JPS62294484A - Reverse osmosis treatment of water containing silica at high concentration - Google Patents

Reverse osmosis treatment of water containing silica at high concentration

Info

Publication number
JPS62294484A
JPS62294484A JP61138486A JP13848686A JPS62294484A JP S62294484 A JPS62294484 A JP S62294484A JP 61138486 A JP61138486 A JP 61138486A JP 13848686 A JP13848686 A JP 13848686A JP S62294484 A JPS62294484 A JP S62294484A
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
stage
silica
osmosis treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61138486A
Other languages
Japanese (ja)
Inventor
Kenichi Ushigoe
健一 牛越
Yoshimichi Mitsukami
光上 義道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pfaudler Co Ltd
Original Assignee
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pfaudler Co Ltd filed Critical Shinko Pfaudler Co Ltd
Priority to JP61138486A priority Critical patent/JPS62294484A/en
Publication of JPS62294484A publication Critical patent/JPS62294484A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain highly desalted water containing no scale and sludge, by performing desalting by reverse osmosis treatment in a first stage wherein an acid is added to water to remove the divalent ion therein and a second stage wherein an alkali agent is added to water to remove silica. CONSTITUTION:Raw water 1 containing silica at high concn. is pressurized by a pressure pump 5 to raise the pressure thereof to reverse osmosis pressure and sent to a reverse osmosis apparatus 6 to be subjected to first stage reverse osmosis treatment. At this time, an acid is injected in raw water in order to prevent scaling and the pH of raw water at the inlet of the reverse osmosis apparatus 6 is adjusted to weak acidity. The transmitted water 9 from which the hardness components in water such as calcium and magnesium are removed at a high ratio in the first stage is contacted with air in a decarbonator 10 to remove carbon dioxide. An alkali agent is added to the treated water after degassing from a storage tank 10 to raise the pH of the treated water to make it possible to raise silica solubility to a large extent and silica is removed in the reverse osmosis apparatus 19 at a second stage.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、シリカを多く含む水を原水として飲料水、工
業用水、超純水製造用水等の脱塩水を製造する場合に使
用される逆滲透処理法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention produces desalinated water such as drinking water, industrial water, and ultrapure water production water using water containing a large amount of silica as raw water. This paper relates to a reverse percolation processing method used when

(従来の技術) 逆浸透処理を含むプロセスにより脱塩水を得ようとする
場合に、火山系シラス堆積地域のように地域によって原
水中に多くのシリカが含まれることがある。この場合に
逆滲透処理で問題になることは、逆浸透膜の濃縮水側に
おいてシリカが濃縮され、溶解度を超える濃度とな゛す
、リカが膜表面に析出することでちる。
(Prior Art) When desalinated water is obtained by a process including reverse osmosis treatment, the raw water may contain a large amount of silica depending on the region, such as areas where volcanic whitebait is deposited. In this case, the problem with reverse osmosis treatment is that the silica is concentrated on the concentrated water side of the reverse osmosis membrane, and the silica is deposited on the membrane surface at a concentration that exceeds its solubility.

一般に水に対するシリカの溶解度は、PH,水温等によ
って影響され、例えばPH7,0、水温25’CK、お
いて約100 mg / eである。
Generally, the solubility of silica in water is affected by pH, water temperature, etc., and is, for example, about 100 mg/e at PH 7.0 and water temperature 25'CK.

前記のシリカの膜表面析出を回避乃至解決するため、従
来技術では次のような方法がとられている。
In order to avoid or solve the above-mentioned precipitation of silica on the film surface, the following methods have been adopted in the prior art.

(i)  例えば原水が50 mg / eのシリカを
含むものとすると、前記の溶解度の関係から、逆浸透処
理で原水の50%の透過率を得るだめに原水の50%の
濃縮水をブローするという低い回収率の運転に留める。
(i) For example, if the raw water contains 50 mg/e of silica, from the above-mentioned solubility relationship, in order to obtain 50% permeability of the raw water in reverse osmosis treatment, 50% of the raw water must be blown with concentrated water. Limit operation to low recovery rate.

(i)  アルミニウム塩またはマグネシウム塩等を太
“■に使用する共沈法に上り脱珪処理するという前処理
を行う。
(i) A pretreatment of desiliconization is carried out using a coprecipitation method using a large amount of aluminum salt or magnesium salt.

