JP6728835B2 - Method of operating pure water production equipment - Google Patents

Method of operating pure water production equipment Download PDF

Info

Publication number
JP6728835B2
JP6728835B2 JP2016058611A JP2016058611A JP6728835B2 JP 6728835 B2 JP6728835 B2 JP 6728835B2 JP 2016058611 A JP2016058611 A JP 2016058611A JP 2016058611 A JP2016058611 A JP 2016058611A JP 6728835 B2 JP6728835 B2 JP 6728835B2
Authority
JP
Japan
Prior art keywords
pure water
water
reverse osmosis
osmosis membrane
electric deionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058611A
Other languages
Japanese (ja)
Other versions
JP2017170328A (en
Inventor
佐藤 伸
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016058611A priority Critical patent/JP6728835B2/en
Publication of JP2017170328A publication Critical patent/JP2017170328A/en
Application granted granted Critical
Publication of JP6728835B2 publication Critical patent/JP6728835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、純水製造装置及びこの純水製造装置の運転方法に関し、特に、逆浸透膜分離装置(RO装置)と電気脱イオン装置とを有する純水製造装置及びこの純水製造装置の運転方法に関する。 The present invention relates to a pure water production apparatus and a method for operating the pure water production apparatus, and more particularly to a pure water production apparatus having a reverse osmosis membrane separation device (RO apparatus) and an electric deionization apparatus and operation of the pure water production apparatus. Regarding the method.

従来、半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム12、一次純水システム13、サブシステム(二次純水システム)14から構成される超純水製造装置11で、原水(工業用水、市水、井水等)Wを処理することにより製造される。図2において各システムの役割は次の通りである。 Conventionally, ultrapure water used as semiconductor cleaning water is an ultrapure water production system including a pretreatment system 12, a primary pure water system 13, and a subsystem (secondary pure water system) 14 as shown in FIG. It is produced by treating raw water (industrial water, city water, well water, etc.) W in the device 11. The role of each system in FIG. 2 is as follows.

凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理システム12では、原水W中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 In the pretreatment system 12 including a flocculation, pressure floating (precipitation), filtration (membrane filtration) device, etc., suspended substances and colloidal substances in the raw water W are removed. Further, in this process, it is possible to remove high molecular organic matter, hydrophobic organic matter and the like.

一次純水システム13は、タンク15と低圧もしくは超低圧型の逆浸透膜分離(RO)装置16、17と電気脱イオン装置18と脱気膜等の脱気装置19とを備え、前処理水W1中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置16、17では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。電気脱イオン装置18では、塩類を除去すると共にイオン交換作用により吸着又はイオン交換されるTOC成分の除去を行う。また、脱気装置19では電気脱イオン装置18の処理水から二酸化炭素や酸素などの溶存ガスを除去する。なお、この一次純水システム13は、必要に応じて再生式のイオン交換装置などを備えていても良い。 The primary pure water system 13 includes a tank 15, low-pressure or ultra-low pressure type reverse osmosis membrane separation (RO) devices 16 and 17, an electric deionization device 18, and a deaeration device 19 such as a deaeration membrane, and pretreated water. Ions and organic components in W1 are removed. The reverse osmosis membrane separation devices 16 and 17 remove salts, as well as ionic and colloidal TOC. The electric deionization device 18 removes salts and also removes TOC components that are adsorbed or ion-exchanged by an ion exchange action. Further, the deaerator 19 removes dissolved gas such as carbon dioxide and oxygen from the treated water of the electric deionizer 18. The primary pure water system 13 may be equipped with a regenerative ion exchange device or the like, if necessary.

サブシステム14は、低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜分離装置を備え、このサブシステム14では、一次純水システム13で得られた一次純水W2の純度をより一層高めて超純水W3にする。なお、低圧紫外線酸化装置では、低圧紫外線ランプより出される波長185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換樹脂で除去される。限外濾過膜分離装置では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。 The subsystem 14 includes a low-pressure ultraviolet oxidation device, an ion-exchange pure water device, and an ultrafiltration membrane separation device. In this subsystem 14, the purity of the primary pure water W2 obtained by the primary pure water system 13 is further enhanced. To make ultrapure water W3. In the low-pressure ultraviolet oxidizer, TOC is decomposed to organic acid and further to CO 2 by ultraviolet rays having a wavelength of 185 nm emitted from a low-pressure ultraviolet lamp. The organic matter and CO 2 generated by the decomposition are removed by the ion exchange resin in the subsequent stage. In the ultrafiltration membrane separator, fine particles are removed and outflow particles of the ion exchange resin are also removed.

このような超純水製造装置11における一次純水システム13は、電気脱イオン装置18を用いているので、再生式のイオン交換装置と異なり再生処理が不要である点などの利点があり、超純水の用途に限らず、サブシステムを用いて超純水のレベルの純度の水とする必要のない医薬用や食品用などの用途にも利用可能な最も汎用的なシステムとして注目されている。そして、近年では、例えば高さと幅がそれぞれ50cm以下程度のセルを積層した小型で低コストの汎用型電気脱イオン装置が普及してきており、一次純水システム13のコンパクト化がなされてきている。 Since the primary deionized water system 13 in the ultrapure water production system 11 uses the electric deionization device 18, it has advantages such as no need for regeneration treatment unlike a regenerative ion exchange device. It is attracting attention as the most general-purpose system that can be used not only for pure water applications, but also for applications such as pharmaceuticals and foods where it is not necessary to use a subsystem to obtain water with a purity level of ultrapure water. .. In recent years, for example, a small-sized and low-cost general-purpose type electric deionization device in which cells each having a height and a width of about 50 cm or less are stacked has become widespread, and the primary pure water system 13 has been made compact.

しかしながら、このような小型の電気脱イオン装置は、小型であるがゆえに水量に対する膜面積負荷が大きいため、スケールや汚れの影響を受けやすい傾向がある。そこで、小型の電気脱イオン装置を一次純水システム13に用いる場合には、低圧もしくは超低圧型の逆浸透膜分離装置を2段直列に配置して、あらかじめスケール成分であるカルシウム、シリカあるいは有機物等を除去しているが、逆浸透膜分離装置16、17は電力消費量が大きいだけでなく、設置スペースや電源の確保が必要となるため、できれば1段のRO膜装置で構成できるのが望ましい。 However, since such a small-sized electrodeionization apparatus is small in size and therefore has a large membrane area load with respect to the amount of water, it tends to be easily affected by scale and dirt. Therefore, when using a small-sized electric deionization device for the primary pure water system 13, low-pressure or ultra-low pressure type reverse osmosis membrane separation devices are arranged in series in two stages, and calcium, silica, or an organic substance that is a scale component is previously arranged. Although the reverse osmosis membrane separators 16 and 17 consume a large amount of power and require securing an installation space and a power source, the reverse osmosis membrane separators 16 and 17 can be configured with a single-stage RO membrane device if possible. desirable.

また、小型の電気脱イオン装置は、小型であるがゆえに所望とする性能を発揮するためには、大型の電気脱イオン装置と比べて電極間の電流密度が高くなり、脱塩室内での水乖離が盛んになるためOHが増加し、スケール傾向が増大するとともに電気脱イオン装置の内部におけるダメージが蓄積し装置寿命に悪影響を及ぼす懸念がある。さらに大型の電気脱イオン装置と比べてシリカなどの弱イオンの除去率が低くならざるを得ない。最近の一次純水W2に対しても高純度が要求されるようになってきており、一次純水W2のシリカ濃度0.3ppb以下が求められることもあり、これを維持することが望ましい。 In addition, since the small-sized electrodeionization device is small in size, the current density between the electrodes is higher than that of the large-sized electrodeionization device in order to achieve the desired performance, and the water in the deionization chamber is There is a concern that OH will increase due to the increased dissociation, the scale tendency will increase, and damage inside the electric deionization apparatus will accumulate, adversely affecting the life of the apparatus. Furthermore, the removal rate of weak ions such as silica is inevitably lower than that of a large-scale electric deionization device. High purity has recently been required for the primary pure water W2, and the silica concentration of the primary pure water W2 may be 0.3 ppb or less, and it is desirable to maintain this.

本発明は、上記課題に鑑みてなされたものであり、電気脱イオン装置のスケールの発生を抑制し、シリカなどの弱イオン成分の除去性能の高い逆浸透膜分離装置と電気脱イオン装置とを有する純水製造装置及びこの純水製造装置の運転方法を提供することを目的とする。 The present invention has been made in view of the above problems, suppresses the generation of scale of the electrodeionization device, a reverse osmosis membrane separation device and an electrodeionization device with high removal performance of weak ionic components such as silica. An object of the present invention is to provide a pure water producing apparatus having the same and a method of operating the pure water producing apparatus.

本発明は第一に、単段に設けられた高圧型逆浸透膜分離装置と2段直列に配置した電気脱イオン装置とを有する純水製造装置であって、前記高圧型逆浸透膜分離装置の前段にpH調整剤の供給手段を有する純水製造装置を提供する(発明1)。 The present invention is, firstly, a pure water producing apparatus having a high pressure type reverse osmosis membrane separation device provided in a single stage and an electric deionization device arranged in two stages in series, wherein the high pressure type reverse osmosis membrane separation device is provided. The invention provides a pure water production apparatus having a pH adjusting agent supply means in the preceding stage (Invention 1).

高圧型逆浸透膜分離装置は1段であっても通常用いられる低圧もしくは超低圧型逆浸透膜分離装置を2段直列に配置したのに相当する高い除去率を発揮するが、一旦膜面が汚染すると低圧型逆浸透膜分離装置と比べて除去率が大きく低下するため、スケールに対して弱い電気脱イオン装置と組み合わせるには適しないとされていた。そこで本発明者が、高圧型逆浸透膜分離装置の除去率が低下する原因について研究した結果、膜面に汚れが付着すると濃縮側の濃度が処理水側に影響を及ぼしやすいためであり、この膜面の汚染は、原水中に含まれるAl濃度が0.5ppb以上で膜面に付着しやすくなるためであることがわかった。かかる発明(発明1)によれば、高圧型逆浸透膜分離装置の前段にpH調整剤を供給してpHを5以下にすることで、アルミニウムをイオン化して膜面の汚染を抑制する。さらに電気脱イオン装置を2段直列に配置し、前段の電気脱イオン装置を低電流密度で運転し、後段の電気脱イオン装置を高電流密度で運転することにより、処理水シリカ濃度0.3ppb以下を達成することができるとともに電気脱イオン装置の耐用期間の短縮化を回避することが可能となる。 The high-pressure type reverse osmosis membrane separation device exhibits a high removal rate equivalent to that of a normally used low-pressure or ultra-low pressure type reverse osmosis membrane separation device even if it has only one stage. It was said that the contamination would significantly reduce the removal rate as compared with the low pressure type reverse osmosis membrane separation device, so that it was not suitable to be combined with an electric deionization device that is weak against scale. Therefore, the present inventor has studied the cause of the reduction in the removal rate of the high-pressure type reverse osmosis membrane separation device, and as a result of the contamination on the membrane surface, the concentration on the concentration side tends to affect the treated water side. It was found that the contamination of the film surface was due to the fact that the Al concentration in the raw water was 0.5 ppb or more, and the film surface was easily attached. According to the invention (Invention 1), the pH is adjusted to 5 or less by supplying the pH adjusting agent to the front stage of the high-pressure type reverse osmosis membrane separator, thereby ionizing aluminum and suppressing the contamination of the membrane surface. Furthermore, by arranging the electric deionizers in two stages in series, operating the former electric deionizer at a low current density and operating the latter electric deionizer at a high current density, the treated water silica concentration was 0.3 ppb. The following can be achieved and the shortening of the service life of the electrodeionization device can be avoided.

上記発明(発明1)においては、前記2段直列に配置した電気脱イオン装置が、電流効率が高い電気脱イオン装置を前段に電流効率が低い電気脱イオン装置を後段にそれぞれ配置されているのが好ましい(発明2)。 In the above invention (Invention 1), in the electric deionization device arranged in two stages in series, the electric deionization device having high current efficiency is arranged in the front stage, and the electric deionization device having low current efficiency is arranged in the rear stage. Is preferred (Invention 2).

かかる発明(発明2)によれば、電流効率が高い電気脱イオン装置はシリカ濃度が高い排水であっても低い電流密度で除去性能を発揮する一方、電流効率が低い電気脱イオン装置はシリカ濃度が高い排水に対してはシリカスケールが生じやすいが低いシリカ濃度であっても高い電流密度で高い除去率を発揮する。したがって、このような異なる特性を有する電気脱イオン装置を組み合わせることで、まず電流効率が高い電気脱イオン装置で低い電流密度で被処理水を処理することで被処理水中のシリカ等をある程度除去し、続いてこのシリカ濃度が低い水を電流効率が低い電気脱イオン装置で高い電流密度で処理することで、シリカ濃度を低減した水を安定して製造することができる。 According to this invention (Invention 2), the electrodeionization device with high current efficiency exhibits removal performance at low current density even in wastewater with high silica concentration, while the electrodeionization device with low current efficiency has silica concentration. Silica scale is liable to be generated in wastewater having a high concentration, but exhibits a high removal rate at a high current density even with a low silica concentration. Therefore, by combining the electric deionization devices having such different characteristics, first, by treating the treated water with a low current density in the electric deionization device having high current efficiency, silica and the like in the treated water are removed to some extent. Then, by subsequently treating this water having a low silica concentration with an electric deionization apparatus having a low current efficiency at a high current density, it is possible to stably produce water having a reduced silica concentration.

上記発明(発明1,2)においては、前記電気脱イオン装置として膜面積負荷が0.08L/h/cm以上のものを用いるのが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), it is preferable to use the electrodeionization device having a membrane area load of 0.08 L/h/cm 2 or more (Invention 3).

かかる発明(発明3)によれば、電気脱イオン装置の膜面にスケールや汚れが付着するのを防止することができる。 According to this invention (invention 3), it is possible to prevent scales and dirt from adhering to the film surface of the electrodeionization device.

本発明は第二に、単段に設けられた高圧型逆浸透膜分離装置と2段直列に配置した電気脱イオン装置とを有する純水製造装置の運転方法であって、pHを5以下に調整した被処理水を前記高圧型逆浸透膜分離装置に透過させた後、2段直列に配置した電気脱イオン装置で処理する純水製造装置の運転方法を提供する(発明4)。 Secondly, the present invention relates to a method for operating a pure water producing apparatus having a high-pressure type reverse osmosis membrane separation device provided in a single stage and an electric deionization device arranged in two stages in series, with a pH of 5 or less. There is provided a method for operating a pure water producing device, in which the adjusted water to be treated is passed through the high-pressure reverse osmosis membrane separation device and then treated by an electric deionization device arranged in two stages in series (invention 4).

かかる発明(発明4)によれば、高圧型逆浸透膜分離装置の前段にpH調整剤を供給して被処理水のpHを5以下に調整した後、高圧型逆浸透膜分離装置で処理することで、原水中のアルミニウムをイオン化して高圧型逆浸透膜分離装置の膜面の汚染を抑制する。さらに電気脱イオン装置を2段直列に配置し、前段の電気脱イオン装置を低電流密度で運転し、後段の電気脱イオン装置を高電流密度で運転することにより、処理水シリカ濃度0.3ppb以下を達成することができるとともに電気脱イオン装置の寿命の悪影響を回避し、長く使用することができる。 According to this invention (Invention 4), a pH adjusting agent is supplied to the preceding stage of the high pressure type reverse osmosis membrane separation device to adjust the pH of the water to be treated to 5 or less, and then the high pressure type reverse osmosis membrane separation device is treated. As a result, the aluminum in the raw water is ionized to suppress the contamination of the membrane surface of the high pressure type reverse osmosis membrane separation device. Further, by arranging the electric deionization devices in two stages in series, operating the electric deionization device in the front stage at a low current density and operating the electric deionization device in the rear stage at a high current density, the treated water silica concentration was 0.3 ppb. The following can be achieved and the adverse effect of the life of the electrodeionization device can be avoided and it can be used for a long time.

上記発明(発明4)においては、前記2段直列に配置した電気脱イオン装置が、前段に電流効率が高い電気脱イオン装置を後段に電流効率が低い電気脱イオン装置をそれぞれ組み合わせて配置されており、前段の電気脱イオン装置を500〜3000mA/dmの電流密度で運転し、後段の電気脱イオン装置を3500〜10000mA/dmの電流密度で運転するのが好ましい(発明5)。 In the said invention (invention 4), the said electric deionization apparatus arrange|positioned in 2 steps|paragraphs is arrange|positioned combining the electric deionization apparatus with high current efficiency in the front|former stage, respectively, and the electric deionization apparatus with low current efficiency is arrange|positioned in the back|latter stage. cage, the front of the electrodeionization apparatus is operated at a current density of 500~3000mA / dm 2, preferably to operate the subsequent electrodeionization apparatus at a current density of 3500~10000mA / dm 2 (invention 5).

かかる発明(発明5)によれば、電流効率が高い電気脱イオン装置はシリカ濃度が高い排水であっても低い電流密度で除去性能を発揮する一方、電流効率が低い電気脱イオン装置は、シリカ濃度が高い排水に対してはシリカスケールが生じやすいが、シリカ濃度が低い場合であっても高い電流密度で除去率を発揮する。したがって、このような異なる特性を有する電気脱イオン装置を組み合わせ、まず電流効率が高い電気脱イオン装置で500〜3000mA/dmでの電流密度で処理することで処理水中のカルシウム、シリカ等をある程度除去し、続いてこのシリカ濃度が低い水を電流効率が低い電気脱イオン装置で3500〜10000mA/dmで処理することでシリカ濃度を低減した水を安定して製造することができる。 According to the invention (Invention 5), the electrodeionization device having high current efficiency exhibits removal performance at low current density even in wastewater having high silica concentration, while the electrodeionization device having low current efficiency is silica. Silica scale is likely to occur in wastewater having a high concentration, but even if the silica concentration is low, the removal rate is exhibited at a high current density. Therefore, by combining an electric deionization apparatus having such different characteristics, first, by treating with an electric deionization apparatus having a high current efficiency at a current density of 500 to 3000 mA/dm 2 , calcium, silica, etc. in the treated water can be treated to some extent. By removing and subsequently treating the water having a low silica concentration with an electric deionization device having a low current efficiency at 3500 to 10000 mA/dm 2 , it is possible to stably produce water having a reduced silica concentration.

本発明によれば、pHを5以下に調整した被処理水を前記高圧型逆浸透膜分離装置に透過した後、2段直列に配置した電気脱イオン装置で処理しているので、高圧型逆浸透膜分離装置の膜面の汚染を抑制し、2段直列に配置した電気脱イオン装置により、処理水シリカ濃度は0.3ppb以下の純水を製造することができるとともに電気脱イオン装置の寿命の悪影響を回避し、耐用年数の向上を図ることができる。 According to the present invention, the water to be treated whose pH is adjusted to 5 or less is permeated through the high pressure type reverse osmosis membrane separation device and then treated by the electric deionization device arranged in two stages in series. By suppressing the contamination of the membrane surface of the osmosis membrane separation device, it is possible to produce pure water with a treated water silica concentration of 0.3 ppb or less by the electric deionization device arranged in two stages in series and the life of the electric deionization device. It is possible to avoid the adverse effects of and improve the service life.

本発明の一実施形態による純水製造装置を示すフロー図である。It is a flow figure showing the pure water manufacturing device by one embodiment of the present invention. 従来の純水製造装置を示すフロー図である。It is a flowchart which shows the conventional pure water manufacturing apparatus.

以下、本発明の一実施形態による純水製造装置及びその運転方法について図1を参照して詳細に説明する。 Hereinafter, a pure water producing apparatus and an operating method thereof according to an embodiment of the present invention will be described in detail with reference to FIG.

図1は本発明の一実施形態による純水製造装置を示すフロー図であり、図1において純水製造装置1は前処理システム2の後段に設けられている。 FIG. 1 is a flow chart showing a pure water producing apparatus according to an embodiment of the present invention. In FIG. 1, the pure water producing apparatus 1 is provided after a pretreatment system 2.

前処理システム2は、 凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより構成され、原水(工業用水、市水、井水等)W中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 The pretreatment system 2 is composed of a flocculation, pressure floating (precipitation), filtration (membrane filtration) device, etc. to remove suspended substances and colloidal substances in raw water (industrial water, city water, well water, etc.) W. To do. Further, in this process, it is possible to remove high molecular organic matter, hydrophobic organic matter and the like.

純水製造装置1は、タンク3とこのタンク3に付設されたpH調整剤供給手段としての酸供給機構4とpH計5とを有し、このタンク3の後段に高圧型逆浸透膜分離(RO)装置6と第一の電気脱イオン装置7と第二の電気脱イオン装置8と脱気膜等の脱気装置9とを備える。 The pure water production apparatus 1 has a tank 3, an acid supply mechanism 4 as a pH adjusting agent supply means attached to the tank 3, and a pH meter 5, and a high pressure type reverse osmosis membrane separation ( RO) device 6, a first electrodeionization device 7, a second electrodeionization device 8 and a degasser 9 such as a degasser.

このような超純水製造装置1において、高圧型逆浸透膜分離(RO)装置6は、従来、海水淡水化に用いられている逆浸透膜分離装置であり、標準運転圧力5.52MPa以上であり、標準運転圧力において、純水フラックス0.5m3/m2・D以上、NaCl除去率99.5%(NaCl32000mg/L)以上の特性を有する。このNaCl除去率は、NaCl濃度32000mg/LのNaCl水溶液に対する25℃における除去率である。なお、逆浸透膜のカタログ(技術資料を含む)には、膜メーカーよりスペック表示がなされており、高圧型であるか低圧型又は超低圧型であるかはカタログ値として判別できる。 In such an ultrapure water production system 1, the high-pressure type reverse osmosis membrane separation (RO) device 6 is a reverse osmosis membrane separation device conventionally used for seawater desalination and has a standard operating pressure of 5.52 MPa or more. Yes, it has characteristics of pure water flux of 0.5 m3/m2·D or more and NaCl removal rate of 99.5% (NaCl3 2000 mg/L) or more at standard operating pressure. This NaCl removal rate is the removal rate at 25° C. for an NaCl aqueous solution having a NaCl concentration of 32000 mg/L. It should be noted that the reverse osmosis membrane catalog (including technical data) has specifications displayed by the membrane manufacturer, and it can be determined as a catalog value whether it is a high pressure type, a low pressure type or an ultra low pressure type.

この高圧型逆浸透膜は、従来の超純水製造装置の一次純水システムに用いられている低圧又は超低圧型逆浸透膜に比べて膜表面のスキン層が緻密となっている。そのため、高圧型逆浸透膜は低圧型又は超低圧型逆浸透膜に比べて単位操作圧力当りの膜透過水量は低いものの有機物除去率は極端に高い。TDS(全溶解性物質)1500mg/L以下の塩類濃度の給水を逆浸透膜処理する場合においては、回収率90%時の運転条件下で逆浸透膜にかかる浸透圧は最大1.0MPa程度である。従って、TDS1500mg/L以下の給水の処理に高圧型逆浸透膜分離装置を用いた場合、好ましくは1.5〜3MPa、特に好ましくは2〜3MPa程度の膜面有効圧力(1次側と2次側との圧力差)で、低圧型又は超低圧型逆浸透膜と同程度の水量を確保することが可能となる。その結果、1段RO膜処理のみで従来の低圧型又は超低圧型逆浸透膜の2段ROと同等の処理水水質・処理水量を得ることが可能となり、それに伴い膜本数、ベッセル、配管が削減でき低コスト、省スペース化が可能となる。 In this high-pressure type reverse osmosis membrane, the skin layer on the membrane surface is denser than the low-pressure or ultra-low pressure type reverse osmosis membrane used in the primary pure water system of the conventional ultrapure water production apparatus. Therefore, although the high-pressure type reverse osmosis membrane has a lower amount of water permeated per unit operating pressure than the low-pressure type or ultra-low pressure type reverse osmosis membrane, the organic matter removal rate is extremely high. When the reverse osmosis membrane treatment is performed on the feed water having a salt concentration of 1500 mg/L or less of TDS (total soluble substance), the osmotic pressure applied to the reverse osmosis membrane is about 1.0 MPa at the maximum under operating conditions at a recovery rate of 90%. is there. Therefore, when a high pressure type reverse osmosis membrane separator is used for the treatment of feed water of TDS 1500 mg/L or less, the membrane surface effective pressure (primary side and secondary pressure) of preferably about 1.5 to 3 MPa, particularly preferably about 2 to 3 MPa. It is possible to secure the same amount of water as the low pressure type or ultra low pressure type reverse osmosis membrane due to the pressure difference from the side. As a result, it is possible to obtain the same treated water quality and quantity as the conventional two-stage RO of low-pressure type or ultra-low pressure type reverse osmosis membrane by only one-stage RO membrane treatment. The cost can be reduced, and the cost can be saved and the space can be saved.

逆浸透膜の膜形状は、特に限定されるものではなく、例えばスパイラル型、中空子型等、4インチRO膜、8インチRO膜、16インチRO膜などのいずれでもよい。ただし、原水スペーサは20〜40インチ幅であるのが好ましい。 The shape of the reverse osmosis membrane is not particularly limited, and may be, for example, a spiral type, a hollow element type, a 4-inch RO membrane, an 8-inch RO membrane, a 16-inch RO membrane, or the like. However, the raw water spacers are preferably 20-40 inches wide.

第一の電気脱イオン装置7は、膜面積負荷が0.08L/h/cm以上、特に0.1L/h/cm以上のものが好ましい。ここで膜面積負荷とは、電気脱イオン装置の脱塩室の片側のイオン交換膜の有効面積(cm)に対する脱塩室の流量(L/h)であり、この膜面積負荷が0.08L/h/cm未満では、装置が置きくなりコンパクト化が図れない。膜面積負荷の上限については、あまり大きいとスケールや汚れの影響を受けやすくなるので、0.2L/h/cm未満とすればよい。 The first electrodeionization apparatus 7 preferably has a membrane area load of 0.08 L/h/cm 2 or more, particularly 0.1 L/h/cm 2 or more. Here, the membrane area load is the flow rate (L/h) of the deionization chamber to the effective area (cm 2 ) of the ion exchange membrane on one side of the deionization chamber of the electric deionization apparatus, and this membrane area load is 0. If it is less than 08 L/h/cm 2 , the device will be left unmounted and downsizing cannot be achieved. If the upper limit of the membrane area load is too large, it is easily affected by scales and stains, so the upper limit may be less than 0.2 L/h/cm 2 .

この第一の電気脱イオン装置7は、運転時の電流効率が高いタイプのものであり、具体的には500〜3000mA/dm、特に1000〜2500mA/dmの比較的低い電流密度で脱イオン性能を好適に発揮するものを用いるのが好ましい。このような第一の電気脱イオン装置7は、運転時の電流効率が低い(高い電流密度で運転する)タイプのものと比較して極微量のシリカ、ホウ素などの弱イオン成分の除去率は低いが、スケールを生じにくいという利点を有する。 The first electrodeionization apparatus 7 is of a high current efficiency during operation type, de-specifically 500~3000mA / dm 2, in particular at a relatively low current density of 1000~2500mA / dm 2 It is preferable to use the one that exhibits the ionic performance. Such a first electric deionization apparatus 7 has a smaller removal rate of weak ionic components such as silica and boron as compared with a type having a low current efficiency during operation (operated at a high current density). Although low, it has the advantage of being less prone to scale.

また、第二の電気脱イオン装置8は、膜面積負荷が0.08L/h/cm以上、特に0.1L/h/cm以上のものが好ましい。この第二の電気脱イオン装置8は、電流効率が低いタイプのものであり、具体的には3000〜10000mA/dm、特に3500〜5000mA/dmの比較的高い電流密度で脱イオン性能を好適に発揮するものを用いるのが好ましい。このような第二の電気脱イオン装置8は、運転時の電流効率が高い(低い電流密度で運転する)タイプのものと比較してホウ素などの弱イオン成分の除去率が高い一方、スケールを生じやすい。 The second electrodeionization device 8 preferably has a membrane area load of 0.08 L/h/cm 2 or more, particularly 0.1 L/h/cm 2 or more. The second electrodeionization apparatus 8 is of current efficiency is low type, specifically 3000~10000mA / dm 2, deionized performance especially at relatively high current densities of 3500~5000mA / dm 2 It is preferable to use a material that exhibits a suitable effect. Such a second electric deionization device 8 has a high removal rate of weak ion components such as boron as compared with a type having a high current efficiency during operation (operated at a low current density), while having a scale. It is easy to occur.

さらに、タンク3に付設された酸供給機構4から添加される酸としては、特に制限はなく、塩酸、硫酸、硝酸などを用いることができ、塩酸が好適である。また、タンク3には、必要応じて任意のスケール防止剤を添加することができる。 Furthermore, the acid added from the acid supply mechanism 4 attached to the tank 3 is not particularly limited, and hydrochloric acid, sulfuric acid, nitric acid or the like can be used, and hydrochloric acid is preferable. In addition, an optional scale inhibitor can be added to the tank 3 as needed.

次に上述したような構成を有する純水製造装置1の運転方法について説明する。原水Wを前処理システム2で処理して前処理水(被処理水)W1とし、この前処理水W1をタンク3に貯留する。このときpH調整剤供給手段としての酸供給機構4から塩酸を添加し、pH計5により前処理水W1のpHを監視することで、前処理水W1をpH5以下に調整するのが好ましい。前処理水W1をpH5以下とすることで、前処理水W1中のシリカが析出しやすくなる一方、Alがイオン化することで該Alが後段の高圧型逆浸透膜分離装置6の膜面に付着するのを抑制することができる。また、高圧型逆浸透膜分離装置6の膜面へのスケールの付着を防止することを目的として、必要に応じてスケール防止剤を添加するのが好ましい。 Next, a method of operating the pure water producing apparatus 1 having the above-described configuration will be described. The raw water W is treated by the pretreatment system 2 to be pretreated water (water to be treated) W1, and the pretreated water W1 is stored in the tank 3. At this time, it is preferable to add hydrochloric acid from the acid supply mechanism 4 as a pH adjusting agent supply means and monitor the pH of the pretreated water W1 with the pH meter 5 to adjust the pretreated water W1 to pH 5 or less. By setting the pH of the pretreated water W1 to 5 or less, silica in the pretreated water W1 is easily precipitated, while Al is ionized to adhere to the membrane surface of the high pressure type reverse osmosis membrane separation device 6 in the subsequent stage. Can be suppressed. In addition, it is preferable to add a scale inhibitor as necessary for the purpose of preventing the scale from adhering to the membrane surface of the high-pressure type reverse osmosis membrane separation device 6.

次にこの前処理水W1を高圧型逆浸透膜分離装置6により処理する。高圧型逆浸透膜分離装置6では、塩類やカルシウム、シリカなどの除去のほかにイオン性、コロイド性のTOCを除去する。高圧型逆浸透膜分離装置6は、1段で低圧型又は超低圧型逆浸透膜と同等の除去率を発揮する。 Next, this pretreated water W1 is treated by the high pressure type reverse osmosis membrane separation device 6. The high-pressure reverse osmosis membrane separation device 6 removes ionic and colloidal TOC in addition to removing salts, calcium, silica and the like. The high pressure type reverse osmosis membrane separation device 6 exhibits the removal rate equivalent to that of the low pressure type or ultra low pressure type reverse osmosis membrane in one stage.

続いて、得られたRO処理水を第一の電気脱イオン装置7で処理して、カルシウムやシリカ、ホウ素などの弱イオンや塩類を除去すると共にイオン交換作用により吸着又はイオン交換されるTOC成分の除去を行う。この第一の電気脱イオン装置7として本実施形態においては、比較的低い電流密度で脱イオン性能を好適に発揮するタイプのものを用いているので、電流密度500〜3000mA/dm、特に1000〜2500mA/dmの比較的低い電流密度で運転するのが好ましい。運転時の電流密度が3000mA/dm超えても、それ以上のシリカ等の除去効率が得られないばかりか、RO膜処理水中に含まれるシリカ成分などに起因して、第一の電気脱イオン装置7の電気抵抗が大幅に上昇して装置寿命に悪影響を及ぼすため好ましくない。一方、運転時の電流密度が500mA/dm未満では、シリカ、ホウ素などの弱イオン成分の除去率が低下する。 Subsequently, the obtained RO-treated water is treated with the first electric deionization apparatus 7 to remove weak ions such as calcium, silica, and boron and salts, and TOC components that are adsorbed or ion-exchanged by the ion-exchange action. Is removed. In the present embodiment, as the first electric deionization device 7, a type that suitably exhibits deionization performance at a relatively low current density is used, so that a current density of 500 to 3000 mA/dm 2 , particularly 1000 It is preferred to operate at relatively low current densities of ˜2500 mA/dm 2 . Also the current density exceeds 3000 mA / dm 2 during operation, not only the efficiency of removal of such higher silica not obtained, due such as the silica component contained in the RO membrane treated water, first electrodeionization It is not preferable because the electric resistance of the device 7 is greatly increased and the life of the device is adversely affected. On the other hand, when the current density during operation is less than 500 mA/dm 2 , the removal rate of weak ionic components such as silica and boron decreases.

続いて、第一の電気脱イオン装置7の処理水を第二の電気脱イオン装置8でさらに処理して、微量の残存するシリカ、ホウ素などの弱イオンや塩類をさらに除去すると共にイオン交換作用により吸着又はイオン交換されるTOC成分をさらに除去する。ここで、第二の電気脱イオン装置8で処理する水は、第一の電気脱イオン装置7によりすでにシリカ濃度が大きく低減されているので、第一の電気脱イオン装置7より高い電流密度で運転しても電気抵抗の上昇が少ない。そこで、この第二の電気脱イオン装置8として本実施形態においては、高い電流密度で脱イオン性能を好適に発揮するタイプのものを用いて、電流密度3000〜10000mA/dm、特に3500〜5000mA/dmの比較的高い電流密度で運転するのが好ましい。運転時の電流密度が10000mA/dm超えても、それ以上のシリカの除去効率が得られないばかりか、第二の電気脱イオン装置8の電気抵抗が上昇して装置寿命に悪影響を及ぼすため好ましくない。一方、運転時の電流密度が3000mA/dm未満では、シリカ、ホウ素などの弱イオン成分の除去率が低下する。 Subsequently, the treated water of the first electrodeionization device 7 is further treated by the second electrodeionization device 8 to further remove trace amounts of residual weak ions such as silica and boron and salts, and to perform ion exchange action. The TOC component adsorbed or ion-exchanged by is further removed. Here, since the silica concentration of the water to be treated by the second electrodeionization device 8 has already been largely reduced by the first electrodeionization device 7, the water density is higher than that of the first electrodeionization device 7. Little increase in electrical resistance even when driving. Therefore, in the present embodiment, as the second electric deionization device 8, a type that suitably exhibits deionization performance at high current density is used, and the current density is 3000 to 10000 mA/dm 2 , particularly 3500 to 5000 mA. It is preferable to operate at a relatively high current density of /dm 2 . Even if the current density during operation exceeds 10000 mA/dm 2, not only is silica removal efficiency higher than that, but also the electrical resistance of the second electrodeionization device 8 rises, which adversely affects the device life. Not preferable. On the other hand, when the current density during operation is less than 3000 mA/dm 2 , the removal rate of weak ionic components such as silica and boron decreases.

そして、第一の電気脱イオン装置7及び第二の電気脱イオン装置8は気密性を有していないので、処理中に炭酸や酸素などが微量溶解する。そこでこの第二の電気脱イオン装置8の処理水を脱気装置9で処理して、これら溶存ガスを除去することで純水W2を得る。 Since the first electrodeionization device 7 and the second electrodeionization device 8 are not airtight, a small amount of carbonic acid, oxygen, etc. dissolves during the treatment. Therefore, the treated water of the second electric deionization device 8 is treated by the degassing device 9 to remove these dissolved gases to obtain pure water W2.

このようにして純水製造装置1で処理することにより、シリカ濃度0.3ppb以下の純水W2を安定的に製造することができる。また、高圧型逆浸透膜分離(RO)装置6への汚染物質の付着を抑制するとともに、第一の電気脱イオン装置7及び第二の電気脱イオン装置8へのカルシウム、シリカなどに起因するスケールも抑制することができるので、装置の耐用年数も向上することができる。 By thus treating with the pure water producing apparatus 1, pure water W2 having a silica concentration of 0.3 ppb or less can be stably produced. Further, the adhesion of contaminants to the high-pressure type reverse osmosis membrane separation (RO) device 6 is suppressed, and it is caused by calcium, silica, etc. to the first electrodeionization device 7 and the second electrodeionization device 8. Since the scale can be suppressed, the service life of the device can be improved.

以上、本発明の一実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限定されず、高圧型逆浸透膜分離(RO)装置の後段に電気脱イオン装置を2段直列に設け、高圧型逆浸透膜分離(RO)装置の前段でpHを調製すれば、純水装置に他のエレメントを種々付加することができる。例えば、第一の電気脱イオン装置7の前段に膜式脱気装置や脱炭酸塔を設けたり、必要に応じ再生型混床式イオン交換装置を設けたりしてもよい。さらに前処理システム2は必ずしも設けなくてもよく、水道水をそのまま純水製造装置1に供給してもよい。さらには、純水製造装置の後段にサブシステムを設け、純水W2を一次純水とすることで超純水製造装置を構成してもよい。 Although one embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to the above-mentioned embodiment, and an electric deionization device is provided at a stage subsequent to the high pressure type reverse osmosis membrane separation (RO) device. Various elements can be added to the deionized water device if they are provided in series and the pH is adjusted before the high pressure type reverse osmosis membrane separation (RO) device. For example, a membrane type deaerator or a decarbonation tower may be provided in front of the first electric deionization apparatus 7, or a regenerative mixed bed type ion exchange apparatus may be provided if necessary. Furthermore, the pretreatment system 2 does not necessarily have to be provided, and tap water may be directly supplied to the pure water producing apparatus 1. Further, an ultrapure water producing apparatus may be configured by providing a subsystem in the latter stage of the pure water producing apparatus and using pure water W2 as primary pure water.

以下、比較例及び実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Comparative Examples and Examples, but the present invention is not limited to the following Examples.

〔実施例1〕
図1において、活性炭塔のみで前処理システム2を構成した。また、高圧型逆浸透膜装置6として、栗田工業(株)製の高圧型逆浸透膜(KROA−20XU−FX)を用い、電流効率の高い運転タイプの第一の電気脱イオン装置7としてVNX(EVOQUA WATER TECHNOLOGIES製)を、電流効率の低い運転タイプの第二の電気脱イオン装置8としてはVNX−EX(EVOQUA WATER TECHNOLOGIES製)をそれぞれ用いて純水製造装置1を構成した。また、酸供給機構4から塩酸及びスケール防止剤(栗田工業(株)製、N500)を添加可能とした。
[Example 1]
In FIG. 1, the pretreatment system 2 was composed of only an activated carbon tower. In addition, as the high pressure type reverse osmosis membrane device 6, a high pressure type reverse osmosis membrane (KROA-20XU-FX) manufactured by Kurita Industry Co., Ltd. is used, and VNX is used as a first electric deionization device 7 of a high current efficiency operation type. (Manufactured by EVOQUA WATER TECHNOLOGIES), and VNX-EX (manufactured by EVOQUA WATER TECHNOLOGIES) was used as the second electric deionization device 8 of the operation type having low current efficiency to configure the pure water producing device 1. Further, hydrochloric acid and a scale inhibitor (N500, manufactured by Kurita Water Industries Ltd.) can be added from the acid supply mechanism 4.

横浜市の市水(シリカ濃度20ppm)を原水Wとして、上述した純水製造装置1で処理して15m/hの純水を製造した。このとき酸供給機構4から塩酸およびスケール防止剤を添加して前処理水W1のpHを4.9に調整し、第一の電気脱イオン装置7に電流密度2000mA/dmで通水するとともに第二の電気脱イオン装置8に電流密度4000mA/dmで通水した。 The city water of Yokohama (silica concentration 20 ppm) was used as raw water W and treated with the pure water producing apparatus 1 described above to produce 15 m 3 /h of pure water. At this time, hydrochloric acid and a scale inhibitor were added from the acid supply mechanism 4 to adjust the pH of the pretreated water W1 to 4.9, and water was passed through the first electrodeionization device 7 at a current density of 2000 mA/dm 2. Water was passed through the second electrodeionization device 8 at a current density of 4000 mA/dm 2 .

この純水製造装置1による純水W2の製造を6ケ月間継続したところ、原水Wのシリカ濃度20ppmに対して、純水W2のシリカ濃度は0.3ppb以下で安定しており、第一の電気脱イオン装置7の運転時の電圧は80Vから90Vに、第二の電気脱イオン装置8の運転時の電圧は60Vから65Vにわずかに上昇したが、装置の運転上支障のないものであった。 When the pure water W2 was continuously produced for 6 months by the pure water producing apparatus 1, the silica concentration of the pure water W2 was stable at 0.3 ppb or less with respect to the silica concentration of the raw water W of 20 ppm. The voltage during the operation of the electric deionization device 7 increased from 80V to 90V, and the voltage during the operation of the second electric deionization device 8 slightly increased from 60V to 65V, but this does not hinder the operation of the device. It was

〔比較例1〕
実施例1において、高圧型逆浸透膜装置6の前段で酸供給機構4から塩酸およびスケール防止剤を添加せず、pH7.0の前処理水W1を処理した以外は同様にして純水W2を製造した。
[Comparative Example 1]
Pure water W2 was obtained in the same manner as in Example 1, except that hydrochloric acid and scale inhibitor were not added from the acid supply mechanism 4 before the high pressure type reverse osmosis membrane device 6 and pretreated water W1 having a pH of 7.0 was treated. Manufactured.

この純水製造装置1による純水W2の製造を6ケ月間継続したところ、原水Wのシリカ濃度20ppmに対して、純水W2のシリカ濃度は1.1ppbであり、第一の電気脱イオン装置7の運転時の電圧は80Vから250Vに、第二の電気脱イオン装置8の運転時の電圧は60Vから88Vと大きく上昇してしまい、この状態が続けば装置の耐用期間は1年〜2年のレベルであった。 When the pure water W2 was continuously produced for 6 months by the pure water producing apparatus 1, the silica concentration of the pure water W2 was 1.1 ppb with respect to the silica concentration of the raw water W of 20 ppm. The operating voltage of 7 greatly increases from 80V to 250V, and the operating voltage of the second electrodeionization device 8 greatly increases from 60V to 88V. If this state continues, the useful life of the device is 1 to 2 years. It was at the level of the year.

〔実施例2〕
実施例1において、第一の電気脱イオン装置7及び第二の電気脱イオン装置8として両方ともVNX(EVOQUA WATER TECHNOLOGIES製)を用いて純水製造装置1を構成した以外は同様にして純水製造装置1を構成し純水W2を製造した。
[Example 2]
Pure water was prepared in the same manner as in Example 1, except that the pure water producing apparatus 1 was constructed by using VNX (manufactured by EVOQUA WATER TECHNOLOGIES) as both the first electrodeionization device 7 and the second electrodeionization device 8. The production apparatus 1 was configured to produce pure water W2.

この純水製造装置1による純水W2の製造を6ケ月間継続したところ、原水Wのシリカ濃度20ppmに対して、純水W2のシリカ濃度は0.3ppb以下で安定しており、第一の電気脱イオン装置7の運転時の電圧は80Vから90Vに、第二の電気脱イオン装置8の運転時の電圧は60Vから70Vにわずかに上昇したが、装置の運転上支障のないものであった。ただし、ホウ素などの他の弱イオン成分の除去率の低減が認められた。 When the pure water W2 was continuously produced for 6 months by the pure water producing apparatus 1, the silica concentration of the pure water W2 was stable at 0.3 ppb or less with respect to the silica concentration of the raw water W of 20 ppm. The voltage during the operation of the electric deionization device 7 increased from 80V to 90V, and the voltage during the operation of the second electric deionization device 8 slightly increased from 60V to 70V, but this does not hinder the operation of the device. It was However, a reduction in the removal rate of other weak ionic components such as boron was observed.

〔実施例3〕
実施例1において、第一の電気脱イオン装置7及び第二の電気脱イオン装置8として両方ともVNX−EX(EVOQUA WATER TECHNOLOGIES製)を用いて純水製造装置1を構成した以外は同様にして純水製造装置1を構成し純水W2を製造した。
[Example 3]
In the same manner as in Example 1, except that the pure water producing apparatus 1 was configured using both VNX-EX (manufactured by EVOQUA WATER TECHNOLOGIES) as the first electrodeionization apparatus 7 and the second electrodeionization apparatus 8. The pure water producing apparatus 1 was configured to produce pure water W2.

この純水製造装置1による純水W2の製造を6ケ月間継続したところ、原水Wのシリカ濃度20ppmに対して、純水W2のシリカ濃度は0.3ppb以下で安定しており、第一の電気脱イオン装置7の運転時の電圧は80Vから90Vに、第二の電気脱イオン装置8の運転時の電圧は60Vから65Vにわずかに上昇したが、装置の運転上支障のないものであった。ただし、第一の電気脱イオン装置7には若干のスケール傾向が認められ、長期間の連続運転には注意を要するレベルであった。 When the pure water W2 was continuously produced for 6 months by the pure water producing apparatus 1, the silica concentration of the pure water W2 was stable at 0.3 ppb or less with respect to the silica concentration of the raw water W of 20 ppm. The voltage during the operation of the electric deionization device 7 increased from 80 V to 90 V, and the voltage during the operation of the second electric deionization device 8 slightly increased from 60 V to 65 V, but this does not hinder the operation of the device. It was However, a slight scale tendency was observed in the first electric deionization apparatus 7, and it was a level requiring caution for long-term continuous operation.

1 純水製造装置
2 前処理システム
3 タンク
4 酸供給機構(pH調整剤供給手段)
5 pH計
6 高圧型逆浸透膜分離(RO)装置
7 第一の電気脱イオン装置
8 第二の電気脱イオン装置
9 脱気装置
W 原水
W1 前処理水
W2 純水(一次純水)
1 Pure Water Production Device 2 Pretreatment System 3 Tank 4 Acid Supply Mechanism (pH Adjusting Agent Supply Means)
5 pH meter 6 High pressure type reverse osmosis membrane separation (RO) device 7 First electric deionization device 8 Second electric deionization device 9 Degassing device W Raw water W1 Pretreatment water W2 Pure water (primary pure water)

Claims (1)

単段に設けられた高圧型逆浸透膜分離装置と2段直列に配置した電気脱イオン装置とを有する純水製造装置の運転方法であって、
pHを5以下に調整した被処理水を前記高圧型逆浸透膜分離装置に透過させた後、2段直列に配置した電気脱イオン装置で処理し、
前記2段直列に配置した電気脱イオン装置において、前段に500〜3000mA/dm の電流密度で脱イオン性能を発揮する第一電気脱イオン装置が、後段に3000〜10000mA/dm の電流密度で脱イオン性能を発揮する第二電気脱イオン装置が、それぞれ配置されており、
前記第一電気脱イオン装置を500〜3000mA/dm の電流密度で運転し、前記第二電気脱イオン装置を3500〜10000mA/dm の電流密度で運転する純水製造装置の運転方法。
A method for operating a pure water production apparatus having a high-pressure type reverse osmosis membrane separation device provided in a single stage and an electric deionization device arranged in two stages in series,
After permeating the water to be treated whose pH has been adjusted to 5 or less through the high pressure type reverse osmosis membrane separation device, it is treated with an electric deionization device arranged in two stages in series ,
In electrodeionization apparatus disposed in the two-stage series, the first electrodeionization apparatus which exhibits deionized performance at a current density of 500~3000mA / dm 2 in front, a current density of 3000~10000mA / dm 2 in a subsequent stage The second electric deionization device that exhibits the deionization performance at
Said first electrodeionization apparatus was operated at a current density of 500~3000mA / dm 2, the method operating in the pure water production device for operating said second electrodeionization apparatus at a current density of 3500~10000mA / dm 2.
JP2016058611A 2016-03-23 2016-03-23 Method of operating pure water production equipment Active JP6728835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058611A JP6728835B2 (en) 2016-03-23 2016-03-23 Method of operating pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058611A JP6728835B2 (en) 2016-03-23 2016-03-23 Method of operating pure water production equipment

Publications (2)

Publication Number Publication Date
JP2017170328A JP2017170328A (en) 2017-09-28
JP6728835B2 true JP6728835B2 (en) 2020-07-22

Family

ID=59971588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058611A Active JP6728835B2 (en) 2016-03-23 2016-03-23 Method of operating pure water production equipment

Country Status (1)

Country Link
JP (1) JP6728835B2 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119374A (en) * 1978-03-10 1979-09-17 Tokuyama Soda Co Ltd Desalting method
JP3187629B2 (en) * 1993-12-16 2001-07-11 オルガノ株式会社 Reverse osmosis membrane treatment method
JPH09206749A (en) * 1996-02-02 1997-08-12 Japan Organo Co Ltd Fresh water production device and method thereof
JPH09294977A (en) * 1996-05-02 1997-11-18 Kurita Water Ind Ltd Water purifying apparatus
JPH11104463A (en) * 1997-10-08 1999-04-20 Japan Organo Co Ltd Passing through of water in electric deionized water manufacturing apparatus
JP3826690B2 (en) * 1999-08-11 2006-09-27 栗田工業株式会社 Electrodeionization device and pure water production device
JP3952127B2 (en) * 1999-11-02 2007-08-01 栗田工業株式会社 Electrodeionization treatment method
JP4599668B2 (en) * 2000-06-30 2010-12-15 栗田工業株式会社 Operation method of electrodeionization equipment
JP2008161760A (en) * 2006-12-27 2008-07-17 Kurita Water Ind Ltd Pure water making method and pure water making apparatus
JP2010201361A (en) * 2009-03-04 2010-09-16 Japan Organo Co Ltd Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP5834492B2 (en) * 2011-05-25 2015-12-24 栗田工業株式会社 Ultrapure water production equipment
CN103796520A (en) * 2011-07-01 2014-05-14 伊沃夸水技术私人有限公司 Electrodesalination system and method
JP5733351B2 (en) * 2013-07-22 2015-06-10 栗田工業株式会社 Method and apparatus for treating boron-containing water
JP2014000575A (en) * 2013-10-10 2014-01-09 Kurita Water Ind Ltd Apparatus and method for producing purified water
JP6105005B2 (en) * 2015-08-12 2017-03-29 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method

Also Published As

Publication number Publication date
JP2017170328A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
TWI648093B (en) Ultrapure water manufacturing device and method
JP4648307B2 (en) Continuous electrodeionization apparatus and method
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP5834492B2 (en) Ultrapure water production equipment
JP5733351B2 (en) Method and apparatus for treating boron-containing water
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
JP2008259961A (en) Electrodeionizing apparatus and its operation method
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
JP2004283710A (en) Pure water producer
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JP2007307561A (en) High-purity water producing apparatus and method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP2003266097A (en) Ultrapure water making apparatus
JP6728835B2 (en) Method of operating pure water production equipment
TWI826657B (en) Pure water production apparatus and pure water production method
US20230183115A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
JP5782675B2 (en) Water treatment method and ultrapure water production method
JP2001179262A (en) Pure water making apparatus
WO2014010075A1 (en) Ultrapure water production device
JP2018034103A (en) Pure water production device
JP2002001069A (en) Method for producing pure water
JP2020000983A (en) Pure water production apparatus and method of producing pure water
JP6561448B2 (en) Method and apparatus for electrodeionization treatment of vanadium-containing water
JP2018118194A (en) Oxidizing component removal apparatus
JP6285645B2 (en) Waste water treatment method and waste water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150