JP4531213B2 - Desalination equipment - Google Patents
Desalination equipment Download PDFInfo
- Publication number
- JP4531213B2 JP4531213B2 JP2000212955A JP2000212955A JP4531213B2 JP 4531213 B2 JP4531213 B2 JP 4531213B2 JP 2000212955 A JP2000212955 A JP 2000212955A JP 2000212955 A JP2000212955 A JP 2000212955A JP 4531213 B2 JP4531213 B2 JP 4531213B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- electric
- exchange resin
- reverse osmosis
- cation exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、工業用水、市水、井水などの原水を逆浸透膜処理装置と電気式脱イオン装置で処理する脱塩装置に係り、特に脱塩装置を長期的に安定して、しかも維持コストを少なく抑えて運転することができ、しかも高純度の処理水を安定して生成することのできる脱塩装置に関する。
【0002】
【従来の技術】
近年、脱塩水を生成する装置として、逆浸透膜処理装置の後段に、電気式脱イオン装置を設けた脱塩装置が広く用いられるようになってきている。
【0003】
一般に、電気式脱イオン装置は、図1に示すように、陽極1と陰極2の間に複数のアニオン交換膜3とカチオン交換膜4とを交互に配置してアニオン交換膜3とカチオン交換膜4によって仕切られた脱塩室5と濃縮室6とが交互に形成され、被処理水が供給される脱塩室5にはアニオン交換樹脂とカチオン交換樹脂との混合体7が充填され、陽極1と陰極2間には直流電圧が印加されるように構成されている。なお8は陽極室、9は陰極室であり、10は、被処理水からのイオン成分の濃縮率を高くするために濃縮室6に流す水を循環させる循環ポンプである。
【0004】
このように構成された電気式脱イオン装置では、供給水中のイオン成分は、脱塩室5のアニオン交換樹脂とカチオン交換樹脂との混合体7に吸着されるが、混合体7に吸着されたイオン成分は直流電流の作用により濃縮室6に移行されてアニオン交換樹脂とカチオン交換樹脂との混合体7は連続的に再生される。
【0005】
すなわち、電気式脱イオン装置ではイオンの吸着と再生が並行して行われる。
【0006】
【発明が解決しようとする課題】
このように、従来の逆浸透膜処理装置と電気式脱イオン装置により構成される脱塩装置では、電気式脱イオン装置のアニオン交換樹脂とカチオン交換樹脂との混合体7が連続的に再生されるため、本来的には長期的に安定して運転することができるという特徴を有するが、往々にして電気式脱イオン装置内の濃縮水循環系において、菌(バクテリア)が繁殖し、これによって濃縮室流量が低下し、ついには電気式脱イオン装置の運転バランスが崩れて処理水質の低下を招いてしまうという問題があった。
【0007】
また、このような逆浸透膜処理装置と電気式脱イオン装置で処理する脱塩装置では、逆浸透膜処理装置において硬度成分(Ca、Mg等)の大部分は除去されるが、一部はリークして電気式脱イオン装置に流入し、電気式脱イオン装置内に硬度スケールを発生させ、処理水質の悪化と頻繁な薬品洗浄によるコストアップを招くという問題もあった。
【0008】
さらに、このような逆浸透膜処理装置と電気式脱イオン装置で構成される脱塩装置においては、原水中の濁度成分等により逆浸透膜処理装置が目詰まりを起こす恐れがあり、目詰まりが起きると、その要因によって逆浸透膜処理装置のクリーニングを必要としたり、あるいは逆浸透膜処理装置の処理水質の悪化を招き、後段の電気式脱イオン装置の安定運転の障害になるという問題もあった。
【0009】
したがって、本願発明の目的は、工業用水、市水、井水などの原水より脱塩水を生成する脱塩装置、特に、電気式脱イオン装置を使用する脱塩装置において、前記電気式脱イオン装置を長期的に安定して、しかも維持コストを少なく抑えて運転することができ、しかも高純度の処理水を安定して生成することのできる脱塩装置を提供することにある。
【0010】
【課題を解決するための手段】
請求項1の脱塩装置は、膜式除濁装置と逆浸透膜処理装置、ナトリウム(Na)型強酸性カチオン交換樹脂装置及び電気式脱イオン装置を流路に沿って順に配置して被処理水を脱塩する装置において、前記電気式脱イオン装置供給水にアルカリ剤を添加して前記電気式脱イオン装置供給水のpHを7.5以上、11.0以下に調整するアルカリ剤添加手段を有することを特徴とする。
【0011】
請求項2の脱塩装置は、膜式除濁装置と逆浸透膜処理装置、ナトリウム(Na)型強酸性カチオン交換樹脂装置及び電気式脱イオン装置を流路に沿って順に配置して被処理水を脱塩する装置において、前記電気式脱イオン装置内の濃縮水循環流路にアルカリ剤を添加して前記電気式脱イオン装置内の濃縮水循環系のpHを9.0以上に調整するアルカリ添加手段を有することを特徴とする。
【0012】
請求項3の脱塩装置は、請求項1及び2の脱塩装置において、前記の添加されるアルカリ剤は、2価以上のカチオンを実質的に含まないことを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図2と図3に示す。なお、本発明の脱塩装置はこれらの実施の形態に限定されるものではなく、それぞれの構成機器間に別の機器を配置することも可能である。
【0014】
本発明に使用される膜式除濁装置は、工業用水、市水、井水などの原水から懸濁物質(SS)、ファウリング物質等を除去するためのもので、例えば、限外濾過膜や精密濾過膜などを使用した装置を使用し得るが、特に、中空糸タイプのモジュールを用いた内圧式全量濾過装置が本発明には好適している。
【0015】
原水を、膜式除濁装置で処理して除濁することにより、後段の逆浸透膜処理装置の負荷を軽減し、処理水質を向上させることができる。
【0016】
本発明に使用する逆浸透膜処理装置に用いる逆浸透膜には特に制限はないが、アラミド系膜、ポリアミド系膜、酢酸セルロース膜などが本発明に使用可能なものとして例示される。特に、スパイラル型の架橋アラミド系複合膜が本発明の効果をより発揮しやすく、本発明に好適している。
【0017】
逆浸透膜処理装置は、膜式除濁装置の処理水中の炭酸イオンを含むイオン類、シリカ等の不純物を分離除去する作用をする。後述する電気式脱イオン装置においても、これらのイオン類、シリカ等の分離除去は可能であるが、電気式脱イオン装置のみによりこれらの不純物を除去したのでは処理コストが高くなるので、予め逆浸透膜処理装置により脱塩し電気式脱イオン装置への負荷を低減しておくことが重要である。なお、この逆浸透膜処理装置は、水中の微粒子、有機物、生菌等も除去するので、それらの流入による電気式脱イオン装置の汚染を防止することができ、安定した電気式脱イオン装置の運転を可能とする。
【0018】
本発明に使用するナトリウム(Na)型強酸性カチオン交換樹脂装置は、電気式脱イオン装置に供給される被処理水から硬度成分(Ca,Mg等)を予め除去するためのものである。
【0019】
Caイオン、Mgイオン等は逆浸透膜処理装置においても大部分が除去されるが、本発明において、別にナトリウム(Na)型強酸性カチオン交換樹脂装置を設けたのは、次の理由による。
【0020】
すなわち、シリカ成分(SiO2 )や炭酸(CO2 )は、アルカリ性下においてイオン化し易くなることが知られており、このため、アルカリ性下では、電気式脱イオン装置によるシリカ成分(SiO2 )や炭酸(CO2 )等の除去率の向上が期待されるが、従来の逆浸透膜処理装置の後段に電気式脱イオン装置を設けた脱塩装置においては電気式脱イオン装置をアルカリ性下で運転しても長期的に処理水質が安定しない。
【0021】
その原因について検討したところ、電気式脱イオン装置に導入する供給水に残存する硬度成分(Ca,Mg等)がアルカリ性下で析出し、電気式脱イオン装置内の濃縮室に硬度スケールが発生して電気抵抗となり、これによって電気式脱イオン装置からの処理水質を悪化させていたことが分かった。すなわち、Caイオン、Mgイオン等は逆浸透膜処理装置において大部分は除去されるものの微量リークし、アルカリ性下の電気式脱イオン装置に流入すると硬度スケールの原因となり、電気式脱イオン装置処理水の比抵抗値の低下など、処理水質に大きく影響を与えていたのである。
【0022】
本発明におけるナトリウム(Na)型強酸性カチオン交換樹脂装置は、逆浸透膜処理装置で取りきれなかった硬度成分を実質的に完全に除去して電気式脱イオン装置におけるスケールの形成を防止する作用をする。
【0023】
なお、本発明では、カチオン交換樹脂としてNa型強酸性カチオン交換樹脂を適用しているが、その理由は次のとおりである。
【0024】
すなわち、Na型強酸性カチオン交換樹脂ではなく、H型に再生された強酸性カチオン交換樹脂を用いても硬度成分(Ca、Mg等)を除去することは可能であるが、H型に再生された強酸性カチオン交換樹脂を使用した場合には、被処理水から電気式脱イオン装置において容易に除去可能なナトリウムイオン(Na+ )等の一価のイオンも一緒に除去されてしまうため、当該強酸性カチオン交換樹脂の再生頻度が高くなって脱塩装置のランニングコストが著しく上昇してしまう。
【0025】
