JP2008237980A - Membrane separation apparatus for drinking water production, and its operation method - Google Patents

Membrane separation apparatus for drinking water production, and its operation method Download PDF

Info

Publication number
JP2008237980A
JP2008237980A JP2007078703A JP2007078703A JP2008237980A JP 2008237980 A JP2008237980 A JP 2008237980A JP 2007078703 A JP2007078703 A JP 2007078703A JP 2007078703 A JP2007078703 A JP 2007078703A JP 2008237980 A JP2008237980 A JP 2008237980A
Authority
JP
Japan
Prior art keywords
water
membrane
path
membrane module
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007078703A
Other languages
Japanese (ja)
Other versions
JP5049623B2 (en
Inventor
Masanobu Noshita
昌伸 野下
Hironobu Nishio
弘伸 西尾
Mizuo Fujimoto
瑞生 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2007078703A priority Critical patent/JP5049623B2/en
Publication of JP2008237980A publication Critical patent/JP2008237980A/en
Application granted granted Critical
Publication of JP5049623B2 publication Critical patent/JP5049623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separation apparatus for drinking water production which has a structure scarcely allowing a chemical to remain in piping although chemical washing and back washing are performed in a relatively short term using a chlorine type chemical with low concentration, and to provide an operation method of the membrane separation apparatus for drinking water production. <P>SOLUTION: In the drinking water production equipment having the membrane separation apparatus comprised of a plurality of membrane modules, a water stop valve is dually installed at the pathway besides the drainage pathway among the pathways connected with the membrane module and a drain valve is installed when the chemical washing by the chemical is performed. According to the structure, the chemical remains in the piping and the chemical is difficult to incorporate into the membrane module permeate after the chemical washing and backwashing are performed. Further, a residual chlorine concentration meter to constantly measure the chlorine concentration in the permeate is installed at the permeate pathway of each membrane module. Thus, the safety of drinking water is assured by stopping the membrane module when the abnormal value of the residual chlorine concentration is measured by the residual chlorine concentration meter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、定期的に膜分離装置の薬液洗浄及び逆洗浄を行う飲料水製造用膜分離装置であって、薬液による飲料水の汚染を効果的に防止しうる構造の飲料水製造用膜分離装置に関する。また、本発明は、そのような飲料水製造用膜分離装置の運転方法に関する。   The present invention relates to a drinking water production membrane separation device that periodically performs chemical cleaning and reverse cleaning of a membrane separation device, and has a structure that can effectively prevent contamination of drinking water by a chemical solution. Relates to the device. The present invention also relates to a method of operating such a membrane separator for drinking water production.

精密ろ過膜(MF膜)又は限外ろ過膜(UF膜)は、微粒子等の除去性能が高いため、原水中に含まれる微細な固形物、懸濁物質、微生物等を分離する固液分離手段として使用される。また、このMF膜を組み込んだMF膜分離装置又はUF膜を組み込んだUF膜分離装置は、操作が簡便であることから、医薬、化学、半導体等の分野的で工業的に広く利用されている。   Microfiltration membranes (MF membranes) or ultrafiltration membranes (UF membranes) have high performance for removing fine particles, etc., so solid-liquid separation means that separates fine solids, suspended substances, microorganisms, etc. contained in raw water Used as. In addition, the MF membrane separation device incorporating the MF membrane or the UF membrane separation device incorporating the UF membrane is easy to operate, and is widely used in the fields of medicine, chemistry, semiconductors, and the like in industry. .

MF膜分離装置又はUF膜分離装置は、通常、複数のMF膜モジュール又はUF膜モジュールから構成されている。そして、各モジュールでは、微細なろ過孔を有するMF膜又はUF膜を用いて、原水中の微細な固形物を分離除去することを原理としており、ろ過を継続していると原水側(一次側)の膜面上にろ過ケーキ層が形成される。このろ過ケーキ層が形成されると、ろ過抵抗が増大し、MF膜分離装置又はUF膜分離装置のろ過能力が低下するため、一定のろ過時間毎に、膜モジュール内のケーキ層を除去するための膜洗浄を行う。   The MF membrane separator or UF membrane separator is usually composed of a plurality of MF membrane modules or UF membrane modules. In each module, the principle is to separate and remove fine solids in raw water using an MF membrane or UF membrane having fine filtration holes. If filtration is continued, the raw water side (primary side) ) Is formed on the membrane surface. When this filtration cake layer is formed, the filtration resistance increases, and the filtration capacity of the MF membrane separation device or UF membrane separation device decreases. Therefore, the cake layer in the membrane module is removed every certain filtration time. Perform membrane cleaning.

MF膜又はUF膜の洗浄としては、膜の透過水側(二次側)から洗浄水を流入し、ろ過ケーキ層を剥離除去する方法(物理洗浄)や、さらに洗浄水に次亜塩素酸ナトリウム及び水酸化ナトリウムを添加して、化学的にも除去する方法(薬液洗浄)が知られている。このような定期的な膜洗浄を行うことにより、MF膜又はUF膜の汚染を防止する。   For cleaning the MF membrane or UF membrane, the cleaning water flows from the permeate side (secondary side) of the membrane and the filter cake layer is peeled and removed (physical cleaning), and sodium hypochlorite is added to the cleaning water. In addition, a method (chemical solution cleaning) in which sodium hydroxide is added and chemically removed is also known. By performing such regular membrane cleaning, contamination of the MF membrane or UF membrane is prevented.

例えば、MF膜又はUF膜モジュールに、膜の二次側から一次側へ塩素水を逆流させて、所定時間保持した後、膜の一次側に滞留する水を排出することを特徴とする膜の洗浄方法が、特許文献1に開示されている。   For example, the MF membrane or UF membrane module is made to flow back chlorine water from the secondary side to the primary side of the membrane, hold it for a predetermined time, and then discharge the water staying on the primary side of the membrane. A cleaning method is disclosed in Patent Document 1.

また、膜ろ過装置のろ過水側に酸若しくはアルカリ性化学成分、又はオゾン等の酸化性化学成分を含む洗浄水を導入し、所定時間膜に浸透させた後、化学成分を含まない洗浄水で逆圧洗浄することを特徴とする膜ろ過装置の逆洗方法が、特許文献2に開示されている。   In addition, after introducing cleaning water containing acid or alkaline chemical components or oxidizing chemical components such as ozone into the filtered water side of the membrane filtration device and infiltrating the membrane for a predetermined time, reverse the washing water containing no chemical components. Patent Document 2 discloses a backwashing method of a membrane filtration device characterized by pressure washing.

また、中空糸型のろ過膜モジュールを用いるろ過膜モジュールにおいて、原水ろ過と逆洗浄を一サイクルとし、ろ過過程と逆洗過程の間に休止過程を設け、休止過程移行前に薬剤をろ過膜モジュールの原水流路側に注入することを特徴とする膜ろ過装置が、特許文献3に開示されている。
特開平10−15365号公報 特開2002−52321号公報 特開2001−170456号公報
Moreover, in a membrane module using a hollow fiber type membrane filter module, raw water filtration and backwashing are made into one cycle, a pause process is provided between the filtration process and the backwash process, and the drug is filtered before transition to the pause process. Patent Document 3 discloses a membrane filtration device characterized by being injected into the raw water flow path side.
Japanese Patent Laid-Open No. 10-15365 JP 2002-52321 A JP 2001-170456 A

MF膜又はUF膜分離装置のような膜分離装置は、使用を継続すると有機物汚染によりろ過能力が低下するため、特許文献1〜3に開示されている膜洗浄方法のように、次亜塩素酸塩等を用いて膜モジュール内のMF膜等を薬液洗浄することが一般的である。例えば、MF膜又はUF膜としてPVDF(ポリフッ化ビニリデン)製のものを用いる場合には、薬液洗浄として通常は、0.2%〜0.5%(2000ppm〜5000ppm)の次亜塩素酸ナトリウム(1%の水酸化ナトリウムを含む)水溶液を、7〜8時間程度循環させて薬液洗浄し、その後、薬液を排出してアルカリを酸で中和し、さらに水洗していた。   A membrane separation device such as an MF membrane or UF membrane separation device has a reduced filtration capacity due to organic contamination when it is continuously used. Therefore, as in the membrane cleaning methods disclosed in Patent Documents 1 to 3, hypochlorous acid is used. Generally, the MF membrane or the like in the membrane module is washed with a chemical solution using a salt or the like. For example, when a PVDF (polyvinylidene fluoride) membrane is used as the MF membrane or UF membrane, 0.2% to 0.5% (2000 ppm to 5000 ppm) sodium hypochlorite (1% water) is usually used for chemical cleaning. An aqueous solution (containing sodium oxide) was circulated for about 7 to 8 hours to wash the chemical solution, and then the chemical solution was discharged to neutralize the alkali with an acid and further washed with water.

しかし、このように長時間の膜洗浄を行えば、洗浄中の膜モジュールでは透過水が得られないため、洗浄が終了するまで飲料水製造量は減少してしまう。また、高濃度の次亜塩素酸塩等を使用するため、配管内に薬液が残存することは極力避けなければならないが、そのために何度も水洗を行う必要があり、薬液の洗浄工程にも時間がかかっていた。   However, if membrane cleaning is performed for a long time in this way, the permeated water cannot be obtained in the membrane module being cleaned, and thus the amount of drinking water produced decreases until the cleaning is completed. Also, since high concentrations of hypochlorite, etc. are used, it is necessary to avoid the chemical solution from remaining in the pipe as much as possible. It took time.

本発明は、低濃度の薬液を用いて、比較的短期間で薬液洗浄を行うが、薬液が配管内に残りにくい構造の飲料水製造用膜分離装置、及びそのような飲料水製造用膜分離装置の運転方法の提供を目的とする。   The present invention performs chemical cleaning in a relatively short period of time using a chemical solution at a low concentration, but has a structure in which the chemical solution is unlikely to remain in the pipe, and such membrane separation for drinking water production. The object is to provide a method for operating the apparatus.

本発明者等は、複数の膜モジュールからなる膜分離装置を有する飲料水製造装置において、薬液による薬液洗浄を行う場合、膜モジュールに接続される経路のうち、排水経路以外の経路に止水弁を二重に設置し、その間にドレン弁を設置する構造とすれば、薬液洗浄を行った後、配管内に薬液が残存し、膜モジュール透過水に薬液が混入しにくくなることを見出し、本発明を完成させるに至った。   In the drinking water production apparatus having a membrane separation device composed of a plurality of membrane modules, the present inventors, when performing chemical cleaning with a chemical solution, stop water valves in routes other than the drainage route among the routes connected to the membrane module. It is found that the chemical solution remains in the pipe after the chemical solution cleaning and the chemical solution is less likely to be mixed into the membrane module permeated water. The invention has been completed.

具体的に、本発明は、
複数の膜モジュールからなる膜分離装置と、
膜モジュールの原水側から薬液を供給する薬液経路と、
膜モジュールの透過水側から逆洗水を供給する逆洗経路とを有し、
薬液を薬液経路に供給して所定時間滞留させる飲料水製造用膜分離装置であって、
原水を膜モジュールへ供給する原水経路、膜モジュールの透過水を飲料水として流出させる透過水経路、膜モジュールの原水側排水経路及び透過水側排水経路のそれぞれに第一止水弁及び第二止水弁を有し、
第一止水弁と第二止水弁との間にはドレン弁を備えるドレン経路を有することを特徴とする飲料水製造用膜分離装置に関する(請求項1)。
Specifically, the present invention
A membrane separation device comprising a plurality of membrane modules;
A chemical path for supplying the chemical from the raw water side of the membrane module;
A backwash path for supplying backwash water from the permeate side of the membrane module;
A drinking water production membrane separator for supplying a chemical solution to a chemical solution path and retaining it for a predetermined time,
A first water stop valve and a second stop valve are respectively provided in a raw water path for supplying raw water to the membrane module, a permeated water path for flowing out the permeated water of the membrane module as drinking water, and a raw water side drainage path and a permeated water side drainage path of the membrane module. Have a water valve,
The present invention relates to a drinking water producing membrane separation device having a drain path provided with a drain valve between a first water stop valve and a second water stop valve (Claim 1).

