverse osmosis membrane separation devices installed is halved compared to the conventional two-stage installation, and the reverse osmosis membrane separation device. The installation space is halved, and the equipment cost and operation management cost are almost halved.

本発明の超純水製造装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the ultrapure water manufacturing apparatus of this invention. 従来の超純水製造装置を示す系統図である。It is a systematic diagram which shows the conventional ultrapure water manufacturing apparatus.

以下に、本発明の超純水製造装置の実施の形態を詳細に説明する。   Below, the embodiment of the ultrapure water production apparatus of the present invention is described in detail.

本発明においては、図1に示すように、原水を好ましくは前処理システム、一次純水システム及びサブシステムで順次処理して超純水を製造するに当たり、一次純水システムに逆浸透膜分離装置(RO装置)として高圧型逆浸透膜分離装置を単段にて設置する。   In the present invention, as shown in FIG. 1, in order to produce ultrapure water by sequentially treating raw water, preferably with a pretreatment system, a primary pure water system and a subsystem, a reverse osmosis membrane separation device is added to the primary pure water system. A high-pressure reverse osmosis membrane separation device is installed in a single stage as (RO device).

高圧型逆浸透膜分離装置は、従来、海水淡水化に用いられている逆浸透膜分離装置であり、標準運転圧力5.52MPa以上であり、標準運転圧力において、純水フラックス0.5m/m・D以上、NaCl除去率99.5%(NaCl32000mg/L)以上の特性を有する。このNaCl除去率は、NaCl濃度32000mg/LのNaCl水溶液に対する25℃における除去率である。なお、逆浸透膜のカタログ(技術資料を含む)には、膜メーカーよりスペック表示がなされており、高圧型であるか低圧型又は超低圧型であるかはカタログ値として判別できる。 The high-pressure type reverse osmosis membrane separation device is a reverse osmosis membrane separation device conventionally used for seawater desalination, having a standard operating pressure of 5.52 MPa or more, and at a standard operating pressure, a pure water flux of 0.5 m 3 / m 2 · D or more, NaCl removal rate of 99.5% (NaCl 32000 mg / L) or more. This NaCl removal rate is the removal rate at 25 ° C. with respect to a NaCl aqueous solution having a NaCl concentration of 32000 mg / L. In addition, the specifications of the reverse osmosis membrane catalog (including technical data) are indicated by the membrane manufacturer, and it can be determined as a catalog value whether it is a high pressure type, a low pressure type or an ultra low pressure type.

この高圧型逆浸透膜は、従来の超純水製造装置の一次純水システムに用いられている低圧又は超低圧型逆浸透膜に比べて膜表面のスキン層が緻密となっている。そのため、高圧型逆浸透膜は低圧型又は超低圧型逆浸透膜に比べて単位操作圧力当りの膜透過水量は低いものの有機物除去率は極端に高い。TDS(全溶解性物質)1500mg/L以下の塩類濃度の給水を逆浸透膜処理する場合においては、回収率90%時の運転条件下で逆浸透膜にかかる浸透圧は最大1.0MPa程度である。従って、TDS1500mg/L以下の給水の処理に高圧型逆浸透膜分離装置を用いた場合、好ましくは1.5〜3MPa、特に好ましくは2〜3MPa程度の膜面有効圧力(1次側と2次側との圧力差)で、低圧型又は超低圧型逆浸透膜と同程度の水量を確保することが可能となる。その結果、1段RO膜処理のみで従来の2段ROと同等の処理水水質・処理水量を得ることが可能となり、それに伴い膜本数、ベッセル、配管が削減でき低コスト、省スペース化が可能となる。 This high-pressure type reverse osmosis membrane has a dense skin layer compared to a low-pressure or ultra-low pressure type reverse osmosis membrane used in a primary pure water system of a conventional ultrapure water production apparatus. Therefore, the high-pressure type reverse osmosis membrane has an extremely high organic matter removal rate although the amount of permeated water per unit operating pressure is lower than that of the low-pressure type or ultra-low pressure type reverse osmosis membrane. When feed water with a salt concentration of TDS (totally soluble substance) 1500 mg / L or less is treated with a reverse osmosis membrane, the osmotic pressure applied to the reverse osmosis membrane under operating conditions at a recovery rate of 90% is about 1.0 MPa at maximum. is there. Therefore, when a high-pressure reverse osmosis membrane separation device is used for water supply of TDS 1500 mg / L or less, the membrane surface effective pressure (primary side and secondary side is preferably about 1.5 to 3 MPa, particularly preferably about 2 to 3 MPa. It is possible to secure the same amount of water as the low pressure type or ultra low pressure type reverse osmosis membrane. As a result, it is possible to obtain treated water quality and treated water equivalent to the conventional two-stage RO with only one-stage RO membrane treatment, and the number of membranes, vessels, and piping can be reduced accordingly, resulting in low cost and space saving. It becomes.

逆浸透膜の膜形状は、特に限定されるものではなく、例えばスパイラル型、中空子型等、4インチRO膜、8インチRO膜、16インチRO膜などのいずれでもよい。   The membrane shape of the reverse osmosis membrane is not particularly limited, and may be any of 4 inch RO membrane, 8 inch RO membrane, 16 inch RO membrane, etc. such as spiral type, hollow core type.

なお、図1では、原水を前処理システムで処理して一次純水システムに供給しているが、この前処理システムと並列に希薄系排水処理システム(図示略)を設置し、この希薄系排水処理システムの処理水も一次純水システムに供給するようにしてもよい。この場合、図1のフローにおいて、一次純水システムの前段にタンクを設置し、このタンクに前処理システムからの処理水と希薄系排水の処理水とを流入させるのが好ましい。   In FIG. 1, raw water is treated by a pretreatment system and supplied to the primary pure water system. A lean wastewater treatment system (not shown) is installed in parallel with the pretreatment system, and this lean wastewater is disposed. The treated water of the treatment system may also be supplied to the primary pure water system. In this case, in the flow of FIG. 1, it is preferable to install a tank in front of the primary pure water system, and let the treated water from the pretreatment system and the treated water of the lean waste water flow into this tank.

<実験例1>
電子デバイス工場排水(電気伝導率100mS/m、TDS600mg/L、TOC10mg/L)を1段のみ設置された高圧型逆浸透膜分離装置(RO膜はSWC4+:日東電工製。運転圧力5.52MPaにおけるフラックス24.6m/m・D、NaCl除去率99.8%(NaCl32000mg/L))に回収率73%の条件で通水した。その結果、透過水のTOCは0.85mg/Lとなった。膜面有効圧力は2.0MPaであった。
<Experimental example 1>
High-pressure reverse osmosis membrane separation device (RO membrane is SWC4 +: manufactured by Nitto Denko, operating pressure 5.52MPa) in which only one stage of electronic device factory wastewater (electric conductivity 100mS / m, TDS 600mg / L, TOC 10mg / L) is installed. Water was passed through a flux of 24.6 m 3 / m 2 · D and a NaCl removal rate of 99.8% (NaCl 32000 mg / L) at a recovery rate of 73%. As a result, the TOC of the permeated water was 0.85 mg / L. The effective membrane surface pressure was 2.0 MPa.

<実験例2>
実験例1と同じ電子デバイス工場排水を、超低圧RO膜(ES−20:日東電工製)を充填した2段RO装置に前段RO回収率75%、後段RO回収率90%、全体水回収率73%の条件(後段RO濃縮水は前段RO給水に合流)で通水した。その結果、第1段目RO透過水のTOC濃度は1.35mg/L、第2段目RO透過水のTOC濃度は0.9mg/Lとなった。膜面有効圧力は1段目0.5MPa、2段目0.75MPaであった。
<Experimental example 2>
The same electronic device factory effluent as in Experimental Example 1, a two-stage RO device filled with an ultra-low pressure RO membrane (ES-20: manufactured by Nitto Denko), a front-stage RO recovery rate of 75%, a rear-stage RO recovery rate of 90%, and a total water recovery rate Water was passed under the condition of 73% (the latter stage RO concentrated water merged with the first stage RO feed water). As a result, the TOC concentration of the first-stage RO permeated water was 1.35 mg / L, and the TOC concentration of the second-stage RO permeated water was 0.9 mg / L. The effective pressure on the film surface was 0.5 MPa at the first stage and 0.75 MPa at the second stage.

この実験例1,2より、高圧型逆浸透膜分離装置単段通水と超低圧型逆浸透膜分離装置の2段通水とで、同等の水質の透過水が得られることが認められた。また、実験例2において、第1段目RO透過水のTOC濃度は1.35mg/Lと高く、超低圧型逆浸透膜分離装置の単段設置ではTOC及びTDSの除去が高圧型逆浸透膜分離装置よりも低いことが認められた。   From Experimental Examples 1 and 2, it was confirmed that the permeated water of the same water quality can be obtained by the single-stage water flow of the high-pressure type reverse osmosis membrane separator and the two-stage water flow of the ultralow pressure type reverse osmosis membrane separator. . In Experimental Example 2, the TOC concentration of the first stage RO permeate is as high as 1.35 mg / L, and in the single stage installation of the ultra-low pressure type reverse osmosis membrane separator, the removal of TOC and TDS is a high pressure type reverse osmosis membrane. It was found to be lower than the separator.

そこで、上記高圧型逆浸透膜分離装置を用い、図2に示す既存のフローの超純水製造装置の一次純水システムを図1のように高圧型逆浸透膜分離装置単独設置とし、膜面有効圧力を2.0MPaとして運転したところ、従前(2段RO。1段目の膜面有効圧力0.5MPa、2段目の膜面有効圧力0.75MPa)と同様の水質の超純水がほぼ同生産水量にて製造されることが認められた。   Therefore, using the high-pressure type reverse osmosis membrane separation apparatus, the primary pure water system of the existing flow ultrapure water production apparatus shown in FIG. 2 is installed as a single high-pressure type reverse osmosis membrane separation apparatus as shown in FIG. When operating at an effective pressure of 2.0 MPa, ultrapure water with the same water quality as before (2nd stage RO, 1st stage membrane surface effective pressure 0.5 MPa, 2nd stage membrane surface effective pressure 0.75 MPa) was obtained. It was confirmed that it was produced with almost the same production water volume.

1 前処理システム
2 一次純水システム
3 サブシステム
1 Pretreatment system 2 Primary pure water system 3 Subsystem

Claims (4)

一次純水システムと、該一次純水システムの処理水を処理するサブシステムとを備え、少なくとも該一次純水システムに逆浸透膜分離装置が設けられている超純水製造装置において、該一次純水システムに設置された逆浸透膜分離装置が高圧型逆浸透膜分離装置であって、前記高圧型逆浸透膜分離装置は、標準運転圧力におけるNaCl除去率99.5%(NaCl32000mg/L)以上の特性を有し、且つ単段にて設置されていることを特徴とする超純水製造装置。 In an ultrapure water production apparatus comprising a primary pure water system and a subsystem for treating the treated water of the primary pure water system, the primary pure water system is provided with a reverse osmosis membrane separation device. reverse osmosis membrane separation apparatus installed in the water system I high pressure reverse osmosis membrane separation apparatus der, the high-pressure reverse osmosis membrane separation device, NaCl removal rate of 99.5% in the standard operating pressure (NaCl32000mg / L) An ultrapure water production apparatus having the above characteristics and installed in a single stage. 請求項1において、前記高圧型逆浸透膜分離装置は、標準運転圧力5.52MPa以上、標準運転圧力における純水フラックス0.5m/m・D以上の特性を有することを特徴とする超純水製造装置。 According to claim 1, wherein the high-pressure reverse osmosis membrane separation device, a standard operating pressure 5.52MPa or more, and having a pure water flux 0.5m 3 / m 2 · D than on the characteristics in the standard operating pressure Ultrapure water production equipment. 請求項1又は2において、原水を処理する前処理システムを有し、該前処理システムの処理水が前記一次純水システム及びサブシステムで順次処理される超純水製造装置であって、前記高圧型逆浸透膜分離装置への給水のTDSが1500mg/L以下であることを特徴とする超純水製造装置。   The ultrapure water production apparatus according to claim 1, further comprising a pretreatment system for treating raw water, wherein the treated water of the pretreatment system is sequentially treated by the primary pure water system and the subsystem. The ultrapure water production apparatus characterized in that the TDS of water supplied to the reverse osmosis membrane separator is 1500 mg / L or less. 請求項1ないし3のいずれか1項において、前記高圧型逆浸透膜分離装置の膜面有効圧力が1.5〜3MPaであることを特徴とする超純水製造装置。   The ultrapure water production apparatus according to any one of claims 1 to 3, wherein the effective pressure on the membrane surface of the high-pressure type reverse osmosis membrane separation device is 1.5 to 3 MPa.
JP2011117142A 2011-05-25 2011-05-25 Ultrapure water production equipment Active JP5834492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117142A JP5834492B2 (en) 2011-05-25 2011-05-25 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117142A JP5834492B2 (en) 2011-05-25 2011-05-25 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JP2012245439A JP2012245439A (en) 2012-12-13
JP5834492B2 true JP5834492B2 (en) 2015-12-24

Family

ID=47466428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117142A Active JP5834492B2 (en) 2011-05-25 2011-05-25 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP5834492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001075A (en) * 2014-12-19 2017-08-01 栗田工业株式会社 Ultrapure Water Purifiers and ultra-pure water manufacture method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733351B2 (en) * 2013-07-22 2015-06-10 栗田工業株式会社 Method and apparatus for treating boron-containing water
JP6533359B2 (en) * 2013-10-07 2019-06-19 野村マイクロ・サイエンス株式会社 Ultra pure water production method
JP5900527B2 (en) * 2014-03-31 2016-04-06 栗田工業株式会社 Treatment method for water containing low molecular weight organic substances
JP6728835B2 (en) * 2016-03-23 2020-07-22 栗田工業株式会社 Method of operating pure water production equipment
JP6365624B2 (en) 2016-10-20 2018-08-01 栗田工業株式会社 Method and apparatus for purifying hydrogen peroxide aqueous solution
JP6629383B2 (en) * 2018-05-11 2020-01-15 野村マイクロ・サイエンス株式会社 Ultrapure water production method
CN216472503U (en) * 2021-04-09 2022-05-10 广东领尚净水科技有限公司 Water purification system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794785B2 (en) * 1989-05-26 1998-09-10 東洋紡績株式会社 Hollow fiber membrane
JP3547018B2 (en) * 1994-06-10 2004-07-28 東レ株式会社 Reverse osmosis treatment method and fresh water method
JPH11165170A (en) * 1997-12-03 1999-06-22 Nitto Denko Corp Production ultra-pure water
JP3894398B2 (en) * 1998-08-27 2007-03-22 栗田工業株式会社 Pure water production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001075A (en) * 2014-12-19 2017-08-01 栗田工业株式会社 Ultrapure Water Purifiers and ultra-pure water manufacture method

Also Published As

Publication number Publication date
JP2012245439A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5834492B2 (en) Ultrapure water production equipment
TWI648093B (en) Ultrapure water manufacturing device and method
JP5733351B2 (en) Method and apparatus for treating boron-containing water
WO2015050125A1 (en) Ultrapure water production apparatus
KR101916557B1 (en) Ultrapure water production apparatus and ultrapure water production method
US20140091039A1 (en) System and method for the treatment of hydraulic fracturing backflow water
WO2015151899A1 (en) Method for treating water containing low molecular weight organic substance
CN110540318A (en) Sewage recovery treatment system and treatment process
JP5962135B2 (en) Ultrapure water production equipment
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP5678436B2 (en) Ultrapure water production method and apparatus
TWI826657B (en) Pure water production apparatus and pure water production method
WO2014010075A1 (en) Ultrapure water production device
US20170267550A1 (en) Ultrapure water producing method
JP5782675B2 (en) Water treatment method and ultrapure water production method
JP2002001069A (en) Method for producing pure water
JP6524752B2 (en) Method of treating calcium ion and inorganic carbon containing water
TWI592207B (en) Ultrapure water manufacturing equipment
JP6728835B2 (en) Method of operating pure water production equipment
JP2021045701A (en) Ultrapure water production system and ultrapure water production method
JP2017140548A (en) Method of operating electrodeionization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250