JPS59112890A - Desalination by reverse osmosis membrane device - Google Patents

Desalination by reverse osmosis membrane device

Info

Publication number
JPS59112890A
JPS59112890A JP57222155A JP22215582A JPS59112890A JP S59112890 A JPS59112890 A JP S59112890A JP 57222155 A JP57222155 A JP 57222155A JP 22215582 A JP22215582 A JP 22215582A JP S59112890 A JPS59112890 A JP S59112890A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
raw water
membrane device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57222155A
Other languages
Japanese (ja)
Inventor
Fumio Yokoyama
横山 史夫
Norihisa Urai
浦井 紀久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP57222155A priority Critical patent/JPS59112890A/en
Publication of JPS59112890A publication Critical patent/JPS59112890A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently remove silicic acid from raw water containing the large amount of silicates, by desalinating raw water having a pH adjusted above 8 with a reverse osmosis membrane device using an alkali-resisting reverse osmosis membrane such as a polyether amide composite film. CONSTITUTION:Raw water A is sent to a means 1 for softening hard water to remove hard components from said raw water. Thereafter, an aqueous caustic soda solution is injected from a caustic soda tank 3 into the soft water by a pump 2 to adjust the pH of said soft water above 8, pref. above 9. Said soft water having its pH adjusted is forcibly poured in a reverse osmosis membrane device 8 by a high pressure pump 7 to separately collect a desalinated filtrate B and unpermeating water C in which salts are concentrated. As a reverse osmosis membrane to be used in said reverse osmosis membrane device, an alkali-resisting reverse osmosis membrane such as a polyether amide composite film, a polyvinyl alcohol composite film, an aromatic polyamide film or a polybenzimidazole film is used.

Description

【発明の詳細な説明】 本発明は珪酸を比較的多量に含有する原水を逆浸透膜装
置で脱塩する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desalinating raw water containing a relatively large amount of silicic acid using a reverse osmosis membrane device.

LSIや超LSIなどを製造する電子工業においては、
その製品の洗浄にコロイド状物質およびイオンの量をp
pbオーダーまで減少させた。いわゆる超純水を必要と
する。このような超純水を製造する場合、近年において
逆浸透膜装置が用いられることが多い。すなわち凝集沈
殿済過なとの除濁処理、活性炭瀘過などの適当な前処理
をした原水を逆浸透膜装置で脱塩し2次いで当該脱塩水
に残留する塩類、不純物等を純水製造装置、精密濾過装
置。
In the electronics industry, which manufactures LSIs and super LSIs,
The amount of colloidal substances and ions used in cleaning the product
It was reduced to the pb order. It requires so-called ultrapure water. When producing such ultrapure water, reverse osmosis membrane devices are often used in recent years. In other words, raw water that has been subjected to appropriate pretreatment such as coagulation-sedimentation clarification, activated carbon filtration, etc. is desalted using a reverse osmosis membrane device, and then residual salts, impurities, etc., are removed from the desalted water using a pure water production device. , precision filtration equipment.

ポリシャーなどで処理するのが一般的である。It is common to process with a polisher.

逆浸透膜装置は逆浸透膜に原水を溶解塩類の浸透圧以上
の加圧下で供給し、塩類の大半を逆浸透膜で阻止して塩
類を減少させた透過水を処理水として得るとともに、塩
類を濃縮した非透過水を排出するものであるが、この処
理中に原水に含まれているコロイド状物質も逆浸透膜で
阻止することができるので、前記超純水の製造には好都
合である。逆浸透膜装置は以上の様な操作で原水を処理
するのであるから、原水の濃縮倍率を大きくすればする
程、一定の供給原水から多量の透過水を得ることができ
、コスト的に有利となる。
A reverse osmosis membrane device supplies raw water to a reverse osmosis membrane under pressure higher than the osmotic pressure of dissolved salts, and the reverse osmosis membrane blocks most of the salts to obtain permeated water with reduced salts as treated water. During this treatment, the colloidal substances contained in the raw water can be blocked by the reverse osmosis membrane, which is convenient for producing ultrapure water. . Since reverse osmosis membrane equipment processes raw water through the operations described above, the higher the concentration ratio of raw water, the more permeated water can be obtained from a fixed supply of raw water, which is advantageous in terms of cost. Become.