また、本発明は、
複数の膜モジュールからなる膜分離装置と、
膜モジュールの原水側から薬液を供給する薬液経路と、
膜モジュールの透過水側から逆洗水を供給する逆洗経路とを有し、
薬液を薬液経路に供給して所定時間滞留させる飲料水製造用膜分離装置において、
原水を膜モジュールへ供給する原水経路、膜モジュールの透過水を流出させる透過水経路、膜モジュールの原水側及び透過水側排水経路のそれぞれに第一止水弁及び第二止水弁を設置し、
第一止水弁と第二止水弁との間にはドレン弁を備えるドレン経路を設置することを特徴とする飲料水製造用膜分離装置の運転方法に関する(請求項5)。
The present invention also provides:
A membrane separation device comprising a plurality of membrane modules;
A chemical path for supplying the chemical from the raw water side of the membrane module;
A backwash path for supplying backwash water from the permeate side of the membrane module;
In a drinking water production membrane separation apparatus for supplying a chemical solution to a chemical solution path and retaining it for a predetermined time,
A first water stop valve and a second water stop valve are installed in each of the raw water path for supplying raw water to the membrane module, the permeated water path for discharging the permeated water of the membrane module, and the raw water side and the permeated water side drainage path of the membrane module. ,
A drain path provided with a drain valve is installed between the first water stop valve and the second water stop valve. The present invention relates to a method for operating a membrane separator for drinking water production (Claim 5).

膜モジュールを定期的に薬液洗浄する膜分離装置では、各膜モジュールには、原水を膜モジュールへ供給する原水経路、膜モジュールの透過水を流出させる透過水経路、膜モジュールの原水側排水経路、薬液洗浄後に膜モジュール二次側の排水を排出する透過水側排水経路が接続されている。そこで、これらの経路に第一止水弁及び第二止水弁という2個の止水弁を設置し、その間にドレン弁を設ける構造とすれば、薬液洗浄後、配管内の薬液を排出しやすく、配管内に残存する薬液量を減少することが可能となる。よって、膜処理水(飲料水)への薬液混入を防止することが可能となる。   In the membrane separation apparatus that periodically cleans the membrane module with chemical solution, each membrane module has a raw water path for supplying raw water to the membrane module, a permeated water path for discharging the permeated water of the membrane module, a raw water side drainage path for the membrane module, A permeate-side drainage path for discharging drainage on the secondary side of the membrane module after chemical cleaning is connected. Therefore, if two water stop valves, a first water stop valve and a second water stop valve, are installed in these paths, and a drain valve is provided between them, the chemical liquid in the pipe is discharged after the chemical liquid cleaning. It is easy to reduce the amount of the chemical solution remaining in the pipe. Therefore, it is possible to prevent chemical solution from being mixed into the membrane treated water (drinking water).

前記薬液が塩素系薬液であり、各膜モジュールの透過水経路には透過水中の塩素濃度を常時測定する塩素濃度計を設置し、該塩素濃度計によって塩素濃度の異常値が測定された場合には、異常値が測定された膜モジュールの透過水経路の第一止水弁及び第二止水弁が閉じられる構成とすることが好ましい(請求項2,6)。   When the chemical solution is a chlorine-based chemical solution, and a chlorine concentration meter that constantly measures the chlorine concentration in the permeated water is installed in the permeate passage of each membrane module, and an abnormal value of the chlorine concentration is measured by the chlorine concentration meter Is preferably configured such that the first water stop valve and the second water stop valve of the permeate path of the membrane module in which the abnormal value is measured are closed (Claims 2 and 6).

各膜モジュールの透過水経路(浄水タンク、浄水池等の飲料水貯水設備へと透過水を供給する経路)に塩素濃度計を設置し、透過水中の残留塩素濃度が異常値であった場合には、異常値が測定された膜モジュールからの透過水流出を遮断すべく、透過水経路の第一止水弁及び第二止水弁を閉じるため、飲料水への薬液混入の危険性を軽減することが可能である。   When a chlorine concentration meter is installed in the permeate path of each membrane module (the path for supplying permeate to drinking water storage facilities such as water purification tanks and water ponds), and the residual chlorine concentration in the permeate is abnormal Reduces the risk of mixing chemicals into drinking water by closing the first and second stop valves in the permeate path to block outflow of permeate from the membrane module where abnormal values are measured Is possible.

前記薬液が濃度5ppm以上1000ppm以下の次亜塩素酸塩水溶液であり、5〜15日に1回薬液を薬液供給経路に供給することが好ましい(請求項3,7)。有機物汚染の防除には次亜塩素酸塩(最も好ましいのは次亜塩素酸ナトリウム)が適しているが、1週間に1回程度で薬液洗浄を行うのであれば、有機物汚染が進行するのを効果的に防止でき、薬液洗浄に要する時間も短くて済む。飲料水への薬液混入のリスクも、従来の薬液洗浄と比較して低濃度であるために低い。   Preferably, the chemical solution is a hypochlorite aqueous solution having a concentration of 5 ppm or more and 1000 ppm or less, and the chemical solution is preferably supplied to the chemical solution supply path once every 5 to 15 days. Hypochlorite (most preferred sodium hypochlorite) is suitable for controlling organic contamination, but if chemical cleaning is performed about once a week, organic contamination will progress. This can be effectively prevented and the time required for cleaning the chemical solution can be shortened. The risk of mixing chemicals into drinking water is also low because of its low concentration compared to conventional chemical cleaning.

前記膜モジュールは、精密ろ過膜モジュール又は限外ろ過膜モジュールであることが好ましい(請求項4,8)。   The membrane module is preferably a microfiltration membrane module or an ultrafiltration membrane module.

本発明の飲料水製造用膜分離装置及びその運転方法によれば、膜の目詰まりを防止し、透過水(飲料水)を長期間安定して製造することが可能であるとともに、膜処理水(飲料水)への薬液混入を防止できる。また、塩素系薬液を使用し、自動残留塩素濃度計を透過水経路に設置する場合には、透過水への薬液混入のリスクも確実に減少させることが可能である。   According to the membrane separator for drinking water production and the operation method thereof of the present invention, it is possible to prevent clogging of the membrane and stably produce permeated water (drinking water) for a long period of time, and membrane treated water. It is possible to prevent chemical liquid from being mixed into (drinking water). In addition, when a chlorine-based chemical solution is used and an automatic residual chlorine concentration meter is installed in the permeated water path, the risk of chemical solution mixing into the permeated water can be reliably reduced.

以下、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明は、これらに限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to these.

(通常運転)
本発明の飲料水製造用膜分離装置の概略構成図を、図1に示す。原水タンク1内の原水は、複数の原水経路に供給され、複数の膜モジュールへと供給され、透過水を製造するが、ここでは、原水経路1について説明する。原水経路1へと供給された原水は、原水ポンプ2aによって昇圧され、膜モジュール6の一次側(原水側)へと供給される。このとき、原水経路に設置されている第一原水弁3a(第一止水弁)及び第二原水弁3b(第二止水弁)は開いており、ドレン経路5の原水ドレン弁4は閉じている。
(Normal operation)
The schematic block diagram of the membrane separator for drinking water manufacture of this invention is shown in FIG. The raw water in the raw water tank 1 is supplied to a plurality of raw water passages and supplied to a plurality of membrane modules to produce permeated water. Here, the raw water passage 1 will be described. The raw water supplied to the raw water path 1 is boosted by the raw water pump 2a and supplied to the primary side (raw water side) of the membrane module 6. At this time, the first raw water valve 3a (first water stop valve) and the second raw water valve 3b (second water stop valve) installed in the raw water path are open, and the raw water drain valve 4 of the drain path 5 is closed. ing.

膜モジュールの透過水は、膜モジュール6の二次側(透過水側)に接続されている透過水経路へと流出する。このとき、透過水経路に設置されている第一透過水弁7a(第一止水弁)及び第二透過水弁7b(第二止水弁)は開いており、ドレン経路9のドレン弁8は閉じている。第二透過水弁7bの下流には、自動残留塩素濃度計10が設置されており、透過水中の残留塩素濃度を常時監視している。この自動残留塩素濃度計10は、透過水中の残留塩素濃度が設定値(残留塩素濃度1.0ppm程度に設定するのが適当)を超えると、第一透過水弁7a及び第二透過水弁7bを閉じるように設計されている。そして、原水経路2、原水経路3等、他の処理経路についても、原水経路1と同じ構成となっている。残留塩素濃度が設定値以下の濃度であれば、各膜モジュールの透過水は、貯水タンク等の貯水設備へと供給され、飲料水として利用される。   The permeated water of the membrane module flows out to the permeated water path connected to the secondary side (permeated water side) of the membrane module 6. At this time, the first permeate valve 7a (first stop valve) and the second permeate valve 7b (second stop valve) installed in the permeate path are open, and the drain valve 8 of the drain path 9 is open. Is closed. An automatic residual chlorine concentration meter 10 is installed downstream of the second permeated water valve 7b and constantly monitors the residual chlorine concentration in the permeated water. When the residual chlorine concentration in the permeated water exceeds a set value (appropriately setting the residual chlorine concentration to about 1.0 ppm), the automatic residual chlorine concentration meter 10 causes the first permeated water valve 7a and the second permeated water valve 7b to be turned on. Designed to close. The other processing paths such as the raw water path 2 and the raw water path 3 have the same configuration as the raw water path 1. If the residual chlorine concentration is less than the set value, the permeated water of each membrane module is supplied to a water storage facility such as a water storage tank and used as drinking water.

なお、通常運転時には、透過水側排水経路及び逆洗経路の止水弁及びドレン弁はすべて閉じられている。また、薬液経路の薬液入口弁13も閉じられている。   During normal operation, the water stop valves and drain valves of the permeate water drainage path and backwash path are all closed. Further, the chemical liquid inlet valve 13 of the chemical liquid path is also closed.

(薬液洗浄及び薬液排出)
次に、膜モジュール6を薬液洗浄及び薬液排出(水洗浄)する場合について説明する。まず、薬液タンク11には、次亜塩素酸ナトリウム等の塩素系薬物の水溶液(塩素系薬液)を調整しておく。塩素系薬物の濃度は5ppm以上1000ppm以下とすることが、膜洗浄効果の確保と、薬液洗浄後の洗浄容易の観点から好ましい。なお、水酸化ナトリウムや水酸化カリウム等のアルカリ性物質を、0.1重量%程度なるように添加しておくことがより好ましい。
(Chemical cleaning and chemical discharge)
Next, the case where the membrane module 6 is subjected to chemical cleaning and chemical discharging (water cleaning) will be described. First, an aqueous solution (chlorine chemical solution) of a chlorinated drug such as sodium hypochlorite is prepared in the chemical solution tank 11. The concentration of the chlorinated drug is preferably 5 ppm or more and 1000 ppm or less from the viewpoint of securing the film cleaning effect and easy cleaning after the chemical cleaning. It is more preferable to add an alkaline substance such as sodium hydroxide or potassium hydroxide so as to be about 0.1% by weight.

第一原水弁3a及び第二原水弁3b、第一透過水弁7a及び第二透過水弁7bを閉じる。このとき、透過水側排水経路に設置された第一透過水側排水弁16a(第一止水弁)及び第二透過水側排水弁16b(第二止水弁)、逆洗経路に設置されている第一逆洗弁20a(第一止水弁)及び第二逆洗弁20b(第二止水弁)、ドレン弁17も閉じている。そして、原水ポンプ2aを停止する。   The first raw water valve 3a and the second raw water valve 3b, the first permeate water valve 7a and the second permeate water valve 7b are closed. At this time, the first permeate-side drain valve 16a (first stop valve) and the second permeate-side drain valve 16b (second stop valve) installed in the permeate-side drain path and the backwash path are installed. The first backwash valve 20a (first stop valve), the second backwash valve 20b (second stop valve), and the drain valve 17 are also closed. Then, the raw water pump 2a is stopped.

膜モジュール排水経路15に設置された排水弁14を開き、膜モジュール6内の原水を排水する。排水完了後、排水弁14を閉じる。薬液ポンプ12を起動し、薬液入口弁13を開いて、薬液タンク11内の塩素系薬液を薬液経路から膜モジュール6の一次側へと供給する。このとき、透過水側排水経路の透過水側排水経路ドレン弁17を閉じ、第一透過水側排水弁16a及び第二透過水側排水弁16bは開いておく。薬液は膜モジュール内の膜6aを透過して一次側から二次側に移動し、膜モジュール6内に貯留(充填)され、膜モジュール6内に薬液が充填されると薬液ポンプ12を停止し、第二透過水側排水弁16bを閉じて、膜6aの化学的洗浄が行われる。   The drain valve 14 installed in the membrane module drainage path 15 is opened, and the raw water in the membrane module 6 is drained. After draining is completed, the drain valve 14 is closed. The chemical liquid pump 12 is activated, the chemical liquid inlet valve 13 is opened, and the chlorinated chemical liquid in the chemical liquid tank 11 is supplied from the chemical liquid path to the primary side of the membrane module 6. At this time, the permeate-side drainage path drain valve 17 of the permeate-side drainage path is closed, and the first permeate-side drainage valve 16a and the second permeate-side drainage valve 16b are opened. The chemical solution passes through the membrane 6a in the membrane module, moves from the primary side to the secondary side, is stored (filled) in the membrane module 6, and when the chemical solution is filled in the membrane module 6, the chemical solution pump 12 is stopped. The second permeated water side drain valve 16b is closed, and the membrane 6a is chemically cleaned.

本発明の飲料水製造用膜分離装置においては、膜6aの有機汚染を最低限に抑制し、薬液洗浄時間を短縮するために、5ppm以上1000ppm以下の低濃度の塩素系薬液によって、5〜15日に1回、具体的には、1週間に1回程度薬液洗浄することが好ましい。なお、膜モジュール6内には、塩素系薬液を1時間〜24時間程度貯留させることが好ましい。特に、塩素系薬物濃度50ppm以上500ppm以下の低濃度の塩素系薬液を6〜8日に1回、1時間〜5時間膜モジュール6内に貯留させて化学的洗浄を行うのが、洗浄性を確保しつつ、薬液コストを節減し薬液洗浄時間を短縮できるため、より好ましい。   In the membrane separator for drinking water production of the present invention, in order to suppress organic contamination of the membrane 6a to the minimum and shorten the chemical cleaning time, it is 5-15 by using a low concentration chlorine based chemical solution of 5 ppm to 1000 ppm. It is preferable to perform chemical cleaning once a day, specifically about once a week. In addition, it is preferable to store a chlorine-type chemical | medical solution in the membrane module 6 for about 1 hour-24 hours. In particular, chemical cleaning is performed by storing a low concentration chlorinated chemical solution with a concentration of 50 to 500 ppm in the membrane module 6 once every 6 to 8 hours for 1 to 5 hours. It is more preferable because the chemical cost can be reduced and the chemical cleaning time can be shortened while ensuring.

低濃度薬液による薬液洗浄終了後、排水弁14、ドレン弁17を開き、膜モジュール6内の薬液を排水経路15、18へと排水する。その後、薬液は、排水設備によって処理される。   After completion of the chemical cleaning with the low-concentration chemical solution, the drain valve 14 and the drain valve 17 are opened, and the chemical solution in the membrane module 6 is drained to the drain paths 15 and 18. Thereafter, the chemical solution is processed by a drainage facility.

次に、薬液排出(水洗浄)を行う。まず、薬液入口弁13、原水経路の第一原水弁3a及び第二原水弁3bを閉じ、原水ドレン弁4は開いておく。洗浄水源(膜分離装置の透過水を貯水した設備であってもよいが、透過水と同等の水質の洗浄水を供給できるものであれば足りる)から逆洗経路へと供給される洗浄水は、逆洗ポンプ19によって加圧される。第一逆洗弁20a及び第二逆洗弁20bを開き、洗浄水を膜モジュール6の二次側へと供給する。このとき、膜モジュール内の膜6aが水洗浄され、膜モジュール6の一次側へ流れた洗浄水は、排水ドレン弁14を通じて排水経路へと排水される。   Next, the chemical solution is discharged (washed with water). First, the chemical solution inlet valve 13, the first raw water valve 3a and the second raw water valve 3b of the raw water path are closed, and the raw water drain valve 4 is opened. Wash water supplied to the backwash path from a wash water source (may be a facility that stores permeate from the membrane separator, but can supply wash water of the same quality as the permeate) The pressure is increased by the backwash pump 19. The first backwash valve 20 a and the second backwash valve 20 b are opened, and wash water is supplied to the secondary side of the membrane module 6. At this time, the membrane 6 a in the membrane module is washed with water, and the wash water that has flowed to the primary side of the membrane module 6 is drained to the drainage path through the drainage drain valve 14.

排水経路15へと排水される洗浄排水について、その残留塩素濃度が所定値(0.5ppm程度が適当)以下となれば水洗浄を終了するのが望ましい。まず、第二逆洗ドレン弁20bを閉じ、逆洗ポンプ19を停止する。逆洗経路ドレン弁21を開き、逆洗経路内の洗浄水を排水する。また、排水弁14も閉じる。次に、原水ドレン弁4を閉じ、第二原水弁3b、第一透過水側排水弁16a及び第二透過水側排水弁16bを開き、透過水側排水経路ドレン弁17を閉じる。原水ポンプ2aを再起動し、第一原水弁3aを開き、原水経路1を洗浄する。透過側排水経路の排水について、その残留塩素濃度が所定値(0.5ppm程度が適当)以下であることを確認すれば、すべての弁を閉じ、原水ポンプを停止する。   About the washing waste water drained to the drainage channel 15, it is desirable to finish the water washing if the residual chlorine concentration is below a predetermined value (approx. 0.5 ppm is appropriate) or less. First, the second backwash drain valve 20b is closed and the backwash pump 19 is stopped. The backwash path drain valve 21 is opened, and the wash water in the backwash path is drained. The drain valve 14 is also closed. Next, the raw water drain valve 4 is closed, the second raw water valve 3b, the first permeated water side drain valve 16a and the second permeated water side drain valve 16b are opened, and the permeated water side drain path drain valve 17 is closed. The raw water pump 2a is restarted, the first raw water valve 3a is opened, and the raw water path 1 is washed. If it is confirmed that the residual chlorine concentration of the drainage in the permeate side drainage channel is below the specified value (approx. 0.5ppm is appropriate), close all valves and stop the raw water pump.

(通常運転再開)
次に、透過水経路の第二透過水弁7bは閉じたまま、第一透過水弁7a及びドレン弁8を開き、膜モジュール6の透過水をドレン経路9へと排水する。このとき、第一透過水弁7a排水弁までの透過水側排水経路は、膜モジュール6の透過水によって洗浄される。ドレン経路9の排水について、その塩素濃度が所定値(0.5ppm程度が適当)以下となれば、ドレン弁8を閉じ、第二透過水弁7bを開く。
(Resumption of normal operation)
Next, the first permeated water valve 7 a and the drain valve 8 are opened while the second permeated water valve 7 b of the permeated water path is closed, and the permeated water of the membrane module 6 is drained to the drain path 9. At this time, the permeate-side drainage path to the first permeate valve 7a drainage valve is washed with the permeate of the membrane module 6. When the chlorine concentration of the drainage water in the drain passage 9 becomes a predetermined value (approx. 0.5 ppm is appropriate) or less, the drain valve 8 is closed and the second permeated water valve 7b is opened.