(従来技術の問題点) 前記の従来技術の(i)では原水の回収率を非常に低い
レベルに留める運転をしなければならず、運転費、設備
費とも高くなる。従来技術の(i)では、大量の薬品を
使用するので運転費がかかり、しかも多量の共沈スラッ
ジが発生するのでその処理が必要となる。
(Problems with the prior art) In the prior art (i) described above, operation must be performed to keep the recovery rate of raw water at a very low level, resulting in high operating costs and equipment costs. Conventional technology (i) uses a large amount of chemicals, resulting in high operating costs, and also generates a large amount of coprecipitated sludge, which must be disposed of.

本発明は従来技術の上記問題点に解決を与え、脱珪処理
のように大量の薬品を消費するとどなく、スラツチの発
生も少く、しかも高回収率で良質な水が得られる方法を
提供することを目的とする。
The present invention provides a solution to the above-mentioned problems of the prior art, and provides a method that does not consume a large amount of chemicals as in desiliconization treatment, generates less sludge, and can obtain high-quality water with a high recovery rate. The purpose is to

(問題点を解決するだめの手段) 前記目的は、本発明方法により、高濃度のシリカを含む
水を逆滲透法により処理するだめ、逆浸透処理を2段階
に分け、その第1段階においてはカルシウム、マグネシ
ウム等の水の硬度成分を高率で除去するがシリカ分は殆
んど通過する逆浸透膜を使用して逆浸透処理を行い、そ
の第2段階において1第1段階処理水に少量のアルカリ
剤を添加してPHを」こげるか、必要な場合に少量のス
ケール防止剤を添加するかしてシリカの析出を防止l−
ながら逆浸透処理を行うことにより、達成される。
(Means for Solving the Problems) The above object is to treat water containing a high concentration of silica by the reverse osmosis method by the method of the present invention.The reverse osmosis treatment is divided into two stages, and in the first stage, Reverse osmosis treatment is performed using a reverse osmosis membrane that removes water hardness components such as calcium and magnesium at a high rate, but allows most of the silica to pass through.In the second stage, a small amount is added to the water treated in the first stage. Prevent the precipitation of silica by adding an alkaline agent to increase the pH, or by adding a small amount of scale inhibitor if necessary.
This is achieved by performing reverse osmosis treatment.

本発明方法においては、nなった分離特性を有する逆浸
透装置を適切に組合わせ2段階にわたって逆浸透処理を
実施する。
In the method of the present invention, reverse osmosis treatment is carried out in two stages by appropriately combining reverse osmosis devices having n separation characteristics.

すなわち、第1段階においては、水中の2価イオン(硬
度成分等)を高率で除去しシリカ分をろまり除去しない
特性を持つ所謂ルーズな逆浸透膜を用いて逆浸透処理を
行い、第2段階では第1段階の透過水をアルカリ剤、例
えば苛性ソーダ等の添加によりP■■を9,0程度に上
げて高い脱塩率を有する逆浸透膜を用いて逆浸透処理を
行うようにする。
That is, in the first stage, reverse osmosis treatment is performed using a so-called loose reverse osmosis membrane that removes divalent ions (hardness components, etc.) in water at a high rate and does not remove silica content. In the second stage, the permeated water from the first stage is added with an alkaline agent, such as caustic soda, to raise the P■■ to about 9.0, and reverse osmosis treatment is performed using a reverse osmosis membrane with a high salt removal rate. .

上記の本発明の基本的プロセスの処理を有利に実施する
ため、付帯的手段として、第1段階の逆浸透装置の入口
には硫酸等の酸を少量注入して1)J−Iを弱酸側とし
、第1段階逆浸透処理において炭酸カルシウム等の析出
を防止する。
In order to advantageously carry out the above basic process of the present invention, as an additional means, a small amount of acid such as sulfuric acid is injected into the inlet of the first stage reverse osmosis device to This prevents the precipitation of calcium carbonate, etc. in the first stage reverse osmosis treatment.

そして第1段階逆浸透装置の前まだはその透過水側にお
いて空気吹込み方式等による脱炭酸塔を設置して炭酸ガ
スのストリッピングを行い、それにより第1段階逆浸透
処理入口においてPHを調整するために必要とするアル
カリ剤の量の低減を図る。また第2段階逆浸透装置の入
口においては、必要に応じ、アルカリ剤の他に炭酸カル
シウム、リン酸カルシウム、硫酸カルシウム等の析出を
防止するために極く少量のスケール防止剤を添加しても
よい。
Before the first stage reverse osmosis equipment, a decarbonation tower using an air blowing method is installed on the permeated water side to strip carbon dioxide gas, thereby adjusting the pH at the first stage reverse osmosis treatment inlet. The aim is to reduce the amount of alkaline agent required to Further, at the inlet of the second stage reverse osmosis device, in addition to the alkaline agent, a very small amount of a scale inhibitor may be added in order to prevent precipitation of calcium carbonate, calcium phosphate, calcium sulfate, etc., if necessary.

添付図は本発明方法を実施するフローの1例を示す。The attached figure shows an example of a flow for implementing the method of the invention.

高濃度のシリカを含む原水(1)は原水槽(2)に送ン
ーきれ、原水ポンプ(3)により加圧して送出され、ミ
クロンフィルター(4)を通って濾過され、加圧ポンプ
(5)によりさらに逆浸透圧力に昇圧されて逆浸透装置
(6)に送られ第1段階の逆浸透処理が行なわれる0と
の際に、第1段階の逆浸透装置(6)の濃縮水側にスケ
ーリングが起らないようにするため、酸注入槽(7)を
設は酸注入ポンプ(8)により原水に酸を注入し、逆浸
透装置(6)の入口のIIを弱酸側に調整する。ミクロ
ンフィルター(4)は後続の加圧ポンプ(5)、逆浸透
装置(6)に目づまり、かみ込みを起させないために前
置する。
Raw water (1) containing a high concentration of silica is sent to a raw water tank (2), pressurized and sent out by a raw water pump (3), filtered through a micron filter (4), and then sent to a pressurizing pump (5). The pressure is further increased to reverse osmosis pressure and sent to the reverse osmosis device (6) where the first stage reverse osmosis treatment is performed. In order to prevent this from occurring, an acid injection tank (7) is installed, and an acid injection pump (8) is used to inject acid into the raw water, and the inlet II of the reverse osmosis device (6) is adjusted to the weak acid side. The micron filter (4) is placed in front of the subsequent pressure pump (5) and reverse osmosis device (6) to prevent clogging and clogging.

逆滲透装置において第1段階脱塩処理された透過水(9
)は脱炭酸塔a1に送られ塔内の充填物(11)間を流
下する間にブロアー02により塔内に吹込まれた空気と
接触し炭酸ガスが除去される。
The permeated water (9
) is sent to the decarboxylation tower a1, and while flowing down between the packings (11) in the tower, it comes into contact with the air blown into the tower by the blower 02, and carbon dioxide gas is removed.

脱気された第1段階処理水には、アルカリ剤が貯槽0か
らアルカリ剤注入ポンプ0→により注入されてPHがア
ルカリ側に調整され、また必要に応じ少量のスケール防
止剤が貯槽aυからスケール防止剤注入ポンプ0呻によ
り注入されて、第1段階処理水槽σカに貯められる。
An alkaline agent is injected into the deaerated first stage treated water from the storage tank 0 by the alkaline agent injection pump 0→ to adjust the pH to the alkaline side, and if necessary, a small amount of scale preventive agent is added to the scale from the storage tank aυ. The inhibitor is injected by the pump 0 and stored in the first stage treatment tank σ.

このPH調整されたスケール防止剤を任意に含む第1段
階処理水は第2段加圧ポンプ(1樽によシ所要圧力に加
圧されて逆浸透装置0呻に送られ第2段階の逆浸透処理
が行なわれ、第2段階処理水槽(財)に貯められる。
The first-stage treated water, which optionally contains this pH-adjusted scale inhibitor, is pressurized to the required pressure by a second-stage pressure pump (1 barrel) and sent to the reverse osmosis equipment. Infiltration treatment is performed and the water is stored in the second stage treatment tank.

この本発明方法の処理を行った処理水は使用目的に必要
な処理、例えばPH調整、殺菌等がなされた後、使用点
に供給される。
The treated water treated according to the method of the present invention is supplied to the point of use after being subjected to treatments necessary for the purpose of use, such as pH adjustment and sterilization.

第1段階逆浸透装置(6)の濃縮側の濃縮水CDは弱酸
性、第2段階逆浸透装置(191の濃縮側の濃縮水(イ
)はアルカリ性のため、両者を混合し混合濃縮水(至)
とすれば、PHは5.8〜8.6の中性に調整され、排
水としてその1−1放流して差支えない。
The concentrated water CD on the concentration side of the first stage reverse osmosis device (6) is weakly acidic, and the concentrated water (A) on the concentration side of the second stage reverse osmosis device (191) is alkaline, so the two are mixed and mixed concentrated water ( To)
If so, the pH will be adjusted to a neutral value of 5.8 to 8.6, and the 1-1 discharge can be discharged as wastewater.

尚、外気に塵埃などが含まれる場合は、ブロアー@の空
気吹込口に適当なフィルタを設備し、あるいは原水ポン
プ(3)出口に、酸注入後に、ブロアーを含む脱炭酸塔
設備を設置しその処理水をミクロンフィルター(4)、
加圧ポンプ(5)を経て第1段階逆浸透装置(6)に送
るようにしてもよい。
If the outside air contains dust, etc., install an appropriate filter at the air inlet of the blower @, or install decarbonation tower equipment including a blower at the outlet of the raw water pump (3) after injecting acid. Micron filter (4) for treated water,
It may be sent to the first stage reverse osmosis device (6) via a pressure pump (5).

後者の場合は、逆浸透装置(6)の透過水(9)は直接
貯槽σηに入れるようにする。
In the latter case, the permeated water (9) of the reverse osmosis device (6) is directly introduced into the storage tank ση.

(作用) 本発明方法においては、第1段階逆浸透処理でけカルシ
ウム、マグネシウム、硫酸イオン、リン酸イオン等のス
ケール生成成分イオンは殆んど除去されるので、ス)r
 −Jl/生成成分を殆んど含捷ない透過水が得られる
。そしてシリカは第1段階逆浸透装置の透過水側にかな
り透過するので、濃縮水側であまりシリカは濃縮されず
、析出は起らず、第1投階逆浸透処理は高い回収率で実
施することができる。
(Function) In the method of the present invention, most of the scale-forming component ions such as calcium, magnesium, sulfate ions, and phosphate ions are removed in the first stage reverse osmosis treatment.
-Jl/Permeated water containing almost no produced components is obtained. Since a considerable amount of silica permeates into the permeated water side of the first-stage reverse osmosis equipment, silica is not very concentrated on the concentrated water side and no precipitation occurs, allowing the first-stage reverse osmosis treatment to be carried out at a high recovery rate. be able to.

上記のように第1段階逆浸透処理でスケール成分が殆ん
ど除去されるので、第2段階逆浸透処理ではその人[1
側でPI−Tが高くてもスケールの生成が起らない。一
方、シリカ溶解度はPHを高くすると著しく上昇し、例
えばPHが9.0になると25′cの水温で溶解度は約
200 mg/eにもなる0従って第2段階逆浸透処理
では入口側でアルカリ剤番添加して1)1■を上げるこ
とによりシリカ溶解度を大幅に」二昇させ、逆浸透膜と
して2価イオンのみならず1価イオンおよびシリカを高
説塩率で除去する膜を使用してこれらを除去する処理を
行い、高回収率を得ることができる。
As mentioned above, most of the scale components are removed in the first stage reverse osmosis treatment, so in the second stage reverse osmosis treatment, the person [1
No scale formation occurs even if the PI-T is high on the side. On the other hand, the solubility of silica increases significantly as the pH increases; for example, when the pH is 9.0, the solubility reaches approximately 200 mg/e at a water temperature of 25'C. Therefore, in the second stage of reverse osmosis treatment, alkali The solubility of silica is significantly increased by adding the agent number 1) to increase 1■, and a reverse osmosis membrane that removes not only divalent ions but also monovalent ions and silica at a high salt rate is used. A high recovery rate can be obtained by performing a process to remove these.

(実施例) 本発明方法により2図示例の装置を使用し、高濃度のシ
リカを含む原水に先ず硫酸を注入して弱酸性として第1
段階の逆浸透処理を実施する。その逆浸透膜としては、
市場入手できる東しく株)製品番SU −20ORまた
は5U−20O8を使用し回収率V190%程度にとる
0 第1段階逆浸透処理の透過水は脱炭酸塔で炭酸ガスをス
トリッピングし、苛性ソーダを注入してPI(9,0に
調整しまた安全のためポリリン酸塩系スケール防止剤を
3 mg / e添加した上で、第2段階逆浸透処理を
実施する。
(Example) According to the method of the present invention, sulfuric acid was first injected into raw water containing high concentration of silica using the apparatus shown in the two illustrated examples to make it weakly acidic.
Perform stage reverse osmosis treatment. The reverse osmosis membrane is
Use Toshiku Co., Ltd. product number SU-20OR or 5U-20O8, which is available on the market, to achieve a recovery rate of about 190%. The permeated water from the first stage reverse osmosis treatment is stripped of carbon dioxide gas in a decarbonation tower, and treated with caustic soda. After injecting and adjusting the PI (9.0) and adding 3 mg/e of polyphosphate scale inhibitor for safety, the second stage reverse osmosis treatment is performed.

第2段階逆浸透処理の逆浸透膜としては、合成膜でアル
カリ側で使用でき、かつナトリウムイオン、塩素イオン
等の1価イオン90チ 以上除去できる市場入手可能な
逆浸透膜、例えば東しく株)製品番SU 400 R、
デコーボン社製、品番B−15、E−9・等が使用でき
る。第2段階逆浸透の回収率は回収率を80チ程度とし
、この高回収率でも、シリカ溶解度を高くしているので
析出は起らなかった。
As the reverse osmosis membrane for the second stage reverse osmosis treatment, commercially available reverse osmosis membranes that are synthetic membranes that can be used on the alkaline side and that can remove 90 or more monovalent ions such as sodium ions and chloride ions, such as Toshiku Co., Ltd. ) Product number SU 400 R,
Products manufactured by Decobon Co., Ltd., product numbers B-15, E-9, etc. can be used. The recovery rate of the second stage reverse osmosis was about 80 cm, and even at this high recovery rate, no precipitation occurred because the solubility of the silica was high.

第1表の1および同2に目示フローに記入の各経過点(
A)〜αDにおける水質を示す。シリカを多く含む原水
を本発明方法に従い高回収率でシリカ濃縮によるトラブ
ルを起さずに処理することができる。
Each progress point entered in the indicated flow in 1 and 2 of Table 1 (
The water quality in A) to αD is shown. Raw water containing a large amount of silica can be treated with a high recovery rate according to the method of the present invention without causing troubles due to silica concentration.

第2表の2 〔註記 1 経過点A:原水 経過点B:第第1略 経過点D:第1段階逆浸透装置濃縮水 経過点J弓:脱炭酸塔出口 経過点F:第第2陪 経過点1■:第2段階逆浸透装置濃縮水2 第1表にお
いてシリカは炭酸カルシウム( QaQO3)換算値の
だめ、42 mg/e 、 78 mg/e 。
Table 2-2 [Note 1 Transition point A: Raw water transition point B: 1st approximate transition point D: 1st stage reverse osmosis device concentrated water transition point J bow: Decarbonation tower outlet transition point F: 2nd phase Progress point 1 ■: Second stage reverse osmosis device Concentrated water 2 In Table 1, silica is calculated as calcium carbonate (QaQO3), 42 mg/e, 78 mg/e.

174 mg/e%はシリカ換等として各々50 mg
/e。
174 mg/e% is 50 mg each as silica etc.
/e.

94 mg/e、209 mg/eに相当する。This corresponds to 94 mg/e and 209 mg/e.

6 第1段階逆浸透装置人[1で硫酸4.8 mg/l
添加。
6 First stage reverse osmosis device [1 with sulfuric acid 4.8 mg/l
Addition.

4、第1段階逆浸透装置出口で脱炭酸処理。4. Decarboxylation treatment at the exit of the first stage reverse osmosis equipment.

5、第1段階逆浸透装置入口で苛性ソーダ2.0mg/
’ %ポリリン酸塩3.0mg/e添加。
5. Caustic soda 2.0mg/at the inlet of the first stage reverse osmosis equipment
'% polyphosphate 3.0mg/e added.

6、 第1段階逆浸透回収率90%、第2段階逆浸透回
収率80チ、全体回収率72 %。
6. 1st stage reverse osmosis recovery rate 90%, 2nd stage reverse osmosis recovery rate 80%, overall recovery rate 72%.

