JP2733573B2 - Ultrapure water production method and apparatus - Google Patents

Ultrapure water production method and apparatus

Info

Publication number
JP2733573B2
JP2733573B2 JP2707389A JP2707389A JP2733573B2 JP 2733573 B2 JP2733573 B2 JP 2733573B2 JP 2707389 A JP2707389 A JP 2707389A JP 2707389 A JP2707389 A JP 2707389A JP 2733573 B2 JP2733573 B2 JP 2733573B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
ultrapure water
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2707389A
Other languages
Japanese (ja)
Other versions
JPH02207888A (en
Inventor
祐治 原口
敏男 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP2707389A priority Critical patent/JP2733573B2/en
Publication of JPH02207888A publication Critical patent/JPH02207888A/en
Application granted granted Critical
Publication of JP2733573B2 publication Critical patent/JP2733573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超純水の製造方法及び装置に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for producing ultrapure water.

(従来の技術) 従来より、様々な分野において純度の高い純水が求め
られ、特に近時においては半導体製造や製剤分野等々に
おいて要求される極めて高純度の超純水の水質基準は、
電気伝導率やシリカの基準を満足することは勿論のこ
と、TOC(全有機炭素),生菌の除去等についても高度
に要求されるようになってきている。
(Prior Art) Conventionally, pure water with high purity has been demanded in various fields. In particular, recently, extremely high-purity ultrapure water quality standards required in semiconductor manufacturing, pharmaceutical fields, etc.
In addition to satisfying the standards of electrical conductivity and silica, the demand for TOC (total organic carbon), removal of viable bacteria, and the like is becoming higher.

このためにイオン交換樹脂、逆浸透膜等を用いた膜処
理装置、紫外線殺菌、紫外線有機物分解器等の多岐にわ
たるユニットを組合せた超純水製造のシステムが使用さ
れている。
For this purpose, a system for producing ultrapure water, which combines various units such as a membrane treatment device using an ion exchange resin and a reverse osmosis membrane, an ultraviolet sterilizer, and an ultraviolet organic substance decomposer, is used.

このシステムの一例概要は次のように説明される。す
なわち疑集沈澱処理装置や濾過装置,必要によれば更に
活性炭濾過装置などで適当な前処理を行なった原水を、
イオン交換樹脂を用いた例えば2床3搭式純水製造装置
(2B3T)や混床式純水製造装置(MB)で処理し、これに
より得られた純水(以下便宜的に「一次純水」と称す
る)を逆浸透膜装置に通して有機物等を除去し、更に残
留する不純物を除去するために有機物分解,殺菌のため
の紫外線照射装置やポリシャーや限外濾過膜装置あるい
は逆浸透膜装置等を組合せた末端処理装置に通して超純
水を製造する。
An example outline of this system is described as follows. That is, raw water that has been subjected to appropriate pretreatment with a sedimentation / sedimentation treatment device, a filtration device, and if necessary, an activated carbon filtration device, etc.
Treated with, for example, a two-bed three-bed pure water production system (2B3T) or a mixed-bed pure water production system (MB) using an ion exchange resin, and obtaining pure water (hereinafter referred to as “primary pure water” for convenience) ) Is passed through a reverse osmosis membrane device to remove organic substances and the like, and to remove remaining impurities, an ultraviolet irradiation device for decomposing and sterilizing organic materials, a polisher, an ultrafiltration membrane device, or a reverse osmosis membrane device. Ultrapure water is produced by passing through a terminal treatment device that combines the above.

上記のシステムは逆浸透膜装置がイオン交換樹脂を用
いた純水製造装置の後段に設置されることから、純水製
造装置の前段に設置するシステムとの対比上中段RO式超
純水装置と称される場合がある。逆浸透膜装置は周知の
如く、原水を浸透圧以上の加圧下で逆浸透膜に供給し、
有機物,塩類,微粒子を逆浸透膜で阻止して透過側に処
理水を得、比透過水側に上記有機物等を排出するもので
あり、膜に付着し易いシリカ分を前段の純水製造装置で
除去できることや、近時における逆浸透膜の改良も伴な
って中段RO方式のシステムは高い有機物除去能力、大な
る濃縮倍率で透過水量が大きくとれる等の特徴が認めら
れている。
In the above system, since the reverse osmosis membrane device is installed at the subsequent stage of the pure water production device using the ion-exchange resin, compared with the system installed at the previous stage of the pure water production device, the middle stage RO type ultrapure water device and It may be called. As is well known, a reverse osmosis membrane device supplies raw water to a reverse osmosis membrane under a pressure higher than the osmotic pressure,
Organic matter, salts and fine particles are blocked by a reverse osmosis membrane to obtain treated water on the permeate side, and the above-mentioned organic matter and the like are discharged to the specific permeate side. With the recent improvement of reverse osmosis membranes, the middle-stage RO system has been recognized for its features such as high organic matter removal capacity and a large amount of permeated water at a large concentration ratio.