第二透過水弁7bの下流には、自動残留塩素濃度計10が設置されており、貯水設備へと供給される膜モジュール6透過水中の塩素濃度を連続して計測している。薬液洗浄で使用する塩素系薬液には、水酸化ナトリウム等の有害物が含まれる場合もあるため、薬液洗浄後の水洗浄、原水及び透過水による洗浄によって配管内に残存する薬液をすべて排出する必要がある。本発明の飲料水製造用膜分離装置では、二重の止水弁及びそれらの間に設置されたドレン弁によって、膜モジュール6に接続されている配管内をもれなく洗浄することが可能であるが、自動残留塩素濃度計10によって塩素濃度を測定することにより、貯水設備へ供給される前に最終の安全確認がなされる。   An automatic residual chlorine concentration meter 10 is installed downstream of the second permeated water valve 7b, and continuously measures the chlorine concentration in the permeated water of the membrane module 6 supplied to the water storage facility. Chlorine chemicals used for chemical cleaning may contain harmful substances such as sodium hydroxide, so all chemicals remaining in the piping are discharged by water cleaning after chemical cleaning, raw water and permeated water cleaning. There is a need. In the membrane separator for drinking water production of the present invention, the pipe connected to the membrane module 6 can be thoroughly cleaned by the double water stop valve and the drain valve installed between them. By measuring the chlorine concentration with the automatic residual chlorine concentration meter 10, a final safety check is made before being supplied to the water storage facility.

自動残留塩素濃度計は、透過水中の塩素濃度が所定値(1.0ppm程度が適当)以上の異常値であることを測定した場合、第一透過水弁7a及び第二透過水弁7bの少なくとも一方を自動的に閉じるように構成することが好ましい。また、このとき、原水ポンプ2aも自動的に停止するように構成することが好ましい。   When the automatic residual chlorine concentration meter measures that the chlorine concentration in the permeated water is an abnormal value equal to or higher than a predetermined value (approx. 1.0 ppm is appropriate), at least one of the first permeated water valve 7a and the second permeated water valve 7b Is preferably configured to automatically close. At this time, the raw water pump 2a is also preferably configured to automatically stop.

原水経路2等も原水経路1と同様の構成となっており、透過水中残留塩素濃度に異常が認められた膜モジュールからの透過水が、貯水設備に供給されることが防止される。なお、複数の膜モジュールの内、透過水中残留塩素濃度に異常が認められた膜モジュールの透過水経路の止水弁のみ閉じられるので、それ以外の膜モジュールでは透過水の製造を継続することが可能である。   The raw water path 2 and the like have the same configuration as that of the raw water path 1, and the permeated water from the membrane module in which the permeated water residual chlorine concentration is abnormal is prevented from being supplied to the water storage facility. In addition, since only the water stop valve of the permeate path of the membrane module in which an abnormality is observed in the residual chlorine concentration in the permeated water among the plurality of membrane modules is closed, the production of permeated water may be continued in other membrane modules. Is possible.

[実施例]
4系統のMF膜(ポリフッ化ビニリデン(PVDF)製)モジュールからなる本発明の飲料水製造用膜分離装置によって、4箇所の浅井戸の井戸水を原水としてMF膜透過水を飲料水として製造した。この飲料水製造用膜分離装置の処理条件等は、表1に示す通りであった。
[Example]
With the membrane separator for drinking water production of the present invention consisting of four MF membrane (made of polyvinylidene fluoride (PVDF)) modules, the well water in four shallow wells was used as raw water and the MF membrane permeated water was produced as drinking water. The processing conditions of this membrane separator for drinking water production were as shown in Table 1.

Figure 2008237980
Figure 2008237980

なお、本実施例では、通常運転時の物理洗浄として、表1の通り、逆洗浄を30分間に1回の頻度で実施した。物理洗浄には次亜塩素酸濃度3ppmのMF膜モジュール透過水を用い、逆洗浄時にはエアスクラビングも同時に行った。また、低濃度薬液による薬液洗浄には500ppm次亜塩素酸ナトリウムを用い、1週間に1回、1時間、浸漬させた。各MF膜モジュールの低濃度薬液による薬液洗浄は、24時間のタイムラグを設けて順次行った。   In this example, as the physical cleaning during normal operation, as shown in Table 1, reverse cleaning was performed once every 30 minutes. For physical cleaning, MF membrane module permeate with a hypochlorous acid concentration of 3 ppm was used, and air scrubbing was also performed at the time of reverse cleaning. Moreover, 500 ppm sodium hypochlorite was used for the chemical | medical solution washing | cleaning by a low concentration chemical | medical solution, and it was immersed for 1 hour once a week. The chemical cleaning of each MF membrane module with a low concentration chemical was sequentially performed with a 24-hour time lag.

MF膜透過水の製造は、平成18年2月から11ヶ月間行ったが、当初は物理洗浄(逆洗浄)のみ行い、低濃度薬液による薬液洗浄は行わなかった。この11ヶ月間のMF膜モジュールの膜間差圧(4系統のうちNo.1の値、補正膜間差圧とは25℃における圧力に補正した数値(kPa))の変化を、図2に示す。通常の原水濁度は0.1度程度であり、4月までの2ヶ月間は安定して透過水が製造できていた。   Production of MF membrane permeated water was carried out for 11 months from February 2006. Initially, only physical cleaning (reverse cleaning) was performed, and chemical cleaning with a low concentration chemical solution was not performed. Fig. 2 shows the changes in the transmembrane pressure difference of the MF membrane module over the past 11 months (No. 1 value among the 4 systems, and the corrected transmembrane pressure value is the value corrected to the pressure at 25 ° C (kPa)). Show. The normal raw water turbidity was about 0.1 degree, and permeated water could be produced stably for two months until April.

ところが、平成18年4月12日と13日は大雨の影響で原水濁度が1度程度にまで上昇した。この濁度上昇により膜間差圧が2日間で70kPaから約150kPaにまで上昇した。30分間に1回の物理洗浄(逆洗浄)を繰り返し実施することにより、一時的な膜間差圧の低下は認められたが、物理洗浄終了後、短時間で膜間差圧が上昇に転じた。   However, on April 12 and 13, 2006, the raw water turbidity increased to about 1 degree due to heavy rain. This increase in turbidity increased the transmembrane pressure from 70 kPa to about 150 kPa in two days. By repeatedly performing physical cleaning (back cleaning) once every 30 minutes, a temporary decrease in the transmembrane pressure difference was observed, but after the physical cleaning, the transmembrane pressure difference started to increase in a short time. It was.

そこで、4月14日に物理洗浄に加えて低濃度薬液による薬液洗浄を実施し、その後は1週間に1回、低濃度薬液による薬液洗浄を行った。その結果、膜間差圧は4月11日以前のレベルまで低下し、それ以降8ヶ月間は安定運転を継続することができた。   Therefore, in addition to physical cleaning on April 14, chemical cleaning with a low concentration chemical was performed, and thereafter, chemical cleaning with a low concentration chemical was performed once a week. As a result, the transmembrane pressure difference decreased to a level before April 11, and stable operation could be continued for 8 months thereafter.

本発明の飲料水製造用膜分離装置及びその運転方法は、膜透過水を飲料水として使用するための技術として、環境、衛生分野において有用である。   INDUSTRIAL APPLICABILITY The membrane separation apparatus for producing drinking water and the method for operating the same of the present invention are useful in the environment and hygiene fields as a technique for using membrane permeated water as drinking water.

本発明の飲料水製造用膜分離装置の概略構成図である。It is a schematic block diagram of the membrane separator for drinking water manufacture of this invention. 実施例におけるMF膜モジュールの膜間差圧の平均値の変化を表したグラフである。It is the graph showing the change of the average value of the transmembrane differential pressure | voltage of the MF membrane module in an Example.

符号の説明Explanation of symbols

1:原水タンク
2a〜2c:原水ポンプ
3a:第一原水弁
3b:第二原水弁
4:原水ドレン弁
5,9,18,22:ドレン経路
6:膜モジュール
6a:膜
7a:第一透過水弁
7b:第二透過水弁
8,17,21:ドレン弁
10:自動塩素濃度計
11:薬液タンク
12:薬液ポンプ
13:薬液入口弁
14:排水弁
15:排水経路
16a:第一透過水側排水弁
16b:第二透過水側排水弁
19:逆洗ポンプ
20a:第一逆洗弁
20b:第二逆洗弁
1: Raw water tank 2a-2c: Raw water pump 3a: First raw water valve 3b: Second raw water valve 4: Raw water drain valve 5, 9, 18, 22: Drain path 6: Membrane module 6a: Membrane 7a: First permeate Valve 7b: Second permeated water valve 8, 17, 21: Drain valve 10: Automatic chlorine concentration meter 11: Chemical liquid tank 12: Chemical liquid pump 13: Chemical liquid inlet valve 14: Drain valve 15: Drainage path 16a: First permeate side Drain valve 16b: second permeated water side drain valve 19: backwash pump 20a: first backwash valve 20b: second backwash valve

Claims (8)

複数の膜モジュールからなる膜分離装置と、
膜モジュールの原水側から薬液を供給する薬液経路と、
膜モジュールの透過水側から逆洗水を供給する逆洗経路とを有し、
薬液を薬液経路に供給して所定時間滞留させる飲料水製造用膜分離装置であって、
原水を膜モジュールへ供給する原水経路、膜モジュールの透過水を飲料水として流出させる透過水経路、膜モジュールの原水側排水経路及び透過水側排水経路のそれぞれに第一止水弁及び第二止水弁を有し、
第一止水弁と第二止水弁との間にはドレン弁を備えるドレン経路を有することを特徴とする飲料水製造用膜分離装置。
A membrane separation device comprising a plurality of membrane modules;
A chemical path for supplying the chemical from the raw water side of the membrane module;
A backwash path for supplying backwash water from the permeate side of the membrane module;
A drinking water production membrane separator for supplying a chemical solution to a chemical solution path and retaining it for a predetermined time,
A first water stop valve and a second stop valve are respectively provided in a raw water path for supplying raw water to the membrane module, a permeated water path for flowing out the permeated water of the membrane module as drinking water, and a raw water side drainage path and a permeated water side drainage path of the membrane module. Have a water valve,
A drinking water producing membrane separation apparatus comprising a drain path having a drain valve between a first water stop valve and a second water stop valve.
前記薬液が塩素系薬液であり、各膜モジュールの透過水経路には透過水中の塩素濃度を常時測定する塩素濃度計が設置され、
該塩素濃度計によって塩素濃度の異常値が測定された場合には、異常値が測定された膜モジュールの透過水経路の第一止水弁及び第二止水弁が閉じられる請求項1に記載の飲料水製造用膜分離装置。
The chemical solution is a chlorine-based chemical solution, and a chlorine concentration meter that constantly measures the chlorine concentration in the permeated water is installed in the permeate path of each membrane module,
2. The first stop valve and the second stop valve of the permeate passage of the membrane module where the abnormal value is measured are closed when an abnormal value of the chlorine concentration is measured by the chlorine concentration meter. Membrane separator for drinking water production.
前記薬液が濃度5ppm以上1000ppm以下の次亜塩素酸塩水溶液であり、5〜15日に1回薬液を薬液供給経路に供給する請求項1又は2に記載の飲料水製造用膜分離装置。   The membrane separator for drinking water production according to claim 1 or 2, wherein the chemical solution is a hypochlorite aqueous solution having a concentration of 5 ppm or more and 1000 ppm or less, and the chemical solution is supplied to the chemical solution supply path once every 5 to 15 days. 前記膜モジュールが精密ろ過膜モジュール又は限外ろ過膜モジュールである請求項1乃至3のいずれか1項に記載の飲料水製造用膜分離装置。   The membrane separator for drinking water production according to any one of claims 1 to 3, wherein the membrane module is a microfiltration membrane module or an ultrafiltration membrane module. 複数の膜モジュールからなる膜分離装置と、
膜モジュールの原水側から薬液を供給する薬液経路と、
膜モジュールの透過水側から逆洗水を供給する逆洗経路とを有し、
薬液を薬液経路に供給して所定時間滞留させる飲料水製造用膜分離装置において、
原水を膜モジュールへ供給する原水経路、膜モジュールの透過水を流出させる透過水経路、膜モジュールの原水側及び透過水側排水経路のそれぞれに第一止水弁及び第二止水弁を設置し、
第一止水弁と第二止水弁との間にはドレン弁を備えるドレン経路を設置することを特徴とする飲料水製造用膜分離装置の運転方法。
A membrane separation device comprising a plurality of membrane modules;
A chemical path for supplying the chemical from the raw water side of the membrane module;
A backwash path for supplying backwash water from the permeate side of the membrane module;
In a drinking water production membrane separation apparatus for supplying a chemical solution to a chemical solution path and retaining it for a predetermined time,
A first water stop valve and a second water stop valve are installed in each of the raw water path for supplying raw water to the membrane module, the permeated water path for discharging the permeated water of the membrane module, and the raw water side and the permeated water side drainage path of the membrane module. ,
A method for operating a membrane separator for drinking water production, wherein a drain path including a drain valve is installed between a first water stop valve and a second water stop valve.
前記薬液が塩素系薬液であり、各膜モジュールの透過水経路には透過水中の塩素濃度を常時測定する塩素濃度計を設置し、
該塩素濃度計によって塩素濃度の異常値が測定された場合には、異常値が測定された膜モジュールの透過水経路の第一止水弁及び第二止水弁が閉じられる請求項5に記載の飲料水製造用膜分離装置の運転方法。
The chemical solution is a chlorine-based chemical solution, and a chlorine concentration meter that constantly measures the chlorine concentration in the permeated water is installed in the permeate path of each membrane module,
The first stop valve and the second stop valve of the permeate path of the membrane module in which the abnormal value is measured are closed when an abnormal value of the chlorine concentration is measured by the chlorine concentration meter. Method of the membrane separator for drinking water production of the present invention.
前記薬液が濃度5ppm以上1000ppm以下の次亜塩素酸塩水溶液であり、5〜15日に1回薬液を薬液供給経路に供給する請求項5又は6に記載の飲料水製造用膜分離装置の運転方法。   The operation of the membrane separator for drinking water production according to claim 5 or 6, wherein the chemical solution is a hypochlorite aqueous solution having a concentration of 5 ppm or more and 1000 ppm or less, and the chemical solution is supplied to the chemical solution supply path once every 5 to 15 days. Method. 前記膜モジュールが精密ろ過膜モジュール又は限外ろ過膜モジュールである請求項5乃至7のいずれか1項に記載の飲料水製造用膜分離装置の運転方法。   The method for operating a membrane separator for drinking water production according to any one of claims 5 to 7, wherein the membrane module is a microfiltration membrane module or an ultrafiltration membrane module.
JP2007078703A 2007-03-26 2007-03-26 Membrane separator for drinking water production and operation method thereof Active JP5049623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078703A JP5049623B2 (en) 2007-03-26 2007-03-26 Membrane separator for drinking water production and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078703A JP5049623B2 (en) 2007-03-26 2007-03-26 Membrane separator for drinking water production and operation method thereof

Publications (2)

Publication Number Publication Date
JP2008237980A true JP2008237980A (en) 2008-10-09
JP5049623B2 JP5049623B2 (en) 2012-10-17

Family

ID=39909957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078703A Active JP5049623B2 (en) 2007-03-26 2007-03-26 Membrane separator for drinking water production and operation method thereof

Country Status (1)

Country Link
JP (1) JP5049623B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016100A (en) * 2009-07-10 2011-01-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
WO2011122175A1 (en) * 2010-03-30 2011-10-06 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP4825933B1 (en) * 2010-03-30 2011-11-30 株式会社神鋼環境ソリューション Water treatment method
EP2703066A1 (en) * 2011-04-25 2014-03-05 Toray Industries, Inc. Method for cleaning membrane module
WO2019102711A1 (en) * 2017-11-24 2019-05-31 メタウォーター株式会社 Filter, diaphragm filtration device, and filtration method using filter
JP2019107592A (en) * 2017-12-15 2019-07-04 株式会社ウェルシィ Method for producing permeation water, water treatment device and method for operating the water treatment device
CN110028177A (en) * 2019-03-28 2019-07-19 浙江天行健水务有限公司 Ceramic membrane integrated purifying technique
CN113491954A (en) * 2020-03-18 2021-10-12 格兰富控股联合股份公司 Clean-in-place method and filter device
CN114577697A (en) * 2022-02-21 2022-06-03 中国食品药品检定研究院 Three-method combined standard membrane for calibrating water vapor transmission capacity and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016100A (en) * 2009-07-10 2011-01-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
WO2011122175A1 (en) * 2010-03-30 2011-10-06 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP4825933B1 (en) * 2010-03-30 2011-11-30 株式会社神鋼環境ソリューション Water treatment method
EP2703066A1 (en) * 2011-04-25 2014-03-05 Toray Industries, Inc. Method for cleaning membrane module
EP2703066A4 (en) * 2011-04-25 2014-12-03 Toray Industries Method for cleaning membrane module
JP6003646B2 (en) * 2011-04-25 2016-10-05 東レ株式会社 Membrane module cleaning method
WO2019102711A1 (en) * 2017-11-24 2019-05-31 メタウォーター株式会社 Filter, diaphragm filtration device, and filtration method using filter
JP2019093353A (en) * 2017-11-24 2019-06-20 メタウォーター株式会社 Filter, membrane filtration device, and filtration method using filter
JP2019107592A (en) * 2017-12-15 2019-07-04 株式会社ウェルシィ Method for producing permeation water, water treatment device and method for operating the water treatment device
CN110028177A (en) * 2019-03-28 2019-07-19 浙江天行健水务有限公司 Ceramic membrane integrated purifying technique
CN113491954A (en) * 2020-03-18 2021-10-12 格兰富控股联合股份公司 Clean-in-place method and filter device
CN114577697A (en) * 2022-02-21 2022-06-03 中国食品药品检定研究院 Three-method combined standard membrane for calibrating water vapor transmission capacity and preparation method thereof

Also Published As

Publication number Publication date
JP5049623B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5049623B2 (en) Membrane separator for drinking water production and operation method thereof
JP6003646B2 (en) Membrane module cleaning method
JP2005087887A (en) Membrane washing method
JP2007130523A (en) Membrane washing method for water treatment system
KR101299165B1 (en) Pressured membrane filtration apparatus and method with chemical feed automatic control
JP5151009B2 (en) Membrane separation device and membrane separation method
JP2015229146A (en) Cleaning method of membrane module
KR101050418B1 (en) Intelligent High Efficiency Membrane Maintenance Cleaning System and Method
CN115297950B (en) Washing failure determination method for water generator and washing failure determination program
JPH081158A (en) Method for operating water purification system and water purifier
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JPH09220449A (en) Membrane separation device
JP2013034938A (en) Method for washing membrane module
JP7075751B2 (en) How to clean the filtration membrane
JP4825933B1 (en) Water treatment method
JP2007245051A (en) Method of cleaning filter membrane
JP2006212536A (en) Apparatus for injecting lime water
JP2015020081A (en) Membrane module cleaning method and membrane module cleaning apparatus
KR20090043842A (en) Enhanced flux maintenance method
JP2007014829A (en) On-line washing method
JP4156984B2 (en) Cleaning method for separation membrane module
KR20150005008A (en) Maintenance chemical cleaning method of separation membrane and Maintenance chemical cleaning system thereof
JP4804097B2 (en) Continuous operation method of water purification system
JP2006043655A (en) Water treating apparatus and operation method therefor
JP4872391B2 (en) Membrane separation device and membrane separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5049623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250