JP3575260B2 - Pure water production equipment - Google Patents

Pure water production equipment Download PDF

Info

Publication number
JP3575260B2
JP3575260B2 JP36011797A JP36011797A JP3575260B2 JP 3575260 B2 JP3575260 B2 JP 3575260B2 JP 36011797 A JP36011797 A JP 36011797A JP 36011797 A JP36011797 A JP 36011797A JP 3575260 B2 JP3575260 B2 JP 3575260B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
alkali
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36011797A
Other languages
Japanese (ja)
Other versions
JPH11188359A (en
Inventor
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP36011797A priority Critical patent/JP3575260B2/en
Publication of JPH11188359A publication Critical patent/JPH11188359A/en
Application granted granted Critical
Publication of JP3575260B2 publication Critical patent/JP3575260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、純水製造装置に関する。さらに詳しくは、本発明は、半導体製造などの電子産業分野、あるいはその関連分野などで用いられる、ホウ素濃度を大幅に低減した純水又は超純水の製造に適した純水製造装置に関する。
【0002】
【従来の技術】
ホウ素を含有する原水を処理して純水又は超純水を製造する装置として、アルカリ添加によりpHを10以上にしたのち、耐アルカリ性逆浸透膜装置に通水する純水製造装置が知られている。また、第47回全国水道研究会発表会(平成8年5月、発表番号4−98)では、逆浸透膜装置を利用したホウ素低減システムにおいて、水のpHを10以上とすることによりホウ素排除率が高くなることが報告されている。しかし、アルカリ性のホウ素含有水を逆浸透膜装置に通水すると、カルシウムなどの硬度成分が析出して膜閉塞を生じ、造水量が低下するという問題がある。
ホウ素を含有する原水の処理に、電気脱イオン装置の利用が検討されている。電気脱イオン装置は、2つの側面がそれぞれ陽イオン交換膜と陰イオン交換膜からなり、その間にイオン交換樹脂又はイオン交換繊維を充填した希釈室に、電位差を与えて、通水することにより、陽イオンを陽イオン交換膜を通過させ、陰イオンを陰イオン交換膜を通過させて除去するものであり、従来の混床式脱イオン装置と同等以上の水質の処理水を得ることができる。電気脱イオン装置は、薬品再生が不要であり、コンパクトである点に特徴があり、近年大容量の電気脱イオン装置が開発されている。しかし、ホウ素含有水の処理に電気脱イオン装置を用いると、ホウ素の除去率は70%程度にしか達せず、ホウ素の除去を目的とする純水製造装置においては、水質的に不十分であった。
このため、電気脱イオン装置で処理した水を、さらに非再生型イオン交換装置などを用いて後処理する必要があったが、水中に残存するホウ素のために非再生型イオン交換装置の寿命が著しく短くなり、その交換頻度が非常に大きくなるために、著しく不経済となってしまうという問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、半導体製造などの電子産業分野、あるいはその関連分野などで用いられる、ホウ素濃度を低減した純水の製造において、電気脱イオン装置におけるホウ素除去率を飛躍的に高めることができる純水製造装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、逆浸透膜装置と電気脱イオン装置を有する純水製造装置にpH調整用のアルカリ添加装置を設け、逆浸透膜装置への供給水又は電気脱イオン装置への供給水のpHを9.2以上に調整することにより、電気脱イオン装置におけるホウ素の除去率を飛躍的に高め得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)(A)ホウ素含有水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置、(B)pHの調整されたホウ素含有水が通水される耐アルカリ性逆浸透膜装置及び(C)pH . 2以上を有する耐アルカリ性逆浸透膜装置の透過水が通水される電気脱イオン装置を有することを特徴とする純水製造装置、及び、
(2)(D)ホウ素含有水が通水される逆浸透膜装置、(E)逆浸透膜装置の透過水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置、(F)pHの調整された逆浸透膜装置の透過水が通水される電気脱イオン装置を有することを特徴とする純水製造装置、
を提供するものである。
【0005】
【発明の実施の形態】
図1(a)は、本発明の純水製造装置の一態様の工程系統図である。本態様の純水製造装置は、(A)ホウ素含有水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置1、(B)pHの調整されたホウ素含有水が通水される耐アルカリ性逆浸透膜装置2及び(C)耐アルカリ性逆浸透膜装置の透過水が通水される電気脱イオン装置3を有する。本態様の純水製造装置の場合は、耐アルカリ性逆浸透膜装置の前後で高pHとするためカルシウムスケールなどが生じ易いので、アルカリ添加装置の前段に、強酸性イオン交換樹脂を含むイオン交換装置4と膜脱気装置5を設けて、原水中のカルシウムイオンと炭酸を十分に除去し、逆浸透膜面における炭酸カルシウムスケールの発生を防止することが好ましい。また、電気脱イオン装置の後段に非再生型イオン交換装置6を設けて、電気脱イオン装置で除去しきれなかった微量の不純物を除去することができる。