また、Na型に再生された弱酸性カチオン交換樹脂を使用した場合には、強酸性カチオン交換樹脂に比べてイオン交換速度が遅くなって電気式脱イオン装置に供給する被処理水に対し硬度成分(Ca、Mg等)の残存量を0.25ppm (asCaCO3 )程度以下に到達させることが非常に困難となり、電気式脱イオン装置における硬度スケールの発生防止の効果を達成することはできない。
【0026】
なお、本発明の脱塩装置では、Na型強酸性カチオン交換樹脂装置の前段に逆浸透膜処理装置があるので、Na型強酸性カチオン交換樹脂装置のメンテナンスを著しく軽減することができる。
【0027】
請求項1の脱塩装置におけるアルカリ剤添加手段は、電気式脱イオン装置の供給水、すなわちNa型強酸性カチオン交換樹脂装置の処理水にアルカリ剤を添加して電気式脱イオン装置供給水のpHを7.5以上、11.0以下に調整するものである。
【0028】
このアルカリ剤添加手段によるpH調整は、供給水中の菌(バクテリア)数を0個/mlに近づけるため行うもので、pH調整は7.5から11.0付近、好ましくはpHを7.5から10.0、更に好ましくは7.5から9.0にする。pHが7以下では、電気式脱イオン装置の供給水の菌(バクテリア)数が1ml当り100個程度となるが、アルカリ剤を添加することによって、電気式脱イオン装置供給水中の菌(バクテリア)の細胞膜を崩し、供給水中の生菌を失活させ、これによって電気式脱イオン装置の濃縮水中の菌数を0個/mlに近づけることができる。この効果によって、電気式脱イオン装置では、菌(バクテリア)による濃縮室流量低下からの運転バランスの崩れと、それによる処理水質低下の問題が解消され、長期間安定した水質を得る事ができ、また高純度の水質を得ることができる。しかし、pHがおよそ11を超えると、電気式脱イオン装置の供給水中のイオン負荷量が著しく増大するため経済的ではなく、場合によっては電気式脱イオン装置の処理水質の悪化を招くことがあるので好ましくない。
【0029】
本発明の請求項第2項の脱塩装置においては、アルカリ剤添加手段は、電気式脱イオン装置内の濃縮水循環流路にアルカリ剤を添加して前記電気式脱イオン装置内の濃縮水循環系のpHを常時9.0以上に調整し、これによって濃縮水中の菌(バクテリア)数を激減することができる。添加されたアルカリ剤は、電気式脱イオン装置濃縮水中の菌(バクテリア)の細胞膜を分解して、濃縮水循環系に存在する生菌を不活性化させ、これによって上記電気式脱イオン装置の濃縮室流量低下からの運転バランスの崩れと、それによる処理水質低下を回避させ、長期間安定した水質を得ることができる。
【0030】
なお、電気式脱イオン装置の供給水に添加されるアルカリ剤、あるいは電気式脱イオン装置の濃縮室循環系に添加されるアルカリ剤としては、NaOH、KOH、NH4 OH、NH3 ガスのような実質的に2価以上のカチオンを含まないアルカリ剤が使用される。添加するアルカリ剤に2価以上のカチオンが含まれていると電気式脱イオン装置に硬度スケーリングが発生する危険性が高くなる。
【0031】
次に本発明の実施例について説明する。
【0032】
(実施例1〜4)
図4は実施例1〜4に使用した本願発明の脱塩装置の系統図である。
【0033】
この実施例の装置は、膜式除濁装置と逆浸透膜処理装置、Na型強酸性カチオン交換樹脂、電気式脱イオン装置を被処理水の流れに沿って順に配置して構成されている。
【0034】
電気式脱イオン装置の供給水に添加したアルカリ剤はNaOHである。当該供給水のpHを7.7、8.7、9.8、10.8に調整し、30日間それぞれ連続運転を行った。
【0035】
各試験条件の運転初期における電気式脱イオン装置の濃縮室流量を1.0とした時の、運転30日後の当該濃縮室流量比を表1に示す。また、30日後の電気式脱イオン装置の処理水質と当該濃縮水中の生菌数を同様に表1に示す。なお、使用した原水は、神奈川県厚木市市水であり、使用した装置と運転条件は下記の通りである。
【0036】
膜式除濁装置:NML−E2HS−4(野村マイクロ・サイエンス社製)
逆浸透膜:SU−710(東レ社製)
水回収率(65%)、水温(20〜25℃)
ナトリウム型強酸性カチオン交換樹脂:デュオライトC−20(ローム&ハース社製)
電気式脱イオン装置:EDI−50(Ionic社製)
水回収率(95%)、直流電圧(450〜600V)
供給水流量(11.4m3 /h)
(比較例1〜2)
実施例1において、電気式脱イオン装置供給水のpHを6.0と7.3にしたこと以外は、実施例1と同様にして試験した。結果を表1に示す。
【表1】
【0037】
(実施例5〜7)
図5は実施例5〜7に使用した本願発明の脱塩装置の系統図である。
【0038】
この実施例の装置は、膜式除濁装置と逆浸透膜処理装置、Na型強酸性カチオン交換樹脂、電気式脱イオン装置を被処理水の流れに沿って順に配置して構成されている。前記電気式脱イオン装置の濃縮水循環系に添加したアルカリ剤はNaOHである。当該濃縮水のpHを9.3、10.7、12.1に調整し、30日間それぞれ連続運転した。各試験条件の運転初期における電気式脱イオン装置の濃縮室流量を1.0とした時の、運転30日後の当該濃縮室流量比と生菌数を表2に示す。
【表2】
【0039】
(比較例3〜4)
実施例5において、電気式脱イオン装置濃縮水循環系のpHを7.3と8.7にしたこと以外は、実施例5と同様にして試験した。結果を表2に示す。
【0040】
(比較例5〜6)
実施例5において、電気式脱イオン装置濃縮水循環系のpH調整剤として、2価のカチオンを含むCa(OH)2 を使用し、当該濃縮水のpHを9.5、10.4にしたこと以外は、実施例5と同様にして試験した。ただし、濃縮室流量の低下が急激であったため、濃縮室流量比と濃縮水中の生菌数は、運転開始から10日後の値を用いた。結果を表3に示す。
【表3】
【0041】
(実施例8)
実施例1における逆浸透膜処理装置の、供給水圧力と濃縮水圧力の差(差圧)の経時変化を図6に示す。また、同様に、実施例1における電気式脱イオン装置処理水比抵抗の経時変化を図7に示す。
【0042】
(比較例7)
実施例8において、図4中の点線に示す通り、膜式除濁装置とナトリウム型強酸性カチオン交換樹脂をバイパスしたこと以外は、実施例8と同様に試験した。逆浸透膜処理装置の供給水圧力と濃縮水圧力の差(差圧)と、電気式脱イオン装置の処理水比抵抗の経時変化をそれぞれ図6と図7に示す。なお、比較例7では、電気式脱イオン装置の処理水比抵抗が短期間に低下したため、当該装置の濃縮水循環系をHClにてクリーニング(メンテナンス)している。
【図面の簡単な説明】
【図1】 本発明に使用される電気式脱イオン装置の一例の構成を模式的に示す図である。
【図2】 本発明の請求項1の脱塩装置の一実施の形態の系統図である。
【図3】 本発明の請求項2の脱塩装置の他の実施の形態の系統図である。
【図4】 実施例1〜4に使用した脱塩装置の系統図である。
【図5】 実施例5〜7に使用した脱塩装置の系統図である。
【図6】 実施例1の逆浸透膜処理装置の供給水圧力と濃縮水圧力の差(差圧)の経時変化を示すグラフである。
【図7】実施例1における電気式脱イオン装置処理水比抵抗の経時変化を示すグラフである。
【符号の説明】
1……陽極、2……陰極、3……アニオン交換膜、4……カチオン交換膜、5……脱塩室、6……濃縮室、7……アニオン交換樹脂とカチオン交換樹脂との混合体、8……陽極室、9……陰極室、10……循環ポンプ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a demineralizer that treats raw water such as industrial water, city water, and well water with a reverse osmosis membrane treatment apparatus and an electric deionization apparatus, and in particular, stably and maintains the desalination apparatus for a long period of time. The present invention relates to a desalting apparatus that can be operated with a low cost and can stably produce high-purity treated water.
[0002]
[Prior art]
In recent years, as an apparatus for generating demineralized water, a demineralizer provided with an electric deionizer at the subsequent stage of a reverse osmosis membrane treatment apparatus has been widely used.
[0003]
In general, as shown in FIG. 1, the electric deionization apparatus is configured such that a plurality of
[0004]
In the electric deionization apparatus configured as described above, the ionic component in the feed water is adsorbed to the
[0005]
That is, in the electric deionizer, the adsorption and regeneration of ions are performed in parallel.
[0006]
[Problems to be solved by the invention]
Thus, in the conventional desalination apparatus constituted by the reverse osmosis membrane treatment apparatus and the electric deionization apparatus, the
[0007]
Moreover, in such a desalination apparatus that uses a reverse osmosis membrane treatment apparatus and an electric deionization apparatus, most of the hardness components (Ca, Mg, etc.) are removed in the reverse osmosis membrane treatment apparatus, but some of them are removed. There was also a problem that a leak occurred and flowed into the electric deionization apparatus, and a hardness scale was generated in the electric deionization apparatus, resulting in deterioration of treated water quality and increased cost due to frequent chemical cleaning.
[0008]
Furthermore, in such a desalination apparatus composed of a reverse osmosis membrane treatment apparatus and an electric deionization apparatus, the reverse osmosis membrane treatment apparatus may be clogged due to turbidity components in raw water, etc. If this occurs, the reverse osmosis membrane treatment device needs to be cleaned depending on the cause, or the water quality of the reverse osmosis membrane treatment device is deteriorated, resulting in an obstacle to stable operation of the subsequent electric deionization device. there were.
[0009]
Accordingly, an object of the present invention is to provide a desalination apparatus that generates demineralized water from raw water such as industrial water, city water, and well water, in particular, in a desalination apparatus that uses an electric deionization apparatus, the electric deionization apparatus It is an object of the present invention to provide a desalinating apparatus that can be operated for a long period of time with low maintenance costs and can stably produce high-purity treated water.
[0010]
[Means for Solving the Problems]
The demineralizer of
[0011]
The demineralization apparatus according to
[0012]
According to a third aspect of the present invention, there is provided the desalinating apparatus according to the first and second aspects, wherein the added alkaline agent does not substantially contain a divalent or higher cation.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention are shown in FIGS. In addition, the desalination apparatus of this invention is not limited to these embodiment, It is also possible to arrange | position another apparatus between each component apparatus.
[0014]
The membrane type turbidity removal device used in the present invention is for removing suspended substances (SS), fouling substances, etc. from raw water such as industrial water, city water, well water, etc. Or an apparatus using a microfiltration membrane or the like can be used. In particular, an internal pressure total volume filtration apparatus using a hollow fiber type module is suitable for the present invention.
[0015]
By treating the raw water with a membrane type turbidity device and removing the turbidity, the load on the subsequent reverse osmosis membrane treatment device can be reduced and the quality of the treated water can be improved.
[0016]
Although there is no restriction | limiting in particular in the reverse osmosis membrane used for the reverse osmosis membrane processing apparatus used for this invention, An aramid type film | membrane, a polyamide-type film | membrane, a cellulose acetate film | membrane etc. are illustrated as what can be used for this invention. In particular, a spiral-type cross-linked aramid composite film can easily exert the effects of the present invention and is suitable for the present invention.
[0017]
The reverse osmosis membrane treatment device acts to separate and remove impurities such as ions including carbonate ions and silica in the treated water of the membrane turbidity removal device. Even in the electric deionization apparatus described later, these ions, silica, and the like can be separated and removed. However, if these impurities are removed only by the electric deionization apparatus, the processing cost becomes high, so that It is important to desalinate with an osmosis membrane treatment device to reduce the load on the electrical deionization device. In addition, since this reverse osmosis membrane treatment apparatus also removes fine particles, organic matter, viable bacteria, etc. in water, it is possible to prevent contamination of the electric deionization device due to their inflow, and a stable electric deionization device. Enable driving.
[0018]
The sodium (Na) type strongly acidic cation exchange resin apparatus used in the present invention is for previously removing hardness components (Ca, Mg, etc.) from the water to be treated supplied to the electric deionization apparatus.
[0019]
Most of Ca ions, Mg ions and the like are removed in the reverse osmosis membrane treatment apparatus. In the present invention, the sodium (Na) type strongly acidic cation exchange resin apparatus is provided for the following reason.
[0020]
That is, it is known that silica component (SiO 2 ) and carbonic acid (CO 2 ) are easily ionized under alkalinity. For this reason, under alkalinity, silica component (SiO 2 ) and The removal rate of carbonic acid (CO 2 ) is expected to improve, but in a desalinator equipped with an electrical deionization device after the conventional reverse osmosis membrane treatment device, the electrical deionization device is operated under alkalinity. However, the quality of treated water is not stable in the long term.
[0021]
When the cause was examined, hardness components (Ca, Mg, etc.) remaining in the feed water introduced into the electric deionizer were deposited under alkalinity, and a hardness scale was generated in the concentration chamber in the electric deionizer. It turned out that it became electrical resistance, and this deteriorated the quality of the treated water from an electrical deionization apparatus. That is, Ca ions, Mg ions, etc. are mostly removed in the reverse osmosis membrane treatment apparatus, but a small amount leaks, and when flowing into the alkaline electric deionization apparatus, it causes a hardness scale, and the electric deionization apparatus treatment water This significantly affected the quality of treated water, such as a decrease in specific resistance.
[0022]
The sodium (Na) type strongly acidic cation exchange resin apparatus in the present invention has an effect of preventing scale formation in an electric deionization apparatus by substantially completely removing hardness components that could not be removed by a reverse osmosis membrane treatment apparatus. do.
[0023]
In the present invention, the Na-type strongly acidic cation exchange resin is applied as the cation exchange resin. The reason is as follows.
[0024]
That is, it is possible to remove hardness components (Ca, Mg, etc.) using a strongly acidic cation exchange resin regenerated to H type instead of Na type strong acid cation exchange resin, but it is regenerated to H type. In the case of using a strongly acidic cation exchange resin, monovalent ions such as sodium ions (Na + ) that can be easily removed from the water to be treated in the electric deionizer are also removed together. The regeneration frequency of the strongly acidic cation exchange resin is increased, and the running cost of the desalting apparatus is significantly increased.
[0025]
In addition, when a weakly acidic cation exchange resin regenerated into Na type is used, the hardness component of the water to be treated supplied to the electric deionization apparatus is lower than that of the strong acid cation exchange resin. It becomes very difficult to reach the residual amount of (Ca, Mg, etc.) below about 0.25 ppm (asCaCO 3 ), and the effect of preventing the generation of hardness scales in the electric deionizer cannot be achieved.
[0026]
In the desalting apparatus of the present invention, the reverse osmosis membrane treatment apparatus is provided in front of the Na-type strongly acidic cation exchange resin apparatus, so that the maintenance of the Na-type strongly acidic cation exchange resin apparatus can be remarkably reduced.
[0027]
The alkaline agent addition means in the demineralizer according to
[0028]
The pH adjustment by this alkaline agent addition means is performed so that the number of bacteria in the feed water approaches 0 / ml. The pH adjustment is around 7.5 to 11.0, preferably from pH 7.5. 10.0, more preferably 7.5 to 9.0. When the pH is 7 or less, the number of bacteria (bacteria) supplied to the electric deionizer is about 100 per ml, but by adding an alkaline agent, the bacteria (bacteria) in the electric deionizer supply water This disrupts the cell membrane and inactivates viable bacteria in the supplied water, whereby the number of bacteria in the concentrated water of the electric deionizer can be brought close to 0 / ml. Due to this effect, the electric deionization device can solve the problem of the operational balance from the decrease in the flow rate of the concentrating chamber due to bacteria, and the resulting deterioration in the quality of treated water. In addition, high-purity water quality can be obtained. However, if the pH exceeds about 11, the amount of ion load in the feed water of the electric deionization device is remarkably increased, which is not economical, and in some cases, the quality of the treated water of the electric deionization device may be deteriorated. Therefore, it is not preferable.
[0029]
In the demineralization apparatus according to
[0030]
In addition, as an alkali agent added to the supply water of the electric deionizer or an alkali agent added to the concentration chamber circulation system of the electric deionizer, NaOH, KOH, NH 4 OH, NH 3 gas, etc. An alkali agent substantially free of divalent or higher cation is used. If the alkali agent to be added contains a cation having a valence of 2 or more, there is a high risk that hardness scaling will occur in the electric deionizer.
[0031]
Next, examples of the present invention will be described.
[0032]
(Examples 1-4)
FIG. 4 is a system diagram of the desalination apparatus of the present invention used in Examples 1 to 4.
[0033]
The apparatus of this embodiment is configured by sequentially arranging a membrane type turbidity removal device, a reverse osmosis membrane treatment device, a Na-type strongly acidic cation exchange resin, and an electric deionization device along the flow of water to be treated.
[0034]
The alkaline agent added to the feed water of the electric deionizer is NaOH. The pH of the feed water was adjusted to 7.7, 8.7, 9.8, and 10.8, and continuous operation was performed for 30 days.
[0035]
Table 1 shows the concentration chamber flow ratio after 30 days of operation when the concentration chamber flow rate of the electric deionizer in the initial operation of each test condition is 1.0. Further, Table 1 shows the treated water quality of the electric deionizer after 30 days and the number of viable bacteria in the concentrated water. The raw water used was Atsugi City, Kanagawa Prefecture, and the equipment and operating conditions used were as follows.
[0036]
Membrane turbidizer: NML-E2HS-4 (manufactured by Nomura Micro Science Co., Ltd.)
Reverse osmosis membrane: SU-710 (manufactured by Toray Industries, Inc.)
Water recovery rate (65%), water temperature (20-25 ° C)
Sodium-type strongly acidic cation exchange resin: Duolite C-20 (Rohm & Haas)
Electric deionizer: EDI-50 (Ionic)
Water recovery rate (95%), DC voltage (450-600V)
Supply water flow rate (11.4m 3 / h)
(Comparative Examples 1-2)
In Example 1, the test was performed in the same manner as in Example 1 except that the pH of the water supplied to the electric deionizer was 6.0 and 7.3. The results are shown in Table 1.
[Table 1]
[0037]
(Examples 5-7)
FIG. 5 is a system diagram of the desalting apparatus of the present invention used in Examples 5-7.
[0038]
The apparatus of this embodiment is configured by sequentially arranging a membrane type turbidity removal device, a reverse osmosis membrane treatment device, a Na-type strongly acidic cation exchange resin, and an electric deionization device along the flow of water to be treated. The alkaline agent added to the concentrated water circulation system of the electric deionizer is NaOH. The pH of the concentrated water was adjusted to 9.3, 10.7, 12.1, and each was continuously operated for 30 days. Table 2 shows the concentration chamber flow ratio and the number of viable cells after 30 days of operation when the concentration chamber flow rate of the electric deionizer at the initial operation of each test condition was 1.0.
[Table 2]
[0039]
(Comparative Examples 3-4)
In Example 5, the test was conducted in the same manner as in Example 5 except that the pH of the concentrated water circulation system of the electric deionizer was set to 7.3 and 8.7. The results are shown in Table 2.
[0040]
(Comparative Examples 5-6)
In Example 5, Ca (OH) 2 containing a divalent cation was used as a pH adjuster for the concentrated water circulation system of the electric deionizer, and the pH of the concentrated water was adjusted to 9.5 and 10.4. The test was performed in the same manner as in Example 5 except for the above. However, since the reduction of the concentration chamber flow rate was abrupt, the concentration chamber flow rate ratio and the number of viable bacteria in the concentrated water were 10 days after the start of operation. The results are shown in Table 3.
[Table 3]
[0041]
(Example 8)
FIG. 6 shows the change with time of the difference (differential pressure) between the supply water pressure and the concentrated water pressure in the reverse osmosis membrane treatment apparatus in Example 1. Similarly, FIG. 7 shows the change with time of the electrical deionizer-treated water specific resistance in Example 1.
[0042]
(Comparative Example 7)
In Example 8, the test was conducted in the same manner as in Example 8 except that the membrane turbidity remover and the sodium-type strongly acidic cation exchange resin were bypassed, as indicated by the dotted line in FIG. FIGS. 6 and 7 show the difference (differential pressure) between the supply water pressure and the concentrated water pressure of the reverse osmosis membrane treatment apparatus and the temporal change of the treatment water specific resistance of the electric deionization apparatus, respectively. In Comparative Example 7, since the treated water specific resistance of the electric deionization apparatus decreased in a short time, the concentrated water circulation system of the apparatus was cleaned (maintenance) with HCl.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of the configuration of an electric deionization apparatus used in the present invention.
FIG. 2 is a system diagram of an embodiment of a desalination apparatus according to
FIG. 3 is a system diagram of another embodiment of the desalination apparatus according to
FIG. 4 is a system diagram of a desalting apparatus used in Examples 1 to 4.
FIG. 5 is a system diagram of a desalting apparatus used in Examples 5 to 7.
6 is a graph showing a change with time of the difference (differential pressure) between the supply water pressure and the concentrated water pressure in the reverse osmosis membrane treatment apparatus of Example 1. FIG.
7 is a graph showing the change with time of the electrical deionizer-treated water specific resistance in Example 1. FIG.
[Explanation of symbols]
1 ... Anode, 2 ... Cathode, 3 ... Anion exchange membrane, 4 ... Cation exchange membrane, 5 ... Desalination chamber, 6 ... Concentration chamber, 7 ... Mixing of anion exchange resin and cation exchange resin Body, 8 ... anode chamber, 9 ... cathode chamber, 10 ... circulation pump.
Claims (3)
前記電気式脱イオン装置供給水にアルカリ剤を添加して前記電気式脱イオン装置供給水のpHを7.5以上、11.0以下に調整するアルカリ剤添加手段を有することを特徴とする脱塩装置。In a device for demineralizing water to be treated by sequentially arranging a membrane turbidity removal device and a reverse osmosis membrane treatment device, a sodium (Na) type strongly acidic cation exchange resin device and an electric deionization device along the flow path,
The deionizing apparatus is characterized by further comprising an alkali agent adding means for adjusting the pH of the electric deionizer feed water to 7.5 to 11.0 by adding an alkali agent to the electric deionizer feed water. Salt equipment.
前記電気式脱イオン装置内の濃縮水循環流路にアルカリ剤を添加して前記電気式脱イオン装置内の濃縮水循環系のpHを9.0以上に調整するアルカリ添加手段を有することを特徴とする脱塩装置。In a device for demineralizing water to be treated by sequentially arranging a membrane turbidity removal device and a reverse osmosis membrane treatment device, a sodium (Na) type strongly acidic cation exchange resin device and an electric deionization device along the flow path,
It has an alkali addition means for adjusting the pH of the concentrated water circulation system in the electric deionization device to 9.0 or more by adding an alkaline agent to the concentrated water circulation channel in the electric deionization device. Desalination equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212955A JP4531213B2 (en) | 2000-07-13 | 2000-07-13 | Desalination equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212955A JP4531213B2 (en) | 2000-07-13 | 2000-07-13 | Desalination equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002028660A JP2002028660A (en) | 2002-01-29 |
JP4531213B2 true JP4531213B2 (en) | 2010-08-25 |
Family
ID=18708788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000212955A Expired - Fee Related JP4531213B2 (en) | 2000-07-13 | 2000-07-13 | Desalination equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4531213B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2852310B1 (en) * | 2003-03-13 | 2005-06-03 | Millipore Corp | METHOD AND SYSTEM FOR PURIFYING WATER, AND MODULE FOR SUCH A SYSTEM |
JP2007090277A (en) * | 2005-09-29 | 2007-04-12 | Kurita Water Ind Ltd | Water treatment system and fungistatic method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0240221A (en) * | 1988-07-27 | 1990-02-09 | Kurita Water Ind Ltd | Pure water producing device |
JPH04100589A (en) * | 1990-08-17 | 1992-04-02 | Nomura Micro Sci Kk | System and apparatus for water treatment |
JPH1142498A (en) * | 1997-07-25 | 1999-02-16 | Nomura Micro Sci Co Ltd | Desalter |
JPH11188359A (en) * | 1997-12-26 | 1999-07-13 | Kurita Water Ind Ltd | Pure water producing apparatus |
JP2000051665A (en) * | 1998-08-05 | 2000-02-22 | Kurita Water Ind Ltd | Desalination method |
-
2000
- 2000-07-13 JP JP2000212955A patent/JP4531213B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0240221A (en) * | 1988-07-27 | 1990-02-09 | Kurita Water Ind Ltd | Pure water producing device |
JPH04100589A (en) * | 1990-08-17 | 1992-04-02 | Nomura Micro Sci Kk | System and apparatus for water treatment |
JPH1142498A (en) * | 1997-07-25 | 1999-02-16 | Nomura Micro Sci Co Ltd | Desalter |
JPH11188359A (en) * | 1997-12-26 | 1999-07-13 | Kurita Water Ind Ltd | Pure water producing apparatus |
JP2000051665A (en) * | 1998-08-05 | 2000-02-22 | Kurita Water Ind Ltd | Desalination method |
Also Published As
Publication number | Publication date |
---|---|
JP2002028660A (en) | 2002-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0803474B1 (en) | Electrodeionization apparatus and process for purifying a liquid | |
US6149788A (en) | Method and apparatus for preventing scaling in electrodeionization units | |
JP2008518758A (en) | Concentration recycle loop with filtration module | |
JP2006297392A (en) | Device for electro-deionization by polarity inversion and double inversion, and its usage | |
US20140251824A1 (en) | Rechargeable electrochemical cells | |
JP2005000828A (en) | Pure water production apparatus | |
JP3137831B2 (en) | Membrane processing equipment | |
JP3565098B2 (en) | Ultrapure water production method and apparatus | |
JP4710176B2 (en) | Ultrapure water production equipment | |
JP2000051665A (en) | Desalination method | |
JPH08108184A (en) | Water treatment apparatus | |
JP3788318B2 (en) | Electrodeionization apparatus and electrodeionization method | |
JP3900666B2 (en) | Deionized water production method | |
JP3695338B2 (en) | Method for producing deionized water | |
JP3798122B2 (en) | Desalination equipment | |
JP4531213B2 (en) | Desalination equipment | |
JP2001191080A (en) | Electric deionizing device and electric deionizing treatment method using the same | |
ES2694474T3 (en) | Water treatment system and method | |
JP2012196634A (en) | Method and system for treatment of water | |
JP4475568B2 (en) | Bacteria generation suppression method in electric demineralized water production equipment | |
JP4599668B2 (en) | Operation method of electrodeionization equipment | |
JP3501339B2 (en) | Electric deionized water production equipment | |
JP4915843B2 (en) | Electric softening device, softening device and soft water production method | |
JP3782217B2 (en) | Desalination equipment | |
JPH11244854A (en) | Production of pure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100609 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4531213 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |