JP3543435B2 - Ultrapure water production method - Google Patents

Ultrapure water production method Download PDF

Info

Publication number
JP3543435B2
JP3543435B2 JP19035995A JP19035995A JP3543435B2 JP 3543435 B2 JP3543435 B2 JP 3543435B2 JP 19035995 A JP19035995 A JP 19035995A JP 19035995 A JP19035995 A JP 19035995A JP 3543435 B2 JP3543435 B2 JP 3543435B2
Authority
JP
Japan
Prior art keywords
water
toc
tower
absorption tower
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19035995A
Other languages
Japanese (ja)
Other versions
JPH0938669A (en
Inventor
征弘 古川
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19035995A priority Critical patent/JP3543435B2/en
Publication of JPH0938669A publication Critical patent/JPH0938669A/en
Application granted granted Critical
Publication of JP3543435B2 publication Critical patent/JP3543435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子工業、医薬品工業等に用いられる超純水の製造方法に係り、特に、TOCが著しく低く、極めて高純度の超純水を製造することができる方法に関する。
【0002】
【従来の技術】
超高密度集積回路(超LSI)を生産する電子工業においては、各製造工程の半導体製品を洗浄するに当たり、極めて高純度の純水を使用する。特に、近年のLSI集積度の推移にともない、洗浄に用いられる純水の要求水質はますます厳しくなり、特に、TOC、生菌、溶存酸素(DO)の低減が大きな課題となっている。
【0003】
従来、このような用途に用いられる超純水は、工業用水、市水、井水などを原水とし、原水中の懸濁物質やコロイド物質の除去を行うための凝集沈澱、凝集浮上などの重力分離装置、砂、膜などを媒体とした濾過装置、活性炭吸着塔等を任意の数組み合わせた前処理装置と、前処理水中のイオンや塩類を除去するイオン交換装置や逆浸透膜分離装置、水中の気体成分、例えば炭酸やDOを除去する脱炭酸塔や脱気装置、有機物を分解する酸化装置や加熱装置などを任意の数で組み合わせた一次純水製造装置と、一次純水やユースポイントから返送される回収水を更に高純度化し、殺菌する、紫外線照射装置、混床式純水装置、限外濾過膜分離装置を任意の数組み合わせた二次純水製造装置(サブシステム)とからなる超純水製造装置で製造されている。
【0004】
このような超純水製造装置において、得られる超純水のTOCを低減するための手段としては、一次純水製造装置において、被処理水にオゾン(O)を注入して紫外線(UV)を照射する手段が知られており、具体的な装置構成としては、図3に示す前処理装置1、一次純水製造装置2及び二次純水製造装置3で構成され、一次純水製造装置2が図4又は図5に示す構成とされた超純水製造装置が採用されている。
【0005】
【発明が解決しようとする課題】
従来のO注入及びUV照射によれば、TOCを低減することはできるが、TOC50〜70ppb程度の前処理水を、一次純水として20ppb程度に低減するのが限度であり、十分なTOC低減効果は得られていない。特に、注入したO量(1〜10ppm)に対して、TOC分解効率が低いという欠点があった。
【0006】
本発明は上記従来の問題点を解決し、効率的なTOC分解を行って、極めて高純度な超純水を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の超純水の製造方法は、水にオゾン注入及び紫外線照射を行って、TOCを分解する工程を有する超純水の製造方法において、オゾンを注入する水のpHを3.5〜に調整することを特徴とする。
【0008】
従来のTOC分解手段においては、中性ないし弱塩基性の水に対してO注入及びUV照射が行われているが、本発明に従って、pH3.5〜の酸性領域でO注入及びUV照射を行うことにより、TOCを効率的に分解して極低濃度にまで低減することができる。
【0009】
本発明の方法は、例えば、脱炭酸塔、逆浸透膜分離装置、オゾン吸収塔、紫外線照射装置、及び、イオン交換純水装置を順次配列してなる一次純水製造装置を備える超純水製造装置であって、脱炭酸塔に酸を注入して該オゾン吸収塔に導入される水のpHを3.5〜とする手段を設けた超純水製造装置により、容易に実施することができる。
【0010】
このように、逆浸透膜分離装置の後段にオゾン吸収塔及び紫外線照射装置を設け、逆浸透膜分離装置で被処理水中のTOCの大部分を除去した後、残留するTOCをオゾン吸収塔及び紫外線照射装置で除去することにより、効率的なTOC除去を行える。なお、逆浸透膜分離装置では二酸化炭素(CO)を殆ど除去することができないことから、逆浸透膜分離装置の前段に脱炭酸塔を設けるが、この場合において、脱炭酸塔に酸を注入する手段を設け、O注入及びUV照射によるTOC分解のためのpH調整用の酸を、この脱炭酸塔において注入するようにすることにより、注入された酸が脱炭酸のためにも、TOC分解のためにも有効に作用するようになり、極めて有利である。
【0011】
また、本発明の方法は、カチオン交換塔、オゾン吸収塔、紫外線照射装置、及び、アニオン交換塔を順次配列してなる一次純水製造装置を備える超純水製造装置によっても、容易に実施することができる。
【0012】
即ち、カチオン交換塔から流出するカチオン交換水は、pH3.5〜の酸性水とすることができるから、このように、カチオン交換塔の段階にオゾン吸収塔及び紫外線照射装置を配列することにより、pH調整のための酸の注入が不要となる。
【0013】
なお、O注入及びUV照射により、水中で活性酸素を経てヒドロキシラジカルが生成し、これがTOCに作用してTOCが酸化分解されるものと推定されるが、TOCは酸化により低級有機酸やCOとなるので、これらの生成物を捕捉、除去するために、オゾン吸収塔及び紫外線照射装置の後段に配置されたアニオン交換樹脂と接触させる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について詳細に説明する。
【0015】
図1,2は、本発明の超純水の製造方法の一実施例を示す一次純水製造装置の系統図であり、これらの一次純水製造装置は、図3の如く、前処理装置1と二次純水製造装置3との間に配列されて超純水製造装置を構成するものである。
【0016】
図1に示す装置においては、前処理装置から送給される前処理水に、まず、酸を注入した後脱炭酸塔に導入して脱CO処理する。ここで、注入する酸としては、硫酸、塩酸等の任意の酸を用いることができ、酸は、後段のオゾン吸収塔におけるpHが3.5〜4となるように注入する。
【0017】
脱炭酸塔の処理水は、次いで逆浸透膜分離装置で塩類及びイオン性、コロイド性のTOCの除去を行った後、オゾン吸収塔でO注入した後、紫外線照射装置でUV照射してTOCの分解除去を行う。
【0018】
紫外線照射装置の処理水は、脱気装置で残留OやCO及びDOの除去を行った後、混床式イオン交換純水装置で更に純度を高め、二次純水製造装置へ送給する。
【0019】
図2に示す装置は、活性炭塔、カチオン交換塔、脱炭酸塔及びアニオン交換塔からなる多床塔方式イオン交換樹脂脱塩装置のカチオン交換塔と脱炭酸塔との間にオゾン吸収塔及び紫外線照射装置を配列したものである。
【0020】
この装置において、前処理装置から送給される前処理水は、まず、活性炭塔でTOCや残留塩素が除去された後、カチオン交換塔でカチオン交換処理される。
【0021】
このカチオン交換塔の流出水は、カチオン交換によりpH3.4の酸性水とすることができるため、このカチオン交換水にO注入及びUV照射を行うことにより、容易に本発明のpH条件を満たすことができる。
【0022】
オゾン吸収塔及び紫外線照射装置でTOCが分解除去された紫外線照射装置の流出水は、次いで脱炭酸塔でCO2及び残留Oが除去された後、アニオン交換塔に送給される。なお、この脱炭酸塔の流入水は、低pHの酸性水であるためCO除去効率が高い。
【0023】
アニオン交換塔でアニオン交換処理された水は、更に、脱気装置及び逆浸透膜分離装置で順次処理された後、二次純水製造装置に送給される。
【0024】
なお、この図2に示す装置では、アニオン交換塔において、O注入及びUV照射によるTOCの分解で生成した中間生成物が除去される。
【0025】
図1,2に示す装置において、脱炭酸塔としてはエアストリッピング塔等を採用することができる。また、脱気装置としては、真空脱気装置又は窒素ガス脱気装置等を採用することができる。
【0026】
また、オゾン吸収塔としては、任意の気液接触方式のものを用いることができ、例えば、円筒容器に上部から水を供給し、貯留水の下部に設けた散気装置からオゾン含有空気をバブリングし、一部の水は下部から排出してオゾンと接触させる方式のものを採用することができる。このオゾン吸収塔は内部に充填材を入れ、接触効率を向上させるようにすることもできる。
【0027】
一方、紫外線照射装置に使用する光源は、波長254nmを含む紫外線(254nm単独、或いは、185nmと254nm)を発生するものであれば良く、通常、水銀ランプが用いられる。この紫外線照射装置は、低圧型であっても高圧型であっても良い。
【0028】
本発明においては、オゾン吸収塔の給水pHを3.5〜に調整するが、この調整pH範囲においては、pHは低くなるほど、TOC分解率が向上する。しかし、pHが3.5未満になると、TOC分解効果はあるが、酸の添加量が増加する割にはTOC分解効率の向上率は高くなく、むしろ、酸によるイオン濃度の増加がイオン交換装置への負荷の増大につながり望ましくない。また、pHがを超えると、TOC分解効率が低下し、従来の中性付近の分解率に近づく。このため、調整pHは3.5〜4とする。
【0029】
また、本発明において、オゾン吸収塔におけるO注入及びUV照射条件は、O注入量1〜10ppm、UV出力0.03〜0.3KW/mの通常の範囲とすることができる。
【0030】
なお、図1,2に示す装置は、本発明に好適な装置の一例であって、本発明はその要旨を超えない限り、何ら図示の装置に限定されるものではない。
【0031】
例えば、図1においては、O注入及びUV照射で残留するOを脱気装置で除去するが、紫外線照射装置の出口部でNaHSOを注入して残留Oを分解するようにしても良い。
【0032】
また、図2の装置において、脱炭酸塔は、カチオン交換塔とオゾン吸収塔との間に設けても良いが、O注入及びUV照射後の残留Oの除去の面からは、図2に示す如く、紫外線照射装置の後段に設けるのが好ましい。
【0033】
また、図2に示す装置において、紫外線照射装置の出口部でNaHSOを注入して残留Oの分解を行う場合には、アニオン交換塔の後段に、更にカチオン交換塔を設けることにより、Na,SO ,SO 2−イオンの除去を行うことができる。
【0034】
【実施例】
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
【0035】
なお、以下の実施例及び比較例では、厚木市水を原水とした。用いた各装置の仕様は次の通りである。
UF :ポリサルホン系の限外濾過膜を用いた限外濾過膜分離装置
凝集・浮上・濾過:ポリ塩化アルミニウム添加によりpH6.5で処理した後、砂濾 過
RO :ポリアミド系の逆浸透膜を用いた逆浸透膜分離装置
吸収塔:下部からOを吹込む方式のオゾン吸収塔
UV装置:竪型円筒容器に低圧水銀ランプ「AZ−3」(日本フォトサイエンス社製 )を4本挿入した紫外線照射装置
脱気装置:窒素ガス脱気装置
MB :混床式イオン交換純水装置
AC :活性炭塔
eca:脱炭酸塔
:カチオン交換塔
OH:アニオン交換塔
2B3T:H→Deca→OH
【0036】
実施例1,2
原水をUF処理後、HSO注入によりpH4に調整した後、Deca→RO→O吸収塔→UV装置→脱気装置→MBに順次通水して処理した。
【0037】
吸収塔におけるO注入濃度及びUV装置におけるUV出力を表1に示す値とし、O吸収塔流入水(RO流出水)のTOCと、MB流出水のTOCを調べ、結果を表1に示した。
【0038】
比較例1
原水をUF処理した後、残留塩素除去のためにNaHSOを注入し、その後、RO→O吸収塔→UV装置→(NaHSO注入)→脱気装置→MBに順次通水して処理した。なお、O吸収塔の流入水(RO流出水)のpHは7.5であった。
【0039】
吸収塔におけるO注入濃度及びUV装置におけるUV出力を表1に示す値とし、O吸収塔流入水(RO流出水)のTOCと、MB流出水のTOCを調べ、結果を表1に示した。
【0040】
実施例3、比較例2,3
実施例1において、HSO注入によるpHを表1に示す値としたこと以外は同様にして処理を行い、O吸収塔流入水(RO流出水)のTOCと、MB流出水のTOCを調べ、結果を表1に示した。
【0041】
【表1】

Figure 0003543435
【0042】
実施例5,6
原水を凝集・浮上・濾過処理した後、AC→H→O吸収塔→UV装置→Deca→OHに順次通水して処理した。なお、AC処理水のTOCは350ppbであり、O吸収塔の流入水(H処理水)のpH及びTOCは表2に示す通りであった。
【0043】
吸収塔におけるO注入濃度及びUV装置におけるUV出力を表2に示す値とし、OH流出水のTOCを調べ、結果を表2に示した。
【0044】
比較例
原水を凝集・浮上・濾過処理した後、AC→2B3T→O吸収塔→UV装置→MBに順次通水して処理した。なお、AC処理水のTOCは350ppbであり、O吸収塔の流入水(2B3T処理水)のpH及びTOCは表2に示す通りであった。
【0045】
吸収塔におけるO注入濃度及びUV装置におけるUV出力を表2に示す値とし、MB流出水のTOCを調べ、結果を表2に示した。
【0046】
【表2】
Figure 0003543435
【0047】
表1,2より、本発明によれば、O注入及びUV照射によるTOC低減濃度を、従来に比べてほぼ半減させることができることが明らかである。
【0048】
【発明の効果】
以上詳述した通り、本発明の超純水の製造方法によれば、TOCを効率的に分解除去して、極めて高純度な超純水を製造することができる。
【図面の簡単な説明】
【図1】本発明の超純水の製造方法の一実施例を示す一次純水製造装置の系統図である。
【図2】本発明の超純水の製造方法の他の実施例を示す一次純水製造装置の系統図である。
【図3】超純水製造装置の構成を示す系統図である。
【図4】従来の一次純水製造装置を示す系統図である。
【図5】従来の一次純水製造装置を示す系統図である。
【符号の説明】
1 前処理装置
2 一次純水製造装置
3 二次純水製造装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic industry, ultrapure water used in pharmaceutical industry such as production how, in particular, TOC is significantly lower, about the how it is possible to produce a very high purity ultra-pure water.
[0002]
[Prior art]
In the electronics industry that produces ultra-high-density integrated circuits (ultra-LSIs), extremely high-purity pure water is used for cleaning semiconductor products in each manufacturing process. In particular, with the change in the degree of integration of LSIs in recent years, the required quality of pure water used for cleaning has become more and more severe, and reduction of TOC, viable bacteria, and dissolved oxygen (DO) has become a major issue.
[0003]
Conventionally, ultrapure water used for such purposes is made of industrial water, city water, well water, and the like, and is subjected to gravity such as coagulation sedimentation and coagulation floating for removing suspended substances and colloidal substances in the raw water. A pretreatment device combining any number of separation devices, filtration devices using sand, membranes, etc., activated carbon adsorption towers, etc., and ion exchange devices and reverse osmosis membrane separation devices for removing ions and salts in pretreatment water, and underwater Primary deionized water production equipment combining any number of decarbonation towers and deaerators that remove gaseous components such as carbon dioxide and DO, oxidizers and heaters that decompose organic matter, and primary deionized water and use points A secondary pure water production system (subsystem) combining any number of ultraviolet irradiation equipment, mixed-bed pure water equipment, and ultrafiltration membrane separation equipment for further purifying and sterilizing the returned water. Manufactured with ultrapure water production equipment To have.
[0004]
As a means for reducing the TOC of the obtained ultrapure water in such an ultrapure water production apparatus, ozone (O 3 ) is injected into the water to be treated in the primary pure water production apparatus to emit ultraviolet (UV) light. A means for irradiating the water is known, and a specific apparatus configuration includes a pretreatment apparatus 1, a primary pure water production apparatus 2, and a secondary pure water production apparatus 3 shown in FIG. 2 employs an ultrapure water production apparatus having the configuration shown in FIG. 4 or FIG.
[0005]
[Problems to be solved by the invention]
According to the conventional O 3 injection and UV radiation, although it is possible to reduce the TOC, the pretreated water of about TOC50~70ppb, a limit to reduce to about 20ppb as primary pure water, sufficient TOC reduction No effect has been obtained. In particular, there was a disadvantage that the TOC decomposition efficiency was low with respect to the amount of O 3 injected (1 to 10 ppm).
[0006]
The present invention solves the above conventional problems, by performing an efficient TOC degradation, and to provide a way to produce a very high purity ultra-pure water.
[0007]
[Means for Solving the Problems]
The method for producing ultrapure water according to the present invention is the method for producing ultrapure water having a step of decomposing TOC by injecting ozone into water and irradiating ultraviolet rays, wherein the pH of the water into which ozone is injected is 3.5 to 4 times. It is characterized by adjusting to.
[0008]
In the conventional TOC decomposition means, although O 3 injection and UV irradiation is performed for the neutral to weakly basic aqueous, in accordance with the present invention, O 3 implantation and UV in an acidic region of PH3.5~ 4 By performing irradiation, TOC can be efficiently decomposed and reduced to an extremely low concentration.
[0009]
The method of the present invention includes, for example, ultrapure water production provided with a primary pure water production apparatus in which a decarbonation tower, a reverse osmosis membrane separation apparatus, an ozone absorption tower, an ultraviolet irradiation apparatus, and an ion exchange pure water apparatus are sequentially arranged. an apparatus, ultrapure water production apparatus provided with means for by injecting an acid into deaerator the pH of the water to be introduced into the ozone absorption column and from 3.5 to 4, it is carried out easily it can.
[0010]
As described above, after the reverse osmosis membrane separation device is provided with the ozone absorption tower and the ultraviolet irradiation device, and after removing most of the TOC in the water to be treated by the reverse osmosis membrane separation device, the remaining TOC is removed by the ozone absorption tower and the ultraviolet light By removing the TOC with the irradiation device, TOC removal can be performed efficiently. Since a reverse osmosis membrane separator cannot remove carbon dioxide (CO 2 ) almost, a decarbonation tower is provided in front of the reverse osmosis membrane separator. In this case, acid is injected into the decarbonation tower. By introducing an acid for adjusting pH for decomposing TOC by injecting O 3 and UV irradiation in this decarbonation tower, the injected acid can be used for decarboxylation. It also works effectively for decomposition, which is extremely advantageous.
[0011]
Further, the method of the present invention can be easily carried out by an ultrapure water production apparatus including a cation exchange tower, an ozone absorption tower, an ultraviolet irradiation apparatus, and a primary pure water production apparatus in which anion exchange towers are sequentially arranged. be able to.
[0012]
That is, the cation exchange water flowing out of the cation exchange tower can be acidic water having a pH of 3.5 to 4 , and thus, by arranging the ozone absorption tower and the ultraviolet irradiation device at the stage of the cation exchange tower. This eliminates the need for acid injection for pH adjustment.
[0013]
Injection of O 3 and UV irradiation generate hydroxyl radicals in water via active oxygen, which is presumed to act on TOC to oxidize and decompose TOC. In order to capture and remove these products, the product is brought into contact with an anion exchange resin disposed downstream of the ozone absorption tower and the ultraviolet irradiation device.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
Figure 2 is a system diagram of a primary pure water producing apparatus according to an embodiment of the manufacturing how ultrapure water of the present invention, these primary pure water production apparatus, as shown in FIG. 3, the pre-processing unit An ultrapure water production device is arranged between the first and second pure water production devices 3.
[0016]
In the apparatus shown in Figure 1, before treated water fed from the pre-processing device, first, removing CO 2 treatment was introduced to the decarbonation tower after injection of acid. Here, as the acid to be injected, any acid such as sulfuric acid or hydrochloric acid can be used, and the acid has a pH of 3 . Inject so that it becomes 5-4.
[0017]
The treated water of the decarbonation tower is then subjected to removal of salts, ionic, and colloidal TOC by a reverse osmosis membrane separation device, followed by injection of O 3 by an ozone absorption tower, followed by UV irradiation by an ultraviolet irradiation device and TOC. Is decomposed and removed.
[0018]
After removing residual O 3 , CO 2 and DO with the deaerator, the treated water of the ultraviolet irradiation device is further purified with a mixed-bed ion exchange pure water device and sent to the secondary pure water production device. I do.
[0019]
The apparatus shown in FIG. 2 includes an ozone absorption tower and an ultraviolet ray between a cation exchange tower and a decarbonation tower of a multi-bed tower ion exchange resin desalination apparatus comprising an activated carbon tower, a cation exchange tower, a decarbonation tower, and an anion exchange tower. It is an arrangement of irradiation devices.
[0020]
In this apparatus, the pretreatment water fed from the pretreatment apparatus is first subjected to cation exchange treatment in a cation exchange tower after TOC and residual chlorine are removed in an activated carbon tower.
[0021]
The effluent of this cation exchange column has a pH of 3. Since the acidic water of 5 to 4 can be used, the pH condition of the present invention can be easily satisfied by injecting O 3 and UV irradiation to the cation exchange water.
[0022]
The effluent of the ultraviolet irradiation device from which TOC has been decomposed and removed by the ozone absorption tower and the ultraviolet irradiation device is then sent to the anion exchange column after CO 2 and residual O 3 have been removed by the decarbonation column. Incidentally, the inflow water of the decarbonation tower, a high CO 2 removal efficiency for an acidic water low pH.
[0023]
The water subjected to the anion exchange treatment in the anion exchange tower is further treated in order in a degassing device and a reverse osmosis membrane separation device, and then sent to a secondary pure water production device.
[0024]
In the apparatus shown in FIG. 2, an intermediate product generated by decomposition of TOC by O 3 injection and UV irradiation is removed in the anion exchange tower.
[0025]
In the apparatus shown in FIGS. 1 and 2, an air stripping tower or the like can be adopted as the decarbonation tower. Further, as the deaerator, a vacuum deaerator or a nitrogen gas deaerator can be adopted.
[0026]
As the ozone absorption tower, any gas-liquid contact type can be used.For example, water is supplied from above to a cylindrical container, and ozone-containing air is bubbled from a diffuser provided below the stored water. However, a system in which a part of water is discharged from the lower part and brought into contact with ozone can be employed. The ozone absorption tower may be filled with a filler to improve the contact efficiency.
[0027]
On the other hand, the light source used in the ultraviolet irradiation device only needs to generate ultraviolet light having a wavelength of 254 nm (254 nm alone, or 185 nm and 254 nm), and a mercury lamp is usually used. This ultraviolet irradiation device may be a low pressure type or a high pressure type.
[0028]
In the present invention, the feedwater pH of the ozone absorption tower is adjusted to 3.5 to 4. In this adjusted pH range, the lower the pH, the higher the TOC decomposition rate. However, when the pH is less than 3.5, although the TOC decomposition effect is obtained, the improvement rate of the TOC decomposition efficiency is not high despite the increase in the amount of acid added. This leads to an increased load on the device, which is not desirable. On the other hand, when the pH exceeds 4 , the TOC decomposition efficiency decreases, and approaches the conventional decomposition rate near neutral. For this reason, the adjusted pH is 3 . 5 to 4.
[0029]
In the present invention, the O 3 injection and UV irradiation conditions in the ozone absorption tower can be in the usual ranges of the O 3 injection amount of 1 to 10 ppm and the UV output of 0.03 to 0.3 KW / m 3 .
[0030]
Note that the apparatus shown in FIGS. 1 and 2 is an example of an apparatus suitable for the present invention, and the present invention is not limited to the illustrated apparatus at all unless it exceeds the gist.
[0031]
For example, in FIG. 1, the remaining O 3 is removed by the O 3 injection and UV irradiation by the deaerator, but NaHSO 3 is injected at the outlet of the ultraviolet irradiation device to decompose the remaining O 3. good.
[0032]
In the apparatus shown in FIG. 2, the decarbonation tower may be provided between the cation exchange tower and the ozone absorption tower. However, from the viewpoint of O 3 injection and removal of residual O 3 after UV irradiation, FIG. As shown in the above, it is preferable to provide it at the subsequent stage of the ultraviolet irradiation device.
[0033]
In addition, in the apparatus shown in FIG. 2, when NaHSO 3 is injected at the outlet of the ultraviolet irradiation apparatus to decompose residual O 3, a cation exchange tower is further provided downstream of the anion exchange tower, so that Na + , SO 3 + , and SO 4 2− ions can be removed.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0035]
In the following Examples and Comparative Examples, Atsugi City Water was used as raw water. The specifications of each device used are as follows.
UF: Ultrafiltration membrane separator using polysulfone ultrafiltration membrane Coagulation / floating / filtration: After treatment at pH 6.5 by adding polyaluminum chloride, RO filtration: Using polyamide reverse osmosis membrane There was a reverse osmosis membrane separation device O 3 absorption tower: blowing the O 3 from the lower-free method of ozone absorption tower UV equipment: vertical cylindrical container to the low-pressure mercury lamp "AZ-3" (manufactured by Nippon photo Science, Inc.) four inserts ultraviolet ray irradiation apparatus degasser: nitrogen gas deaerator MB: mixed bed ion exchange pure water device AC: activated carbon column D eca: decarbonation tower H 1: cation exchange column OH 1: anion exchange column 2B3T: H 1Deca → OH
[0036]
Examples 1 and 2
The raw water was treated with UF, adjusted to pH 4 by injecting H 2 SO 4, and then passed through Deca → RO → O 3 absorption tower → UV device → deaerator → MB for treatment.
[0037]
The UV output the values shown in Table 1 in O 3 injection concentration and UV device in O 3 absorption tower, examined the TOC of O 3 absorption column influent (RO effluent water), the TOC of MB runoff, Table 1 Results It was shown to.
[0038]
Comparative Example 1
After UF treatment of the raw water, NaHSO 3 was injected to remove residual chlorine, and then the water was sequentially passed through RO → O 3 absorption tower → UV device → (injection of NaHSO 3 ) → degasifier → MB. . The pH of the inflow water (RO outflow water) of the O 3 absorption tower was 7.5.
[0039]
The UV output the values shown in Table 1 in O 3 injection concentration and UV device in O 3 absorption tower, examined the TOC of O 3 absorption column influent (RO effluent water), the TOC of MB runoff, Table 1 Results It was shown to.
[0040]
Example 3, Comparative Examples 2 and 3
In Example 1, the treatment was performed in the same manner as in Example 1 except that the pH due to H 2 SO 4 injection was set to the value shown in Table 1, and the TOC of the O 3 absorption tower inflow water (RO effluent) and the TOC of the MB effluent were measured. And the results are shown in Table 1.
[0041]
[Table 1]
Figure 0003543435
[0042]
Examples 5 and 6
After coagulation / floating / filtration treatment of the raw water, water was passed through AC → H 1 → O 3 absorption tower → UV device → Deca → OH 1 in that order for treatment. Incidentally, TOC of AC treated water is 350 ppb, pH and TOC of O 3 absorption tower of influent (H 1 treated water) was as shown in Table 2.
[0043]
The UV output the values shown in Table 2 in the O 3 injection concentration and UV device in O 3 absorption tower, examine the TOC of OH 1 effluent, and the results are shown in Table 2.
[0044]
Comparative Example 4
The raw water was subjected to coagulation / floating / filtration treatment, and then passed through AC → 2B3T → O 3 absorption tower → UV device → MB for treatment. The TOC of the AC treated water was 350 ppb, and the pH and TOC of the inflow water (2B3T treated water) of the O 3 absorption tower were as shown in Table 2.
[0045]
The UV output the values shown in Table 2 in the O 3 injection concentration and UV device in O 3 absorption tower, examine the TOC of MB effluent, and the results are shown in Table 2.
[0046]
[Table 2]
Figure 0003543435
[0047]
From Tables 1 and 2, it is clear that according to the present invention, the TOC reduction concentration by O 3 injection and UV irradiation can be reduced by almost half as compared with the related art.
[0048]
【The invention's effect】
As described in detail above, according to the manufacturing how ultrapure water of the present invention, TOC and efficiently decomposed and removed, can be produced very high purity ultra-pure water.
[Brief description of the drawings]
1 is a system diagram of a primary pure water producing apparatus according to an embodiment of the manufacturing how ultrapure water of the present invention.
2 is a system diagram of a primary pure water producing system according to still another embodiment of the manufacturing how ultrapure water of the present invention.
FIG. 3 is a system diagram showing a configuration of an ultrapure water production apparatus.
FIG. 4 is a system diagram showing a conventional primary pure water production apparatus.
FIG. 5 is a system diagram showing a conventional primary pure water production apparatus.
[Explanation of symbols]
1 Pretreatment device 2 Primary pure water production device 3 Secondary pure water production device

Claims (1)

水にオゾン注入及び紫外線照射を行ってTOCを分解する工程を有する超純水の製造方法において、オゾンを注入する水のpHを3.5〜に調整することを特徴とする超純水の製造方法 In water by performing an ozone injection and ultraviolet irradiation in the manufacturing process of ultra-pure water having a step of decomposing the TOC, the ultrapure water and adjusting the pH of the water to inject ozone into 3.5 to 4 Manufacturing method .
JP19035995A 1995-07-26 1995-07-26 Ultrapure water production method Expired - Lifetime JP3543435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19035995A JP3543435B2 (en) 1995-07-26 1995-07-26 Ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19035995A JP3543435B2 (en) 1995-07-26 1995-07-26 Ultrapure water production method

Publications (2)

Publication Number Publication Date
JPH0938669A JPH0938669A (en) 1997-02-10
JP3543435B2 true JP3543435B2 (en) 2004-07-14

Family

ID=16256881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19035995A Expired - Lifetime JP3543435B2 (en) 1995-07-26 1995-07-26 Ultrapure water production method

Country Status (1)

Country Link
JP (1) JP3543435B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826546B2 (en) * 1998-03-03 2006-09-27 栗田工業株式会社 Boron-containing water treatment equipment
JP2000237772A (en) * 1999-02-24 2000-09-05 Nippon Steel Corp Advanced treatment of water
JP4519930B2 (en) * 2001-12-11 2010-08-04 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production apparatus
CA2802785C (en) * 2011-08-25 2014-03-25 Tersano Inc. Treatment of water to extend half-life of ozone

Also Published As

Publication number Publication date
JPH0938669A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
US5073268A (en) Process and system for purifying pure water or ultrapure water
TWI648093B (en) Ultrapure water manufacturing device and method
US6991733B2 (en) Process for removing organics from ultrapure water
JP2011194402A (en) Ultrapure water production plant
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
TW201829321A (en) Water treatment method and apparatus
JP6533359B2 (en) Ultra pure water production method
JP4635827B2 (en) Ultrapure water production method and apparatus
JP3543435B2 (en) Ultrapure water production method
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP3789619B2 (en) Ultrapure water production equipment
JP2002355683A (en) Ultrapure water making method and apparatus
JPH1128482A (en) Production of pure water
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JPH09253638A (en) Ultrapure water making apparatus
JP4826864B2 (en) Ultrapure water production equipment
JP6629383B2 (en) Ultrapure water production method
JPH10216749A (en) Ultrapure water making apparatus
JPH0747364A (en) Extrapure water producing device
JP2002001069A (en) Method for producing pure water
WO2023047732A1 (en) Method for treating raw water for producing purified water
JP4159823B2 (en) Ultrapure water production method
JP4264681B2 (en) Production equipment for ozone water for wet cleaning process of electronic materials
JPH10174804A (en) Ultrapure water production device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term