乙 第1段階逆浸透膜  東しく銅製SU − 20O
 R。
Otsu 1st stage reverse osmosis membrane Toshiku Copper SU-20O
R.

第2段階逆浸透膜  東し■製5U−400 RO )
ここで第1および第1段階逆浸透理の#給水シリカ濃度
とその条件におけるシリカ溶解度とを第2表に示す。
2nd stage reverse osmosis membrane 5U-400 RO made by Toshi ■)
Here, Table 2 shows the silica concentrations in the feed water of the first and first stage reverse osmosis treatments and the silica solubility under those conditions.

第2表 こうして高濃度のシリカを含む原水を逆浸透によシ全体
回収率72%の高回収率にて処理することができた。ま
た各段階逆浸透処理の濃縮水のシリカ濃度はその条件に
おける溶解度以下のため析出することはない。
Table 2 In this way, raw water containing a high concentration of silica could be treated by reverse osmosis with a high overall recovery rate of 72%. Furthermore, the silica concentration in the concentrated water of each stage of reverse osmosis treatment is less than the solubility under the conditions, so no precipitation occurs.

実施例においては、原水硬度が高いため、第2段階逆浸
透処理の入口でスケール防止剤を注入したが、濃縮水ラ
ンゲリャ指数も若干子側にある程度なので極く僅かの注
入量でよい。
In the example, since the hardness of the raw water is high, a scale inhibitor was injected at the inlet of the second stage reverse osmosis treatment, but since the Langelier index of the concentrated water is also slightly on the small side, only a small amount of injection is required.

(発明の効果)   ′ 以上のように、本発明方法によると、シリカを高濃度に
含む水を、回収率を低下させたり、脱珪処理を行なった
シすることなく、逆浸透法で高回収率および高率脱塩の
処理を行うことができる。
(Effects of the Invention) As described above, according to the method of the present invention, water containing a high concentration of silica can be recovered at a high rate by reverse osmosis without reducing the recovery rate or performing desiliconization treatment. It is possible to perform high-rate and high-rate desalination treatments.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は本発明方法を実施する装置フロー線図の1例を
示す。 (1)・・原水、(2)・・原水槽、(3)・・原水ポ
ンプ、(4)・・ミクロンフィルター、(5)・Φ加圧
ポンプ、(6)・・逆浸透装置、(7)・・酸注入槽、
(8)・・酸注入ポンプ、(9)・・透過水、αOー争
脱炭*17!r,on・・充填物、@・・ブロアー、0
浄・・:貯槽、Q4)・・アルカリ剤注入ポンプ、aυ
・・貯槽、Q・・・スケール防止剤注入ポンプ、aη・
・第1段階処理水槽、0尋・・第2段階加圧ポンプ、θ
す・・逆浸透装置、(1)・・第2段階処理水槽、C!
υ(イ)・・濃縮水、(ホ)・・混合濃縮水、(3)(
Bl (01■)CE) (F) (G)σj・・経過
点。
The attached figure shows an example of a flow diagram of an apparatus implementing the method of the invention. (1) Raw water, (2) Raw water tank, (3) Raw water pump, (4) Micron filter, (5) Φ pressure pump, (6) Reverse osmosis device, ( 7)...Acid injection tank,
(8)... Acid injection pump, (9)... Permeated water, αO - decarburization *17! r, on...Filling, @...Blower, 0
Purification...: storage tank, Q4)...alkaline agent injection pump, aυ
・・Storage tank, Q・・Scale inhibitor injection pump, aη・
・1st stage treatment tank, 0 fathoms ・2nd stage pressure pump, θ
Reverse osmosis equipment, (1)...Second stage treatment tank, C!
υ(A)...Concentrated water, (E)...Mixed concentrated water, (3)(
Bl (01■)CE) (F) (G)σj...Elapsed point.

Claims (1)

【特許請求の範囲】[Claims] 高濃度のシリカを含む水を逆浸透法により処理するため
、逆浸透処理を2段階に分け、その第1段階においては
カルシウム、マグネシウム等の水の硬度成分を高率で除
去するがシリカ分は殆んど通過する逆浸透膜を使用して
逆滲透処理を行い、その第2段階においては第1段階処
理水に少量のアルカリ剤を添加してPHを上げるか少量
のスケール防止剤を添加するかしてシリカの析出を防止
しながら逆浸透処理を行うことを特徴とする高濃度のシ
リカを含む水の逆滲透処理法。
In order to treat water containing a high concentration of silica using reverse osmosis, the reverse osmosis treatment is divided into two stages.In the first stage, water hardness components such as calcium and magnesium are removed at a high rate, but the silica content is Reverse osmosis treatment is performed using a reverse osmosis membrane that passes through most of the water, and in the second stage, a small amount of alkaline agent is added to the first stage treated water to raise the pH or a small amount of scale inhibitor is added. A reverse osmosis treatment method for water containing high concentration of silica, which is characterized by performing reverse osmosis treatment while preventing the precipitation of silica.
JP61138486A 1986-06-13 1986-06-13 Reverse osmosis treatment of water containing silica at high concentration Pending JPS62294484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138486A JPS62294484A (en) 1986-06-13 1986-06-13 Reverse osmosis treatment of water containing silica at high concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138486A JPS62294484A (en) 1986-06-13 1986-06-13 Reverse osmosis treatment of water containing silica at high concentration

Publications (1)

Publication Number Publication Date
JPS62294484A true JPS62294484A (en) 1987-12-21

Family

ID=15223216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138486A Pending JPS62294484A (en) 1986-06-13 1986-06-13 Reverse osmosis treatment of water containing silica at high concentration

Country Status (1)

Country Link
JP (1) JPS62294484A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0946268A4 (en) * 1996-08-12 2000-11-22 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device
JP2003071252A (en) * 2001-09-06 2003-03-11 Nitto Denko Corp Multi-stage type reverse osmosis treating method
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
JP2007181797A (en) * 2006-01-10 2007-07-19 Kurita Water Ind Ltd Boiler compound for boiler plant
US7320756B2 (en) * 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
US8206592B2 (en) 2005-12-15 2012-06-26 Siemens Industry, Inc. Treating acidic water
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
CN103241859A (en) * 2013-04-17 2013-08-14 宝钢集团新疆八一钢铁有限公司 Method for eliminating bactericide crystals in water treatment
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
WO2014170981A1 (en) * 2013-04-18 2014-10-23 三菱重工業株式会社 Water treatment system
WO2015001886A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
WO2015002309A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162683A (en) * 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Desalting method
JPS59112890A (en) * 1982-12-20 1984-06-29 Japan Organo Co Ltd Desalination by reverse osmosis membrane device
JPS6038083A (en) * 1983-08-09 1985-02-27 Kurita Water Ind Ltd Desalting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162683A (en) * 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Desalting method
JPS59112890A (en) * 1982-12-20 1984-06-29 Japan Organo Co Ltd Desalination by reverse osmosis membrane device
JPS6038083A (en) * 1983-08-09 1985-02-27 Kurita Water Ind Ltd Desalting method

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
EP0946268A4 (en) * 1996-08-12 2000-11-22 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device
US7320756B2 (en) * 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
WO2003022751A1 (en) * 2001-09-06 2003-03-20 Nitto Denko Corporation Method of multi-stage reverse osmosis treatment
JP2003071252A (en) * 2001-09-06 2003-03-11 Nitto Denko Corp Multi-stage type reverse osmosis treating method
US8206592B2 (en) 2005-12-15 2012-06-26 Siemens Industry, Inc. Treating acidic water
JP2007181797A (en) * 2006-01-10 2007-07-19 Kurita Water Ind Ltd Boiler compound for boiler plant
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
JP2012192373A (en) * 2011-03-17 2012-10-11 Miura Co Ltd Water treatment apparatus
CN103241859A (en) * 2013-04-17 2013-08-14 宝钢集团新疆八一钢铁有限公司 Method for eliminating bactericide crystals in water treatment
WO2014170981A1 (en) * 2013-04-18 2014-10-23 三菱重工業株式会社 Water treatment system
JPWO2014170981A1 (en) * 2013-04-18 2017-02-16 三菱重工業株式会社 Water treatment system
CN105358492A (en) * 2013-07-05 2016-02-24 三菱重工业株式会社 Water treatment method, and water treatment system
JP6005284B2 (en) * 2013-07-05 2016-10-12 三菱重工業株式会社 Water treatment method and water treatment system
WO2015001888A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
WO2015001887A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
WO2015001885A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
US20150203379A1 (en) * 2013-07-05 2015-07-23 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US20150203382A1 (en) * 2013-07-05 2015-07-23 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
CN105339313A (en) * 2013-07-05 2016-02-17 三菱重工业株式会社 Water treatment method, and water treatment system
CN105358491A (en) * 2013-07-05 2016-02-24 三菱重工业株式会社 Water treatment method, and water treatment system
WO2015001889A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
CN105377772A (en) * 2013-07-05 2016-03-02 三菱重工业株式会社 Water treatment method, and water treatment system
CN105377771A (en) * 2013-07-05 2016-03-02 三菱重工业株式会社 Water treatment method, and water treatment system
EP3002259A4 (en) * 2013-07-05 2016-08-03 Mitsubishi Heavy Ind Ltd Water treatment method, and water treatment system
EP3002258A4 (en) * 2013-07-05 2016-08-03 Water treatment method, and water treatment system
EP3002256A4 (en) * 2013-07-05 2016-08-10 Mitsubishi Heavy Ind Ltd Water treatment method, and water treatment system
WO2015001884A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
JP6005283B2 (en) * 2013-07-05 2016-10-12 三菱重工業株式会社 Water treatment method and water treatment system
WO2015002309A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility
JP6005282B2 (en) * 2013-07-05 2016-10-12 三菱重工業株式会社 Water treatment method and water treatment system
AU2014285449B2 (en) * 2013-07-05 2016-11-24 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment method, and water treatment system
AU2014285448B2 (en) * 2013-07-05 2016-11-24 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment method, and water treatment system
AU2014285450B2 (en) * 2013-07-05 2016-11-24 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment method, and water treatment system
JP6038318B2 (en) * 2013-07-05 2016-12-07 三菱重工業株式会社 Water treatment system and method, cooling facility, power generation facility
WO2015001886A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
JPWO2015001886A1 (en) * 2013-07-05 2017-02-23 三菱重工業株式会社 Water treatment method and water treatment system
JPWO2015001887A1 (en) * 2013-07-05 2017-02-23 三菱重工業株式会社 Water treatment method and water treatment system
JPWO2015001888A1 (en) * 2013-07-05 2017-02-23 三菱重工業株式会社 Water treatment method and water treatment system
AU2014285451B2 (en) * 2013-07-05 2017-04-13 Mitsubishi Heavy Industries, Ltd. Water treatment method, and water treatment system
CN105377771B (en) * 2013-07-05 2017-08-18 三菱重工业株式会社 Method for treating water and water treatment system
US9914652B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9914653B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9950936B2 (en) 2013-07-05 2018-04-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9969629B2 (en) 2013-07-05 2018-05-15 Mitsubishi Heavy Industries, Inc. Water treatment process and water treatment system
US10029929B2 (en) 2013-07-05 2018-07-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US10160671B2 (en) 2013-07-05 2018-12-25 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment process and water treatment system

Similar Documents

Publication Publication Date Title
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
EA011830B1 (en) Method (embodiments) for liquid treatment by reverse osmosis under acidic conditions
US4161446A (en) Process for the treatment of ground water
JP2003507183A (en) Water desalination process using ion-selective membrane
JP2003071252A (en) Multi-stage type reverse osmosis treating method
JP3646900B2 (en) Apparatus and method for treating boron-containing water
CN105330004B (en) A kind for the treatment of process of Treated sewage reusing
JPS59112890A (en) Desalination by reverse osmosis membrane device
JP3137831B2 (en) Membrane processing equipment
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JPS63100996A (en) Method for desalting brine
JPS6336890A (en) Apparatus for producing high-purity water
JP2002011466A (en) Method and device for treating water
JPH1080684A (en) Device and method for treating boron-containing water
JP4576760B2 (en) Circulating cooling water treatment method
JP3278918B2 (en) Desalting method
WO2005056166A1 (en) Methods for reducing boron concentration in high salinity liquid using combined reverse osmosis and ion exchange
JP2002355683A (en) Ultrapure water making method and apparatus
JP3270133B2 (en) Purification method
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
JP3536294B2 (en) Pure water production method
JP3534155B2 (en) Pure water production equipment
JPH05309398A (en) Apparatus for producing pure water
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same
JPH10249340A (en) Production of pure water