JP6533359B2 - Ultra pure water production method - Google Patents

Ultra pure water production method Download PDF

Info

Publication number
JP6533359B2
JP6533359B2 JP2013210551A JP2013210551A JP6533359B2 JP 6533359 B2 JP6533359 B2 JP 6533359B2 JP 2013210551 A JP2013210551 A JP 2013210551A JP 2013210551 A JP2013210551 A JP 2013210551A JP 6533359 B2 JP6533359 B2 JP 6533359B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
urea
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013210551A
Other languages
Japanese (ja)
Other versions
JP2015073923A (en
Inventor
徹 天谷
徹 天谷
和郎 丸山
和郎 丸山
允彦 上西
允彦 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52999211&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6533359(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2013210551A priority Critical patent/JP6533359B2/en
Publication of JP2015073923A publication Critical patent/JP2015073923A/en
Application granted granted Critical
Publication of JP6533359B2 publication Critical patent/JP6533359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は超純水製造システムに係り、尿素の除去率を向上させた超純水製造方法及び超純水製造システムに関する。   The present invention relates to an ultrapure water production system, and more particularly to an ultrapure water production method and an ultrapure water production system in which the removal rate of urea is improved.

従来、半導体製造工程等に使用される超純水は、一般に市水、井水、工業用水、半導体工場から回収される使用済み超純水等を原水として超純水製造システムによって製造されている。超純水製造システムは、前処理システム、一次純水システム及び二次純水システムにより構成されており、各システムでの処理は次のように行われる。   Conventionally, ultrapure water used in semiconductor manufacturing processes and the like is generally produced by an ultrapure water production system using raw water, such as city water, well water, industrial water, and used ultrapure water collected from a semiconductor factory. . The ultrapure water production system is composed of a pretreatment system, a primary pure water system and a secondary pure water system, and the processing in each system is performed as follows.

前処理システムは、凝集沈殿装置、砂ろ過装置、活性炭吸着装置(AC)、pH調整装置を組み合わせて原水を処理し、前処理水を製造する。一次純水システムは、ろ過分離装置、活性炭吸着装置、逆浸透膜(RO)装置、紫外線酸化装置(TOC−UV)、脱気装置、イオン交換装置等を組み合わせて、前処理水中のイオン成分及び有機物を除去し、一次純水を製造する。二次純水システムは、紫外線酸化装置(TOC−UV)、イオン交換装置、限外濾過装置(UF)等から構成され、一次純水の最終仕上げを行い、超純水を製造する。   A pretreatment system treats raw water by combining a flocculating sedimentation unit, a sand filtration unit, an activated carbon adsorption unit (AC), and a pH adjustment unit to produce a pretreatment water. The primary pure water system is a combination of a filtration separation device, an activated carbon adsorption device, a reverse osmosis membrane (RO) device, an ultraviolet oxidation device (TOC-UV), a degassing device, an ion exchange device, etc. Remove the organic matter and produce primary pure water. The secondary pure water system is composed of an ultraviolet oxidation apparatus (TOC-UV), an ion exchange apparatus, an ultrafiltration apparatus (UF) and the like, and the final finish of the primary pure water is performed to produce ultrapure water.

近年、半導体製造工程で使用される超純水については、更なる高純度化の要求が厳しくなっており、例えば比抵抗率18MΩ・cm以上、全有機炭素(TOC)濃度1μgC/L以下が求められてきている。   In recent years, with regard to ultrapure water used in semiconductor manufacturing processes, the demand for further purification has become severe, and for example, the specific resistivity of 18 MΩ · cm or more and the total organic carbon (TOC) concentration of 1 μg C / L or less are required. It has been

ところで、近年、超純水のTOC濃度の更なる低減について多くの試みがなされている中、従来の超純水製造システムでは原水中に含まれる尿素の除去率が十分でなく、処理水に残留する尿素がTOC濃度の低減を阻んでいることが判明してきた。そのため、尿素を効率よく高除去率で除去することが求められており、このような要求に対して、前処理システムに生物処理手段を含む超純水製造システムが提案されている(例えば、特許文献1参照)。また、被処理水に次亜臭素酸を添加する方法が提案されている。(例えば、特許文献2参照)   By the way, while many attempts have been made to further reduce the TOC concentration of ultrapure water in recent years, the removal rate of urea contained in the raw water is not sufficient in the conventional ultrapure water production system, and remains in the treated water. It has been found that urea prevents the reduction of TOC concentration. Therefore, efficient removal of urea at a high removal rate is required, and in response to such a demand, an ultrapure water production system including biological treatment means in the pretreatment system has been proposed (for example, a patent) Reference 1). In addition, a method of adding hypobromous acid to water to be treated has been proposed. (For example, refer to patent document 2)

しかしながら、生物処理手段を使用する純水製造システムでは、尿素の高除去率を安定的に得ることができないという課題があった。また、次亜臭素酸を添加する方法では、反応性の高い薬品を使用するため、薬品の貯留や添加のための装置が必要であることや残留した薬品を処理することが必要であり、装置構成や操作が煩雑になる等の課題があった。このように、従来の方法では、尿素の高除去率かつ効率的な除去が未だ十分に行われていないという課題があった。   However, in a pure water production system using biological treatment means, there has been a problem that a high removal rate of urea can not be stably obtained. Moreover, in the method of adding hypobromous acid, in order to use a highly reactive drug, it is necessary to require an apparatus for storing and adding the drug and to process the remaining drug. There is a problem that the configuration and operation become complicated. As described above, in the conventional method, there is a problem that the high removal rate and efficient removal of urea have not been sufficiently performed.

特開2012−196588号公報JP, 2012-196588, A 特開2010−531724号公報JP, 2010-531724, A

本発明は上記した課題を解決するためになされたものであって、薬品を使用することなく逆浸透膜装置における尿素の除去率を向上させ、TOC濃度の極めて低い超純水を製造することのできる超純水製造方法及び超純水製造システムを提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to improve the removal rate of urea in a reverse osmosis membrane device without using chemicals and to produce ultrapure water with extremely low TOC concentration. It is an object of the present invention to provide an ultrapure water production method and an ultrapure water production system that can be performed.

実施形態の超純水製造方法は、尿素濃度10〜100μg/Lの被処理水を2.0〜4.0MPaに加圧する加圧工程と、加圧された被処理水を逆浸透膜により尿素の除去率を65%以上で処理する第1の逆浸透膜処理工程とを備えることを特徴とする。 In the method for producing ultrapure water according to the embodiment, a pressurizing step of pressurizing water to be treated with a urea concentration of 10 to 100 μg / L to 2.0 to 4.0 MPa, and urea to be pressurized with a reverse osmosis membrane And a first reverse osmosis membrane treatment step of treating at a removal rate of at least 65 %.

実施形態の超純水製造システムは、尿素濃度10〜100μg/Lの被処理水を2.0〜4.0MPaに加圧するポンプと、加圧された被処理水を逆浸透膜により尿素の除去率を65%以上で処理する第1の逆浸透膜装置とを備えることを特徴とする。 In the ultrapure water production system of the embodiment, a pump for pressurizing treated water with a urea concentration of 10 to 100 μg / L to 2.0 to 4.0 MPa, and removal of urea by the reverse osmosis membrane of pressurized treated water And a first reverse osmosis membrane device that processes at a rate of 65% or more.

実施形態の超純水製造方法及び超純水製造システムによれば、逆浸透膜装置における尿素の除去率を向上させ、TOC濃度の極めて低い超純水を得ることができる。   According to the ultrapure water production method and the ultrapure water production system of the embodiment, the removal rate of urea in the reverse osmosis membrane device can be improved, and ultrapure water with an extremely low TOC concentration can be obtained.

第1の実施形態の超純水製造システムを示すブロック図である。It is a block diagram showing the ultrapure water production system of a 1st embodiment. 第2の実施形態の超純水製造システムを示すブロック図である。It is a block diagram which shows the ultrapure water manufacturing system of 2nd Embodiment. 第3の実施形態の超純水製造システムを示すブロック図である。It is a block diagram which shows the ultrapure water manufacturing system of 3rd Embodiment. 第4の実施形態の超純水製造システムを示すブロック図である。It is a block diagram which shows the ultrapure water manufacturing system of 4th Embodiment. 実施例における水回収率と尿素除去率の関係を示すグラフである。It is a graph which shows the relationship between the water recovery rate and the urea removal rate in an Example. 実施例及び比較例における尿素濃度と尿素除去率の関係を示すグラフである。It is a graph which shows the relationship between the urea concentration and the urea removal rate in an Example and a comparative example.

以下、本発明の実施形態を、図面を用いて説明する。各図において、共通する機能を有する装置は同一の符号を付して示し、重複する説明を省略する。また、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described using the drawings. In each of the drawings, devices having common functions are denoted by the same reference numerals, and redundant description will be omitted. Further, the present invention is not limited to the following embodiments.

(第1の実施形態)
図1は第1の実施形態の超純水製造システム1のブロック図である。超純水製造システム1は、前処理システム10と、一次純水システム20と、二次純水システム30とを順に備えている。二次純水システム30はユースポイント(POU)40に接続されて、製造された超純水をPOUに供給するようになっている。
First Embodiment
FIG. 1 is a block diagram of the ultrapure water production system 1 of the first embodiment. The ultrapure water production system 1 comprises a pretreatment system 10, a primary pure water system 20, and a secondary pure water system 30 in order. The secondary pure water system 30 is connected to the point of use (POU) 40 so as to supply the manufactured ultra pure water to the POU.

超純水製造システム1において、原水としては、特に限定されず、市水、井水、工業用水、ユースポイント40から回収された使用済みの超純水等を用いることができる。   In the ultrapure water production system 1, the raw water is not particularly limited, and city water, well water, industrial water, used ultrapure water recovered from the use point 40, or the like can be used.

前処理システム10は、原水を除濁し、必要に応じて熱交換器等により温度調節を行い、前処理水を製造する。前処理システム10は例えば、砂ろ過装置、精密ろ過装置等を適宜選択して構成され、後段の一次純水システムの各装置への原水中の不純物による影響を抑えるために、主として除濁を行う。前処理システム10は、製造した前処理水を一旦前処理水タンク11に貯留させ、前処理水は一次純水システム20に送られる。なお、原水の水質が一次純水システム20に供給するために十分な水質である場合には、前処理システム10は省略されてもよい。   The pretreatment system 10 purifies the raw water and, if necessary, adjusts the temperature with a heat exchanger or the like to produce a pretreatment water. The pretreatment system 10 is configured, for example, by appropriately selecting a sand filtration device, a precision filtration device, etc., and mainly performs turbidity removal to suppress the influence of impurities in the raw water on each device of the primary pure water system in the latter stage. . The pretreatment system 10 temporarily stores the produced pretreatment water in the pretreatment water tank 11, and the pretreatment water is sent to the primary pure water system 20. When the quality of the raw water is sufficient to supply the primary pure water system 20, the pretreatment system 10 may be omitted.

本実施形態の一次純水システム20は、前処理水から有機物、イオン成分及び溶存気体を除去して一次純水を製造する。一次純水システム20は、活性炭装置(AC)21、補助逆浸透膜装置(Sub−RO)23、逆浸透膜装置(RO)25、紫外線酸化装置(TOC−UV)26、混床式イオン交換装置(MB)27をこの順に備えている。補助逆浸透膜装置23及び逆浸透膜装置25の直前には、補助逆浸透膜装置23及び逆浸透膜装置25に所定の供給圧で被処理水を供給するポンプ22,24がそれぞれ設けられている。ポンプ22,24は例えば、吐出圧の調節可能な給水ポンプである。   The primary pure water system 20 of the present embodiment removes organic matter, ion components and dissolved gas from pretreated water to produce primary pure water. Primary pure water system 20 includes activated carbon device (AC) 21, auxiliary reverse osmosis membrane device (Sub-RO) 23, reverse osmosis membrane device (RO) 25, ultraviolet oxidation device (TOC-UV) 26, mixed bed ion exchange A device (MB) 27 is provided in this order. Immediately before the auxiliary reverse osmosis membrane device 23 and the reverse osmosis membrane device 25, pumps 22 and 24 for supplying treated water to the auxiliary reverse osmosis membrane device 23 and the reverse osmosis membrane device 25 at a predetermined supply pressure are respectively provided. There is. The pumps 22 and 24 are, for example, feed water pumps capable of adjusting the discharge pressure.

ここで、従来の超純水製造システムにおける逆浸透膜処理では低分子量の有機物が除去されず、特に、尿素の除去率が極めて低かった。これは、尿素は、分子量が60と低分子量であることに加えて極性分子であるため、水との親和性が高く、水とともに逆浸透膜を通過してしまうためであると考えられる。また、従来の超純水製造システムでは、逆浸透膜装置を通過した尿素の一部は、紫外線酸化装置によっても分解されず、さらに、二次純水システムをも通過して、末端でのTOCとして残留してしまうことがあった。   Here, in the reverse osmosis membrane treatment in the conventional ultrapure water production system, low molecular weight organic substances were not removed, and in particular, the removal rate of urea was extremely low. It is considered that this is because urea is a polar molecule in addition to having a low molecular weight of 60, and therefore has high affinity with water and passes through the reverse osmosis membrane with water. Moreover, in the conventional ultrapure water production system, part of the urea that has passed through the reverse osmosis membrane device is not decomposed by the ultraviolet oxidation device, and further passes through the secondary pure water system, and the TOC at the end There were times when it remained as.

特に、被処理水の尿素濃度が極めて低い場合には、従来の超純水製造システムにおける逆浸透膜処理では尿素の除去が困難であった。これに対し、本実施形態の超純水製造システム1によれば、尿素濃度の低い被処理水を逆浸透膜処理するに際し、所定の供給圧以上とすることで、尿素の除去率を飛躍的に向上させること可能とした。   In particular, when the urea concentration of the water to be treated is extremely low, it is difficult to remove the urea by the reverse osmosis membrane treatment in the conventional ultrapure water production system. On the other hand, according to the ultrapure water production system 1 of the present embodiment, when subjecting to-be-treated water having a low urea concentration to reverse osmosis membrane treatment, the urea removal rate is dramatically increased by setting it to a predetermined supply pressure or higher. It is possible to improve

本実施形態の一次純水システム20では、先ず、活性炭装置21が前処理水中に混入する過酸化水素や塩素等、膜劣化の原因となる不純物を除去する。次いで、補助逆浸透膜装置23が活性炭装置21の処理水を脱塩する。このとき、活性炭装置21及び補助逆浸透膜装置23は尿素の一部を除去して、脱塩水の尿素濃度を10〜100μg/L、好ましくは30〜50μg/Lとする。   In the primary pure water system 20 of this embodiment, the activated carbon device 21 first removes impurities that cause membrane deterioration, such as hydrogen peroxide and chlorine mixed in the pretreatment water. Subsequently, the auxiliary reverse osmosis membrane device 23 desalts the treated water of the activated carbon device 21. At this time, the activated carbon device 21 and the auxiliary reverse osmosis membrane device 23 remove a part of urea to make the concentration of urea in the demineralized water be 10 to 100 μg / L, preferably 30 to 50 μg / L.

本実施形態の一次純水システム20において、活性炭装置21における尿素の除去率は40〜60%程度であることが好ましい。そのため、活性炭装置21での被処理水の空間速度(SV)は、好ましくは5〜20hr−1、より好ましくは7〜15hr−1とする。また、活性炭装置21における空間速度SVを上記した値よりも小さく、例えばSVを2〜7hr−1とすることで、活性炭装置21での尿素の除去量を増やすことができる。 In the primary pure water system 20 of this embodiment, the removal rate of urea in the activated carbon device 21 is preferably about 40 to 60%. Therefore, the space velocity (SV) of the treated water in the activated carbon device 21 is preferably 5 to 20 hr −1 , more preferably 7 to 15 hr −1 . Further, by setting the space velocity SV in the activated carbon device 21 smaller than the above value, for example, by setting the SV to 2 to 7 hr −1 , the removal amount of urea in the activated carbon device 21 can be increased.

補助逆浸透膜装置23は、活性炭装置21の処理水を脱塩するとともに活性炭装置21の処理水中の尿素の一部を除去することができる。補助逆浸透膜23において、尿素の除去率は20〜40%であることが好ましい。そのため、前処理水の水質にもよるが、補助逆浸透膜装置23における水回収率は、50〜80%とすることが好ましい。また、脱塩能の点から、ポンプ22は活性炭処理水を好ましくは0.5〜1.5MPa、より好ましくは0.7〜1.3MPaに加圧して補助逆浸透膜装置23に供給することが望ましい。   The auxiliary reverse osmosis membrane device 23 can desalt the treated water of the activated carbon device 21 and remove a part of the urea in the treated water of the activated carbon device 21. In the auxiliary reverse osmosis membrane 23, the removal rate of urea is preferably 20 to 40%. Therefore, although depending on the water quality of the pretreated water, the water recovery rate in the auxiliary reverse osmosis membrane device 23 is preferably 50 to 80%. Also, from the viewpoint of the demineralization ability, the pump 22 preferably pressurizes the activated carbon-treated water to 0.5 to 1.5 MPa, more preferably 0.7 to 1.3 MPa, and supplies it to the auxiliary reverse osmosis membrane device 23 Is desirable.

補助逆浸透膜装置23としては、三酢酸セルロース系非対称膜、ポリアミド系の複合膜を、シート平膜、スパイラル膜、管状膜、中空糸膜とした膜モジュール等を特に限定されず用いることができる。補助逆浸透膜装置23は、尿素の除去率と脱塩率を向上させるために、ポリアミド系の複合膜であることが好ましく、膜形状は、スパイラル膜であることが好ましい。   As the auxiliary reverse osmosis membrane device 23, a membrane module or the like in which a cellulose triacetate-based asymmetric membrane or a polyamide-based composite membrane is a sheet flat membrane, a spiral membrane, a tubular membrane or a hollow fiber membrane can be used without particular limitation. . The auxiliary reverse osmosis membrane device 23 is preferably a polyamide-based composite membrane in order to improve the removal rate and the desalting rate of urea, and the membrane shape is preferably a spiral membrane.

なお、補助逆浸透膜23を2段直列に接続して2段補助逆浸透膜装置とすることで、尿素の除去量を増やすことが可能である。   The amount of removal of urea can be increased by connecting the auxiliary reverse osmosis membranes 23 in two stages in series to form a two-stage auxiliary reverse osmosis membrane device.

逆浸透膜装置25は、尿素濃度10〜100μg/L、好ましくは30〜50μg/Lの被処理水中の尿素を除去する。逆浸透膜装置25を2段直列に接続した2段逆浸透膜装置として、2段目の逆浸透膜装置の被処理水の尿素濃度が上記した値となるようにしてもよい。このとき、ポンプ24は被処理水を加圧して逆浸透膜装置25における供給圧を2.0〜4.0MPa、好ましくは2.5〜3.5MPaとする。これにより、逆浸透膜装置25は尿素を高除去率で除去することができ、具体的には、尿素の除去率を好ましくは60以上、より好ましくは65%以上とすることができ、尿素の除去率は85%程度、より好ましくは90%程度とすることが可能である。この際、ポンプ24で加圧された被処理水の供給圧が2.0MPa以上であることで尿素を高除去率で除去することができ、4.0MPa以下であることで消費電力の増大を抑えることができる。   The reverse osmosis membrane device 25 removes urea in the water to be treated having a urea concentration of 10 to 100 μg / L, preferably 30 to 50 μg / L. As a two-stage reverse osmosis membrane device in which the reverse osmosis membrane devices 25 are connected in series in two stages, the urea concentration of the water to be treated in the second stage reverse osmosis membrane device may be set to the above value. At this time, the pump 24 pressurizes the water to be treated, and the supply pressure in the reverse osmosis membrane device 25 is 2.0 to 4.0 MPa, preferably 2.5 to 3.5 MPa. Thereby, the reverse osmosis membrane device 25 can remove urea at a high removal rate. Specifically, the removal rate of urea can be preferably 60 or more, more preferably 65% or more. The removal rate can be about 85%, more preferably about 90%. Under the present circumstances, when the supply pressure of the to-be-processed water pressurized with the pump 24 is 2.0 Mpa or more, urea can be removed by a high removal rate, and increase of power consumption is carried out by being 4.0 Mpa or less. It can be suppressed.

逆浸透膜装置25における水回収率は、尿素の除去率を向上させるために、50〜95%であることが好ましく、60〜90%であることがより好ましく、65〜85%であることがさらに好ましい。なお、水回収率の調節は、逆浸透膜装置25の濃縮水配管及び透過水配管に開度可変バルブを設け、当該バルブの開度を調節して濃縮水及び透過水の流量をそれぞれ変更することで達成できる。また、逆浸透装置25へ通水するに先立ち、被処理水に、塩酸等の酸性剤又は、水酸化ナトリウム等のアルカリ性剤を添加して、任意のpHとしてもよい。この場合、例えば、被処理水に水酸化ナトリウムを添加してpH10〜11とすることで、逆浸透装置25における逆浸透膜面へのスケール生成を抑制し、水回収率を向上させることができる。   The water recovery rate in the reverse osmosis membrane device 25 is preferably 50 to 95%, more preferably 60 to 90%, and 65 to 85% in order to improve the removal rate of urea. More preferable. The water recovery rate is adjusted by providing an opening variable valve in the concentrated water piping and the permeated water piping of the reverse osmosis membrane device 25 and adjusting the opening of the valve to change the flow rates of concentrated water and permeated water respectively. It can be achieved by In addition, before passing the water to the reverse osmosis device 25, an acidic agent such as hydrochloric acid or an alkaline agent such as sodium hydroxide may be added to the water to be treated to have an arbitrary pH. In this case, for example, by adding sodium hydroxide to the water to be treated to adjust the pH to 10 to 11, the scale formation on the reverse osmosis membrane surface in the reverse osmosis device 25 can be suppressed, and the water recovery rate can be improved. .

逆浸透膜装置25としては、三酢酸セルロース系非対称膜や、ポリアミド系複合膜を用い、シート平膜、スパイラル膜、管状膜、中空糸膜とした膜モジュールを用いることができる。中でも、尿素を高除去率で除去するために、ポリスルホン製の支持膜に例えば界面重合法でポリアミドの超薄膜を形成したポリアミド複合膜をスパイラル膜として構成した膜モジュールや、三酢酸セルロース系非対称膜を中空糸膜として構成した膜モジュールが好ましく用いられ、尿素の除去率を向上させる点から、ポリアミド系の複合膜であることがより好ましく、膜形状はスパイラル膜であることがより好ましい。   As the reverse osmosis membrane device 25, a membrane module may be used which is a sheet flat membrane, a spiral membrane, a tubular membrane, or a hollow fiber membrane using a cellulose triacetate-based asymmetric membrane or a polyamide-based composite membrane. Above all, in order to remove urea with a high removal rate, for example, a membrane module in which a polyamide composite membrane in which an ultrathin film of polyamide is formed on a support membrane made of polysulfone by interfacial polymerization is configured as a spiral membrane, a cellulose triacetate-based asymmetric membrane A membrane module in which the hollow fiber membrane is formed is preferably used. From the viewpoint of improving the removal rate of urea, a polyamide-based composite membrane is more preferable, and the membrane shape is more preferably a spiral membrane.

逆浸透膜装置25としては、例えば、SW−30(ダウ・フィルムテック社製、最大運転圧力8.2MPa)やSU820(東レ株式会社製)、TM820(東レ株式会社製)、NTR−SWC(日東電工株式会社製)等の市販品を用いることができる。なお、SU820、TM820、NTR−SWCについても最大運転圧力はSW−30と同等である。   Examples of the reverse osmosis membrane device 25 include SW-30 (manufactured by Dow Filmtec, maximum operating pressure 8.2 MPa), SU820 (manufactured by Toray Industries, Inc.), TM820 (manufactured by Toray Industries, Inc.), NTR-SWC (Nitto Co., Ltd.) Commercial products such as Denko Corporation) can be used. In addition, the maximum operating pressure is equivalent to SW-30 also about SU820, TM820, and NTR-SWC.

紫外線酸化装置26は、例えば、185nm付近の波長を有する紫外線を照射可能な紫外線ランプを有し、この紫外線ランプから紫外線を被処理水に照射することで、被処理水中のTOCを酸化分解する。紫外線酸化装置26に用いられる紫外線ランプは、185nm付近の波長の紫外線のみを発生するランプである必要はなく、本実施形態では、例えば、185nm付近の波長の紫外線とともに254nm付近の波長の紫外線を放射する低圧水銀ランプを使用することができる。   The ultraviolet oxidation device 26 includes, for example, an ultraviolet lamp capable of irradiating ultraviolet light having a wavelength of about 185 nm, and the ultraviolet light is irradiated to the water to be treated from the ultraviolet lamp to oxidize and decompose TOC in the water. The ultraviolet lamp used for the ultraviolet oxidation device 26 does not have to be a lamp that generates only ultraviolet light of a wavelength of around 185 nm, and in the present embodiment, for example, ultraviolet light of a wavelength of around 254 nm is emitted together with ultraviolet light of a wavelength of around 185 nm. Low pressure mercury lamps can be used.

紫外線酸化装置26は、波長185nm付近の紫外線により、水を分解してOHラジカルを生成させ、このOHラジカルによって被処理水中の有機物を有機酸にまで酸化分解する。なお、一次純水システム20の紫外線酸化装置26における紫外線照射量は、被処理水の水質によって適宜変更することができる。例えば、紫外線照射量を0.2〜0.7kW・h/mとすることで、尿素をさらに除去することができる。紫外線照射量は、処理水に求められる所望の尿素濃度に応じて上記範囲で調整することが好ましい。例えば、紫外線照射量を抑える観点からは0.2〜0.4kW・h/m程度とすることが好ましく、より高純度な水質を得たい場合には、必要に応じ、紫外線照射量をこれ以上とすることで、尿素の除去量を増やすことができる。その際、紫外線照射量は0.7kW・h/m程度あれば、十分な尿素除去率を得ることができる。 The ultraviolet oxidation device 26 decomposes water to generate OH radicals by ultraviolet light having a wavelength of about 185 nm, and the OH radicals oxidize and decompose the organic matter in the water to be treated to an organic acid. In addition, the ultraviolet irradiation amount in the ultraviolet-ray oxidation apparatus 26 of the primary pure water system 20 can be suitably changed with the water quality | type of to-be-processed water. For example, by setting the ultraviolet irradiation amount to 0.2 to 0.7 kW · h / m 3 , urea can be further removed. It is preferable to adjust an ultraviolet irradiation amount in the said range according to the desired urea concentration calculated | required by treated water. For example, from the viewpoint of suppressing the amount of ultraviolet irradiation, it is preferable to set the value to about 0.2 to 0.4 kW · h / m 3 or so. By setting it as the above, the removal amount of urea can be increased. At this time, if the ultraviolet irradiation amount is about 0.7 kW · h / m 3 , a sufficient urea removal rate can be obtained.

混床式イオン交換装置27としては、陽イオン交換樹脂及び陰イオン交換樹脂を混合して充填した装置を用いることができ、再生式、非再生式のいずれであってもよい。混床式イオン交換装置27は、前段の紫外線酸化装置26で有機物が酸化分解されて生成した低分子量のイオン成分を吸着除去する。本実施形態の紫外線酸化装置26及び混床式イオン交換装置27の組み合わせにおける尿素の除去率は、40〜60%であることが好ましく、これにより、被処理水中に残留する尿素を除去してTOC濃度の低減された一次純水を得ることができる。一次純水は、例えば比抵抗率17MΩ・cm以上、TOC濃度が10μgC/L以下の超純水である。   As the mixed bed type ion exchange apparatus 27, an apparatus mixed and filled with a cation exchange resin and an anion exchange resin can be used, and any of a regenerative type and a non-regenerative type may be used. The mixed bed ion exchange apparatus 27 adsorbs and removes low molecular weight ion components generated by oxidizing and decomposing organic substances by the ultraviolet oxidation apparatus 26 at the front stage. The removal rate of urea in the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 of the present embodiment is preferably 40 to 60%, thereby removing the urea remaining in the water to be treated Primary pure water with reduced concentration can be obtained. Primary pure water is, for example, ultrapure water having a resistivity of 17 MΩ · cm or more and a TOC concentration of 10 μg C / L or less.

本実施形態によれば、逆浸透膜装置25が尿素を高除去率で除去し、さらに逆浸透膜装置25の下流側の紫外線酸化装置26及び混床式イオン交換装置27の組合せで尿素を除去するので、高除去率で尿素を除去することができる。なお、混床式イオン交換装置27の後段に膜脱気装置を設けてもよく、これにより被処理水中の溶存炭酸及び溶存酸素を除去することができる。   According to the present embodiment, the reverse osmosis membrane device 25 removes urea at a high removal rate, and furthermore, the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 on the downstream side of the reverse osmosis membrane device 25 removes urea. Therefore, urea can be removed at a high removal rate. A membrane degassing device may be provided downstream of the mixed bed ion exchange device 27. This can remove dissolved carbon dioxide and dissolved oxygen in the water to be treated.

このように、本実施形態の一次純水システム20では、先ず、活性炭装置21及び補助逆浸透膜装置23が前処理水から尿素濃度10〜100μg/Lの被処理水を生成し、ポンプ24が逆浸透膜装置25への被処理水の供給圧を2.0〜4.0MPaに高めた状態で逆浸透膜装置25が被処理水を逆浸透膜処理するため、尿素を高除去率で除去することができる。そして、その下流側の紫外線酸化装置26と混床式イオン交換装置27の組合せが、逆浸透膜装置25の透過水中の微量の有機物を分解、吸着除去するので、より高純度の一次純水を製造することができる。また、逆浸透膜装置25が尿素を高除去率で除去するため、尿素を分解するための酸化剤が不要であり、したがって、酸化剤を使用した場合に残留した酸化剤を還元するための還元剤を省略できる。また、尿素分解のために被処理水に酸化剤や還元剤を添加するための装置も不要である。   As described above, in the primary pure water system 20 of the present embodiment, first, the activated carbon device 21 and the auxiliary reverse osmosis membrane device 23 generate treated water having a urea concentration of 10 to 100 μg / L from the pretreated water, and the pump 24 The reverse osmosis membrane device 25 performs reverse osmosis membrane treatment of the water to be treated in a state where the supply pressure of the water to be treated to the reverse osmosis membrane device 25 is increased to 2.0 to 4.0 MPa, thereby removing urea at a high removal rate can do. And since the combination of the ultraviolet oxidation device 26 on the downstream side and the mixed bed type ion exchange device 27 decomposes and adsorbs and removes a trace amount of organic matter in the permeated water of the reverse osmosis membrane device 25, primary pure water of higher purity is obtained. It can be manufactured. In addition, since the reverse osmosis membrane device 25 removes urea at a high removal rate, an oxidizing agent for decomposing urea is unnecessary, and therefore, a reduction for reducing the remaining oxidizing agent when using the oxidizing agent. Agents can be omitted. Moreover, the apparatus for adding an oxidizing agent and a reducing agent to to-be-processed water for urea decomposition | disassembly is also unnecessary.

次いで、一次純水は一次純水タンク31に一旦貯留された後、二次純水システム30に送られる。二次純水システム30は、紫外線酸化装置(TOC−UV)32、非再生式ポリッシャー(Polisher)33、膜脱気装置(MDG)34及び限外ろ過装置(UF)35を備え、全有機炭素(TOC)濃度が5μgC/L程度まで低減された一次純水中の有機物をさらに1μgC/L程度まで低減した超純水を製造する。   Next, primary pure water is temporarily stored in the primary pure water tank 31 and then sent to the secondary pure water system 30. The secondary pure water system 30 comprises an ultraviolet oxidizer (TOC-UV) 32, a non-regenerative polisher (Polisher) 33, a membrane degassing unit (MDG) 34, and an ultrafiltration unit (UF) 35, all organic carbon (TOC) Ultrapure water in which organic matter in primary pure water whose concentration is reduced to about 5 μg C / L is further reduced to about 1 μg C / L is manufactured.

二次純水システム30における紫外線酸化装置32の構成は、一次純水システム20の紫外線酸化装置26と同様である。紫外線酸化装置32は、被処理水に185nm付近の紫外線を照射することで被処理水中の有機物を酸化分解する。紫外線酸化装置32における紫外線照射量は、被処理水の水質によって適宜変更することができる。例えば、紫外線照射量を0.2〜0.7kW・h/mとすることで、尿素をさらに除去することができる。紫外線照射量は、処理水に求められる所望の尿素濃度に応じて上記範囲で調整することが好ましい。例えば、紫外線照射量を抑える観点からは0.2〜0.4kW・h/m程度とすることが好ましく、より高純度な水質を得たい場合には、必要に応じ、紫外線照射量をこれ以上とすることで、尿素の除去量を増やすことができる。その際、紫外線照射量は0.7kW・h/m程度あれば、十分な尿素除去率を得ることができる。 The configuration of the ultraviolet oxidation device 32 in the secondary pure water system 30 is the same as that of the ultraviolet oxidation device 26 in the primary pure water system 20. The ultraviolet oxidation device 32 oxidizes and decomposes the organic matter in the water to be treated by irradiating the water to be treated with ultraviolet rays around 185 nm. The ultraviolet irradiation amount in the ultraviolet oxidation device 32 can be appropriately changed according to the water quality of the water to be treated. For example, by setting the ultraviolet irradiation amount to 0.2 to 0.7 kW · h / m 3 , urea can be further removed. It is preferable to adjust an ultraviolet irradiation amount in the said range according to the desired urea concentration calculated | required by treated water. For example, from the viewpoint of suppressing the amount of ultraviolet irradiation, it is preferable to set the value to about 0.2 to 0.4 kW · h / m 3 or so. By setting it as the above, the removal amount of urea can be increased. At this time, if the ultraviolet irradiation amount is about 0.7 kW · h / m 3 , a sufficient urea removal rate can be obtained.

非再生式ポリッシャー33は、紫外線酸化装置32が有機物を分解することで生成したイオン成分を吸着除去する。   The non-regenerative polisher 33 adsorbs and removes ion components generated by the ultraviolet oxidizer 32 decomposing organic matter.

非再生式ポリッシャー33は、ボンベ等の容器に強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂が混合充填された様式のものを備えている。膜脱気装置34は、一次純水中の微量溶存酸素を除去して溶存酸素濃度を1μg/L程度以下まで低減する。限外ろ過膜装置35は、上流側のイオン交換樹脂からの微量溶出物や微粒子成分を除去して0.05μm以上の微粒子数を250Psc./L以下程度まで低減する。   The non-regenerative polisher 33 has a type such that a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed and packed in a container such as a cylinder. The membrane degassing device 34 removes a small amount of dissolved oxygen in primary pure water to reduce the dissolved oxygen concentration to about 1 μg / L or less. The ultrafiltration membrane device 35 removes a minute amount of eluate and fine particle components from the ion exchange resin on the upstream side to reduce the number of fine particles of 0.05 μm or more to 250 Psc. / L or less.

なお、不純物の極めて少ない一次純水を処理し、超高水質の超純水を製造するために、二次純水システム30の各水処理装置は、薬品再生等を行わない交換タイプのものを用いることが好ましい。   In addition, in order to process primary pure water with very few impurities and to produce ultra pure water of ultra high water quality, each water treatment apparatus of the secondary pure water system 30 is an exchange type that does not perform chemical regeneration etc. It is preferred to use.

このように、二次純水システム30は、一次純水を処理してさらに高純度の超純水を製造する。この超純水はユースポイント40に供給される。   Thus, the secondary pure water system 30 processes the primary pure water to produce ultrapure water with higher purity. The ultrapure water is supplied to the use point 40.

以上説明した本実施形態の超純水製造システム1によれば、逆浸透膜装置25における尿素の除去率が極めて高く、TOC濃度の極めて低い超純水を効率よく製造することが可能である。   According to the ultrapure water production system 1 of the present embodiment described above, it is possible to efficiently produce ultrapure water having an extremely high removal rate of urea in the reverse osmosis membrane device 25 and extremely low TOC concentration.

(第2の実施形態)
次に、図2を参照して第2の実施形態について説明する。本実施形態の超純水製造システム2は、逆浸透膜装置25の後段に配置された紫外線酸化装置26及び混床式イオン交換装置27の組合せを補助逆浸透膜装置23と逆浸透膜装置25の間に配置した点で第1の実施形態と異なる。そのため、共通の要素には共通の符号を付して示し、重複する説明を省略する。
Second Embodiment
Next, a second embodiment will be described with reference to FIG. In the ultrapure water production system 2 of the present embodiment, the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 disposed downstream of the reverse osmosis membrane device 25 is an auxiliary reverse osmosis membrane device 23 and a reverse osmosis membrane device 25. The second embodiment differs from the first embodiment in that it is disposed between the two. Therefore, common elements are denoted by the same reference numerals, and redundant description will be omitted.

本実施形態では一次純水システム20において、先ず、活性炭装置21及び補助逆浸透膜装置23が前処理水から尿素濃度10〜100μg/Lの被処理水を生成し、ポンプ24が逆浸透膜装置25への被処理水の供給圧を2.0〜4.0MPaに高めた状態で逆浸透膜装置25が被処理水を逆浸透膜処理するため、尿素を高除去率で除去することができる。また、紫外線酸化装置26及び混床式イオン交換装置27の組合せが補助逆浸透膜装置23の透過水から有機物を除去した後、この処理水を逆浸透膜装置25が処理するため、逆浸透膜装置25での水回収率を大きくして、尿素の除去率を向上させることができる。また、逆浸透膜装置25が尿素を高除去率で除去するため、尿素を分解するための酸化剤が不要であり、したがって、酸化剤を使用した場合に残留した酸化剤を還元するための還元剤を省略できる。また、尿素分解のために被処理水に酸化剤や還元剤を添加するための装置も不要である。   In the present embodiment, in the primary pure water system 20, first, the activated carbon device 21 and the auxiliary reverse osmosis membrane device 23 generate treated water with a urea concentration of 10 to 100 μg / L from the pretreated water, and the pump 24 is a reverse osmosis membrane device The reverse osmosis membrane device 25 performs reverse osmosis membrane treatment of the to-be-treated water in a state where the supply pressure of the to-be-treated water to 25 is increased to 2.0 to 4.0 MPa, so urea can be removed at a high removal rate . Further, the reverse osmosis membrane device 25 treats the treated water after the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 removes the organic matter from the permeated water of the auxiliary reverse osmosis membrane device 23, so that the reverse osmosis membrane The water recovery rate in the device 25 can be increased to improve the removal rate of urea. In addition, since the reverse osmosis membrane device 25 removes urea at a high removal rate, an oxidizing agent for decomposing urea is unnecessary, and therefore, a reduction for reducing the remaining oxidizing agent when using the oxidizing agent. Agents can be omitted. Moreover, the apparatus for adding an oxidizing agent and a reducing agent to to-be-processed water for urea decomposition | disassembly is also unnecessary.

(第3の実施形態)
次に、図3を参照して第3の実施形態について説明する。本実施形態の超純水製造システム3は、一次純水システム20においてポンプ22及び逆浸透膜装置23に代えて2床3塔式装置28を備える点で第1の実施形態と異なる。そのため、共通の要素には共通の符号を付して示し、重複する説明を省略する。
Third Embodiment
Next, a third embodiment will be described with reference to FIG. The ultrapure water production system 3 of the present embodiment is different from the first embodiment in that the primary pure water system 20 includes a two-bed three-tower system 28 instead of the pump 22 and the reverse osmosis membrane device 23. Therefore, common elements are denoted by the same reference numerals, and redundant description will be omitted.

図3は本実施形態の超純水製造システム3のブロック図である。本実施形態の一次純水システム20は、2床3塔式装置(2B3T)28、ポンプ24、逆浸透膜装置(RO)25、紫外線酸化装置(TOC−UV)26、混床式イオン交換装置(MB)27をこの順に備えている。本実施形態の一次純水システム20は先ず、活性炭装置21と、2床3塔式装置28におけるイオン交換装置及び脱炭酸装置の組合せとが前処理水を脱塩するとともに尿素の一部を除去して尿素濃度が10〜100μg/Lの被処理水を生成する。次いで、逆浸透膜装置25がコロイド及び尿素とそれ以外の有機物のほとんどを除去した後、紫外線酸化装置26、混床式イオン交換装置27の組合せが被処理水中に残留する分子量の小さい有機物を分解、除去する。   FIG. 3 is a block diagram of the ultrapure water production system 3 of the present embodiment. The primary pure water system 20 of this embodiment includes a two-bed three-column system (2B3T) 28, a pump 24, a reverse osmosis membrane system (RO) 25, an ultraviolet oxidation system (TOC-UV) 26, and a mixed bed ion exchange system (MB) 27 is provided in this order. In the primary pure water system 20 according to the present embodiment, first, the activated carbon device 21 and the combination of the ion exchange device and the decarboxylation device in the two-bed three-column system desalt the pretreated water and remove a part of urea. As a result, treated water having a urea concentration of 10 to 100 μg / L is produced. Next, after the reverse osmosis membrane device 25 removes most of colloids, urea and other organic substances, the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 decomposes the organic substances having small molecular weight remaining in the water to be treated ,Remove.

また、活性炭装置21〜逆浸透膜装置25の間の任意の位置に、補助逆浸透膜装置23を設置してもよい。この場合には、被処理水の尿素をさらに除去して逆浸透膜装置25の被処理水の尿素濃度を、好ましくは50μg/L以下、より好ましくは30μg/L以下に低減することができるので、尿素の除去率をさらに向上させることができる。   In addition, the auxiliary reverse osmosis membrane device 23 may be installed at any position between the activated carbon device 21 and the reverse osmosis membrane device 25. In this case, the urea concentration of the water to be treated of the reverse osmosis membrane device 25 can be reduced to preferably 50 μg / L or less, more preferably 30 μg / L or less, by further removing the urea of the water to be treated. The removal rate of urea can be further improved.

本実施形態の一次純水システム20は、2床3塔式装置28において脱塩することで、逆浸透膜装置25の被処理水の塩濃度を低減することができるので、逆浸透膜装置25における水回収率を向上させ、これにより逆浸透膜装置25における尿素の除去率を向上させることができる。2床3塔式装置28としては、陽イオン交換樹脂装置、脱炭酸塔及び陰イオン交換樹脂装置を順に備えた装置を用いることが好ましい。2床3塔式装置28は、前処理水中の塩類と溶存炭酸を除去することができる。また、2床3塔式装置28は、向流再生式であるため濁質分の影響を受けにくいという利点がある。原水が鉱酸や塩類を多く含む場合には、2床3塔式装置28に代えて3床4塔式装置等を用いることができる。3床4塔式装置は、陽イオン交換樹脂装置、脱炭酸装置、弱塩基性陰イオン交換樹脂及び強塩基性イオン交換装置から構成されたものである。   In the primary pure water system 20 of the present embodiment, the salt concentration of the water to be treated of the reverse osmosis membrane device 25 can be reduced by desalting in the two-bed three-column type device 28. The recovery rate of water in the reverse osmosis membrane device 25 can be improved, thereby improving the rate of removal of urea in the reverse osmosis membrane device 25. As the two-bed three-column type device 28, it is preferable to use a device provided with a cation exchange resin device, a decarboxylation tower and an anion exchange resin device in order. The two bed three tower system 28 can remove salts and dissolved carbonic acid in the pretreated water. Further, the two-bed three-column type apparatus 28 is advantageous in that it is less susceptible to suspended solids because it is a countercurrent regeneration type. When the raw water contains a large amount of mineral acid and salts, a 3-bed 4-tower system or the like can be used instead of the 2-bed 3-tower system 28. The three-bed four-column system is composed of a cation exchange resin system, a decarbonation system, a weak base anion exchange resin, and a strong base ion exchange system.

第3の実施形態の超純水製造システム3では、先ず、活性炭装置21及び2床3塔式装置28が前処理水から尿素濃度10〜100μg/Lの被処理水を生成し、ポンプ24が逆浸透膜装置25への被処理水の供給圧を2.0〜4.0MPaに高めた状態で逆浸透膜装置25が被処理水を逆浸透膜処理するため、尿素を高除去率で除去することができる。そして、その下流側の紫外線酸化装置26と混床式イオン交換装置27の組合せが、逆浸透膜装置25の透過水中の微量の有機物を分解、吸着除去するので、より高純度の一次純水を製造することができる。また、逆浸透膜装置25が尿素を高除去率で除去するため、尿素を分解するための酸化剤が不要であり、したがって、酸化剤を使用した場合に残留した酸化剤を還元するための還元剤を省略できる。また、尿素分解のために被処理水に酸化剤や還元剤を添加するための装置も不要である。   In the ultrapure water production system 3 of the third embodiment, first, the activated carbon device 21 and the two-bed three-column system 28 generate treated water having a urea concentration of 10 to 100 μg / L from the pretreated water, and the pump 24 The reverse osmosis membrane device 25 performs reverse osmosis membrane treatment of the water to be treated in a state where the supply pressure of the water to be treated to the reverse osmosis membrane device 25 is increased to 2.0 to 4.0 MPa, thereby removing urea at a high removal rate can do. And since the combination of the ultraviolet oxidation device 26 on the downstream side and the mixed bed type ion exchange device 27 decomposes and adsorbs and removes a trace amount of organic matter in the permeated water of the reverse osmosis membrane device 25, primary pure water of higher purity is obtained. It can be manufactured. In addition, since the reverse osmosis membrane device 25 removes urea at a high removal rate, an oxidizing agent for decomposing urea is unnecessary, and therefore, a reduction for reducing the remaining oxidizing agent when using the oxidizing agent. Agents can be omitted. Moreover, the apparatus for adding an oxidizing agent and a reducing agent to to-be-processed water for urea decomposition | disassembly is also unnecessary.

(第4の実施形態)
次に、図4を参照して第4の実施形態について説明する。本実施形態の超純水製造システム4は、逆浸透膜装置の後段に配置された紫外線酸化装置26及び混床式イオン交換装置27の組合せを2床3塔式装置28と逆浸透膜装置25の間に配置した点で第3の実施形態と異なる。そのため、共通の要素には共通の符号を付して示し、重複する説明を省略する。
Fourth Embodiment
Next, a fourth embodiment will be described with reference to FIG. In the ultrapure water production system 4 of the present embodiment, the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 disposed at the rear stage of the reverse osmosis membrane device is a two bed three tower system 28 and a reverse osmosis membrane device 25 And the third embodiment differs in that it is disposed between Therefore, common elements are denoted by the same reference numerals, and redundant description will be omitted.

第4の実施形態の超純水製造システム3では、先ず、活性炭装置21及び2床3塔式装置28が前処理水から尿素濃度10〜100μg/Lの被処理水を生成し、ポンプ24が逆浸透膜装置25への被処理水の供給圧を2.0〜4.0MPaに高めた状態で逆浸透膜装置25が被処理水を逆浸透膜処理するため、尿素を高除去率で除去することができる。また、紫外線酸化装置26及び混床式イオン交換装置27の組合せが2床3塔式装置28の透過水から有機物を除去した後、この処理水を逆浸透膜装置25が処理するため、逆浸透膜装置25における水回収率を向上させ、これにより逆浸透膜装置25における尿素の除去率を向上させることができる。また、逆浸透膜装置25が尿素を高除去率で除去するため、尿素を分解するための酸化剤が不要であり、したがって、酸化剤を使用した場合に残留した酸化剤を還元するための還元剤を省略できる。また、尿素分解のために被処理水に酸化剤や還元剤を添加するための装置も不要である。   In the ultrapure water production system 3 of the fourth embodiment, first, the activated carbon device 21 and the two-bed three-column system 28 generate treated water having a urea concentration of 10 to 100 μg / L from pretreated water, and the pump 24 The reverse osmosis membrane device 25 performs reverse osmosis membrane treatment of the water to be treated in a state where the supply pressure of the water to be treated to the reverse osmosis membrane device 25 is increased to 2.0 to 4.0 MPa, thereby removing urea at a high removal rate can do. In addition, after the combination of the ultraviolet oxidation device 26 and the mixed bed ion exchange device 27 removes the organic matter from the permeated water of the two-bed three-column type device 28, the reverse osmosis membrane device 25 processes the treated water. The water recovery rate in the membrane device 25 can be improved, whereby the removal rate of urea in the reverse osmosis membrane device 25 can be improved. In addition, since the reverse osmosis membrane device 25 removes urea at a high removal rate, an oxidizing agent for decomposing urea is unnecessary, and therefore, a reduction for reducing the remaining oxidizing agent when using the oxidizing agent. Agents can be omitted. Moreover, the apparatus for adding an oxidizing agent and a reducing agent to to-be-processed water for urea decomposition | disassembly is also unnecessary.

次に、実施例を用いて本発明をより詳細に説明する。
(実施例1)
超純水(比抵抗率18.2MΩ・cm、TOC濃度2μgC/L)に、尿素濃度が100μg/Lとなるように定量ポンプを用いて尿素を加えながら、供給圧3.0MPaで逆浸透膜モジュールA(SW30、ダウ・フィルムテック社製)に通水した。水回収率50%、70%、80%、90%として実験を行い、それぞれ透過水中の尿素濃度を測定し、下記式(1)で示される尿素の除去率を計測した。
The invention will now be described in more detail by way of examples.
Example 1
Reverse osmosis membrane at a supply pressure of 3.0 MPa while adding urea to ultrapure water (specific resistivity 18.2 MΩ · cm, TOC concentration 2 μg C / L) using a metering pump so that the urea concentration is 100 μg / L. Water was supplied to Module A (SW30, manufactured by Dow Filmtec). The experiments were performed with water recovery rates of 50%, 70%, 80%, and 90%, the urea concentration in the permeate water was measured, and the removal rate of urea represented by the following formula (1) was measured.

尿素除去率(%)=[(供給水尿素濃度−透過水尿素濃度)/供給水尿素濃度)]×100 …(1)   Urea removal rate (%) = [(feed water urea concentration-permeate water urea concentration) / feed water urea concentration)] × 100 (1)

実施例1における水回収率と尿素除去率との関係を、水回収率を横軸、尿素除去率を縦軸として三角の黒点で図5のグラフに示す。 The relationship between the water recovery rate and the urea removal rate in Example 1 is shown in the graph of FIG. 5 with triangular black points , with the water recovery rate as the horizontal axis and the urea removal rate as the vertical axis.

(実施例2)
実施例1において、RO供給水の尿素濃度を30μg/Lとなるようにした他は実施例1と同様の条件、同様の装置で尿素除去率を測定した。実施例2における尿素除去率と水回収率との関係を四角の黒点で図5のグラフに実施例1と併せて示す。
(Example 2)
In Example 1, the urea removal rate was measured using the same apparatus and conditions as in Example 1 except that the urea concentration of RO feed water was set to 30 μg / L. Shown together with Example 1 in the graph of FIG. 5 the relationship between the urea removal rate and the water recovery rate in Example 2 by a square black dots.

(実験例1)
実験例1において、水回収率を90%、供給圧を3.0MPaで、尿素濃度30μg/L、50μg/L、100μg/L及び10g/Lの被処理水を逆浸透膜モジュールAで実施例1と同様に処理した。このときの尿素濃度と尿素除去率の関係を、尿素濃度を横軸、尿素除去率を縦軸として白丸で図6のグラフに示す。
(Experimental example 1)
In Experimental Example 1, the reverse osmosis membrane module A is an example of the treated water having a water recovery rate of 90%, a supply pressure of 3.0 MPa, a urea concentration of 30 μg / L, 50 μg / L, 100 μg / L and 10 g / L. Treated as in 1. The relationship between the urea concentration and the urea removal rate at this time is shown in the graph of FIG. 6 as white circles, with the urea concentration on the horizontal axis and the urea removal rate on the vertical axis.

(実験例2)
実験例1において、水回収率を50%として実験例1と同様の条件で同様の実験を行った。このときの尿素濃度と尿素除去率の関係を図6のグラフにひし形の白点で実験例1と併せて示す。
(Experimental example 2)
In Experimental Example 1, the same experiment was performed under the same conditions as Experimental Example 1 with a water recovery rate of 50%. The relationship between the urea concentration and the urea removal rate at this time is shown in the graph of FIG.

(実験例3)
実験例1において、供給圧を2.0MPaとして実験例1と同様の条件で同様の実験を行った。このときの尿素濃度と尿素除去率の関係を図6のグラフに黒四角形で実験例1と併せて示す。
(Experimental example 3)
In Experimental Example 1, the same experiment was performed under the same conditions as in Experimental Example 1 with a supply pressure of 2.0 MPa. The relationship between the urea concentration and the urea removal rate at this time is shown in the graph of FIG.

(比較例1)
実験例1において、逆浸透膜モジュールAに代えて、逆浸透膜モジュールB(SU720、ダウ・フィルムテック社製)を用い、水回収率を50%、供給圧を1.5MPaとして実験例1と同様の実験を行った。このときの尿素濃度と尿素除去率の関係を白三角点で図6のグラフに実験例1、2と併せて示す。
(Comparative example 1)
In Experimental Example 1, instead of the reverse osmosis membrane module A, reverse osmosis membrane module B (SU720, manufactured by Dow Filmtec Co., Ltd.) was used, and the water recovery rate was 50% and the supply pressure was 1.5 MPa. The same experiment was performed. The relationship between the urea concentration and the urea removal rate at this time is shown by white triangle points together with Experimental Examples 1 and 2 in the graph of FIG.

図5より、3.0MPaの供給圧において、尿素濃度が100μg/Lでは、水回収率を上げていくと尿素の除去率は低下していくが、尿素濃度が30μg/Lでは、水回収率を上げていくと尿素の除去率も向上することが分かる。図5には示していないが、水回収率を上げると尿素の除去率が向上する傾向は、尿素濃度が50μg/L以下の条件で確認された。   From FIG. 5, at a supply pressure of 3.0 MPa, when the water concentration is 100 μg / L, the removal rate of urea decreases as the water recovery rate increases, but when the urea concentration is 30 μg / L, the water recovery rate It can be seen that the rate of removal of urea also improves as Although not shown in FIG. 5, when the water recovery rate is increased, the removal rate of urea tends to be improved under the condition that the urea concentration is 50 μg / L or less.

また、図6より、実験例2と比較例1を比べると水回収率がいずれも50%では、供給圧供給圧を1.5MPaとした比較例1では、被処理水の尿素濃度が低いほど尿素除去率は低くなり、尿素濃度が100μg/L以下では、尿素除去率は30%に満たないことが判明した。一方、供給圧を3.0MPaとした実験例2では尿素濃度が100μg/Lから、これより小さくなるにしたがって、尿素除去率が徐々に低下していくことが判明した。さらに、実験例2と同じ条件で水回収率を大きくし、90%となるようにした実験例1では、尿素濃度が100μ/Lから、これより小さくなるにしたがって、尿素除去率が徐々に増加していくことが判明した。   Further, according to FIG. 6, comparing the experimental example 2 and the comparative example 1, when the water recovery rate is 50% in all, in the comparative example 1 in which the supply pressure and the supply pressure are 1.5 MPa, the lower the urea concentration of the water to be treated is The urea removal rate was low, and it was found that the urea removal rate was less than 30% at a urea concentration of 100 μg / L or less. On the other hand, in Experimental Example 2 in which the supply pressure was 3.0 MPa, it was found that the urea removal rate gradually decreased as the urea concentration became smaller than 100 μg / L. Furthermore, in Experimental Example 1 in which the water recovery rate was increased to 90% under the same conditions as Experimental Example 2, the urea removal rate gradually increased as the urea concentration decreased from 100 μ / L. It turned out to be going.

以上より、被処理水の尿素濃度を100μg/L以下、被処理水の供給圧を3.0MPa以上として逆浸透膜処理を行うことで、尿素の除去率が向上することが判明した。   As mentioned above, it turned out that the removal rate of urea improves by performing a reverse osmosis membrane process by making the urea concentration of to-be-processed water into 100 micrograms / L or less, and the supply pressure of to-be-processed water 3.0 Mpa or more.

(実施例3)
図1に示す超純水製造システム1において、活性炭装置21に、尿素濃度100μg/Lの被処理水を供給した場合の、活性炭装置21、補助逆浸透膜装置23、逆浸透膜装置25、混床式イオン交換装置27及びポリッシャー33の処理水中の尿素濃度表1に示す。なお、本実施例におけるポリッシャー33の処理水の尿素濃度(0.8μg/L)は、TOC濃度で0.16μgC/Lに相当する。
(Example 3)
In the ultrapure water production system 1 shown in FIG. 1, the activated carbon device 21, the auxiliary reverse osmosis membrane device 23, the reverse osmosis membrane device 25, and the mixed water when the water to be treated with a urea concentration of 100 μg / L is supplied to the activated carbon device 21. The urea concentrations in the treated water of the bed ion exchange device 27 and the polisher 33 are shown in Table 1. The urea concentration (0.8 μg / L) of the treated water of the polisher 33 in the present embodiment corresponds to 0.16 μg C / L in TOC concentration.

本実施例における、各装置の仕様及び通水条件は次のようである。
原水:市水
活性炭装置(AC)21:活性炭F400(三菱化学カルゴン社製)を充填したもの、空間速度(SV)10hr−1
補助逆浸透膜装置(Sub−RO)23:逆浸透膜モジュールSU720(ダウ・フィルムテック社製)、供給圧1.5MPa、水回収率75%
逆浸透膜装置(RO)25:逆浸透膜モジュールSW30(ダウ・フィルムテック社製)、供給圧2.0MPa、水回収率85%
紫外線酸化装置(TOC−UV)26,32:AUV−8000TOC(日本フォトサイエンス(株)社製)、紫外線照射量0.3kW・h/m
混床式イオン交換装置(MB)27:陰イオン交換樹脂:強塩基性陰イオン交換樹脂デュオライトA−113plus(ローム&ハース社製)及び陽イオン交換樹脂:強酸性陽イオン交換樹脂デュオライトC−20(ローム&ハース社製)を予め再生してH型とOH型に変換した後に混合充填したもの、空間速度(SV)40hr−1
ポリッシャー(Polisher)33:陰イオン交換樹脂:強塩基性陰イオン交換樹脂デュオライトA−113plus(ローム&ハース社製)及び陽イオン交換樹脂:強酸性陽イオン交換樹脂デュオライトC−20(ローム&ハース社製)を予め再生してH型とOH型に変換した後に混合充填したもの、空間速度(SV)40hr−1
The specifications and water flow conditions of each device in the present embodiment are as follows.
Raw water: City water Activated carbon device (AC) 21: Activated carbon filled with F400 (Mitsubishi Chemical Calgon), space velocity (SV) 10 hr -1
Auxiliary reverse osmosis membrane device (Sub-RO) 23: Reverse osmosis membrane module SU720 (made by Dow Filmtec), supply pressure 1.5 MPa, water recovery rate 75%
Reverse Osmosis Membrane Device (RO) 25: Reverse Osmosis Membrane Module SW30 (made by Dow Filmtec), supply pressure 2.0 MPa, water recovery rate 85%
Ultraviolet oxidizer (TOC-UV) 26, 32: AUV-8000TOC (manufactured by Nippon Photo Science Co., Ltd.), ultraviolet radiation dose 0.3 kW · h / m 3
Mixed bed type ion exchange apparatus (MB) 27: anion exchange resin: strongly basic anion exchange resin Duolite A-113plus (manufactured by Rohm & Haas Co., Ltd.) and cation exchange resin: strongly acidic cation exchange resin Duolite C -20 (manufactured by Rohm & Haas Co., Ltd.) which has been previously regenerated, converted to H-type and OH-type, and then mixed and filled, space velocity (SV) 40 hr -1
Polisher (Polisher) 33: anion exchange resin: strongly basic anion exchange resin Duolite A-113plus (manufactured by Rohm & Haas Co., Ltd.) and cation exchange resin: strongly acidic cation exchange resin Duolite C-20 (Rohm & A product obtained by regenerating Heuss Co., Ltd. in advance and converting it to H-type and OH-type, and then mixing and filling it, space velocity (SV) 40 hr −1

Figure 0006533359
Figure 0006533359

(実施例4)
図2に示す超純水製造システム2において、活性炭装置21に、尿素濃度100μg/Lの被処理水を供給した場合の、活性炭装置21、補助逆浸透膜装置23、混床式イオン交換装置27、逆浸透膜装置25及びポリッシャー33の処理水中の尿素濃度を表2に示す。なお、本実施例におけるポリッシャー33の処理水の尿素濃度(0.5μg/L)は、TOC濃度で0.16μgC/Lに相当する。
なお、実施例4で用いた各装置の仕様及び通水条件は実施例3と同様である。
(Example 4)
In the ultrapure water production system 2 shown in FIG. 2, the activated carbon device 21, the auxiliary reverse osmosis membrane device 23, and the mixed bed ion exchange device 27 in the case where the treated water with a urea concentration of 100 μg / L is supplied to the activated carbon device 21. The urea concentrations in the treated water of the reverse osmosis membrane device 25 and the polisher 33 are shown in Table 2. The urea concentration (0.5 μg / L) of the treated water of the polisher 33 in the present embodiment corresponds to 0.16 μg C / L in TOC concentration.
The specifications and water flow conditions of each device used in Example 4 are the same as in Example 3.

Figure 0006533359
Figure 0006533359

(実施例5)
図3に示す超純水製造システム3において、活性炭装置21に、尿素濃度100μg/Lの被処理水を供給した場合の、活性炭装置21、2床3塔式装置28、逆浸透膜装置25、混床式イオン交換装置27及びポリッシャー33の処理水中の尿素濃度を表3に示す。なお、本実施例におけるポリッシャー33の処理水の尿素濃度(0.9μg/L)は、TOC濃度で0.18μgC/Lに相当する。
(Example 5)
In the ultrapure water production system 3 shown in FIG. 3, the activated carbon device 21, the two-bed three-column type device 28, the reverse osmosis membrane device 25, when treated water with a urea concentration of 100 μg / L is supplied to the activated carbon device 21. Table 3 shows the urea concentrations in the treated water of the mixed bed ion exchange device 27 and the polisher 33. The urea concentration (0.9 μg / L) of the treated water of the polisher 33 in the present embodiment corresponds to 0.18 μg C / L in TOC concentration.

実施例5で用いる2床3塔式装置28の仕様は次の陽イオン交換樹脂塔、常圧脱気塔及び陰イオン交換樹脂塔をこの順に接続したものである。また、各水処理塔の通水条件を併せて示す。
2床3塔式装置28:陽イオン交換樹脂塔:強酸性陽イオン交換樹脂デュオライトC−20(ローム&ハース社製)を充填したもの、空間速度(SV)=10hr−1
常圧脱気塔(野村マイクロ・サイエンス(株)社製)、
陰イオン交換樹脂塔:強塩基性陰イオン交換樹脂デュオライトA−113plus(ローム&ハース社製)を充填したもの、空間速度(SV)=10hr−1
また、実施例5における活性炭装置21、逆浸透膜装置25、紫外線酸化装置26の装置の仕様及び通水条件は実施例3と同様である。
The specifications of the two-bed three-column type apparatus 28 used in Example 5 are obtained by connecting the following cation exchange resin tower, an atmospheric pressure degassing tower, and an anion exchange resin tower in this order. In addition, water flow conditions of each water treatment tower are shown together.
Two-bed three-column apparatus 28: cation exchange resin tower: one filled with strongly acidic cation exchange resin Duolite C-20 (manufactured by Rohm & Haas Co., Ltd.), space velocity (SV) = 10 hr −1
Atmospheric pressure degassing tower (made by Nomura Micro Science Co., Ltd.),
Anion exchange resin tower: Strongly basic anion exchange resin Duolite A-113plus (manufactured by Rohm & Haas Co., Ltd.), space velocity (SV) = 10 hr −1 ,
The specifications and water flow conditions of the activated carbon device 21, the reverse osmosis membrane device 25 and the ultraviolet oxidation device 26 in the fifth embodiment are the same as in the third embodiment.

Figure 0006533359
Figure 0006533359

(実施例6)
図4に示す超純水製造システム4において、活性炭装置21に、尿素濃度100μg/Lの被処理水を供給した場合の、活性炭装置21、2床3塔式装置28、混床式イオン交換装置27、逆浸透膜装置25及びポリッシャー33の処理水中の尿素濃度を表4に示す。なお、本実施例におけるポリッシャー33の処理水の尿素濃度(0.7μg/L)は、TOC濃度で0.14μgC/Lに相当する。なお、実施例6で用いる各装置の仕様及び通水条件は実施例5と同様である。
(Example 6)
In the ultrapure water production system 4 shown in FIG. 4, the activated carbon device 21, two-bed three-column type device 28, mixed bed type ion exchange device when the treated water with a urea concentration of 100 μg / L is supplied to the activated carbon device 21. Table 4 shows the concentrations of urea in the treated water of the reverse osmosis membrane device 25 and the polisher 33. The urea concentration (0.7 μg / L) of the treated water of the polisher 33 in the present embodiment corresponds to 0.14 μg C / L in TOC concentration. The specifications and water flow conditions of the respective devices used in the sixth embodiment are the same as in the fifth embodiment.

Figure 0006533359
Figure 0006533359

以上のように、実施例3〜実施例6の超純水製造システム1〜超純水製造システム4によれば、逆浸透膜装置25において、尿素濃度が50μg/Lの被処理水を、2.0MPa以上に加圧して処理するため、尿素の除去率が極めて高く、TOC濃度が1μgC/L以下の超純水を製造することができることが分かる。また、従来の水処理装置の単位装置を組み合わせることにより、尿素を100μg/L以下程度で含む被処理水からも、TOC濃度の極めて低い超純水が得られることが分かる。   As described above, according to the ultrapure water production system 1 to ultrapure water production system 4 of Examples 3 to 6, in the reverse osmosis membrane device 25, the water to be treated having a urea concentration of 50 μg / L is It can be seen that because the treatment is performed under pressure of at least 0 MPa, it is possible to produce ultrapure water having an extremely high removal rate of urea and a TOC concentration of 1 μg C / L or less. In addition, it can be seen that, by combining the unit devices of the conventional water treatment apparatus, ultrapure water with extremely low TOC concentration can be obtained even from water to be treated containing urea at about 100 μg / L or less.

1,2,3,4…超純水製造システム、10…前処理システム、11…前処理水タンク、20…一次純水システム、21…活性炭装置、22,24…ポンプ、23…補助逆浸透膜装置、25…逆浸透膜装置、26…紫外線酸化装置、27…混床式イオン交換装置、28…2床3塔式装置、30…二次純水システム、31…一次純水タンク、32…紫外線酸化装置、33…非再生式ポリッシャー、34…膜脱気装置、35…限外ろ過膜装置。   1, 2, 3, 4 ... Ultrapure water production system, 10 ... Pretreatment system, 11 ... Pretreatment water tank, 20 ... Primary pure water system, 21 ... Activated carbon device, 22, 24 ... Pump, 23 ... Auxiliary reverse osmosis Membrane device, 25: reverse osmosis membrane device, 26: ultraviolet oxidation device, 27: mixed bed type ion exchange device, 28: 2 beds, 3 towers device, 30: secondary pure water system, 31: primary pure water tank, 32 ... Ultraviolet oxidation device, 33 ... Non-regenerating polisher, 34 ... Membrane degassing device, 35 ... Ultrafiltration membrane device.

Claims (5)

尿素濃度10〜100μg/Lの被処理水を2.0〜4.0MPaに加圧する加圧工程と、
加圧された被処理水を逆浸透膜を有する逆浸透膜装置により、該逆浸透膜装置1段あたりの尿素の除去率を65%以上で処理する第1の逆浸透膜処理工程と
を備えることを特徴とする超純水製造方法。
Pressurizing the treated water having a urea concentration of 10 to 100 μg / L to 2.0 to 4.0 MPa;
And a first reverse osmosis membrane treatment step of treating the pressurized water to be treated with a reverse osmosis membrane device having a reverse osmosis membrane at a removal rate of urea of 65% or more per one stage of the reverse osmosis membrane device. A method of producing ultrapure water characterized by
前記第1の逆浸透膜処理工程における水回収率が、60〜90%であることを特徴とする請求項1記載の超純水製造方法。   The method for producing ultrapure water according to claim 1, wherein the water recovery rate in the first reverse osmosis membrane treatment step is 60 to 90%. 原水から前記被処理水を生成する第1の除去工程を備えることを特徴とする請求項1又は2記載の超純水製造方法。   The method for producing ultrapure water according to claim 1 or 2, further comprising a first removal step of producing the water to be treated from raw water. 前記第1の除去工程は、
原水を活性炭に接触させる活性炭処理工程と、
活性炭処理水を逆浸透膜により処理する第2の逆浸透膜処理工程と、
紫外線酸化処理及び混床式イオン交換処理の組合せにより第2の逆浸透膜処理工程で得られた透過水中の有機物を分解除去する第2の除去工程と
を備えることを特徴とする請求項3記載の超純水製造方法。
In the first removal step,
An activated carbon treatment step of contacting raw water with activated carbon;
A second reverse osmosis membrane treatment step of treating activated carbon treated water with a reverse osmosis membrane;
4. The method according to claim 3, further comprising: a second removal step of decomposing and removing the organic matter in the permeated water obtained in the second reverse osmosis membrane treatment step by a combination of the ultraviolet oxidation treatment and the mixed bed ion exchange treatment. Ultra pure water manufacturing method.
前記第1の除去工程は、
原水を活性炭に接触させる活性炭処理工程と、
活性炭処理水を陽イオン交換処理、脱炭酸処理及び陰イオン交換処理の組合せで処理する、2床3塔式処理工程又は3床4塔式処理工程と、
紫外線酸化処理及び混床式イオン交換処理の組合せを用いて、前記2床3塔式処理工程又は3床4塔式処理工程で得られた透処理水中の有機物を分解除去する第2の除去工程と
を備えることを特徴とする請求項3記載の超純水製造方法。
In the first removal step,
An activated carbon treatment step of contacting raw water with activated carbon;
2-bed 3-tower processing step or 3-bed 4-tower processing step in which activated carbon treated water is treated by a combination of cation exchange treatment, decarboxylation treatment and anion exchange treatment;
A second removal step of decomposing and removing organic matter in the treated water obtained in the 2-bed 3-tower process or 3-bed 4-tower process using a combination of ultraviolet oxidation treatment and mixed bed ion exchange treatment 4. A method of producing ultrapure water according to claim 3, comprising:
JP2013210551A 2013-10-07 2013-10-07 Ultra pure water production method Active JP6533359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210551A JP6533359B2 (en) 2013-10-07 2013-10-07 Ultra pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210551A JP6533359B2 (en) 2013-10-07 2013-10-07 Ultra pure water production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018091917A Division JP6629383B2 (en) 2018-05-11 2018-05-11 Ultrapure water production method

Publications (2)

Publication Number Publication Date
JP2015073923A JP2015073923A (en) 2015-04-20
JP6533359B2 true JP6533359B2 (en) 2019-06-19

Family

ID=52999211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210551A Active JP6533359B2 (en) 2013-10-07 2013-10-07 Ultra pure water production method

Country Status (1)

Country Link
JP (1) JP6533359B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807219B2 (en) * 2016-11-18 2021-01-06 オルガノ株式会社 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP7305960B2 (en) * 2019-01-08 2023-07-11 栗田工業株式会社 Operation method of ultrapure water production equipment
CN113727745A (en) * 2019-04-26 2021-11-30 东丽株式会社 Method for regenerating dialysate
JP7441066B2 (en) 2020-02-10 2024-02-29 野村マイクロ・サイエンス株式会社 Pretreatment method, pretreatment device, urea concentration measurement method, urea concentration measurement device, ultrapure water production method, and ultrapure water production system
CN114920400A (en) * 2022-04-07 2022-08-19 世源科技工程有限公司 Treatment process method and system for preparing ultrapure water from urban reclaimed water

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940763B2 (en) * 1976-11-29 1984-10-02 三井東圧化学株式会社 Concentration method of ammonia aqueous solution using reverse osmosis method
JP3468784B2 (en) * 1992-08-25 2003-11-17 栗田工業株式会社 Ultrapure water production equipment
DE69415736T2 (en) * 1993-02-03 1999-05-20 Kurita Water Ind Ltd METHOD FOR PRODUCING PURE WATER
JP3919259B2 (en) * 1995-07-24 2007-05-23 オルガノ株式会社 Ultrapure water production equipment
JPH09122690A (en) * 1995-11-06 1997-05-13 Kurita Water Ind Ltd Method for decomposing organic nitrogen and water treatment apparatus
JPH1147566A (en) * 1997-08-05 1999-02-23 Nitto Denko Corp Water treatment system
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2008272713A (en) * 2007-05-07 2008-11-13 Nomura Micro Sci Co Ltd Method for producing ultrapure water, and production device therefor
JP2009160500A (en) * 2007-12-28 2009-07-23 Nomura Micro Sci Co Ltd Ultrapure water production method and apparatus
JP5099045B2 (en) * 2009-03-02 2012-12-12 栗田工業株式会社 Reverse osmosis membrane separation method
KR20120137377A (en) * 2010-02-24 2012-12-20 우베 고산 가부시키가이샤 Ultraviolet oxidation device, ultrapure water production device using same, ultraviolet oxidation method, and ultrapure water production method
JP2012196588A (en) * 2011-03-18 2012-10-18 Kurita Water Ind Ltd Water treatment method and ultrapure water production method
JP5834492B2 (en) * 2011-05-25 2015-12-24 栗田工業株式会社 Ultrapure water production equipment

Also Published As

Publication number Publication date
JP2015073923A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP6228531B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP6533359B2 (en) Ultra pure water production method
TWI640482B (en) Ultrapure water manufacturing method and ultrapure water manufacturing equipment
TW201821371A (en) Water treatment method and apparatus
JP2004000919A (en) Apparatus for producing desalted water
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3565098B2 (en) Ultrapure water production method and apparatus
JP4635827B2 (en) Ultrapure water production method and apparatus
JP3137831B2 (en) Membrane processing equipment
JP2002210494A (en) Device for manufacturing extrapure water
JP6629383B2 (en) Ultrapure water production method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP5678436B2 (en) Ultrapure water production method and apparatus
JP6310819B2 (en) Pure water production apparatus, ultrapure water production system, and pure water production method
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP4208270B2 (en) Pure water production method
JP2000308815A (en) Producing device of ozone dissolved water
JP3429808B2 (en) Sub-system incorporating electric deionized water production equipment
WO2019188309A1 (en) Anion exchange resin and water treatment method using same
JPH1128482A (en) Production of pure water
JP3543435B2 (en) Ultrapure water production method
JP2006122908A (en) Pure water producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180530

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190524

R150 Certificate of patent or registration of utility model

Ref document number: 6533359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250