本態様の純水製造装置における(A)アルカリ添加装置には特に制限はなく、例えば、水酸化ナトリウムなどのアルカリ水溶液を添加する装置や、強塩基性イオン交換樹脂を含むイオン交換装置、あるいはその両方を設置することができる。アルカリ水溶液を添加する装置としては、例えば、撹拌機つきのpH調整槽を設けたり、通水ラインにアルカリ水溶液注入口を設け、その下流側にスタチックミキサーなどを設置することなどができる。アルカリ添加装置は、ホウ素含有水にアルカリを添加して、pHをホウ酸のpKa9.2(25℃)以上、より好ましくはpHを10以上に調整し得るものである。図1(a)に示す態様の装置においては、耐アルカリ性逆浸透膜装置の入口にpHセンサー7を設け、制御器8を通じて信号を薬注ポンプ9に送り、アルカリ貯槽10からのアルカリ注入量を制御する。
ホウ酸の酸解離指数pKaは25℃において9.2であるので、ホウ素含有水にアルカリを添加してpHを9.2以上、好ましくは10以上にすると、水中のホウ酸は下式のようにイオン化され、逆浸透膜装置及び電気脱イオン装置におけるホウ素の除去率が著しく高くなるものと考えられる。
BO + HO → B(OH) + H
【0006】
本態様の純水製造装置における(B)耐アルカリ性逆浸透膜装置は、長期的にpH10以上、より好ましくはpH11以上の水と接しても劣化を生じないものであることが好ましい。この場合、通水される水のpHよりも、逆浸透膜装置の濃縮水の方がさらにpHが高くなるので、濃縮水のpHを考慮して耐アルカリ性逆浸透膜を選択することが好ましい。このような耐アルカリ性逆浸透膜としては、例えば、pH11まで長期耐久性があるものとして市販されているFILMTEC type FT30などや、pH10まで長期耐久性があるものとして市販されている日東電工(株)製のES20、ES10、NTR759や、東レ(株)製のSU700などのポリアミド系の逆浸透膜などを挙げることができる。
本態様の純水製造装置における(C)電気脱イオン装置には特に制限はなく、公知の電気脱イオン装置を使用することができる。電気脱イオン装置は、薬品再生が不要であり、小型で大容量を有するために、経済的にホウ素含有水を処理して純水を製造することができる。
本態様の純水製造装置においては、逆浸透膜装置への供給水に水酸化ナトリウムなどを添加してアルカリ性とすることにより、逆浸透膜装置の透過水すなわち電気脱イオン装置への供給水も、水酸化ナトリウムなどを主成分として含有してアルカリ性となるので、水酸化ナトリウムなどのアルカリを有効に利用することができる。電気脱イオン装置に、通常の通水条件である中性のホウ素含有水を通水した場合には、ホウ素の除去率は70%程度であるが、本発明者は、電気脱イオン装置への供給水のpHをアルカリ条件にすることにより、ホウ素除去率を高めることができることを見いだしたものである。
本態様の純水製造装置によれば、耐アルカリ性逆浸透膜装置において、原水であるホウ素含有水中のホウ素の95%以上を除去し、さらに、逆浸透膜装置の透過水を電気脱イオン装置に通水することにより、原水であるホウ素含有水中のホウ素の99%以上を除去することができる。
【0007】
図1(b)は、本発明の純水製造装置の他の態様の工程系統図である。本態様の純水製造装置は、(D)ホウ素含有水が通水される逆浸透膜装置11、(E)逆浸透膜装置の透過水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置12、(F)pHの調整された逆浸透膜装置の透過水が通水される電気脱イオン装置13を有する。本態様の純水製造装置によれば、電気脱イオン装置の前段に逆浸透膜装置が設けられているので、カルシウムイオンなどが除去される。従って、その透過水を高pHとしても、電気脱イオン装置でのスケール生成が防止できる。また、逆浸透膜装置の前段に、強酸性イオン交換樹脂を含むイオン交換装置14と膜脱気装置15を設けて、原水中のカルシウムイオンと炭酸を除去し、逆浸透膜装置における炭酸カルシウムスケールの発生を防止することが好ましいが、逆浸透膜装置の前段で高pHとしないので、カルシウムスケールによる膜の障害は生じにくい。従って、イオン交換装置と膜脱気装置による前処理は省略してもよい。また、電気脱イオン装置の後段に非再生型イオン交換装置16を設けて、電気脱イオン装置で除去しきれなかった微量の不純物を除去することができる。
本態様の純水製造装置における(D)逆浸透膜には特に制限はなく、例えば、酢酸セルロース系逆浸透膜、ポリアミド系逆浸透膜、ポリエチレンイミン系逆浸透膜、ポリエチレンオキシド系逆浸透膜などを挙げることができる。本態様の純水製造装置においては、逆浸透膜装置へ通水する水のpHを中性に近い7.5程度とするので、逆浸透膜装置におけるホウ素の除去率は高くないが、耐アルカリ性逆浸透膜でなく通常の逆浸透膜を使用することができる。
本態様の純水製造装置における(E)アルカリ添加装置には特に制限はなく、例えば、水酸化ナトリウムなどのアルカリ水溶液を添加する装置や、強塩基性イオン交換樹脂を含むイオン交換装置、あるいはその両方を設置することができる。アルカリ水溶液を添加する装置としては、例えば、撹拌機つきのpH調整槽を設けたり、通水ラインにアルカリ水溶液注入口を設け、その下流側にスタチックミキサーなどを設置することなどができる。アルカリ添加装置は、ホウ素含有水にアルカリを添加して、pHをホウ酸のpKa9.2(25℃)以上、より好ましくはpHを10以上に調整し得るものである。図1(b)に示す態様の装置においては、電気脱イオン装置の入口にpHセンサー17を設け、制御器18を通じて信号を薬注ポンプ19に送り、アルカリ貯槽20からのアルカリ注入量を制御する。
本態様の純水製造装置における(F)電気脱イオン装置には特に制限はなく、公知の電気脱イオン装置を使用することができる。電気脱イオン装置は、薬品再生が不要であり、小型で大容量を有するために、経済的にホウ素含有水を処理して純水を製造することができる。
本態様の純水製造装置によれば、逆浸透膜装置におけるホウ素の除去率は40%程度であるが、逆浸透膜装置の透過水のpHを9.2以上に調整して、さらに電気脱イオン装置に通水することにより、原水であるホウ素含有水中のホウ素の95%以上を除去することができる。
本発明の純水製造装置によれば、電気脱イオン装置において、水中のホウ素を低濃度まで除去し、後段の非再生型イオン交換装置の負荷を軽減して、その寿命を延長することができる。また、耐アルカリ性逆浸透膜装置を用い、その前段にpHを調整するためのアルカリ添加装置を設ける態様においては、逆浸透膜装置への供給水をアルカリ性にすることにより、逆浸透膜装置の透過水すなわち電気脱イオン装置への供給水も同時にアルカリ性とすることができ、アルカリを有効に利用するとともに、高いホウ素除去率を達成することができる。
【0008】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
図1(a)に示す純水製造装置を用いて、純水の製造を行った。
水道水を2トン/hrの速度でH型強酸性イオン交換樹脂塔に通水したのち、気相側を減圧にした膜脱気装置に通水して、水中の炭酸を除去した。次に、炭酸を除去した水に水酸化ナトリウム水溶液を添加してpHを10.0に調整し、耐アルカリ性逆浸透膜[FILMTEC type FT30]装置に通水した。耐アルカリ性逆浸透膜装置入口の水のホウ素濃度は30ppbであり、耐アルカリ性逆浸透膜装置出口の水のホウ素濃度は1ppbであった。
耐アルカリ性逆浸透膜装置の透過水は、次いで電気脱イオン装置に通水した。電気脱イオン装置入口の水のpHは9.5であり、電気脱イオン装置出口の水のホウ素濃度は0.1ppbであった。電気脱イオン装置から流出する水は、さらに非再生型イオン交換装置に通水して純水1.8トン/hrを得た。
実施例2
図1(b)に示す純水製造装置を用いて、純水の製造を行った。
水道水を2トン/hrの速度でH型強酸性イオン交換樹脂塔に通水したのち、気相側を減圧にした膜脱気装置に通水して、水中の炭酸を除去した。次に、炭酸を除去した水に水酸化ナトリウム水溶液を添加してpHを7.5に調整し、逆浸透膜[日東電工(株)、ES20]装置に通水した。逆浸透膜装置入口の水のホウ素濃度は30ppbであり、逆浸透膜装置出口の水のホウ素濃度は18ppbであった。
さらに、逆浸透膜装置の透過水に水酸化ナトリウム水溶液を添加してpHを10.0に調整し、電気脱イオン装置に通水した。電気脱イオン装置出口の水のホウ素濃度は、0.9ppbであった。電気脱イオン装置から流出する水は、さらに非再生型イオン交換装置に通水して純水1.8トン/hrを得た。
比較例1
逆浸透膜装置の透過水への水酸化ナトリウム水溶液の添加によるpH調整を行わないこと以外は、実施例2と同じ操作を繰り返した。
電気脱イオン装置入口の水のホウ素濃度は18ppbであり、pHは7.2であった。また、電気脱イオン装置出口の水のホウ素濃度は5.8ppbであった。
実施例1〜2及び比較例1の結果を、第1表に示す。
【0009】
【表1】

Figure 0003575260
【0010】
第1表に見られるように、逆浸透膜装置入口の水に対する電気脱イオン装置出口の水のホウ素除去率は、耐アルカリ性逆浸透膜装置入口で水のpHを10.0に調整した実施例1では99.7%、電気脱イオン装置入口で水のpHを10.0に調整した実施例2では97.0%であるのに対して、水のpHを10.0に調整しなかった比較例1では80.7%にとどまっている。この結果から、水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置を備えた本発明の純水製造装置により、ホウ素除去率の高い純水が得られることが分かる。特に、耐アルカリ性逆浸透膜装置を用い、アルカリ添加装置を逆浸透膜装置の前段に設けた純水製造装置において、非常に高いホウ素除去率が達成されている。
【0011】
【発明の効果】
本発明の純水製造装置によれば、電気脱イオン装置において、水中のホウ素を低濃度まで除去し、後段の非再生型イオン交換装置の負荷を軽減し、その寿命を延ばすことができる。また、耐アルカリ性逆浸透膜装置を用い、その前段にpHを調整するためのアルカリ添加装置を設けて、逆浸透膜装置への供給水をアルカリ性にすることにより、逆浸透膜装置の透過水すなわち電気脱イオン装置への供給水も同時にアルカリ性とすることができ、アルカリを有効に利用するとともに、高いホウ素除去率を達成することができる。
【図面の簡単な説明】
【図1】図1は、本発明の純水製造装置の工程系統図である。
【符号の説明】
1 アルカリ添加装置
2 耐アルカリ性逆浸透膜装置
3 電気脱イオン装置
4 強酸性イオン交換樹脂を含むイオン交換装置
5 膜脱気装置
6 非再生型イオン交換装置
7 pHセンサー
8 制御器
9 薬注ポンプ
10 アルカリ貯槽
11 逆浸透膜装置
12 アルカリ添加装置
13 電気脱イオン装置
14 強酸性イオン交換樹脂を含むイオン交換装置
15 膜脱気装置
16 非再生型イオン交換装置
17 pHセンサー
18 制御器
19 薬注ポンプ
20 アルカリ貯槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for producing pure water. More specifically, the present invention relates to a pure water production apparatus suitable for producing pure water or ultrapure water having a significantly reduced boron concentration, which is used in the field of the electronics industry such as semiconductor production or related fields.
[0002]
[Prior art]
As an apparatus for producing pure water or ultrapure water by treating raw water containing boron, a pure water production apparatus is known in which after adding an alkali to adjust the pH to 10 or more, the pure water is passed through an alkali-resistant reverse osmosis membrane apparatus. I have. At the 47th National Waterworks Research Conference (May 1996, Announcement No. 4-98), boron was eliminated by setting the pH of water to 10 or more in a boron reduction system using a reverse osmosis membrane device. Rates have been reported to be higher. However, when alkaline boron-containing water is passed through the reverse osmosis membrane device, there is a problem that hardness components such as calcium are precipitated and the membrane is clogged, and the amount of fresh water is reduced.
The use of an electrodeionization apparatus for the treatment of raw water containing boron is being studied. The electrodeionization apparatus has two sides each composed of a cation exchange membrane and an anion exchange membrane, between which a potential difference is applied to a dilution chamber filled with an ion exchange resin or an ion exchange fiber, and water is passed through. The cations are passed through the cation exchange membrane, and the anions are removed by passing through the anion exchange membrane. Thus, treated water having water quality equal to or higher than that of a conventional mixed-bed deionization apparatus can be obtained. The electrodeionization apparatus is characterized in that it does not require chemical regeneration and is compact, and in recent years, a large-capacity electrodeionization apparatus has been developed. However, if an electrodeionization apparatus is used for the treatment of boron-containing water, the removal rate of boron reaches only about 70%, which is insufficient for a pure water production apparatus for removing boron. Was.
For this reason, it was necessary to further post-process the water treated by the electrodeionization apparatus using a non-regenerative ion exchanger, but the life of the non-regenerative ion exchanger was reduced due to the boron remaining in the water. There is a problem in that the length of the replacement becomes extremely short, and the frequency of replacement becomes extremely large, which is extremely uneconomical.
[0003]
[Problems to be solved by the invention]
The present invention is directed to the production of pure water with a reduced boron concentration, which is used in the field of the electronics industry such as semiconductor production, or related fields, and can be used to increase the boron removal rate in an electrodeionization apparatus. The purpose is to provide a manufacturing apparatus.
[0004]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to solve the above problems, and as a result, provided a pH adjusting alkali addition device in a pure water production device having a reverse osmosis membrane device and an electrodeionization device, and changed the reverse osmosis membrane device. It has been found that by adjusting the pH of the water supplied to the electrodeionization apparatus or the water supplied to the electrodeionization apparatus to 9.2 or more, the boron removal rate in the electrodeionization apparatus can be dramatically increased. The invention has been completed.
That is, the present invention
(1) (A) an alkali addition device for adjusting the pH to 9.2 or more by adding an alkali to boron-containing water, and (B) an alkali-resistant reverse osmosis membrane device through which the pH-adjusted boron-containing water flows. and (C) pH 9. pure water production apparatus permeate alkali-resistant reverse osmosis membrane apparatus is characterized by having a electrodeionization apparatus which is passed through with 2 or more, and,
(2) (D) a reverse osmosis membrane device through which boron-containing water flows, (E) an alkali addition device for adding an alkali to permeated water of the reverse osmosis membrane device to adjust the pH to 9.2 or more, (F) A) pure water production apparatus, characterized by having an electrodeionization apparatus through which permeated water of a reverse osmosis membrane apparatus whose pH has been adjusted is passed.
Is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1A is a process flow diagram of one embodiment of the pure water production apparatus of the present invention. In the pure water production apparatus of this embodiment, (A) an alkali addition apparatus 1 for adding an alkali to boron-containing water to adjust the pH to 9.2 or more, and (B) a boron-containing water whose pH has been adjusted are passed through. An alkali-resistant reverse osmosis membrane device 2 and (C) an electrodeionization device 3 through which permeated water of the alkali-resistant reverse osmosis membrane device is passed. In the case of the pure water production apparatus of the present embodiment, calcium scale and the like are likely to occur due to a high pH before and after the alkali-resistant reverse osmosis membrane apparatus, and therefore, an ion exchange apparatus containing a strongly acidic ion exchange resin before the alkali addition apparatus. It is preferable to provide a membrane degasser 4 and a membrane deaerator 5 to sufficiently remove calcium ions and carbonic acid in raw water to prevent the generation of calcium carbonate scale on the reverse osmosis membrane surface. In addition, the non-regenerative ion exchange device 6 is provided at the subsequent stage of the electrodeionization device, so that a trace amount of impurities that could not be removed by the electrodeionization device can be removed.
The (A) alkali addition apparatus in the pure water production apparatus of this embodiment is not particularly limited, and for example, an apparatus for adding an alkali aqueous solution such as sodium hydroxide, an ion exchange apparatus containing a strongly basic ion exchange resin, or an ion exchange apparatus containing the same. Both can be installed. As a device for adding the alkaline aqueous solution, for example, a pH adjusting tank with a stirrer may be provided, or an alkaline aqueous solution injection port may be provided in a water flow line, and a static mixer or the like may be provided downstream thereof. The alkali addition device can adjust the pH to at least pKa 9.2 (25 ° C.), more preferably at least 10 for boric acid, by adding alkali to boron-containing water. In the apparatus of the embodiment shown in FIG. 1 (a), a pH sensor 7 is provided at the entrance of the alkali-resistant reverse osmosis membrane device, a signal is sent to a chemical injection pump 9 through a controller 8, and an alkali injection amount from an alkali storage tank 10 is measured. Control.
Since the acid dissociation index pKa of boric acid is 9.2 at 25 ° C., when an alkali is added to boron-containing water to adjust the pH to 9.2 or more, preferably 10 or more, boric acid in the water is expressed by the following formula. It is considered that the removal rate of boron in the reverse osmosis membrane device and the electrodeionization device is significantly increased.
H 3 BO 3 + H 2 O → B (OH) 4 + H +
[0006]
It is preferable that the (B) alkali-resistant reverse osmosis membrane device in the pure water production device of this embodiment does not deteriorate even if it is in contact with water having a pH of 10 or more, more preferably pH 11 or more, for a long term. In this case, since the concentrated water of the reverse osmosis membrane device has a higher pH than the pH of the water to be passed, it is preferable to select an alkali-resistant reverse osmosis membrane in consideration of the pH of the concentrated water. Such alkali-resistant reverse osmosis membranes include, for example, FILMTEC type FT30 which is commercially available as having a long-term durability up to pH 11 and Nitto Denko Corporation which is commercially available as having a long-term durability up to pH 10. And polyamide-based reverse osmosis membranes such as ES20, ES10, NTR759 manufactured by Toray Industries, Inc. and SU700 manufactured by Toray Industries, Inc.
There is no particular limitation on the (C) electrodeionization apparatus in the pure water production apparatus of this embodiment, and a known electrodeionization apparatus can be used. Since the electrodeionization apparatus does not require chemical regeneration, is small and has a large capacity, it can economically treat boron-containing water to produce pure water.
In the pure water production apparatus of this embodiment, by adding sodium hydroxide or the like to the supply water to the reverse osmosis membrane apparatus to make it alkaline, the permeate of the reverse osmosis membrane apparatus, that is, the supply water to the electrodeionization apparatus is also reduced. And sodium hydroxide and the like as a main component and become alkaline, so that an alkali such as sodium hydroxide can be effectively used. When neutral boron-containing water, which is a normal water flow condition, is passed through the electrodeionization apparatus, the removal rate of boron is about 70%. It has been found that the boron removal rate can be increased by adjusting the pH of the feed water to alkaline conditions.
According to the pure water production apparatus of this embodiment, in the alkali-resistant reverse osmosis membrane apparatus, 95% or more of boron in the boron-containing water as raw water is removed, and the permeated water of the reverse osmosis membrane apparatus is used for the electrodeionization apparatus. By passing water, 99% or more of boron in the boron-containing water as raw water can be removed.
[0007]
FIG. 1B is a process flow diagram of another embodiment of the pure water production apparatus of the present invention. In the pure water production apparatus of this embodiment, (D) a reverse osmosis membrane device 11 through which boron-containing water flows, and (E) an alkali is added to the permeated water of the reverse osmosis membrane device to adjust the pH to 9.2 or more. And an electrodeionization device 13 through which permeated water from the reverse osmosis membrane device whose pH has been adjusted is passed. According to the pure water production apparatus of this aspect, since the reverse osmosis membrane device is provided in the preceding stage of the electrodeionization device, calcium ions and the like are removed. Therefore, even if the permeated water has a high pH, scale formation in the electrodeionization apparatus can be prevented. In addition, an ion exchange device 14 containing a strongly acidic ion exchange resin and a membrane deaerator 15 are provided in front of the reverse osmosis membrane device to remove calcium ions and carbonic acid in raw water, and the calcium carbonate scale in the reverse osmosis membrane device is provided. Although it is preferable to prevent the occurrence of water, the pH is not set high in the preceding stage of the reverse osmosis membrane device, so that damage to the membrane due to calcium scale hardly occurs. Therefore, the pretreatment by the ion exchange device and the membrane deaerator may be omitted. In addition, a non-regenerative ion exchange device 16 is provided at the subsequent stage of the electrodeionization device, so that a trace amount of impurities that cannot be completely removed by the electrodeionization device can be removed.
The (D) reverse osmosis membrane in the pure water production apparatus of this embodiment is not particularly limited, and examples thereof include a cellulose acetate reverse osmosis membrane, a polyamide reverse osmosis membrane, a polyethylene imine reverse osmosis membrane, and a polyethylene oxide reverse osmosis membrane. Can be mentioned. In the pure water production apparatus of this embodiment, the pH of the water passing through the reverse osmosis membrane apparatus is set to about 7.5, which is close to neutral, so that the removal rate of boron in the reverse osmosis membrane apparatus is not high, but the alkali resistance is high. Instead of a reverse osmosis membrane, a normal reverse osmosis membrane can be used.
The (E) alkali addition device in the pure water production device of the present embodiment is not particularly limited, and for example, a device for adding an aqueous alkali solution such as sodium hydroxide, an ion exchange device containing a strongly basic ion exchange resin, or the like. Both can be installed. As a device for adding the alkaline aqueous solution, for example, a pH adjusting tank with a stirrer may be provided, or an alkaline aqueous solution injection port may be provided in the water flow line, and a static mixer or the like may be provided downstream of the inlet. The alkali addition device is capable of adjusting the pH to 9.2 (25 ° C.) or more, more preferably 10 or more, to pKa of boric acid by adding alkali to boron-containing water. In the apparatus of the embodiment shown in FIG. 1 (b), a pH sensor 17 is provided at the inlet of the electrodeionization device, and a signal is sent to a chemical injection pump 19 through a controller 18 to control the amount of alkali injected from the alkali storage tank 20. .
The (F) electrodeionization apparatus in the pure water production apparatus of this embodiment is not particularly limited, and a known electrodeionization apparatus can be used. Since the electrodeionization apparatus does not require chemical regeneration, is small and has a large capacity, it can economically treat boron-containing water to produce pure water.
According to the pure water production apparatus of this embodiment, the removal rate of boron in the reverse osmosis membrane device is about 40%, but the pH of the permeated water of the reverse osmosis membrane device is adjusted to 9.2 or more, and By passing water through the ion device, it is possible to remove 95% or more of boron in the boron-containing water that is raw water.
ADVANTAGE OF THE INVENTION According to the pure water production apparatus of this invention, in an electrodeionization apparatus, the boron in water can be removed to a low concentration, the load of the non-regeneration type ion exchange apparatus of a latter stage can be reduced, and the life can be extended. . Further, in an embodiment in which an alkali-resistant reverse osmosis membrane device is used and an alkali addition device for adjusting the pH is provided at the preceding stage, the water supplied to the reverse osmosis membrane device is made alkaline, so that the permeation of the reverse osmosis membrane device is reduced. The water, that is, the water to be supplied to the electrodeionization apparatus can be made alkaline at the same time, so that the alkali can be effectively used and a high boron removal rate can be achieved.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Pure water was produced using the pure water producing apparatus shown in FIG.
After passing tap water at a rate of 2 tons / hr through the H-type strongly acidic ion-exchange resin tower, water was passed through a membrane deaerator in which the gas phase was reduced in pressure to remove carbonic acid in the water. Next, an aqueous sodium hydroxide solution was added to the water from which carbon dioxide had been removed to adjust the pH to 10.0, and the solution was passed through an alkali-resistant reverse osmosis membrane [FILMTEC type FT30] device. The boron concentration of water at the inlet of the alkali-resistant reverse osmosis membrane device was 30 ppb, and the boron concentration of water at the outlet of the alkali-resistant reverse osmosis membrane device was 1 ppb.
The permeated water of the alkali-resistant reverse osmosis membrane device was then passed through an electrodeionization device. The pH of the water at the inlet of the electrodeionization device was 9.5, and the boron concentration of the water at the outlet of the electrodeionization device was 0.1 ppb. The water flowing out of the electrodeionization apparatus was further passed through a non-regenerative ion exchange apparatus to obtain 1.8 tons / hr of pure water.
Example 2
Pure water was produced using the pure water producing apparatus shown in FIG.
After passing tap water at a rate of 2 tons / hr through the H-type strongly acidic ion-exchange resin tower, water was passed through a membrane deaerator in which the gas phase was reduced in pressure to remove carbonic acid in the water. Next, an aqueous sodium hydroxide solution was added to the water from which carbon dioxide had been removed to adjust the pH to 7.5, and the solution was passed through a reverse osmosis membrane [Nitto Denko Corporation, ES20] apparatus. The boron concentration of the water at the inlet of the reverse osmosis membrane device was 30 ppb, and the boron concentration of the water at the outlet of the reverse osmosis membrane device was 18 ppb.
Further, an aqueous solution of sodium hydroxide was added to the permeated water of the reverse osmosis membrane device to adjust the pH to 10.0, and the solution was passed through an electrodeionization device. The boron concentration of water at the outlet of the electrodeionization apparatus was 0.9 ppb. The water flowing out of the electrodeionization apparatus was further passed through a non-regenerative ion exchange apparatus to obtain 1.8 tons / hr of pure water.
Comparative Example 1
The same operation as in Example 2 was repeated except that the pH was not adjusted by adding an aqueous solution of sodium hydroxide to the permeated water of the reverse osmosis membrane device.
The boron concentration of the water at the inlet of the electrodeionization apparatus was 18 ppb, and the pH was 7.2. Further, the boron concentration of water at the outlet of the electrodeionization apparatus was 5.8 ppb.
Table 1 shows the results of Examples 1 and 2 and Comparative Example 1.
[0009]
[Table 1]
Figure 0003575260
[0010]
As shown in Table 1, the boron removal rate of the water at the outlet of the electrodeionization apparatus with respect to the water at the inlet of the reverse osmosis membrane apparatus was determined by adjusting the pH of the water to 10.0 at the entrance of the alkali-resistant reverse osmosis membrane apparatus. In Example 1, the pH of water was adjusted to 99.7%, and the pH of water was adjusted to 10.0 at the inlet of the electrodeionization apparatus. In Example 2, which was 97.0%, the pH of water was not adjusted to 10.0. In Comparative Example 1, it was only 80.7%. From these results, it is understood that pure water having a high boron removal rate can be obtained by the pure water production apparatus of the present invention including the alkali addition apparatus for adjusting the pH to 9.2 or more by adding an alkali to water. In particular, an extremely high boron removal rate has been achieved in a pure water production apparatus using an alkali-resistant reverse osmosis membrane apparatus and an alkali addition apparatus provided in a stage preceding the reverse osmosis membrane apparatus.
[0011]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the pure water production apparatus of this invention, in an electrodeionization apparatus, boron in water can be removed to a low concentration, the load of the non-regeneration type ion exchange apparatus of the latter stage can be reduced, and the life can be extended. Further, by using an alkali-resistant reverse osmosis membrane device, an alkali addition device for adjusting the pH is provided at the preceding stage, and the supply water to the reverse osmosis membrane device is made alkaline, so that the permeated water of the reverse osmosis membrane device, that is, The water supplied to the electrodeionization apparatus can be made alkaline at the same time, so that the alkali can be effectively used and a high boron removal rate can be achieved.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of a pure water production apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Alkali addition apparatus 2 Alkali-resistant reverse osmosis membrane apparatus 3 Electrodeionization apparatus 4 Ion exchange apparatus containing a strongly acidic ion exchange resin 5 Membrane deaerator 6 Non-regenerative ion exchange apparatus 7 pH sensor 8 Controller 9 Chemical injection pump 10 Alkaline storage tank 11 Reverse osmosis membrane device 12 Alkali addition device 13 Electrodeionization device 14 Ion exchange device containing strongly acidic ion exchange resin 15 Membrane deaeration device 16 Non-regenerative ion exchange device 17 pH sensor 18 Controller 19 Chemical pump 20 Alkaline storage tank

Claims (2)

(A)ホウ素含有水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置、(B)pHの調整されたホウ素含有水が通水される耐アルカリ性逆浸透膜装置及び(C)pH . 2以上を有する耐アルカリ性逆浸透膜装置の透過水が通水される電気脱イオン装置を有することを特徴とする純水製造装置。(A) an alkali addition apparatus for adjusting the pH to 9.2 or more by adding an alkali to boron-containing water, (B) an alkali-resistant reverse osmosis membrane apparatus through which the pH-adjusted boron-containing water flows, and (C) ) pH 9. pure water manufacturing apparatus characterized by having an electrodeionization apparatus which permeate is passed through the alkali-resistant reverse osmosis unit having 2 or more. (D)ホウ素含有水が通水される逆浸透膜装置、(E)逆浸透膜装置の透過水にアルカリを添加してpHを9.2以上に調整するアルカリ添加装置、(F)pHの調整された逆浸透膜装置の透過水が通水される電気脱イオン装置を有することを特徴とする純水製造装置。(D) a reverse osmosis membrane device through which boron-containing water is passed; (E) an alkali addition device for adjusting the pH to 9.2 or more by adding an alkali to the permeated water of the reverse osmosis membrane device; An apparatus for producing pure water, comprising an electrodeionization apparatus through which permeated water from a regulated reverse osmosis membrane device is passed.
JP36011797A 1997-12-26 1997-12-26 Pure water production equipment Expired - Fee Related JP3575260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36011797A JP3575260B2 (en) 1997-12-26 1997-12-26 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36011797A JP3575260B2 (en) 1997-12-26 1997-12-26 Pure water production equipment

Publications (2)

Publication Number Publication Date
JPH11188359A JPH11188359A (en) 1999-07-13
JP3575260B2 true JP3575260B2 (en) 2004-10-13

Family

ID=18467980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36011797A Expired - Fee Related JP3575260B2 (en) 1997-12-26 1997-12-26 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP3575260B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531213B2 (en) * 2000-07-13 2010-08-25 野村マイクロ・サイエンス株式会社 Desalination equipment
JP2002320971A (en) * 2001-04-26 2002-11-05 Nippon Rensui Co Ltd Method and equipment for producing pure water by electric regeneration
JP4599803B2 (en) * 2002-04-05 2010-12-15 栗田工業株式会社 Demineralized water production equipment
EP1598318A4 (en) * 2003-02-14 2010-02-03 Kurita Water Ind Ltd Electric deionization apparatus and method of operating the same
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
JP3864934B2 (en) * 2003-06-12 2007-01-10 栗田工業株式会社 Pure water production equipment
JP4624066B2 (en) * 2004-10-14 2011-02-02 オルガノ株式会社 Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2009028695A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Apparatus and method for manufacturing pure water
JP5733351B2 (en) 2013-07-22 2015-06-10 栗田工業株式会社 Method and apparatus for treating boron-containing water
JP2014000575A (en) * 2013-10-10 2014-01-09 Kurita Water Ind Ltd Apparatus and method for producing purified water

Also Published As

Publication number Publication date
JPH11188359A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US4574049A (en) Reverse osmosis system
US5925255A (en) Method and apparatus for high efficiency reverse osmosis operation
EP0946268B1 (en) Method and apparatus for high efficiency reverse osmosis operation
US8758720B2 (en) High purity water produced by reverse osmosis
TWI616404B (en) Method and device for processing boron-containing water
JP2002509802A (en) Water treatment system and water treatment method including pH control
JP3575271B2 (en) Pure water production method
JP3575260B2 (en) Pure water production equipment
TW202000599A (en) Method for removing boron from water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration
JPS59112890A (en) Desalination by reverse osmosis membrane device
JPWO2008059824A1 (en) Water treatment apparatus and water treatment method
JP5673225B2 (en) Water treatment method and water treatment system
JP3695338B2 (en) Method for producing deionized water
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2001129554A (en) Method and apparatus for making deionized water
JPH11267645A (en) Production of pure water
JP3885319B2 (en) Pure water production equipment
JP3966482B2 (en) Method for adjusting specific resistance of ultrapure water and pure water production apparatus using the same
JPH1080684A (en) Device and method for treating boron-containing water
JP3536294B2 (en) Pure water production method
JP3826546B2 (en) Boron-containing water treatment equipment
JP3215277B2 (en) Method and apparatus for producing pure water or ultrapure water from which boron has been removed
JP2012196634A (en) Method and system for treatment of water
JPH02303593A (en) Two-stage type reverse osmosis membrane device
JPH10249340A (en) Production of pure water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees