JPH09122690A - Method for decomposing organic nitrogen and water treatment apparatus - Google Patents

Method for decomposing organic nitrogen and water treatment apparatus

Info

Publication number
JPH09122690A
JPH09122690A JP7287355A JP28735595A JPH09122690A JP H09122690 A JPH09122690 A JP H09122690A JP 7287355 A JP7287355 A JP 7287355A JP 28735595 A JP28735595 A JP 28735595A JP H09122690 A JPH09122690 A JP H09122690A
Authority
JP
Japan
Prior art keywords
water
organic nitrogen
tank
nitrogen
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7287355A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
征弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7287355A priority Critical patent/JPH09122690A/en
Publication of JPH09122690A publication Critical patent/JPH09122690A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently remove org. nitrogen by incorporating an nitrite into water contg. org. nitrogen such as urea which can not be removed by means of an ultrapure water production system. SOLUTION: A stock water such as industrial water is introduced into an NaNO2 injecting tank 3 through a pipeline 20 and a pipeline 21 provided with a stock water tank 1 and sodium nitrite (NaNO2 ) is injected therein from an NaNO2 tank through a pipeline 22. In this instance, the concn. of org. nitrogen is detected by means of an org. nitrogen analyzer 2 provided on the pipeline 20 and the org. nitrogen is efficiently removed by controlling the amt. of injection of NaNO2 based on this detected value. The water injected with NaNO2 in the injection tank 3 is then fed into a flocculation-solid-liq. separation means 5, wherein a flocculant is incorporated to perform solid-liq. separation. Then, the separated water is introduced from a tank 6 for separated water to a filter device 7 to store it in a tank 8 for the filtered water and then, ion exchange treatment is performed by means of an ion exchange pure water apparatus 9 and then, the org. nitrogen is removed by means of a reverse osmotic membrane separation apparatus 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機態窒素の分解方
法及び水処理装置に係り、特に、従来の超純水製造シス
テムでは除去し得ない尿素等の有機態窒素を効率的に除
去して、TOC(全有機態炭素)が著しく低減された超
純水を得ることができる方法及びそのための装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing organic nitrogen and a water treatment apparatus, and more particularly to efficiently removing organic nitrogen such as urea which cannot be removed by a conventional ultrapure water production system. , TOC (total organic carbon) significantly reduced, and a device therefor.

【0002】[0002]

【従来の技術】従来、市水、地下水、工水等の原水から
超純水を製造する超純水製造システムは、基本的に、図
2に示す如く、前処理システム41、1次純水システム
42及び2次純水システム43で構成されている。この
超純水製造システムの各装置単位において、原水中のT
OC成分を分離、吸着、分解等の手段で低減するもの
は、逆浸透膜分離装置、イオン交換純水装置、低圧紫外
線酸化装置である。
2. Description of the Related Art Conventionally, an ultrapure water production system for producing ultrapure water from raw water such as city water, groundwater, and industrial water is basically a pretreatment system 41 and primary pure water as shown in FIG. It is composed of a system 42 and a secondary pure water system 43. In each unit of this ultrapure water production system, the T
It is a reverse osmosis membrane separation device, an ion exchange deionized water device, and a low pressure ultraviolet oxidation device that reduces the OC component by means such as separation, adsorption and decomposition.

【0003】各装置単位におけるTOC低減機構は次の
通りである。
The TOC reduction mechanism in each device unit is as follows.

【0004】逆浸透膜分離装置:逆浸透膜を用いた濾過
法であり、イオン性、コロイド性のTOCを除去する。
Reverse osmosis membrane separator: A filtration method using a reverse osmosis membrane, which removes ionic and colloidal TOC.

【0005】イオン交換純水装置:イオン交換樹脂に吸
着又はイオン交換されるTOC成分を除去する。
Ion exchange deionized water device: Removes TOC components adsorbed or ion exchanged on ion exchange resins.

【0006】低圧紫外線酸化装置:低圧紫外線ランプよ
り出される185nmの紫外線によりTOCを有機酸さ
らにはCO2 まで分解する。分解された有機物は後段の
イオン交換樹脂で除去する。特に、揮発性有機物の分解
に用いられる。
Low-pressure UV oxidizer: TOC is decomposed into organic acid and further CO 2 by the 185 nm UV emitted from a low-pressure UV lamp. The decomposed organic matter is removed by the ion exchange resin in the subsequent stage. Particularly, it is used for decomposing volatile organic substances.

【0007】また、従来の超純水製造システムを構成す
る装置単位のうち、原水中の尿素等の有機態窒素由来の
TOCを除去するものは、逆浸透膜分離装置のみであ
る。
Further, among the apparatus units constituting the conventional ultrapure water production system, only the reverse osmosis membrane separation apparatus removes TOC derived from organic nitrogen such as urea in raw water.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、逆浸透
膜分離装置における有機態窒素の除去率は85%程度で
あり、有機態窒素を完全に除去することはできない。
However, the removal rate of the organic nitrogen in the reverse osmosis membrane separator is about 85%, and the organic nitrogen cannot be completely removed.

【0009】このため、従来の超純水製造システムで
は、原水中に有機態窒素がTOC成分として混入してい
ない場合には、十分にTOCが低減された超純水を得る
ことができるが、有機態窒素がTOC成分として混入し
た工水等を原水とした場合には、得られる超純水中に有
機態窒素がTOC成分として残留し、TOCの目標値5
ppb以下を満足することができない。
Therefore, in the conventional ultrapure water production system, ultrapure water having a sufficiently reduced TOC can be obtained when organic nitrogen is not mixed as a TOC component in the raw water. When industrial water mixed with organic nitrogen as the TOC component is used as raw water, the organic nitrogen remains as the TOC component in the ultrapure water obtained, and the TOC target value is 5
It cannot satisfy ppb and below.

【0010】また、逆浸透膜分離装置で除去し得ずに低
圧紫外線酸化装置に流入した有機態窒素が、紫外線酸化
により酸(硝酸)を生成することで、電気抵抗率の低下
が大きくなり、この結果、得られる超純水の導電率は、
実際の有機態窒素濃度による値の約5倍もの値を示すも
のとなる。
Further, the organic nitrogen, which cannot be removed by the reverse osmosis membrane separator and flows into the low-pressure ultraviolet oxidizer, produces an acid (nitric acid) by ultraviolet oxidization, so that the electrical resistivity is greatly reduced. As a result, the conductivity of the ultrapure water obtained is
The value is about 5 times the actual organic nitrogen concentration.

【0011】なお、従来の超純水製造システムにおい
て、逆浸透膜分離装置を増設することにより、有機態窒
素由来のTOCを低減することができるが、装置の増設
は、設備コスト、メンテナンス、設置スペース等、すべ
ての点において好ましいことではない。
In the conventional ultrapure water production system, TOC derived from organic nitrogen can be reduced by adding a reverse osmosis membrane separation device, but the addition of the device requires equipment cost, maintenance and installation. Space is not preferable in all respects.

【0012】本発明は上記従来の問題点を解決し、従来
の超純水製造システムでは除去し得ない尿素等の有機態
窒素を効率的に除去して、TOCが著しく低減された超
純水を得ることができる有機態窒素の分解方法及び水処
理装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and efficiently removes organic nitrogen such as urea which cannot be removed by the conventional ultrapure water production system, and the TOC is remarkably reduced. It is an object of the present invention to provide a method for decomposing organic nitrogen and a water treatment device capable of obtaining water.

【0013】[0013]

【課題を解決するための手段】本発明の有機態窒素の分
解方法は、有機態窒素を含む水に亜硝酸塩を添加するこ
とを特徴とする。
The method for decomposing organic nitrogen according to the present invention is characterized by adding nitrite to water containing organic nitrogen.

【0014】亜硝酸塩を添加することにより、尿素等の
有機態窒素を効率的に分解除去することができ、TOC
が著しく低減された処理水を得ることができる。
By adding nitrite, organic nitrogen such as urea can be efficiently decomposed and removed.
It is possible to obtain treated water with significantly reduced water content.

【0015】特に、有機態窒素を含む水に亜硝酸塩を添
加する手段と、亜硝酸塩が添加された水を凝集処理して
固液分離する手段と、該固液分離手段の分離水をイオン
交換処理するイオン交換装置と、イオン交換処理水を膜
分離処理する逆浸透膜分離装置とを備えてなる本発明の
水処理装置によれば、有機態窒素の分解反応で残留する
亜硝酸塩及び反応生成物をイオン交換装置で除去し、更
に残留する有機態窒素を逆浸透膜分離装置で除去するこ
とで、著しく高水質の処理水を得ることができる。
In particular, a means for adding nitrite to water containing organic nitrogen, a means for coagulating the nitrite-added water to perform solid-liquid separation, and ion-exchanged water separated by the solid-liquid separation means. According to the water treatment device of the present invention, which comprises an ion exchange device for treatment and a reverse osmosis membrane separation device for membrane separation treatment of ion exchange treated water, the nitrite remaining in the decomposition reaction of organic nitrogen and the reaction product By removing the substances with an ion exchange device and further removing the residual organic nitrogen with a reverse osmosis membrane separation device, treated water of extremely high water quality can be obtained.

【0016】このような本発明の水処理装置は、既存の
設備に簡易な亜硝酸塩注入手段(亜硝酸塩溶解槽、薬注
ポンプ及び薬注配管)を取り付けるのみで良く、TOC
低減のための装置の増設が不要であることから、設備コ
ストの低減、メンテナンスの軽減を図ることができる。
Such a water treatment apparatus of the present invention requires only a simple nitrite injection means (nitrite dissolution tank, chemical injection pump and chemical injection pipe) to be attached to the existing equipment, and TOC
Since it is not necessary to add a device for reduction, it is possible to reduce equipment cost and maintenance.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0018】図1は本発明の有機態窒素の分解方法及び
水処理装置の一実施例を示す系統図である。なお、以下
においては、亜硝酸塩として亜硝酸ナトリウム(NaN
2)を用いる場合を例示するが、亜硝酸塩としては、
NaNO2 に限らず、KNO2 等を2用いても良い。
FIG. 1 is a system diagram showing an embodiment of the method for decomposing organic nitrogen and the water treatment apparatus of the present invention. In the following, sodium nitrite (NaN) is used as the nitrite.
O 2 ) is used as an example, but as the nitrite,
Not limited to NaNO 2 , KNO 2 or the like may be used.

【0019】本実施例においては、工水等の原水を配管
20、原水槽1、ポンプP1 を備える配管21を経てN
aNO2 注入槽3に導入し、NaNO2 タンク4からポ
ンプP2 を備える配管22よりNaNO2 の注入を行う
が、その際、好ましくは原水の有機態窒素濃度を配管2
0に設けられた有機態窒素分析計2で検出し、この検出
値に基いて、NaNO2 注入量を制御することで、有機
態窒素を効率的に除去する。
In this embodiment, raw water such as industrial water is passed through a pipe 20, a raw water tank 1, and a pipe 21 provided with a pump P 1 to supply N water.
introduced into ANO 2 injection tank 3, NaNO 2 tank 4 performs injection of NaNO 2 from the pipe 22 with a pump P 2 from but, this time, preferably the pipe of organic nitrogen concentration of the raw water 2
It is detected by the organic nitrogen analyzer 2 provided at 0, and the organic nitrogen is efficiently removed by controlling the injection amount of NaNO 2 based on the detected value.

【0020】通常の場合、この有機態窒素の検出値が5
0ppb以上になった場合に、NaNO2 の注入を行う
のが好ましく、注入するNaNO2 量は、原水中の有機
態窒素に対して5〜50倍程度とするのが好ましい。
Normally, the detected value of this organic nitrogen is 5
When it becomes 0 ppb or more, NaNO 2 is preferably injected, and the amount of NaNO 2 injected is preferably about 5 to 50 times the organic nitrogen in the raw water.

【0021】注入したNaNO2 と有機態窒素との反応
は、図1の装置において、NaNO2 注入槽3、凝集・
固液分離手段5及び分離水槽6で行われる。従って、こ
の間の滞留時間が反応時間となる。本発明においては、
この滞留時間(以下「NaNO2 滞留時間」と称す。)
は1時間以上、特に3時間程度行うのが好ましい。
The reaction of the injected NaNO 2 and organic nitrogen, in the apparatus of FIG. 1, NaNO 2 injection tank 3, coagulation and
It is carried out in the solid-liquid separation means 5 and the separation water tank 6. Therefore, the residence time during this period becomes the reaction time. In the present invention,
This retention time (hereinafter referred to as "NaNO 2 retention time")
Is preferably carried out for 1 hour or more, particularly about 3 hours.

【0022】NaNO2 注入槽3でNaNO2 を注入し
た水は、配管23より凝集・固液分離手段5に送給し、
ポリ塩化アルミニウム、硫酸アルミニウム等の凝集剤を
添加して凝集処理した後、固液分離処理する。この凝集
・固液分離手段5としては、凝集(加圧浮上)濾過又は
凝集沈殿等の手段を採用することができる。この凝集・
固液分離処理は、本発明に係るNaNO2 の注入により
何ら影響を受けることなく、常法に従って、効率的な処
理を行える。
The water into which NaNO 2 has been injected in the NaNO 2 injection tank 3 is sent to the flocculation / solid-liquid separation means 5 through the pipe 23,
After adding an aggregating agent such as polyaluminum chloride or aluminum sulfate to perform the aggregating treatment, a solid-liquid separation treatment is performed. As the coagulation / solid-liquid separation means 5, means such as coagulation (floating under pressure) filtration or coagulation sedimentation can be adopted. This aggregation
The solid-liquid separation treatment can be performed efficiently according to a conventional method without being affected by the injection of NaNO 2 according to the present invention.

【0023】凝集・固液分離手段5の分離水は、配管2
4、分離水槽6及びポンプP3 を備える配管25を経て
濾過装置7に導入され、配管26より濾過水槽8に貯め
られる。濾過水槽8内の水は、ポンプP4 を備える配管
27よりイオン交換純水装置9でイオン交換処理され
る。このイオン交換純水装置9としては、2床3塔式、
3床4塔式又は4床5塔式等の各種のものを用いること
ができ、このイオン交換処理により、有機態窒素とNa
NO2 との反応生成物及び残留するNaNO2 が効率的
に除去される。本実施例の装置では、原水の有機態窒素
濃度を有機態窒素分析計2で検出し、この検出値に基い
てNaNO2 注入量を制御するため、NaNO2 の残留
分が少なく、イオン交換純水装置9の負荷が軽減され
る。
The water separated by the flocculation / solid-liquid separation means 5 is supplied to the pipe 2
4, is introduced into the filtration device 7 via a pipe 25 provided with a separating water tray 6 and the pump P 3, it is pooled from line 26 to the filtering water tank 8. The water in the filtered water tank 8 is ion-exchanged by the ion-exchange pure water device 9 through the pipe 27 equipped with the pump P 4 . As this ion exchange pure water device 9, there are two beds and three towers,
Various types such as 3 beds 4 towers type or 4 beds 5 towers type can be used. By this ion exchange treatment, organic nitrogen and Na
Reaction products with NO 2 and residual NaNO 2 are efficiently removed. In the apparatus of the present embodiment, the organic nitrogen concentration of the raw water detected by the organic nitrogen analyzer 2, this in order to control the NaNO 2 injection amount based on the detected value, less residue of NaNO 2, ion exchange net The load on the water device 9 is reduced.

【0024】イオン交換処理水は、次いで、配管28、
タンク10及びポンプP5 を備える配管29を経て逆浸
透膜分離装置11で膜分離処理され、NaNO2 との反
応でなお残留する有機態窒素が除去される。その時の処
理水のTOCはすでに5ppb以下であるが、好ましく
は、さらに逆浸透膜分離装置11の透過水を配管30よ
り精密濾過膜分離装置12に導入し、微粒子を更に除去
する。これにより、配管31より、処理水としてTOC
が2ppb以下の高純度水を得ることができる。
The ion-exchange treated water is then supplied to the pipe 28,
The reverse osmosis membrane separation device 11 performs a membrane separation process via a pipe 29 equipped with the tank 10 and a pump P 5 , and the organic nitrogen still remaining by the reaction with NaNO 2 is removed. The TOC of the treated water at that time is already 5 ppb or less, but preferably, the permeated water of the reverse osmosis membrane separation device 11 is further introduced into the microfiltration membrane separation device 12 through the pipe 30 to further remove fine particles. As a result, TOC is treated as treated water from the pipe 31.
It is possible to obtain high-purity water having a water content of 2 ppb or less.

【0025】なお、図1に示す装置は本発明の一実施例
を示すものであって、本発明はその要旨を超えない限
り、何ら図示の装置に限定されるものではない。
The apparatus shown in FIG. 1 shows one embodiment of the present invention, and the present invention is not limited to the apparatus shown in the figure as long as it does not exceed the gist of the present invention.

【0026】例えば、有機態窒素分析計は必ずしも必要
とされず、常時有機態窒素濃度が高い(例えば100p
pb以上)の原水が導入される系であれば、有機態窒素
の分析を行わず、常時NaNO2 を注入する方式であっ
ても良い。この場合においても、予め原水の有機態窒素
を分析しておき、有機態窒素に対して5〜50倍のNa
NO2 を定量注入するようにするのが好ましい。
For example, an organic nitrogen analyzer is not always necessary, and the organic nitrogen concentration is always high (for example, 100 p
If it is a system into which raw water (pb or more) is introduced, the method of constantly injecting NaNO 2 without analyzing organic nitrogen may be used. Also in this case, the organic nitrogen in the raw water is analyzed in advance, and the Na content is 5 to 50 times that of the organic nitrogen.
It is preferable to inject a fixed amount of NO 2 .

【0027】また、原水の分析は、有機態窒素によら
ず、TOCに基いて行っても良い。この場合には、原水
を活性炭塔、混床式イオン交換塔に順次通水した後TO
C計で分析し、TOC値が150ppb以上になった場
合に、TOC値の1〜10倍量のNaNO2 を注入する
のが好ましい。
The raw water may be analyzed based on TOC instead of organic nitrogen. In this case, the raw water is sequentially passed through the activated carbon tower and the mixed bed type ion exchange tower before the TO
It is preferable to inject with 1 to 10 times the TOC value of NaNO 2 when the TOC value becomes 150 ppb or more as analyzed by a C meter.

【0028】また、NaNO2 注入槽は必ずしも必要と
されず、NaNO2 滞留時間が十分に確保されるのであ
れば、凝集槽に注入したり、原水槽から凝集槽に到る配
管のポンプ出口にライン注入したりしても良い。また、
この注入点ではNaNO2 滞留時間を十分に確保するこ
とができないのであれば、原水槽への原水導入配管にラ
イン注入しても良い。
Further, the NaNO 2 injection tank is not always required, and if the NaNO 2 residence time is sufficiently secured, the NaNO 2 injection tank may be injected into the coagulation tank or the pump outlet of the pipe from the raw water tank to the coagulation tank. You may inject a line. Also,
If the NaNO 2 residence time cannot be sufficiently secured at this injection point, line injection may be performed into the raw water introduction pipe to the raw water tank.

【0029】また、精密濾過膜分離装置は、必ずしも必
要とされず、本発明では、精密濾過膜分離装置を設け
ず、逆浸透膜分離装置の透過水を処理水とした場合にお
いてもTOC5ppb以下の高水質処理水を得ることが
できる。
Further, the microfiltration membrane separation device is not always required, and in the present invention, even when the permeated water of the reverse osmosis membrane separation device is treated water without providing the microfiltration membrane separation device, the TOC is 5 ppb or less. High quality treated water can be obtained.

【0030】[0030]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0031】実施例1 工水に有機態窒素として尿素を表1に示す濃度となるよ
うに添加した合成水を原水として、図1に示す装置で超
純水の製造を行い、各装置の出口水のTOC(湿式法に
よる)及び有機態窒素濃度を測定し、結果を表1に示し
た。
Example 1 Ultra pure water was produced in the apparatus shown in FIG. 1 using synthetic water prepared by adding urea as the organic nitrogen to the concentration shown in Table 1 to the working water as raw water, and the outlet of each apparatus was produced. The TOC (by wet method) and the organic nitrogen concentration of water were measured, and the results are shown in Table 1.

【0032】なお、NaNO2 注入量は1630ppb
とし、NaNO2 滞留時間は約3時間とした。
The injection amount of NaNO 2 is 1630 ppb.
The NaNO 2 residence time was about 3 hours.

【0033】比較例1 NaNO2 の注入を行わなかったこと以外は実施例1と
同様にして処理を行い、各装置の出口水のTOC(湿式
法による)及び有機態窒素濃度の測定結果を表1に示し
た。
Comparative Example 1 Treatment was carried out in the same manner as in Example 1 except that NaNO 2 was not injected, and the measurement results of TOC (by wet method) and the concentration of organic nitrogen in the outlet water of each device are shown. Shown in 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1より明らかなように、本発明によれ
ば、NaNO2 の注入で有機態窒素を効率的に分解除去
して、TOC5ppb以下の高純度水を得ることができ
る。
As is clear from Table 1, according to the present invention, high purity water having TOC of 5 ppb or less can be obtained by efficiently decomposing and removing organic nitrogen by injecting NaNO 2 .

【0036】これに対して、NaNO2 を添加しない比
較例1では、逆浸透膜分離装置において、有機態窒素の
除去がなされるが、十分ではなく、有機態窒素の残留に
起因するTOCで、十分に純度の高い処理水を得ること
ができない。
On the other hand, in Comparative Example 1 in which NaNO 2 was not added, organic nitrogen was removed in the reverse osmosis membrane separation device, but the TOC was not sufficient, and the TOC caused by residual organic nitrogen was It is not possible to obtain treated water of sufficiently high purity.

【0037】[0037]

【発明の効果】以上詳述した通り、本発明の有機態窒素
の分解方法によれば、有機態窒素を亜硝酸塩により効率
的に分解除去して、有機態窒素に起因するTOCを極低
濃度に低減して、高水質処理水を得ることができる。
As described in detail above, according to the method for decomposing organic nitrogen of the present invention, organic nitrogen is efficiently decomposed and removed by nitrite, and TOC resulting from organic nitrogen is at an extremely low concentration. It is possible to obtain high-quality treated water.

【0038】また、本発明の水処理装置によれば、この
ような亜硝酸塩による有機態窒素の分解除去で、従来の
超純水製造システムでは処理不可能であった有機態窒素
を効率的に除去して、TOCが5ppb以下、更には2
ppb以下と著しく純度の高い超純水を製造することが
できる。特に本発明の水処理装置では、有機態窒素に起
因するTOCを極低濃度に除去するための装置の増設を
行うことなく、既存の設備に亜硝酸塩の薬注設備を設置
するのみで水質の向上を図ることができ、工業的に極め
て有利である。
Further, according to the water treatment apparatus of the present invention, the decomposition and removal of the organic nitrogen by the nitrite effectively removes the organic nitrogen which cannot be treated by the conventional ultrapure water production system. After removal, TOC is 5ppb or less, and further 2
It is possible to produce ultrapure water having a purity as high as ppb or less. In particular, in the water treatment device of the present invention, without adding a device for removing TOC caused by organic nitrogen to an extremely low concentration, it is possible to improve the water quality by simply installing a chemical injection facility for nitrite in the existing facility. It can be improved and is industrially extremely advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機態窒素の分解方法及び水処理装置
の一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for decomposing organic nitrogen and a water treatment device of the present invention.

【図2】従来の超純水製造システムを示す系統図であ
る。
FIG. 2 is a system diagram showing a conventional ultrapure water production system.

【符号の説明】[Explanation of symbols]

1 原水槽 2 有機態窒素分析計 3 NaNO2 注入槽 4 NaNO2 タンク 5 凝集・固液分離手段 6 分離水槽 7 濾過装置 8 濾過水槽 9 イオン交換純水装置 10 タンク 11 逆浸透膜分離装置 12 精密濾過膜分離装置1 Raw Water Tank 2 Organic Nitrogen Analyzer 3 NaNO 2 Injection Tank 4 NaNO 2 Tank 5 Aggregation / Solid-Liquid Separation Means 6 Separation Water Tank 7 Filtration Device 8 Filtration Water Tank 9 Ion Exchange Pure Water Device 10 Tank 11 Reverse Osmosis Membrane Separation Device 12 Precision Filtration membrane separator

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/58 C02F 1/58 A Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C02F 1/58 C02F 1/58 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機態窒素を含む水に亜硝酸塩を添加す
ることを特徴とする有機態窒素の分解方法。
1. A method for decomposing organic nitrogen, comprising adding nitrite to water containing organic nitrogen.
【請求項2】 有機態窒素を含む水に亜硝酸塩を添加す
る手段と、亜硝酸塩が添加された水を凝集処理して固液
分離する手段と、該固液分離手段の分離水をイオン交換
処理するイオン交換装置と、イオン交換処理水を膜分離
処理する逆浸透膜分離装置とを備えてなることを特徴と
する水処理装置。
2. A means for adding nitrite to water containing organic nitrogen, a means for coagulating the water to which nitrite is added to perform solid-liquid separation, and ion-exchanged water separated by the solid-liquid separation means. A water treatment device comprising an ion exchange device for treatment and a reverse osmosis membrane separation device for membrane separation treatment of ion exchange treated water.
JP7287355A 1995-11-06 1995-11-06 Method for decomposing organic nitrogen and water treatment apparatus Pending JPH09122690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7287355A JPH09122690A (en) 1995-11-06 1995-11-06 Method for decomposing organic nitrogen and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7287355A JPH09122690A (en) 1995-11-06 1995-11-06 Method for decomposing organic nitrogen and water treatment apparatus

Publications (1)

Publication Number Publication Date
JPH09122690A true JPH09122690A (en) 1997-05-13

Family

ID=17716302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7287355A Pending JPH09122690A (en) 1995-11-06 1995-11-06 Method for decomposing organic nitrogen and water treatment apparatus

Country Status (1)

Country Link
JP (1) JPH09122690A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
WO2004065527A3 (en) * 2003-01-24 2005-04-28 Eng-Chye Teoh Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
KR100951200B1 (en) * 2006-12-12 2010-04-05 오떼베 에스아 Method for treating wastewater or produced water
CN104276696A (en) * 2014-10-16 2015-01-14 南京国能环保工程有限公司 Pretreatment method of high-concentration organic wastewater containing DMAC (dimethylacetamide)
JP2015073923A (en) * 2013-10-07 2015-04-20 野村マイクロ・サイエンス株式会社 Ultrapure water production method and system
JP2016536125A (en) * 2013-11-11 2016-11-24 フィリッペ ライチェン How to remove urea from water
US10023487B2 (en) 2006-12-12 2018-07-17 Veolia Water Solutions & Technologies Support Method of recovering oil or gas and treating the resulting produced water
JP2018118253A (en) * 2018-05-11 2018-08-02 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production system
CN114314797A (en) * 2021-12-30 2022-04-12 四川省丝绸科学研究院有限公司 Special auxiliary agent and method for removing urea in fabric digital printing wastewater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
KR101076331B1 (en) * 2003-01-24 2011-10-26 엥-차이 테오 Methods for the removal of organic nitrogen organic and inorganic contaminants from an aqueous liquid
CN100335421C (en) * 2003-01-24 2007-09-05 张英顺 Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
US7666314B2 (en) 2003-01-24 2010-02-23 Eng Soon Teoh Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
WO2004065527A3 (en) * 2003-01-24 2005-04-28 Eng-Chye Teoh Methods for the removal of organic nitrogen, organic and inorganic contaminants from an aqueous liquid
KR100951200B1 (en) * 2006-12-12 2010-04-05 오떼베 에스아 Method for treating wastewater or produced water
US7815804B2 (en) 2006-12-12 2010-10-19 Otv Sa S.A. Method for treating wastewater or produced water
US9067801B2 (en) 2006-12-12 2015-06-30 Veolia Water Solutions & Technologies Support Method for treating wastewater or produced water
US10023487B2 (en) 2006-12-12 2018-07-17 Veolia Water Solutions & Technologies Support Method of recovering oil or gas and treating the resulting produced water
JP2015073923A (en) * 2013-10-07 2015-04-20 野村マイクロ・サイエンス株式会社 Ultrapure water production method and system
JP2016536125A (en) * 2013-11-11 2016-11-24 フィリッペ ライチェン How to remove urea from water
CN104276696A (en) * 2014-10-16 2015-01-14 南京国能环保工程有限公司 Pretreatment method of high-concentration organic wastewater containing DMAC (dimethylacetamide)
JP2018118253A (en) * 2018-05-11 2018-08-02 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production system
CN114314797A (en) * 2021-12-30 2022-04-12 四川省丝绸科学研究院有限公司 Special auxiliary agent and method for removing urea in fabric digital printing wastewater

Similar Documents

Publication Publication Date Title
US5259972A (en) Apparatus and method for purifying water
US20040050786A1 (en) Method of removing organic impurities from water
EP0639162B1 (en) Process and device for destroying free and complex cyanides, aox, mineral oil, complexing agents, csb, nitrite, chromate, and for separating metals from waste waters
US20080087603A1 (en) Fluid Purification Methods and Devices
JP3491328B2 (en) Ultrapure water production equipment
JP3646900B2 (en) Apparatus and method for treating boron-containing water
DE102010043662A1 (en) Brewery wastewater treatment method, comprises biologically treating wastewater in a biological treatment stage, filtering suspended particles from the wastewater, and guiding the wastewater over an adsorbent and/or an ion exchanger
JPH09122690A (en) Method for decomposing organic nitrogen and water treatment apparatus
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP2001038390A (en) Production of ultrapure water
JPS62110795A (en) Device for producing high-purity water
JP3417052B2 (en) Ultrapure water production method
JP3319053B2 (en) Treatment method for fluoride-containing water
JPH1080684A (en) Device and method for treating boron-containing water
CN215102340U (en) Low-cost resourceful treatment system of coal industry high salt waste water
JPH10309588A (en) Water treatment, water treating device and pure water producing device
CN211004930U (en) Ultrapure water preparation system
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JP3259557B2 (en) How to remove organic matter
JP3216256B2 (en) Ultrapure water production equipment
JPH05309398A (en) Apparatus for producing pure water
GB2197860A (en) Apparatus for and the method of water purification
JPH05293494A (en) Apparatus for producing pure water
CN110092506A (en) A kind of full-automatic desalinating process of RO concentrated water rich in barium strontium ion