しかしながら当該濃縮倍率をあまり大きくすると比較的
溶解度の小さい珪酸が濃縮系。
However, if the concentration ratio is increased too much, silicic acid, which has a relatively low solubility, will be concentrated.

特に逆浸透膜の膜面に析出し、その性能を低下させる。In particular, it precipitates on the membrane surface of reverse osmosis membranes, reducing their performance.

たとえば原水の珪酸含有量が約20■assi02./
l以下の場合はあまり問題とならないが、原水の珪酸含
有量が40 mf aB S i02/lを越えると珪
酸の溶解度が障害となって透過水の回収率を低くせざる
を得なくなり、そのため甚だしく不経済となる。
For example, the silicic acid content of raw water is approximately 20■assi02. /
If the silicic acid content of the raw water is less than 40 mf aBS i02/l, there is not much of a problem, but if the silicic acid content of the raw water exceeds 40 mf aB Si02/l, the solubility of silicic acid becomes an obstacle and the recovery rate of permeated water has to be lowered, resulting in severe problems. It becomes uneconomical.

したがって珪酸含有量が比較的多い原水を逆浸透膜装置
で処理し、かつ透過水の回収率を多くせんとする場合は
、逆浸透膜装置の前段で脱珪酸処理を行なうことが必要
となるが。
Therefore, if raw water with a relatively high silicic acid content is treated with a reverse osmosis membrane device and the recovery rate of permeated water is to be increased, it is necessary to perform the desilication treatment before the reverse osmosis membrane device. .

低コストで確実に珪酸を除去する方法がなく。There is no way to reliably remove silicic acid at low cost.

この点が逆浸透膜装置における未解決の技術課題であっ
た。
This point has been an unresolved technical issue in reverse osmosis membrane devices.

本発明は、この点に鑑みてなされたもので。The present invention has been made in view of this point.

珪酸を比較的多量に含有する原水を、脱珪酸することな
く逆浸透膜装置て処理し、しかも高収率下で透過水を得
ることを目的とするもので、珪酸を比較的多量に含有す
る原水を逆浸透膜装置によって脱塩するにあたり、原水
のpHを8以上に保つとともにポリエーテルアミド複合
膜、ポリビニルアルコール複合膜。
The purpose is to process raw water containing a relatively large amount of silicic acid using a reverse osmosis membrane device without desilicating it, and to obtain permeated water with a high yield. When desalting raw water using a reverse osmosis membrane device, the pH of the raw water is kept at 8 or higher, and polyetheramide composite membranes and polyvinyl alcohol composite membranes are used.

芳香族ポリアミド膜、ポリベンツイミダシロン膜などの
耐アルカリ性の逆浸透膜を用いた逆浸透膜装置によって
脱塩することをfi−徴とする逆浸透膜装置にょる脱塩
方法に関するものである。
This invention relates to a desalination method using a reverse osmosis membrane device that uses an alkali-resistant reverse osmosis membrane such as an aromatic polyamide membrane or a polybenzimidacylon membrane, and whose fi-characteristic is desalination using a reverse osmosis membrane device. .

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

珪酸の水に対する溶解度はpHKよって大きく変わり、
たとえば25℃における珪酸の溶解度は第2図に示した
曲線のようになる。すなわちpHが7以下では約100
 ’If assio、/lであるが、 pHが8・0
を越えてアルカリ性になればなる程、その溶解度は大き
くなり、 pH9では約1’70 ’ml as 5i
02 /l 、 pH10で約320Mf as 5i
02 / lとなる。
The solubility of silicic acid in water varies greatly depending on pHK.
For example, the solubility of silicic acid at 25° C. is as shown in the curve shown in FIG. In other words, when the pH is below 7, it is about 100
'If assio, /l, but the pH is 8.0
The more alkaline it becomes, the greater its solubility; at pH 9, it is approximately 1'70'ml as 5i
02/l, approximately 320 Mf as 5i at pH 10
02/l.

本発明は珪酸の溶解度がアルカリ性になればなる程大き
くなるという上記知見に基づいてなされたものであり、
原水のpHを8以上。
The present invention was made based on the above finding that the solubility of silicic acid increases as it becomes more alkaline.
The pH of the raw water is 8 or higher.

好ましくは9以上に上昇させて、逆浸透膜装置で脱塩す
るものである。
Preferably, the concentration is increased to 9 or higher and desalted using a reverse osmosis membrane device.

このように原水のpHをアルカリ性にすると珪酸の溶解
度が大きくなるので濃縮倍率を°大としても膜面に珪酸
が析出することがな−ところが従来から水の脱塩には一
般に酢酸セルローズ系の逆浸透膜が用いられているが。
In this way, when the pH of the raw water is made alkaline, the solubility of silicic acid increases, so even if the concentration ratio is increased, silicic acid does not precipitate on the membrane surface.However, conventional methods for desalting water have generally been the reverse of cellulose acetate. A permeable membrane is used.

当該酢酸セルローズ膜はアルカリ性下で著しく劣化し、
したがって本発明では用いることができない。
The cellulose acetate membrane deteriorates significantly under alkaline conditions,
Therefore, it cannot be used in the present invention.

一方、近年になって開発されたポリエーテルアミド複合
膜、ポリビニルアルコール複合−膜、芳香族ポリアミド
膜、ポリベンツイミダシロン膜などは耐アルカリ性を有
しており。
On the other hand, recently developed polyetheramide composite membranes, polyvinyl alcohol composite membranes, aromatic polyamide membranes, polybenzimidacylon membranes, and the like have alkali resistance.

したがって本発明においては上述したような耐アルカリ
性の逆浸透膜を用いる。
Therefore, in the present invention, an alkali-resistant reverse osmosis membrane as described above is used.

なお本発明においては原水のpHを8以上。In the present invention, the pH of the raw water is 8 or higher.

好ましくは9以上にし、耐アルカリ性の逆浸透膜を用い
ることをその主なる要旨とするものであり、しだがって
上記4種類以外の逆浸透膜でもその膜が耐アルカリ性の
ものであればさしつかえない。
The main point is to use a reverse osmosis membrane that is preferably 9 or higher and is resistant to alkali.Therefore, reverse osmosis membranes other than the above four types may be used as long as they are resistant to alkali. do not have.

本発明においては原水の珪酸含有量および目的とする濃
縮倍率から第2図に基ついて逆浸透膜装置の供給水にた
とえば力性ソーダなどのアルカリを添加して、そのpH
を8.0以上の適当な値とするが、供給水のpHを8゜
0以上のアルカリ性にする場合、アルカリ剤の添加の他
に、原水の全部あるいは一部をOH形の強塩基性アニオ
ン交換樹脂あるいは弱塩基性アニオン交換樹脂で処理し
てもさしつかえない。
In the present invention, based on the silicic acid content of the raw water and the desired concentration ratio, an alkali such as hydric soda is added to the water supplied to the reverse osmosis membrane device based on the silicic acid content of the raw water and the desired concentration ratio, and the pH of the water is increased.
However, if the pH of the feed water is made alkaline to 8.0 or more, in addition to adding an alkaline agent, all or part of the raw water should be treated with strong basic anions in the OH form. Treatment with exchange resin or weakly basic anion exchange resin is also acceptable.

このように原水のpHを8・0以上のアルカリ性とする
ことによシ珪酸の溶解度が上昇し。
In this way, by making the pH of the raw water alkaline to 8.0 or more, the solubility of silicic acid increases.

それにより逆浸透膜の膜面に珪酸が析出するという従来
の問題を解決できる。しかし原水中に多量のマグネシウ
ムイオンあるいはカルシウムイオンなどの硬度成分が共
存すると。
Thereby, the conventional problem of silicic acid depositing on the membrane surface of the reverse osmosis membrane can be solved. However, if large amounts of hardness components such as magnesium ions or calcium ions coexist in the raw water.

今度は濃縮側の膜面に水酸化マグネシウムあるいは炭酸
カルシウムが析出することがある。
Magnesium hydroxide or calcium carbonate may then precipitate on the membrane surface on the concentration side.

したがって供給水中に硬度成分が多量に共存する場合は
、当該硬度成分をあらかじめ除去することが望ましい。
Therefore, if a large amount of hardness components coexist in the supplied water, it is desirable to remove the hardness components in advance.

硬度成分除去手段としてはNa形またはH形の強酸性カ
チオン交換樹脂や弱酸性カチオン交換樹脂を用いる硬水
軟化装置や脱アルカリ軟化装置、あるいは水に石灰捷た
は石灰と炭酸ソーダを添加して硬度成分を水酸化マグネ
シウム、炭酸カルシウムなどの固形物として沈殿除去す
るライム法まだはライムソーダ法などが用いられる。な
おライム法やライl、ソーダ法はその処理水のpHが8
以上のアルカリ性なので、当該処理水に再度アルカリを
添加するという手間が省けるという利点も有している。
Hardness components can be removed by water softening equipment or dealkalization softening equipment that uses Na-type or H-type strongly acidic cation exchange resins or weakly acidic cation exchange resins, or by adding lime extract or lime and soda carbonate to water. Lime method, lime soda method, etc. are used, in which the components are precipitated and removed as solids such as magnesium hydroxide and calcium carbonate. In addition, in the lime method, lime method, and soda method, the pH of the treated water is 8.
Since it is alkaline as described above, it also has the advantage of saving the trouble of adding alkali to the treated water again.

次に本発明の実施態様を図面に基づいてK”1明する。Next, embodiments of the present invention will be explained based on the drawings.

第1図は本発明の実施態様の一例であるフローの説明図
であり、JはNa形強酸性カチオン交換樹脂を充填した
硬水軟化装置、2は力性ソーダ注入ポンプ、3は力性ソ
ーダ槽。
FIG. 1 is an explanatory diagram of a flow that is an example of an embodiment of the present invention, where J is a water softener filled with Na-type strongly acidic cation exchange resin, 2 is a hydrocarbon soda injection pump, and 3 is a hydrocarbon soda tank. .

4はラインミキサー、5はpH検出部、6はpH調節計
、7は高圧ポンプ、8は耐アルカリ性の逆浸透膜を用い
た逆浸透膜装置である。
4 is a line mixer, 5 is a pH detection unit, 6 is a pH controller, 7 is a high-pressure pump, and 8 is a reverse osmosis membrane device using an alkali-resistant reverse osmosis membrane.

本発明においてはまず原水Aを硬水軟化装置1に通水し
、原水中の硬度成分を除去する。
In the present invention, raw water A is first passed through a water softening device 1 to remove hardness components from the raw water.

次いで軟水に力性ソーダ槽3から力性ソーダ水溶液を注
入ポンプ2にょシ加え、軟水のpHを8以上、好ましく
は9以上にする。なおこの注入の際ラインミキサー4の
後に付設したpH検出部でpHを検出し、あらかじめ決
定したpHO値となるように注入ポンプ2からの力性ソ
ーダ溶液の注入量を計装的にpH調節計6によって調節
する。このような操作によって原水Aの硬度成分を除去
し、かつpHをアルカリ性とした軟水を高圧ポンプ7に
よって逆浸透膜装置8に圧入し、脱塩された透過水Bお
よび塩類が濃縮された非透過水Cを採取する。なお図示
していないが軟水を逆浸透膜装置8に圧入する前に精密
フィルターなどで懸濁物を除去した方が望ましい。
Next, an aqueous solution of sodium hydroxide from the sodium hydroxide tank 3 is added to the soft water through the injection pump 2 to bring the pH of the soft water to 8 or higher, preferably 9 or higher. In addition, during this injection, the pH is detected by a pH detection section attached after the line mixer 4, and the amount of the sodium hydroxide solution injected from the injection pump 2 is instrumented using a pH controller so that the pH value reaches a predetermined pH value. Adjust by 6. Through these operations, the hardness components of the raw water A have been removed and the soft water, which has been made alkaline in pH, is pressurized into the reverse osmosis membrane device 8 by the high-pressure pump 7, and the desalted permeated water B and the non-permeated water with concentrated salts are Collect water C. Although not shown, it is preferable to remove suspended matter using a precision filter or the like before forcing the soft water into the reverse osmosis membrane device 8.

本発明においては原水のpHをあらかじめアルカリ性と
しているので、珪酸の溶解度が上昇し、したがって濃縮
倍率を大きくしても従来中じていた珪酸の析出物が膜面
に付着することがなく、かつ逆浸透膜として耐アルカリ
性のものを用いているので、高pHによる膜の性能低下
も起らない。まだ原水に硬度成分が多量に含まれていた
としても、あらかじめ硬度成分を除去することにより、
水酸化マグネシウムや炭酸力ルノウムなどの析出物が膜
面に付着することもない。
In the present invention, since the pH of the raw water is made alkaline in advance, the solubility of silicic acid increases, and therefore, even if the concentration ratio is increased, silicic acid precipitates, which were previously contained, do not adhere to the membrane surface, and vice versa. Since the permeable membrane is made of alkali-resistant material, the performance of the membrane does not deteriorate due to high pH. Even if the raw water still contains a large amount of hardness components, by removing the hardness components in advance,
Precipitates such as magnesium hydroxide and carbonate do not adhere to the membrane surface.

以下に本発明の効果を明確にするために実施例を示す。Examples will be shown below to clarify the effects of the present invention.

実施例−1 第1表に示す組成の原水を第1図に示した本発明のフロ
ーに従って、まずNa形の強酸性カチオン交換樹脂を充
填した硬水軟化装置で軟化処理し2次いで力性ソーダを
加えてpHを9.0に調整し、ポリエーテルアミド複合
膜である束し■製5PIJo膜(商品名)を用いた逆浸
透膜装置で透過水回収率75%、供給圧力30ky/c
、lの条件で処理した。
Example-1 Raw water having the composition shown in Table 1 was first softened in a water softening device filled with Na-type strongly acidic cation exchange resin according to the flow of the present invention shown in Figure 1, and then treated with hard soda. In addition, the pH was adjusted to 9.0, and the permeated water recovery rate was 75% and the supply pressure was 30 ky/c using a reverse osmosis membrane device using a polyether amide composite membrane, 5PIJo membrane (trade name) made by Tsukushishi ■.
, l conditions.

一方比較のために従来方法として第1表に示す原水に、
炭酸カルシウムの析出を防止するた、めに酸を加えてp
Hを6.0に調整し9次いて本発明方法に用いたと同じ
逆浸透膜装置で同じ条件で処理した。
On the other hand, for comparison, as a conventional method, the raw water shown in Table 1 was
Add acid to prevent precipitation of calcium carbonate.
H was adjusted to 6.0, and then treated under the same conditions using the same reverse osmosis membrane apparatus as used in the method of the present invention.

その結果を第3図および第4図に示した。The results are shown in FIGS. 3 and 4.

なお第3図゛は運転時間tの経過に伴なう透過水量Qt
の変化を、運転時間t=oの透過水量Qoを基準として
透過水量比(Q、t/Qo )として示したものであり
、また第4図は運転時間の経過に伴なう以下の式で定義
する脱塩率(1の変化を示しだものである。
In addition, Fig. 3 shows the amount of permeated water Qt as the operating time t elapses.
Figure 4 shows the change in the permeated water amount ratio (Q, t/Qo) based on the permeated water amount Qo at operating time t=o, and Fig. 4 shows the following equation as the operating time elapses. It shows the change in desalination rate (1) defined.

なお原水の水質9本発明方法における逆浸透膜装置の供
給水、従来方法における逆浸透膜装置の供給水を第1表
に示した。
Water Quality of Raw Water 9 Table 1 shows the water supplied to the reverse osmosis membrane device in the method of the present invention and the water supplied to the reverse osmosis membrane device in the conventional method.

第3図、第4図で明らかなごとく、従来方法では運転時
間の経過に伴ない逆浸透膜装置の性能が大幅に低下して
くるのに対して9本発明方法は逆浸透膜装置の性能の低
下がなく。
As is clear from Figures 3 and 4, in the conventional method, the performance of the reverse osmosis membrane device deteriorates significantly as the operating time passes, whereas in the method of the present invention, the performance of the reverse osmosis membrane device decreases significantly. There is no decrease in

十分実用に耐えることが示された。It was shown that it is sufficiently practical.

第1表 実施例−2 第2表に示す原水に力性ソーダを加えてpH8,5に調
整し2次いで芳香族ポリアミド膜である米国デュポン社
製)く−マセツブB9(商品名)を用いた逆浸透膜装置
で透過水11ノ1収率70%、供給圧力25 ky/c
fLの条件で処理した。
Table 1 Example-2 The raw water shown in Table 2 was adjusted to pH 8.5 by adding sodium hydroxide, and then an aromatic polyamide membrane (trade name) made by DuPont, USA (trade name) was used. 70% yield of permeated water using reverse osmosis membrane equipment, supply pressure 25 ky/c
It was treated under fL conditions.

一方比較のために従来方法として同じ原水をpH調整す
ることなく酢酸セルローズ膜である米国UOP社製RO
GA (商品名)を用いた逆浸透膜装置で同じ条件で処
理した。
On the other hand, for comparison, as a conventional method, the same raw water was treated with cellulose acetate membrane manufactured by UOP Co., Ltd., without pH adjustment.
It was treated under the same conditions using a reverse osmosis membrane device using GA (trade name).

その結果を第5図および第6図に示した。The results are shown in FIGS. 5 and 6.

第5図は第3図と同様に運転時間に対する透過水量比(
Ctt/Qo)の変化を示し、第6図は第4図と同様に
運転時間に対する脱塩率(R)の変化を示したものであ
る。
Figure 5 shows the ratio of permeated water amount to operating time (
Similarly to FIG. 4, FIG. 6 shows the change in desalination rate (R) with respect to operating time.

本実施例においても本発明方法が従来方法よりはるかに
安定した性能が得られることが示されている。
This example also shows that the method of the present invention provides much more stable performance than the conventional method.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の一例を示すフローの説明図
であり、第2図は水温25℃における珪酸の溶解度を示
したグラフであり、縦軸に溶解度、横軸にpHを示す。 まだ第3図ないし第6図は実施例における運転時間に対
する透過水量比あるいは脱塩率を示すもので。 第3図、第5図においては縦軸VCC透過水比比横軸に
運転時間を示し、第4図、第6図においては縦軸に脱塩
率、横軸に運転時間を示す。 第1図 3  4  5  6 7  8  9  IQ  H
+2 13  PH 第3図 1転時間(hr) 手続補正書(自発) 昭和59年3月19日 特許庁長官  若 杉 和 夫 殿 1、事件の表示 、 昭和57年特許願第222155号2、発明の名称 逆浸透膜装置による脱塩方法 3、補正をする者 事件との関係 特許出願人 代表者    永   井   邦   夫     
−4、代理人〒113戸 酔 住 所  東京都文京区本郷5丁目5番16号    
¥置8 1 2−5 1 5 1 5、補正の対象 図面(第3図及び第5図) 6、補正の内容 別紙のとおり 第3図 運転時間(hr)
FIG. 1 is an explanatory diagram of a flow showing an example of an embodiment of the present invention, and FIG. 2 is a graph showing the solubility of silicic acid at a water temperature of 25° C. The vertical axis shows solubility and the horizontal axis shows pH. Figures 3 to 6 show the ratio of permeated water amount or desalination rate to the operating time in the examples. In FIGS. 3 and 5, the vertical axis shows the VCC permeate water ratio. The horizontal axis shows the operating time, and in FIGS. 4 and 6, the vertical axis shows the desalination rate, and the horizontal axis shows the operating time. Figure 1 3 4 5 6 7 8 9 IQ H
+2 13 PH Figure 3 1 Transfer time (hr) Procedural amendment (spontaneous) March 19, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1, Indication of the case, 1988 Patent Application No. 222155 2, Invention Name of Desalination Method 3 Using Reverse Osmosis Membrane Device, Relationship with the Amendment Case Patent Applicant Representative Kunio Nagai
-4, Agent Address: 5-5-16 Hongo, Bunkyo-ku, Tokyo
¥¥8 1 2-5 1 5 1 5. Drawings subject to correction (Fig. 3 and Fig. 5) 6. Contents of correction As shown in the attached sheet, Fig. 3 Operating time (hr)

Claims (1)

【特許請求の範囲】 (↑)珪酸を比較的多量に含有する原水を逆浸透膜装置
によって脱塩するにあたり、原水のpHを8以上に保つ
とともにポリエーテルアミド複合膜、ポリビニルアルコ
ール複合膜、芳香族ポリアミド膜、ポリベンツイミダシ
ロン膜などの耐アルカリ性の逆浸透膜を用いた逆浸透膜
装置によって脱塩することを特徴とする逆浸透膜装置に
よる脱塩方法 (2)原水中に共存する硬度成分をあらかじめ硬度成分
除去手段によシ除去する特許請求の範囲第1項記載の逆
浸透膜装置による脱塩方法 (3)硬度成分除去手段がカチオン交換樹脂を用いた硬
水軟化装置あるいは脱デルカリ硬水軟化装置である特許
請求の範囲第2項記載の逆浸透膜装置による脱塩方法 (4)硬度成分除去手段が石灰あるいは石灰と炭酸ソー
ダを加えて硬度成分を炭酸カルシウム、水酸化マグネシ
ウムなどの固形物として沈殿除去する装置である特許請
求の範囲第2項記載の逆浸透膜装置による脱塩方法
[Claims] (↑) When raw water containing a relatively large amount of silicic acid is desalted using a reverse osmosis membrane device, the pH of the raw water is maintained at 8 or higher, and polyetheramide composite membrane, polyvinyl alcohol composite membrane, aromatic Desalination method using a reverse osmosis membrane device (2) Coexisting in raw water Desalination method using a reverse osmosis membrane device according to claim 1, in which the hardness component is removed in advance by a hardness component removal means (3) The hardness component removal means is a water softening device using a cation exchange resin or a de-delcalization device. Desalination method using a reverse osmosis membrane device according to claim 2, which is a water softening device (4) The hardness component removing means adds lime or lime and soda carbonate to remove hardness components from calcium carbonate, magnesium hydroxide, etc. A desalination method using a reverse osmosis membrane device according to claim 2, which is a device for removing precipitation as a solid substance.
JP57222155A 1982-12-20 1982-12-20 Desalination by reverse osmosis membrane device Pending JPS59112890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57222155A JPS59112890A (en) 1982-12-20 1982-12-20 Desalination by reverse osmosis membrane device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222155A JPS59112890A (en) 1982-12-20 1982-12-20 Desalination by reverse osmosis membrane device

Publications (1)

Publication Number Publication Date
JPS59112890A true JPS59112890A (en) 1984-06-29

Family

ID=16778038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222155A Pending JPS59112890A (en) 1982-12-20 1982-12-20 Desalination by reverse osmosis membrane device

Country Status (1)

Country Link
JP (1) JPS59112890A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038083A (en) * 1983-08-09 1985-02-27 Kurita Water Ind Ltd Desalting method
FR2554732A1 (en) * 1983-11-11 1985-05-17 Tecnimont Spa Process for the treatment of aqueous solutions and effluents containing water-soluble boron compounds
JPS614591A (en) * 1984-06-04 1986-01-10 アローヘツド、インダストリアル、ウオーター、インコーポレイテツド Reverse osmosis system
JPS62294484A (en) * 1986-06-13 1987-12-21 Shinko Fuaudoraa Kk Reverse osmosis treatment of water containing silica at high concentration
JPH11169852A (en) * 1997-12-16 1999-06-29 Kurita Water Ind Ltd Pure water producing device
US6106722A (en) * 1997-08-12 2000-08-22 Kinetico Incorporated Filtering photoresist-containing liquid
EP0946268A4 (en) * 1996-08-12 2000-11-22 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
JP2017074574A (en) * 2015-10-16 2017-04-20 水ing株式会社 Water treatment method and water treatment device
WO2022085343A1 (en) * 2020-10-20 2022-04-28 横河電機株式会社 Water treatment method and water treatment apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038083A (en) * 1983-08-09 1985-02-27 Kurita Water Ind Ltd Desalting method
JPH0440077B2 (en) * 1983-08-09 1992-07-01 Kurita Water Ind Ltd
FR2554732A1 (en) * 1983-11-11 1985-05-17 Tecnimont Spa Process for the treatment of aqueous solutions and effluents containing water-soluble boron compounds
JPS614591A (en) * 1984-06-04 1986-01-10 アローヘツド、インダストリアル、ウオーター、インコーポレイテツド Reverse osmosis system
JPS62294484A (en) * 1986-06-13 1987-12-21 Shinko Fuaudoraa Kk Reverse osmosis treatment of water containing silica at high concentration
US8641905B2 (en) 1996-08-12 2014-02-04 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
EP0946268A4 (en) * 1996-08-12 2000-11-22 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US6106722A (en) * 1997-08-12 2000-08-22 Kinetico Incorporated Filtering photoresist-containing liquid
JPH11169852A (en) * 1997-12-16 1999-06-29 Kurita Water Ind Ltd Pure water producing device
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
JP2017074574A (en) * 2015-10-16 2017-04-20 水ing株式会社 Water treatment method and water treatment device
WO2022085343A1 (en) * 2020-10-20 2022-04-28 横河電機株式会社 Water treatment method and water treatment apparatus
JP2022067201A (en) * 2020-10-20 2022-05-06 横河電機株式会社 Water treatment method and water treatment device

Similar Documents

Publication Publication Date Title
US5997745A (en) Method for producing high purity water using triple pass reverse osmosis (TPRO)
US6120689A (en) High purity water using triple pass reverse osmosis (TPRO)
Heijman et al. Zero liquid discharge: Heading for 99% recovery in nanofiltration and reverse osmosis
US20090039020A1 (en) Methods for reducing boron concentration in high salinity liquid
US4161446A (en) Process for the treatment of ground water
JPS59112890A (en) Desalination by reverse osmosis membrane device
JPH0753276B2 (en) Fluoride-containing water treatment method
JPH10503414A (en) Reverse osmosis for water treatment enhanced by microfiltration
JP2009190025A (en) Method of manufacturing drinking water
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JP2733573B2 (en) Ultrapure water production method and apparatus
JPH09290275A (en) Device for removing boron in water and method thereof
JP3137831B2 (en) Membrane processing equipment
JP3575260B2 (en) Pure water production equipment
JP2503806B2 (en) Fluoride-containing water treatment method
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
JP3536294B2 (en) Pure water production method
JPH1080684A (en) Device and method for treating boron-containing water
JPH11267645A (en) Production of pure water
JPS60125208A (en) Regeneration of reverse osmosis membrane apparatus
WO2005056166A1 (en) Methods for reducing boron concentration in high salinity liquid using combined reverse osmosis and ion exchange
JP3885319B2 (en) Pure water production equipment
JP3826546B2 (en) Boron-containing water treatment equipment
JPH0137997B2 (en)
JP2000301146A (en) Deionizer