(発明が解決しようとする課題) ところで、上記のような中段RO方式の超純水製造装置
においては、殺菌のために塩素や過酸化水素で装置エレ
メントを殺菌洗浄する必要がある他、装置の稼動に伴な
って次第に逆浸透膜装置の透過水量が低下することか
ら、通常一定の稼動期間毎に装置を停止させて洗浄する
ことが必要であり、その分稼動効率が低下するという問
題がある。この透過水量の経時的な低下は逆浸透膜が何
らかの物質により目詰りするためと考えられ、その原因
としてはイオン交換樹脂からのその製造時に用いられて
いる未反応物質等の溶出、半導体洗浄工程の回収水を再
利用する場合の該洗浄水に含まれる界面活性剤等の混
入、プロセスを構成する管,槽内面からの微量物質の溶
出等々が考えられる。
(Problems to be Solved by the Invention) Incidentally, in the above-mentioned middle-stage RO type ultrapure water production apparatus, it is necessary to sterilize and clean the element of the apparatus with chlorine or hydrogen peroxide for sterilization. Since the amount of permeated water of the reverse osmosis membrane device gradually decreases with the operation, it is usually necessary to stop and clean the device every certain operation period, and there is a problem that the operation efficiency decreases accordingly. . It is considered that this decrease in the amount of permeated water over time is due to the clogging of the reverse osmosis membrane with some substance, which is caused by the elution of unreacted substances and the like used in the production thereof from the ion exchange resin, the semiconductor cleaning step. When the recovered water is reused, mixing of a surfactant or the like contained in the washing water, elution of a trace substance from a tube constituting the process, or the inner surface of the tank may be considered.

また本発明者が超純水製造装置について検討を重ねた
ところによると、例えば半導体製造工程における洗浄水
として用いられる超純水のTOC基準は、256Kバイトメモ
リーICの製造の場合に要求されていた50〜200ppbレベル
が1MバイトメモリーICでは30〜50ppb程度のレベルとな
り、LSIの集積度が高まるにつれて超純水に要求される
水質基準は更に高レベルとなるが、上記した中段RO方式
の超純水製造システムをそのまま実施する場合にアニオ
ン極性の弱い逆浸透膜では透過水側のTOCが50ppbを越え
る値となって、上記の高い水質基準を満足する透過水
(超純水)が得られないことが分った。アニオン極性の
強い逆浸透膜では高い水質基準を満足するが、反面にお
いて大きな透過水量を得ることが難かしいという問題が
ある。
In addition, according to the inventors' repeated studies on ultrapure water production equipment, for example, the TOC standard of ultrapure water used as cleaning water in a semiconductor production process was required in the case of producing a 256 KB memory IC. The 50 to 200 ppb level is about 30 to 50 ppb in a 1 Mbyte memory IC, and the water quality standard required for ultrapure water becomes even higher as the degree of integration of LSIs increases, but the ultrapure water of the above middle RO method When the water production system is implemented as it is, the reverse osmosis membrane with weak anion polarity has a permeate side TOC exceeding 50 ppb, so that permeate water (ultra pure water) satisfying the above high water quality standard cannot be obtained. I understood that. A reverse osmosis membrane having a strong anion polarity satisfies high water quality standards, but has a problem that it is difficult to obtain a large amount of permeated water.

そこで本発明者は、これらの問題について鋭意研究を
重ねたところ、上記透過水量の低下の問題は、逆浸透膜
中に有機物が吸着されてこれが目詰りの原因となること
に由来することが分った。分析によればこの有機物は主
に官能基としてアミンを有するものであり、これが逆浸
透膜が有する官能基のカルボン酸基とイオン交換して目
詰りが起こると考えられる。
Therefore, the present inventors have conducted intensive studies on these problems, and found that the problem of the decrease in the amount of permeated water is derived from the fact that organic substances are adsorbed in the reverse osmosis membrane, which causes clogging. Was. According to the analysis, the organic substance mainly has an amine as a functional group, and it is considered that the organic substance ion-exchanges with the carboxylic acid group of the functional group of the reverse osmosis membrane to cause clogging.

そこで本発明者は、このアミン系の有機物が逆浸透膜
に吸着されないように、弱酸性の官能基であるカルボン
酸基のイオン交換作用を発揮できないpHに被処理水を調
製することで、上記問題を改善できると考え本発明をな
すに至ったものである。
Therefore, the present inventors prepared the water to be treated at a pH at which the ion-exchange action of the carboxylic acid group, which is a weakly acidic functional group, cannot be exerted so that the amine-based organic substance is not adsorbed to the reverse osmosis membrane. It is thought that the problem can be improved and the present invention has been made.

またこのpH調製を行なう場合には、驚くべきことに、
上記の如く高い水質基準を満足するためには不十分と考
えられていたアニオン極性の弱い逆浸透膜が、アニオン
極性の強い逆浸透膜と同等程度に向上した著しいTOC除
去能力を発揮し、しかも透過水量の大なる状態は維持さ
れることを知見するに至った。
Also, when performing this pH adjustment, surprisingly,
The reverse osmosis membrane with weak anion polarity, which was considered to be insufficient to satisfy the high water quality standards as described above, exhibited a remarkable TOC removal ability improved to the same extent as a strong anion polarity reverse osmosis membrane, and It has been found that a large permeated water state is maintained.

なお特開昭58−6297号において当時一般的であったセ
ルロース系逆浸透膜の加水分解による膜劣化防止の目的
で処理水をpH5〜7に調節することは記載されている
が、これは本発明を示唆し得るものではないし、他には
超純水の製造に際して純水をpH調製することについての
提案は従来全くない。
Japanese Patent Application Laid-Open No. 58-6297 describes that the pH of treated water is adjusted to pH 5 to 7 for the purpose of preventing membrane degradation due to hydrolysis of a cellulosic reverse osmosis membrane, which was common at that time. There is no suggestion of the invention, and no other proposals for adjusting the pH of pure water at the time of producing ultrapure water have been made.

本発明は以上の知見に基づいてなされたものであり、
その目的は純水中に含まれるTOCを効率よく除去した高
純度超純水の製造に適した方法及び装置を提供するとこ
ろにあり、特に一段と厳しい基準が要求されるようにな
っている半導体製造工程の洗浄水製造用として優れた超
純水の製造方法及び装置を提供するところにある。
The present invention has been made based on the above findings,
Its purpose is to provide a method and an apparatus suitable for the production of high-purity ultrapure water from which TOC contained in pure water has been efficiently removed. An object of the present invention is to provide a method and an apparatus for producing ultrapure water which is excellent for producing cleaning water in a process.

また本発明の別の目的は、TOC除去の際に逆浸透膜の
目詰りがなく、透過水量が低下しないで装置を稼動する
ことができる超純水の製造方法及び装置を提供するとこ
ろにある。
Another object of the present invention is to provide a method and an apparatus for producing ultrapure water that can operate the apparatus without clogging the reverse osmosis membrane during TOC removal and without reducing the amount of permeated water. .

本発明の更に別の目的は、アニオン極性の比較的弱い
逆浸透膜、更には両性膜を用いて、その大きな透過水量
を維持したままでTOC除去率を著しく向上させることが
できる超純水の製造方法及び装置を提供するところにあ
る。
Still another object of the present invention is to use a reverse osmosis membrane having a relatively weak anion polarity and further use an amphoteric membrane, and to significantly improve the TOC removal rate while maintaining a large amount of permeated water. It is an object to provide a manufacturing method and an apparatus.

(課題を解決するための手段) 而して、かかる目的の現実のためになされた本発明の
超純水の製造方法の特徴は、イオン交換樹脂で処理した
純水を逆浸透膜に通すプロセスを備えた超純水の製造方
法において、逆浸透膜にカルボン酸基を有する両性膜又
はカルボン酸基を有するアニオン極性膜を用い、この逆
浸透膜に通す純水を、カルボン酸基のイオン交換機能が
実質的に発揮できないpHに調製したところにある。
(Means for Solving the Problems) The feature of the method for producing ultrapure water of the present invention made for the realization of the object is a process of passing pure water treated with an ion exchange resin through a reverse osmosis membrane. In the method for producing ultrapure water provided with, an amphoteric membrane having a carboxylic acid group or an anionic polar membrane having a carboxylic acid group is used for the reverse osmosis membrane, and pure water passed through the reverse osmosis membrane is subjected to ion exchange of the carboxylic acid group. The pH is adjusted so that the function cannot be substantially exhibited.

本発明に用いるカルボン酸基を有する両性膜、カルボ
ン酸基を有するアニオン極性膜とは合成膜をいい、酢酸
セルロースなどの天然膜を指すものではない。
The amphoteric membrane having a carboxylic acid group and the anionic polar membrane having a carboxylic acid group used in the present invention refer to a synthetic membrane, not a natural membrane such as cellulose acetate.

また一般に合成膜には水の通過性をよくするために、
カルボン酸基のようなアニオン性基あるいはアミン基の
ようなカチオン性基を有しているが、本発明におけるカ
ルボン酸基を有する両性膜とは、前記カルボン酸基とカ
チオン性基とがほぼ拮抗する逆浸透膜を指し、またカル
ボン酸基を有するアニオン極性膜とは、前記カチオン性
基より相対的にカルボン酸基の方が強い逆浸透膜を指し
ている。さらにカルボン酸基を有するアニオン極性膜に
も、そのカルボン酸基の相対的な強さによって、アニオ
ン極性の弱い膜と、アニオン極性の強い膜に一般に分類
されている。
In general, to improve the water permeability of the synthetic membrane,
Although it has an anionic group such as a carboxylic acid group or a cationic group such as an amine group, the amphoteric film having a carboxylic acid group in the present invention is substantially compatible with the carboxylic acid group and the cationic group. The term “anionic polar membrane having a carboxylic acid group” refers to a reverse osmosis membrane having a carboxylic acid group stronger than the cationic group. Further, anionic polar films having a carboxylic acid group are generally classified into a film having a weak anionic polarity and a film having a strong anionic polarity according to the relative strength of the carboxylic acid group.

また本発明に用いる上記合成膜には種々のものがある
が、殺菌洗浄のため耐酸化性の優れている膜が好まし
く、一般的にはポリビニルアルコール系の合成膜を用い
ることが好ましい。
Although there are various types of the synthetic film used in the present invention, a film having excellent oxidation resistance for sterilization and washing is preferable, and in general, a polyvinyl alcohol-based synthetic film is preferably used.

上記において、逆浸透膜装置に通す被処理水のpH調製
は好ましくは硫酸を添加して行なわれる。調製されるpH
は逆浸透膜の種類等により必ずしも一律ではないがカル
ボン酸基のイオン交換機能が発揮できない状態を維持す
る条件の下で調製される。特にアニオン極性膜を逆浸透
膜として用いる場合には、通常pH5以下、好ましくは4.5
〜5程度に調製することが適当である場合が多い。また
pH調製は、例えば特開昭58−6297号に記載されているよ
うに、2床3搭式純水造装置の脱炭酸搭からの処理水の
一部をアニオン交換樹脂搭に通水することなくバイパス
して該アニオン交換樹脂搭の出口水に混合することで行
なってもよい。
In the above, the pH of the water to be treated passed through the reverse osmosis membrane device is preferably adjusted by adding sulfuric acid. PH to be prepared
Is prepared under conditions that maintain the state in which the ion exchange function of the carboxylic acid group cannot be exhibited, although this is not necessarily the same depending on the type of the reverse osmosis membrane. In particular, when an anionic polar membrane is used as a reverse osmosis membrane, the pH is usually 5 or less, preferably 4.5.
It is often appropriate to adjust it to about 5 or less. Also
As described in JP-A-58-6297, for example, the pH is adjusted by passing a part of the treated water from the decarbonation tower of a two-bed, three-bed pure water production system through an anion exchange resin tower. Alternatively, it may be carried out by bypassing and mixing with the outlet water of the anion exchange resin tower.

本発明は超純水を使用する分野であれば制限なく適用
されるが、半導体製造工程の洗浄水に用いる超純水で要
求されるTOCの水質基準を満足するために有効な方法と
して特に好適に適用される。この場合、半導体製造工程
で回収される洗浄水を原水として再利用することも可能
である。この回収洗浄水は通常の原水に混合して用いら
れる。
The present invention is applied without limitation as long as it is a field using ultrapure water, but is particularly suitable as an effective method for satisfying the TOC water quality standard required for ultrapure water used for cleaning water in a semiconductor manufacturing process. Applied to In this case, the cleaning water recovered in the semiconductor manufacturing process can be reused as raw water. This recovered washing water is used by being mixed with ordinary raw water.

本発明の特徴はまた、上記方法を実現する下記構成を
もった超純水製造装置にある。
A feature of the present invention also resides in an ultrapure water production apparatus having the following configuration for realizing the above method.

すなわち、イオン交換樹脂を用いた純水製造装置と、
この純水製造装置で得られる純水のpHを調製するpH調製
手段と、pH調製した純水を通す逆浸透膜装置とを備え、
該逆浸透膜装置の逆浸透膜をカルボン酸基を有する両性
膜又はアニオン極性膜により構成すると共に、上記pH調
製手段は上記カルボン酸基のイオン交換機能が発揮でき
ないpHに上記純水を調製する構成を有する装置である。
That is, a pure water production apparatus using an ion exchange resin,
A pH adjusting means for adjusting the pH of the pure water obtained by the pure water producing apparatus, and a reverse osmosis membrane device for passing the pH adjusted pure water,
The reverse osmosis membrane of the reverse osmosis membrane device is constituted by an amphoteric membrane having a carboxylic acid group or an anionic polar membrane, and the pH adjusting means adjusts the pure water to a pH at which the ion exchange function of the carboxylic acid group cannot be exhibited. It is a device having a configuration.

上記の純水製造装置は、イオン交換樹脂を用いた2床
3搭式純水製造装置(2B3T)、混床式純水製造装置(M
B)、あるいはこれらの併用型純水製造装置が例示され
る。
The above-mentioned pure water production apparatus is a two-bed three-bed pure water production apparatus (2B3T) using an ion exchange resin, and a mixed-bed pure water production apparatus (M
B) or a combined pure water production apparatus thereof is exemplified.

上記pH調製手段には具体的には硫酸等の酸添加装置が
好ましく用いられる。
Specifically, an acid addition device such as sulfuric acid is preferably used as the pH adjusting means.

(作用) 本発明は上記のpH調製によって、その後段で主に有機
物除去のために用いる逆浸透膜のイオン交換作用を発揮
させずに、透過水量の維持、透過水のTOCの向上を得る
ことができる。
(Function) The present invention is to maintain the amount of permeated water and improve the TOC of permeated water without exerting the ion exchange function of the reverse osmosis membrane used mainly for removing organic substances in the subsequent stage by adjusting the pH as described above. Can be.

(実施例) 以下本発明を図面に示す実施例に基づいて説明する。
本例は半導体製造における洗浄工程に洗浄水として超純
水を供給するシステムとして形成されている。
(Examples) Hereinafter, the present invention will be described based on examples shown in the drawings.
This example is formed as a system for supplying ultrapure water as cleaning water to a cleaning process in semiconductor manufacturing.

第1図は本発明により構成した超純水製造装置の構成
概要一例をフローで示したものである。
FIG. 1 is a flow chart showing an example of a schematic configuration example of an ultrapure water production apparatus configured according to the present invention.

この図において、2は純水製造装置を示し、図示しな
い疑集沈澱装置を通して処理した原水を濾過器F、陽イ
オン交換搭K、脱炭酸搭D、陰イオン交換搭Aの順に通
して純水処理し、得られた一次純水を一次純水貯槽ST1
に溜める。
In this figure, reference numeral 2 denotes a pure water production apparatus, and raw water treated through a sedimentation apparatus (not shown) is passed through a filter F, a cation exchange tower K, a decarboxylation tower D, and an anion exchange tower A in this order. Treated and obtained primary pure water in primary pure water storage tank ST 1
Accumulate in

次にこれをポンプPにより精密濾過器MFを介して逆浸
透膜装置ROに通す。
Next, this is passed through a reverse osmosis membrane device RO by a pump P via a microfilter MF.

本例のこの逆浸透膜装置ROは、例えばカルボン酸基を
イオン交換基として有するアニオン極性膜を有するもの
であり、またこの逆浸透膜装置ROの入口水には硫酸添加
装置1から硫酸を添加することで、そのpHは4.5〜5に
調製される。
The reverse osmosis membrane device RO of this example has, for example, an anion polar membrane having a carboxylic acid group as an ion exchange group, and sulfuric acid is added to the inlet water of the reverse osmosis membrane device RO from the sulfuric acid addition device 1. By doing so, the pH is adjusted to 4.5-5.

逆浸透膜装置を通った透過水は超純水の末端処理装置
であるサブシステム3に導入されて、真空脱気搭VD、混
床式ポリシャーMBPを通した後二次純水貯槽ST2に溜めら
れる。そしてこれは更に紫外線照射装置UV、カートリッ
ジポリシャーCP、限外濾過膜装置UFを通してユースポイ
ントである半導体洗浄工程に送られる。
Permeate through the reverse osmosis unit is introduced into the subsystem 3 is the terminal apparatus of ultrapure water, vacuum Datsuki搭VD, the secondary pure water tank ST 2 after passing through a mixed bed polisher MBP Can be stored. This is further sent to a semiconductor cleaning process, which is a use point, through an ultraviolet irradiation device UV, a cartridge polisher CP, and an ultrafiltration membrane device UF.

実施例1 第1図に示したシステムにおいて、逆浸透膜装置ROに
アニオン極性の弱い膜(NTR−729日東電工(株)製を用
い、酸添加により逆浸透膜装置ROの入口水のpHを4.5〜
5に維持して処理を行なった。その試験条件及び結果を
下記表1に示した。
Example 1 In the system shown in FIG. 1, a reverse osmosis membrane device RO was made of a membrane having a weak anion polarity (NTR-729 manufactured by Nitto Denko Corporation), and the pH of the inlet water of the reverse osmosis membrane device RO was adjusted by adding an acid. 4.5 ~
The treatment was carried out while maintaining at 5. The test conditions and results are shown in Table 1 below.

比較例1 逆浸透膜装置ROの入口水のpHを7.2〜8.0に変えた以外
は実施例1と同様にして試験を行ないその結果を上記表
1に示した。
Comparative Example 1 A test was conducted in the same manner as in Example 1 except that the pH of the inlet water of the reverse osmosis membrane device RO was changed to 7.2 to 8.0, and the results are shown in Table 1 above.

これらの実施例1及び比較例1により明らかであるよ
うに、入口水をpH4.5〜5とすることによって透過側の
処理水水質のTOCが34〜37ppbとなり、pH調製をしていな
い比較例1の60〜80ppbに比べて有機物除去能力が大幅
に向上されたことが分る。
As is clear from these Example 1 and Comparative Example 1, by setting the inlet water to pH 4.5 to 5, the TOC of the treated water quality on the permeation side becomes 34 to 37 ppb, and the comparative example without pH adjustment was used. It can be seen that the organic matter removing ability was greatly improved as compared with the case of No. 1 of 60 to 80 ppb.

実施例2 逆浸透膜装置ROに使用の膜をアニオン極性の強い膜
(NTR−739:日東電工(株)製に変えた以外は実施例1
と同様にして、試験を行ったところ、下記表2に示した
ごとく透過側の処理水水質のTOCについて実施例1と略
同様の結果を得た。
Example 2 Example 1 except that the membrane used for the reverse osmosis membrane device RO was changed to a membrane having a strong anion polarity (NTR-739: manufactured by Nitto Denko Corporation).
A test was conducted in the same manner as in Example 1. As shown in Table 2 below, substantially the same results as in Example 1 were obtained for the TOC of the treated water quality on the permeation side.

比較例2 逆浸透膜装置ROの入口水のpHを6.9〜8.0に変えた以外
は実施例2と同様にして試験を行ないその結果を下記表
2に示した。
Comparative Example 2 A test was conducted in the same manner as in Example 2 except that the pH of the inlet water of the reverse osmosis membrane device RO was changed to 6.9 to 8.0, and the results are shown in Table 2 below.

実施例3 逆浸透膜装置ROの経時的な透過水量の変化を測定する
ために、アニオン極性の弱い膜(NTR−729:日東電工
(株)製を使用した実施例1の装置において、逆浸透膜
装置ROの入口水のTOCを、被処理水にアミン系エポキシ
樹脂硬化剤(ケミクリートE:ABC商会社製)を添加する
ことで50ppbに調製し、これをpH4.5〜5(実施例3)と
pH6.9〜8.0(比較例3)に調製して逆浸透膜装置に通し
て透過水量の変化を測定した。
Example 3 In order to measure the change in the amount of permeated water with time of the reverse osmosis membrane device RO, a membrane having a weak anion polarity (NTR-729: reverse osmosis in the device of Example 1 using Nitto Denko Corporation) was used. The TOC of the inlet water of the membrane device RO was adjusted to 50 ppb by adding an amine-based epoxy resin curing agent (Chemikrete E: manufactured by ABC trading company) to the water to be treated, and this was adjusted to pH 4.5 to 5 (Example 3). )When
It was adjusted to pH 6.9 to 8.0 (Comparative Example 3) and passed through a reverse osmosis membrane device to measure the change in the amount of permeated water.

その結果は第2図に示した通りであり、比較例におい
ては1カ月で2割程度の透過水量の低下がみられたが、
実施例においては透過水量は殆ど低下しなかった。
The results are as shown in FIG. 2. In the comparative example, the permeated water amount was reduced by about 20% in one month.
In the examples, the amount of permeated water hardly decreased.

(発明の効果) 本発明によれば、被処理水である純水中に含まれるTO
Cが除去されて高純度の超純水を製造することができ、
特に超純水等の水質として一段と厳しい基準が要求され
るようになっている半導体製造工程の洗浄水製造におい
て、その結果は極めて大なるものがある。
(Effect of the Invention) According to the present invention, TO contained in pure water which is water to be treated
C can be removed to produce high-purity ultrapure water,
In particular, in the production of cleaning water in the semiconductor production process, which requires increasingly strict standards for the quality of ultrapure water or the like, the results are extremely large.

またTOC除去の際にROの目詰りがないため透過水量の
低下がなく、高い濃縮倍率で装置を稼動させることがで
きるという効果もある。
In addition, there is also an effect that the amount of permeated water does not decrease because the RO is not clogged when removing the TOC, and the apparatus can be operated at a high concentration ratio.

また本発明によれば、一般にTOCの除去率が低いとさ
れるアニオン極性の比較的弱いROを用いても、被処理水
のpHを5以下に調整してこれに通すことで、その透過水
量を維持したままでTOC除去率を著しく向上させて、ア
ニオン極性の高いRO膜と同等の効果を発揮させることが
可能となり、したがって極性の弱いRO膜の透過水量が大
きいという特徴を有効に利用できるという極めて優れた
効果が得られる。
Further, according to the present invention, even if RO having a relatively low anion polarity, which is generally regarded as having a low TOC removal rate, is used, by adjusting the pH of the water to be treated to 5 or less and passing it through it, the amount of permeated water can be reduced. It is possible to significantly improve the TOC removal rate and maintain the same effect as a RO membrane with high anion polarity while maintaining the same, thus making it possible to effectively use the feature that the amount of water permeated by a RO membrane with weak polarity is large. This is an extremely excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

図面第1図は本発明よりなる超純水製造装置の構成概要
一例をフローチャートで示した図、第2図は透過水量の
変化を本発明実施例と従来例につきそれぞれ測定した結
果を対比して示した図である。 1:酸添加装置 2:純水製造装置、3:サブシステム F:濾過器、K:陽イオン交換搭 D:脱炭酸搭、A:陰イオン交換搭 ST1:一次純水貯槽、MF:精密濾過器 RO:逆浸透膜装置、VD:真空脱気搭 MBP:混床式ポリシャー ST2:二次純水貯槽、UV:紫外線照射装置 CP:カートリッジポリシャー UF:限外濾過膜装置
FIG. 1 is a flow chart showing an example of the configuration of an ultrapure water production apparatus according to the present invention, and FIG. 2 is a comparison of the results obtained by measuring the change in the amount of permeated water for the embodiment of the present invention and the conventional example. FIG. 1: Acid addition equipment 2: Pure water production equipment, 3: Subsystem F: Filter, K: Cation exchange tower D: Decarbonation tower, A: Anion exchange tower ST 1 : Primary pure water storage tank, MF: Precision Filter RO: Reverse osmosis membrane device, VD: Vacuum deaeration tower MBP: Mixed-bed polisher ST 2 : Secondary pure water storage tank, UV: Ultraviolet irradiation device CP: Cartridge polisher UF: Ultrafiltration membrane device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−61691(JP,A) 特開 昭64−75092(JP,A) 特開 昭62−204893(JP,A) 特開 昭63−39685(JP,A) 特開 昭63−59387(JP,A) 特開 昭61−287492(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-61691 (JP, A) JP-A-64-75092 (JP, A) JP-A-62-204893 (JP, A) JP-A-63-1986 39685 (JP, A) JP-A-63-59387 (JP, A) JP-A-61-287492 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イオン交換樹脂で処理した純水を逆浸透膜
に通すプロセスを備えた超純水の製造方法において、逆
浸透膜にカルボン酸基を有する両性膜又はカルボン酸基
を有するアニオン極性膜を用い、このカルボン酸基のイ
オン交換機能が発揮できないpHに上記純水を調製してこ
れを該逆浸透膜に通すことを特徴とする超純水の製造方
法。
1. A method for producing ultrapure water comprising passing pure water treated with an ion exchange resin through a reverse osmosis membrane, wherein the reverse osmosis membrane has an amphoteric membrane having a carboxylic acid group or an anion polarity having a carboxylic acid group. A method for producing ultrapure water, comprising using a membrane, preparing the pure water at a pH at which the ion exchange function of the carboxylic acid group cannot be exerted, and passing the purified water through the reverse osmosis membrane.
【請求項2】上記pHが5以下であることを特徴とする請
求項1に記載の超純水の製造方法。
2. The method according to claim 1, wherein the pH is 5 or less.
【請求項3】pH調製が酸の添加によることを特徴とする
請求項1又は2に記載の超純水の製造方法。
3. The method for producing ultrapure water according to claim 1, wherein the pH is adjusted by adding an acid.
【請求項4】酸が硫酸であることを特徴とする請求項3
に記載の超純水の製造方法。
4. The method according to claim 3, wherein the acid is sulfuric acid.
3. The method for producing ultrapure water according to 1.
【請求項5】上記純水が、官能基としてアミノ基を有す
る高分子を含むものであることを特徴とする請求項1乃
至4のいずれかに記載の超純水の製造方法。
5. The method for producing ultrapure water according to claim 1, wherein the pure water contains a polymer having an amino group as a functional group.
【請求項6】上記純水が、半導体製造工程から得られる
回収水を混合したものであることを特徴とする請求項1
乃至5のいずれかに記載の超純水の製造方法。
6. The method according to claim 1, wherein said pure water is a mixture of recovered water obtained from a semiconductor manufacturing process.
6. The method for producing ultrapure water according to any one of claims 1 to 5.
【請求項7】上記逆浸透膜がポリビニルアルコール系の
膜であることを特徴とする請求項1乃至6のいずれかに
記載の超純水の製造方法。
7. The method for producing ultrapure water according to claim 1, wherein said reverse osmosis membrane is a polyvinyl alcohol-based membrane.
【請求項8】アニオン極性の逆浸透膜に、pH4.5〜5に
調製した純水を通すことを特徴とする請求項1乃至7の
いずれかに記載の超純水の製造方法。
8. The method for producing ultrapure water according to claim 1, wherein pure water adjusted to pH 4.5 to 5 is passed through a reverse osmosis membrane of anionic polarity.
【請求項9】イオン交換樹脂を用いた純水製造装置と、
この純水製造装置で得られる純水のpHを調製するpH調製
手段と、pH調製した純水を通す逆浸透膜装置とを備え、
該逆浸透膜装置の逆浸透膜をカルボン酸基を有する両性
膜又はカルボン酸基を有するアニオン極性膜により構成
すると共に、上記pH調製手段は上記カルボン酸基のイオ
ン交換機能が発揮されないpHに上記純水を調製するもの
であることを特徴とする請求項1に記載の方法に用いる
超純水製造装置。
9. An apparatus for producing pure water using an ion exchange resin,
A pH adjusting means for adjusting the pH of the pure water obtained by the pure water producing apparatus, and a reverse osmosis membrane device for passing the pH adjusted pure water,
The reverse osmosis membrane of the reverse osmosis membrane device is constituted by an amphoteric membrane having a carboxylic acid group or an anionic polar membrane having a carboxylic acid group, and the pH adjusting means is adjusted to a pH at which the ion exchange function of the carboxylic acid group is not exhibited. The apparatus for producing ultrapure water used in the method according to claim 1, wherein pure water is prepared.
【請求項10】逆浸透膜が、ポリビニルアルコール系の
膜であることを特徴とする請求項9に記載の超純水製造
装置。
10. The apparatus for producing ultrapure water according to claim 9, wherein the reverse osmosis membrane is a polyvinyl alcohol-based membrane.
【請求項11】半導体洗浄水の製造用であることを特徴
とする請求項9又は10に記載の超純水製造装置。
11. The ultrapure water production apparatus according to claim 9, wherein the apparatus is used for producing semiconductor cleaning water.
JP2707389A 1989-02-06 1989-02-06 Ultrapure water production method and apparatus Expired - Fee Related JP2733573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2707389A JP2733573B2 (en) 1989-02-06 1989-02-06 Ultrapure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2707389A JP2733573B2 (en) 1989-02-06 1989-02-06 Ultrapure water production method and apparatus

Publications (2)

Publication Number Publication Date
JPH02207888A JPH02207888A (en) 1990-08-17
JP2733573B2 true JP2733573B2 (en) 1998-03-30

Family

ID=12210896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2707389A Expired - Fee Related JP2733573B2 (en) 1989-02-06 1989-02-06 Ultrapure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP2733573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549420A4 (en) * 2002-05-06 2006-03-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902511B2 (en) * 1991-12-24 1999-06-07 三菱電機株式会社 Ultrapure water production apparatus, production method, and production apparatus control method
US20020153319A1 (en) 1997-08-12 2002-10-24 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
TW404847B (en) * 1996-08-12 2000-09-11 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US6537456B2 (en) * 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US6398965B1 (en) 1998-03-31 2002-06-04 United States Filter Corporation Water treatment system and process
US6306197B1 (en) 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
US6325983B1 (en) 2000-04-19 2001-12-04 Seh America, Inc. Nox scrubbing system and method
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
CN103086444B (en) * 2011-11-02 2014-10-01 无锡华润上华科技有限公司 Flushing water recovery method and device
CN114751539A (en) * 2021-12-13 2022-07-15 上海源众环保科技有限公司 Preparation process of ultrapure water for improving process stability and water quality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
EP1549420A4 (en) * 2002-05-06 2006-03-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions

Also Published As

Publication number Publication date
JPH02207888A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
JP3187629B2 (en) Reverse osmosis membrane treatment method
JP2733573B2 (en) Ultrapure water production method and apparatus
JP3575271B2 (en) Pure water production method
JP2007289922A (en) Inhibition-ratio improver of nano filtration membrane or reverse osmosis membrane, improvement method of inhibition-ratio, nano filtration membrane or reverse osmosis membrane, water treatment method, and water treatment apparatus
JP3565098B2 (en) Ultrapure water production method and apparatus
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JP2000015257A (en) Apparatus and method for making high purity water
JPH0638953B2 (en) High-purity water manufacturing equipment
WO2018105569A1 (en) Water treatment method and water treatment device
JP2950621B2 (en) Ultrapure water production method
JP3221801B2 (en) Water treatment method
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JP4208270B2 (en) Pure water production method
JP2002001069A (en) Method for producing pure water
JP3534155B2 (en) Pure water production equipment
JP5135654B2 (en) Secondary pure water production equipment
WO2005056166A1 (en) Methods for reducing boron concentration in high salinity liquid using combined reverse osmosis and ion exchange
JP3270133B2 (en) Purification method
JPH09294977A (en) Water purifying apparatus
JP3231606B2 (en) Ultrapure water production equipment
JP3115750B2 (en) Pure water production method
JP2006218341A (en) Method and apparatus for treating water
JPH11277060A (en) Apparatus for treating water containing manganese
JPH03293087A (en) Production of ultra-pure water
JP2000271569A (en) Production of pure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees