WO2018105569A1 - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
WO2018105569A1
WO2018105569A1 PCT/JP2017/043524 JP2017043524W WO2018105569A1 WO 2018105569 A1 WO2018105569 A1 WO 2018105569A1 JP 2017043524 W JP2017043524 W JP 2017043524W WO 2018105569 A1 WO2018105569 A1 WO 2018105569A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
humic substance
humic
water treatment
substance
Prior art date
Application number
PCT/JP2017/043524
Other languages
French (fr)
Japanese (ja)
Inventor
橋野 昌年
大祐 岡村
克輝 木村
Original Assignee
旭化成株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社, 国立大学法人北海道大学 filed Critical 旭化成株式会社
Priority to JP2018554993A priority Critical patent/JP7113454B2/en
Publication of WO2018105569A1 publication Critical patent/WO2018105569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Abstract

Provided are a water treatment method and a water treatment device whereby water to be treated, said water containing humin substances and biopolymers, can be stably filtered through a membrane without causing clogging of the filtration membrane. The water treatment method for clarifying water to be treated, which contains humin substances and high-molecular substances, comprises: a humin substance removal step for subjecting the water to be treated to a treatment for removing the humin substances to give humin substance-reduced water; a high-molecular substance aggregation step for aggregating the high-molecular substances in the humin substance-reduced water by a treatment with the use of an aggregating agent to give aggregate-containing water; and a membrane filtration step for filtering the aggregate-containing water through a membrane.

Description

水処理方法および装置Water treatment method and apparatus
 本発明は、フミン質と高分子物質とが含まれる被処理水を清澄化する水処理方法および装置に関する。 The present invention relates to a water treatment method and apparatus for clarifying water to be treated containing humic substances and polymer substances.
 種々の原水のろ過に用いられるろ過膜は、ろ過精度に優れること、設置スペースが少なくて済むこと、運転管理が容易であることなどの理由から、各種の分離膜装置に用いられている。 Filtration membranes used for the filtration of various raw waters are used in various separation membrane devices for reasons such as excellent filtration accuracy, a small installation space, and easy operation management.
 しかし、このようなろ過膜を用いた分離膜装置にあっては、ろ過の継続に伴い原水中の除去対象物質が膜表面に付着して孔を閉塞するため、徐々にろ過性能が低下し、ついにはろ過できなくなってしまうという問題がある。 However, in the separation membrane device using such a filtration membrane, the removal target substance in the raw water adheres to the membrane surface and clogs the pores as filtration continues, so the filtration performance gradually decreases, There is a problem that it becomes impossible to filter at last.
 そこで、ろ過性能を維持するために、空気等の気体をろ過膜の原水側に気泡として導入する気体洗浄やろ過方向とは逆方向にろ液側からろ過水あるいは清澄水等の逆洗媒体を噴出させて膜のろ過面の付着物を除去する逆圧水洗浄(以後、逆洗と呼ぶ)が一般的に行われている。 Therefore, in order to maintain the filtration performance, a gas such as air is introduced as bubbles into the raw water side of the filtration membrane, and a backwash medium such as filtered water or clarified water is applied from the filtrate side in the direction opposite to the filtration direction. In general, back-pressure water cleaning (hereinafter referred to as back-washing) is performed to remove the deposits on the filtration surface of the membrane.
 また洗浄効果を高めるため、逆洗媒体に酸化作用のある次亜塩素酸ソーダを添加する方法、及びオゾン水を用いて逆洗する方法(例えば、特許文献1)やオゾン化加圧空気で逆洗する方法(例えば、特許文献2)が知られている。さらには、オゾン化空気をろ過膜の原水側に気泡として注入する方法(例えば、特許文献3)が知られている。 Further, in order to enhance the cleaning effect, a method of adding sodium hypochlorite having an oxidizing action to the backwash medium, a method of backwashing using ozone water (for example, Patent Document 1), and backwashing with ozonized pressurized air. A washing method (for example, Patent Document 2) is known. Furthermore, a method (for example, Patent Document 3) in which ozonized air is injected as bubbles into the raw water side of the filtration membrane is known.
特開平4-310220号公報JP-A-4-310220 特開昭60-58222号公報JP-A-60-58222 特開昭63-42703号公報JP-A-63-42703
 膜表面の付着物を除去し高い膜ろ過流束を維持するためには、気体洗浄時の流量を多くしたり、気体洗浄時間を長くすることが有効である。しかし、これらは気体洗浄時におけるろ過膜の振動を増加させることになり、ろ過膜に負荷を掛けるためろ過膜の寿命が短くなるという問題がある。また、次亜塩素酸ソーダやオゾン水などの酸化剤を用いた逆洗方法、空気やオゾン化空気をろ過膜の原水側に気泡として導入する方法等は洗浄効果を高める上で有効であるが、原水の濁質等の条件によっては必ずしも十分安定なろ濾過流束が得られない場合がある。また、分離膜装置の洗浄のために膜浸漬槽へ薬液を満たすといった方法も考えられるが、この方法には多くの薬液量が必要で操作も煩雑であるといった問題があった。 In order to remove deposits on the membrane surface and maintain a high membrane filtration flux, it is effective to increase the flow rate during gas cleaning or lengthen the gas cleaning time. However, these increase the vibration of the filtration membrane at the time of gas cleaning, and there is a problem that the life of the filtration membrane is shortened because a load is applied to the filtration membrane. In addition, a backwashing method using an oxidizing agent such as sodium hypochlorite and ozone water, a method of introducing air or ozonated air as bubbles to the raw water side of the filtration membrane, etc. are effective in enhancing the cleaning effect. Depending on conditions such as turbidity of raw water, a sufficiently stable filtration flux may not always be obtained. In addition, a method of filling the membrane immersion tank with a chemical solution for cleaning the separation membrane device can be considered, but this method has a problem that a large amount of the chemical solution is required and the operation is complicated.
 さらに、河川水および海水などの自然水をろ過する場合のファウリングには、従来、フミン酸、フルボ酸を中心とするフミン質が主要な原因と言われてきた。 Furthermore, humic substances such as humic acid and fulvic acid have been said to be the main cause of fouling when filtering natural water such as river water and seawater.
 しかし、本発明者らの検討によって、ろ過膜の目詰まりを誘発するファウリング物質が微生物由来の多糖類やタンパク質から構成されるバイオポリマーであることが明らかになった。特に海水では、河川水に比べバイオポリマーの濃度が高く、ろ過が難しい。 However, the inventors' investigations have revealed that the fouling substance that induces clogging of the filtration membrane is a biopolymer composed of microorganism-derived polysaccharides and proteins. In particular, seawater has a higher concentration of biopolymer than river water and is difficult to filter.
 被処理水中のフミン質を除去してから膜ろ過処理に供する方法は、特許文献1および特許文献2に開示されている。しかしながら、これらの方法ではフミン質を除去できるがバイオポリマーを除去することができないため、安定な膜ろ過には不十分な方法であった。 Methods for removing the humic substance from the water to be treated and subjecting it to membrane filtration are disclosed in Patent Document 1 and Patent Document 2. However, these methods can remove humic substances but cannot remove biopolymers, which is insufficient for stable membrane filtration.
 本発明は、このような問題を解決するためになされたものであり、フミン質およびバイオポリマーを含む被処理水を、ろ過膜の目詰まりを生じることなく、安定して膜ろ過することができる水処理方法および装置を提供する。 The present invention has been made to solve such a problem, and it is possible to stably perform membrane filtration of water to be treated containing humic substances and biopolymers without causing clogging of the filtration membrane. A water treatment method and apparatus are provided.
 本発明の水処理方法は、フミン質と高分子物質とが含まれる被処理水を清澄化する水処理方法において、被処理水に対し、フミン質を除去し、フミン質低減水を生成する処理を施すフミン質除去工程と、フミン質低減水中の高分子物質を凝集剤により凝集させた凝集体含有水を生成する処理を行う高分子凝集工程と、凝集体含有水を膜によりろ過する膜ろ過工程とを有する。 The water treatment method of the present invention is a water treatment method for clarifying water to be treated containing humic substances and a polymer substance. In the water treatment method, humic substances are removed from water to be treated to produce humic-reduced water. A humic substance removing step, a polymer flocculating step for generating agglomerate-containing water obtained by aggregating a polymer substance in humic substance-reduced water with a flocculant, and membrane filtration for filtering the agglomerate-containing water through a membrane Process.
 また、上記本発明の水処理方法において、フミン質除去工程では、イオン交換処理によりフミン質を除去することができる。 In the water treatment method of the present invention, the humic substance can be removed by ion exchange treatment in the humic substance removing step.
 また、上記本発明の水処理方法において、高分子凝集工程では、無機凝集剤により高分子物質を凝集させることができる。 In the water treatment method of the present invention, the polymer substance can be aggregated with an inorganic flocculant in the polymer aggregation process.
 また、上記本発明の水処理方法において、高分子物質は、バイオポリマーとすることができる。 In the water treatment method of the present invention, the polymer substance can be a biopolymer.
 また、上記本発明の水処理方法においては、凝集体含有水中のバイオポリマー濃度に応じて、フミン質除去工程を行うフミン質除去手段における被処理水の滞留時間、高分子凝集工程を行う凝集手段におけるフミン質低減水の滞留時間、および凝集剤の添加量の少なくとも1つを変化させることができる。 Further, in the water treatment method of the present invention, the retention time of the water to be treated in the humic substance removing means for performing the humic substance removing process according to the biopolymer concentration in the aggregate-containing water, and the coagulating means for performing the polymer coagulating process. It is possible to change at least one of the retention time of the humic substance-reducing water and the addition amount of the flocculant.
 また、上記本発明の水処理方法においては、フミン質低減水中のフミン質濃度が0.7mg/Lになるように、フミン質除去工程に用いられるイオン交換樹脂の添加量およびフミン質除去手段における被処理水の滞留時間の少なくとも1つを調整することができる。 In the water treatment method of the present invention, the amount of ion exchange resin used in the humic substance removing step and the humic substance removing means are used so that the humic substance concentration in the humic substance-reduced water is 0.7 mg / L. At least one of the residence times of the water to be treated can be adjusted.
 また、上記本発明の水処理方法においては、凝集体含有水を、0.45μmのフィルターでろ過した後の水中のバイオポリマー濃度を40μg/L以下に制御することができる。 Moreover, in the water treatment method of the present invention, the biopolymer concentration in water after the aggregate-containing water is filtered through a 0.45 μm filter can be controlled to 40 μg / L or less.
 本発明の水処理装置は、フミン質と高分子物質とが含まれる被処理水の膜ろ過を行う水処理装置であって、被処理水に対し、フミン質を除去し、フミン質低減水を生成する処理を施すフミン質除去処理手段と、フミン質低減水中の高分子物質を凝集剤により凝集させた凝集体含有水を生成する処理を行う凝集手段と、凝集体含有水の膜ろ過を行う膜ろ過手段とを備え、膜ろ過手段よりも前段にフミン質除去処理手段および凝集手段がこの順に設けられていることを特徴とする。 The water treatment device of the present invention is a water treatment device that performs membrane filtration of water to be treated containing humic substances and a high-molecular substance, and removes humic substances from the water to be treated to provide humic substance-reduced water. A humic substance removing treatment means for performing a treatment to be generated; a flocculating means for performing a process for producing agglomerate-containing water obtained by aggregating a polymer substance in humic substance-reduced water with a flocculant; A membrane filtration means, and a humic substance removing treatment means and a coagulation means are provided in this order before the membrane filtration means.
 また、上記本発明の水処理装置において、フミン質除去処理手段は、粉末イオン交換樹脂を用いたイオン交換手段、活性炭による吸着、酸化剤による分解による処理方法であることが好ましい。 In the water treatment apparatus of the present invention, the humic substance removal treatment means is preferably a treatment method using ion exchange means using powder ion exchange resin, adsorption with activated carbon, and decomposition with an oxidizing agent.
 また、本発明の水処理装置において、凝集手段は、無機系凝集剤を用いるものであることが好ましい。 In the water treatment apparatus of the present invention, it is preferable that the aggregating means uses an inorganic aggregating agent.
 また、本発明の水処理装置において、膜ろ過手段は、孔径0.2μm以下のろ過膜を用いることが好ましい。 In the water treatment apparatus of the present invention, it is preferable to use a filtration membrane having a pore diameter of 0.2 μm or less as the membrane filtration means.
 また、本発明の水処理装置においては、凝集手段の後にバイオポリマー測定装置を設けることができる。 Moreover, in the water treatment apparatus of the present invention, a biopolymer measuring apparatus can be provided after the aggregating means.
 また、本発明の水処理装置において、バイオポリマー測定装置は、LC-OCD(Liquid Chromatography-Organic Carbon Detection)であることが好ましい。 In the water treatment apparatus of the present invention, the biopolymer measuring apparatus is preferably LC-OCD (Liquid Chromatography-Organic Carbon Detection).
 また、本発明の水処理装置において、バイオポリマー測定装置は、フミン質除去処理手段によって被処理水からフミン質を除去した後、膜ろ過手段が有する平均孔径50nm以下のろ過膜で膜ろ過した後の水に含まれる全有機炭素濃度を測定することが好ましい。 Moreover, in the water treatment apparatus of the present invention, the biopolymer measurement apparatus removes the humic substance from the water to be treated by the humic substance removing treatment means, and then membrane-filtering with a filtration membrane having an average pore diameter of 50 nm or less possessed by the membrane filtering means. It is preferable to measure the total organic carbon concentration contained in the water.
 本発明の水処理方法および装置によれば、被処理水中のバイオポリマーを効率よく除去できるため、ろ過膜の目詰まりを抑制でき、安定して膜ろ過を行うことができる。また、ろ過膜の洗浄回数の低減、あるいはろ過速度を上げて運転することができる。 According to the water treatment method and apparatus of the present invention, since the biopolymer in the water to be treated can be efficiently removed, clogging of the filtration membrane can be suppressed, and membrane filtration can be performed stably. Further, it is possible to operate by reducing the number of times the membrane is washed or increasing the filtration speed.
図1は、本発明の水処理装置の一実施形態の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an embodiment of a water treatment apparatus of the present invention. 図2は、本発明の水処理方法の一実施形態を説明するためのフローチャートを示す図である。FIG. 2 is a flowchart for explaining an embodiment of the water treatment method of the present invention. 図3は、実施例1における水中有機物のLC-OCDクロマトグラムを示す図である。FIG. 3 is a diagram showing an LC-OCD chromatogram of organic substances in water in Example 1.
 以下に、本発明に係る水処理装置の好適な実施形態について、図面を参照して説明する。 Hereinafter, preferred embodiments of a water treatment apparatus according to the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態に係る水処理装置の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of a water treatment apparatus according to an embodiment of the present invention.
 本実施形態の水処理装置1は、イオン交換手段等のフミン質低減手段2、凝集剤添加手段3および分離膜装置4を備えている。本実施形態の水処理装置1においては、フミン質と高分子物質とが含まれる被処理水が、フミン質低減手段2内に連続的にまたは断続的に導入され、その後、凝集剤添加手段3によって凝集剤が連続的または断続的に添加され、分離膜装置4に送られる。ろ過膜のモジュールが組み込まれた分離膜装置4により膜ろ過処理が行われ、分離膜装置4からろ過水が得られるように構成されている。なお、本実施形態においては、イオン交換手段が、本発明のフミン質除去処理手段2に相当するものであり、分離膜装置4が、本発明の膜ろ過手段に相当するものであり、凝集剤添加手段3および後述するバッファータンク7が、本発明の凝集手段に相当するものである。 The water treatment apparatus 1 of this embodiment includes a humic substance reducing means 2 such as an ion exchange means, a flocculant adding means 3 and a separation membrane device 4. In the water treatment apparatus 1 of the present embodiment, water to be treated containing humic substances and a polymer substance is continuously or intermittently introduced into the humic substance reducing unit 2, and then the flocculant adding unit 3. Thus, the flocculant is continuously or intermittently added to the separation membrane device 4. A membrane filtration process is performed by the separation membrane device 4 in which a filtration membrane module is incorporated, and filtered water is obtained from the separation membrane device 4. In the present embodiment, the ion exchange means corresponds to the humic substance removal processing means 2 of the present invention, the separation membrane device 4 corresponds to the membrane filtration means of the present invention, and the flocculant The adding means 3 and the buffer tank 7 described later correspond to the aggregating means of the present invention.
 ここで、自然水中には、植物などの微生物による分解物であるフミン質、および微生物の代謝物であるバイオポリマー等が含まれ、上述したようにフミン質のみを除去してもバイオポリマーがろ過膜の目詰まりの原因となり、後段の分離膜装置4が安定に稼働しない。また、フミン質の低減のみを行っても分離膜装置4による安定な運転が遂行できない。また、凝集処理のみを実施してもフミン質の存在下ではバイオポリマーが効率よく除去できないことが分かった。 Here, natural water contains humic substances that are degradation products of microorganisms such as plants, and biopolymers that are metabolites of microorganisms. As described above, even if only humic substances are removed, the biopolymer is filtered. This causes clogging of the membrane, and the subsequent separation membrane device 4 does not operate stably. Further, even if only humic substance is reduced, stable operation by the separation membrane device 4 cannot be performed. Further, it was found that even if only the aggregation treatment was performed, the biopolymer could not be removed efficiently in the presence of humic substances.
 そこで、本発明者らは、まず、被処理水をイオン交換処理等によりフミン質を除去し、その後、凝集処理を行うことでバイオポリマーを効率的に除去し、これにより後段の分離膜装置4が安定に稼働できることを明らかにした。図2は、本実施形態の水処理装置1を用いた水処理方法の流れを示すフローチャートである。 Therefore, the present inventors first remove the humic substance from the water to be treated by ion exchange treatment or the like, and then perform the agglomeration treatment to efficiently remove the biopolymer, whereby the separation membrane device 4 in the subsequent stage. Clarified that can operate stably. FIG. 2 is a flowchart showing a flow of a water treatment method using the water treatment apparatus 1 of the present embodiment.
 本実施形態の水処理装置1は、より具体的には、上述したイオン交換手段等のフミン質低減手段2、凝集剤添加手段3および分離膜装置4の他に、原水供給ポンプ6、バッファータンク7およびろ過ポンプ8を備えている。 More specifically, the water treatment apparatus 1 of the present embodiment includes a raw water supply pump 6, a buffer tank, in addition to the humic substance reduction means 2 such as the ion exchange means, the flocculant addition means 3, and the separation membrane device 4 described above. 7 and a filtration pump 8 are provided.
 そして、図2に示すように、まず、原水供給ポンプ6によって被処理水がイオン交換手段2に連続的または断続的に供給され、フミン質低減手段2において、被処理水からフミン質が除去され、フミン質低減水が生成される(S10)。 Then, as shown in FIG. 2, first, the water to be treated is continuously or intermittently supplied to the ion exchange means 2 by the raw water supply pump 6, and the humic substance is removed from the water to be treated by the humic substance reducing means 2. The humic substance-reduced water is generated (S10).
 次に、フミン質低減手段2によって生成されたフミン質低減水がバッファータンク7に一時的に貯留されるが、この際、フミン質低減水に対して、凝集剤添加手段3によって凝集剤が連続的または断続的に添加される(S12)。 Next, the humic substance-reduced water produced by the humic substance-reducing means 2 is temporarily stored in the buffer tank 7. At this time, the flocculant is continuously added to the humic substance-reduced water by the coagulant-adding means 3. Or intermittently (S12).
 そして、バッファータンク7内において、フミン質低減水中の高分子物質(バイオポリマー)が凝集され、凝集体含有水が生成される(S14)。 Then, in the buffer tank 7, the high-molecular substance (biopolymer) in the humic substance-reduced water is aggregated to generate aggregate-containing water (S14).
 次いで、バッファータンク7において生成された凝集体含有水が、ろ過ポンプ8によって分離膜装置4に供給され、分離膜装置4において、膜によりろ過処理が行われ、フミン質およびバイオポリマーが除去されたろ過水が得られる(S16)。 Next, the aggregate-containing water produced in the buffer tank 7 is supplied to the separation membrane device 4 by the filtration pump 8, and the separation membrane device 4 is filtered by the membrane, and the humic substances and the biopolymer are removed. Filtered water is obtained (S16).
 ここで、イオン交換手段は特に制限されることはないが、フミン酸およびフルボ酸を中心とするフミン質を吸着除去できる陰イオン交換樹脂を備えたものであることが好ましい。また、イオン交換樹脂は粉末であることが好ましい。たとえば比表面積と固液分離とのバランスがよい粉末イオン交換樹脂を用いる場合、その平均粒径は30μm以上70μm以下の範囲であることが好ましい。平均粒径はレーザー回折法や遠心沈降法などで測定される。また、磁性を待たせて固液分離しやすくしたイオン交換樹脂を用いることが更に好ましい。また、被処理水に夾雑物があると粉末イオン交換樹脂が詰まるので、夾雑物がある場合には、予め除去しておくことが好ましい。イオン交換手段2での被処理水の滞留時間は5分~60分程度であることが好ましい。 Here, the ion exchange means is not particularly limited, but is preferably provided with an anion exchange resin capable of adsorbing and removing humic substances centering on humic acid and fulvic acid. The ion exchange resin is preferably a powder. For example, when a powder ion exchange resin having a good balance between specific surface area and solid-liquid separation is used, the average particle size is preferably in the range of 30 μm to 70 μm. The average particle diameter is measured by a laser diffraction method or a centrifugal sedimentation method. In addition, it is more preferable to use an ion exchange resin that makes magnetism await and facilitates solid-liquid separation. In addition, if there is a contaminant in the water to be treated, the powder ion exchange resin is clogged. Therefore, if there is a contaminant, it is preferably removed in advance. The residence time of the water to be treated in the ion exchange means 2 is preferably about 5 to 60 minutes.
 また、フミン質低減手段2による処理後のフミン質低減水中のフミン質濃度は0.7mg/L以下であることが好ましい。より好ましくは0.6mg/L以下であり、さらに好ましくは0.3mg/L以下である。フミン質低減水中のフミン質濃度は、例えばイオン交換による等のフミン質低減手段2においては、粉末イオン交換樹脂の添加量およびイオン交換手段2における被処理水の滞留時間の少なくとも1つを変化させることによって調整される。 Moreover, it is preferable that the humic substance density | concentration in the humic substance reduction water after the process by the humic substance reduction means 2 is 0.7 mg / L or less. More preferably, it is 0.6 mg / L or less, More preferably, it is 0.3 mg / L or less. The humic substance concentration in the humic substance-reduced water changes at least one of the addition amount of the powder ion exchange resin and the residence time of the water to be treated in the ion exchange part 2 in the humic substance reducing unit 2 such as by ion exchange. Adjusted by.
 凝集剤添加手段3から添加される凝集剤は無機系および高分子系のどちらでも良いが、コストが安く、後段の膜ろ過への目詰まりがしにくいという点で無機系凝集剤が好ましい。無機系凝集剤としては、特に制限されるものではなく、アルミ系凝集剤または鉄系凝集剤等があるが、ポリ塩化アルミが好ましい。バッファータンク7における凝集剤を含むフミン質低減水の滞留時間は1~5分程度であることが好ましく、本実施形態のバッファータンク7のように、短絡流が生じない設備を用いることが好ましい。 The flocculant added from the flocculant addition means 3 may be either inorganic or high molecular, but is preferably an inorganic flocculant in terms of low cost and difficulty in clogging the subsequent membrane filtration. The inorganic flocculant is not particularly limited and includes an aluminum flocculant or an iron flocculant, but polyaluminum chloride is preferred. The residence time of the humic-reduced water containing the flocculant in the buffer tank 7 is preferably about 1 to 5 minutes, and it is preferable to use equipment that does not cause a short-circuit flow like the buffer tank 7 of this embodiment.
 凝集剤の添加方式は、特に制限されるものではないが、定量制御注入できる方法が好ましく、例えば、自然流下方式、インクジェット方式、およびポンプ圧送式等を用いることが好ましい。また、必要に応じて、酸およびアルカリ等のph調整剤も使用することが好ましい。さらに、バイオポリマーの濃度は40μg/L以下とすることが好ましい。なお、このバイオポリマー濃度は、凝集体含有水に対して、前処理として0.45μmのフィルターを用いたろ過処理を施した後に測定された値である。 The addition method of the flocculant is not particularly limited, but a method capable of quantitative control injection is preferable. For example, it is preferable to use a natural flow method, an ink jet method, a pumping method, or the like. Moreover, it is preferable to use ph adjusters such as acid and alkali as necessary. Furthermore, the biopolymer concentration is preferably 40 μg / L or less. In addition, this biopolymer density | concentration is the value measured after performing the filtration process using a 0.45 micrometer filter as a pretreatment with respect to aggregate containing water.
 バイオポリマー濃度は、フミン質低減手段2における被処理水の滞留時間、バッファータンク7における凝集剤を含むフミン質低減水の滞留時間、および凝集剤の添加量の少なくとも1つを変化させることによって調整される。 The biopolymer concentration is adjusted by changing at least one of the retention time of the water to be treated in the humic substance reducing means 2, the residence time of the humic substance reducing water containing the flocculant in the buffer tank 7, and the addition amount of the flocculant. Is done.
 また、バイオポリマー濃度は、図1に示すように、凝集手段であるバッファータンク7の後に設けられたバイオポリマー測定装置5によって測定される。バイオポリマー測定装置5としては、LC-OCD(Liquid Chromatography-Organic Carbon Detection)を用いることが好ましい。 Further, as shown in FIG. 1, the biopolymer concentration is measured by a biopolymer measuring device 5 provided after a buffer tank 7 which is an aggregating means. As the biopolymer measuring device 5, it is preferable to use LC-OCD (Liquid Chromatography-Organic Carbon Detection).
 また、バイオポリマー測定装置5に関しては、LC-OCDの代わりに以下の方法を実施する装置も代用できる。すなわち、まず被処理水中のフミン質を除去し、その後の水を平均孔径50nm以下の限外ろ過膜で濃縮することで、高分子物質のみを濃縮し、そのサンプルの溶解性全有機炭素濃度を測定することによって、バイオポリマーの濃度を測定することができる。この場合、フミン質の除去はイオン交換手段によることが好ましい。限外ろ過膜の平均孔径は50nm以下であることが好ましく、さらに好ましくは20nm以下である。また限外ろ過膜による濃縮倍率は2倍以上であることが好ましく、さらに好ましくは5倍以上である。 In addition, regarding the biopolymer measuring apparatus 5, an apparatus that performs the following method can be used instead of the LC-OCD. That is, first, the humic substances in the water to be treated are removed, and the subsequent water is concentrated with an ultrafiltration membrane having an average pore diameter of 50 nm or less, thereby concentrating only the polymer substance, and the soluble total organic carbon concentration of the sample is reduced. By measuring, the concentration of the biopolymer can be measured. In this case, it is preferable to remove humic substances by ion exchange means. The average pore size of the ultrafiltration membrane is preferably 50 nm or less, more preferably 20 nm or less. Moreover, it is preferable that the concentration rate by an ultrafiltration membrane is 2 times or more, More preferably, it is 5 times or more.
 分離膜装置4は、特に制限されるものではないが、精密ろ過、限外ろ過、ナノろ過膜、および逆浸透膜等を用いることができる。このうち、特に精密ろ過膜および限外ろ過膜を用いることが好ましく、膜ろ過処理を安定して行うことができる。また、ろ過膜としては、平均孔径が、0.2μm以下のろ過膜を用いることが好ましい。さらに好ましくは、50nm以下である。なお、平均孔径は、以下のようにして計測される。 The separation membrane device 4 is not particularly limited, and microfiltration, ultrafiltration, nanofiltration membrane, reverse osmosis membrane and the like can be used. Among these, it is preferable to use a microfiltration membrane and an ultrafiltration membrane, and the membrane filtration treatment can be performed stably. Moreover, as a filtration membrane, it is preferable to use a filtration membrane with an average pore diameter of 0.2 μm or less. More preferably, it is 50 nm or less. The average pore diameter is measured as follows.
 まず、ろ過膜を長さ方向に垂直な断面で切断する。走査型電子顕微鏡を用いて上記断面を極力多数の細孔の形状が明確に確認できる程度の倍率で撮影する。次に、電子顕微鏡画像のコピーの上に透明シートを重ね、黒いペン等を用いて細孔部分を黒く塗り潰し、透明シートを白紙にコピーすることにより、細孔部分は黒、非細孔部分は白と明確に区別する。その後、市販の画像解析ソフトを利用して任意に選んだ細孔100個の孔径を求め、その相加平均値を出すことで平均孔径を算出する。画像解析ソフトは例えば三谷商事株式会社から販売されているソフトウェア“WinRoof”を用いることができる。なお、孔径とは、細孔の円周上における任意の点から、該任意の点に対向する位置にある細孔の円周上の点とを結んだ距離を指す。 First, the filtration membrane is cut in a cross section perpendicular to the length direction. Using a scanning electron microscope, the cross-section is photographed at a magnification that allows the shape of as many pores as possible to be clearly confirmed. Next, overlay the transparent sheet on the copy of the electron microscope image, paint the pores black using a black pen, etc., and copy the transparent sheet to a blank sheet. Distinguish clearly from white. Thereafter, the pore diameter of 100 arbitrarily selected pores is obtained using commercially available image analysis software, and the average pore diameter is calculated by calculating the arithmetic average value. As image analysis software, for example, software “WinRoof” sold by Mitani Corporation can be used. The pore diameter refers to a distance connecting an arbitrary point on the circumference of the pore and a point on the circumference of the pore at a position facing the arbitrary point.
 以下、本実施の形態を実施例および比較例によってさらに具体的に説明するが、本実施の形態は、これらの実施例に限定されるものではない。 Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to these examples.
[フミン質およびバイオポリマーの測定方法]
 本発明において、フミン質とは植物などが微生物による分解を経て形成された最終生成物である腐植物質であり、酸性の成分のフミン酸などを含む。高分子物質とはバイオポリマーを含む分子量が10万以上の成分を示し、バイオポリマーは細胞類等が産生する多糖類を多く含む。より具体的には、以下の測定方法で観測される成分を示し、濃度を決定することができる。
 有機物の分子量分布測定、フミン質およびバイオポリマー濃度測定は、LC-OCD(Model8、Doclabor)を用い、“Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography -organic carbon detection - organic nitrogen detection(LC-OCD-OND)” Huberら著、Water Research, 45, 879-885(2011)の方法に従い測定した。測定サンプルは、前処理として、0.45μmのフィルターでろ過をする処理を実施した。この測定により、各分子量画分はDOC(Dissolved Organic Carbon)として検出される。バイオポリマー濃度とは、バイオポリマーのカーボン成分濃度を意味する。バイオポリマーは、標準物質としてキサンタンガム(CAS No.: 11138-66-2)を使用し、LC-OCDの校正曲線を作成して濃度を決定した。フミン質濃度とは、フミン質のカーボン成分濃度を意味する。フミン質は標準物質のフミン酸(CAS No.:1415-93-6)を使用し、LC-OCDの校正曲線を作成して濃度を決定した。
[Measurement method of humic substances and biopolymers]
In the present invention, the humic substance is a humic substance that is a final product formed by decomposition of a plant or the like by microorganisms, and includes an acidic component such as humic acid. The high-molecular substance indicates a component having a molecular weight of 100,000 or more including a biopolymer, and the biopolymer contains a lot of polysaccharides produced by cells and the like. More specifically, the components observed by the following measurement method can be shown to determine the concentration.
The molecular weight distribution measurement, humic substance and biopolymer concentration measurement of organic substances were performed using LC-OCD (Model 8, Doclabor), "Characterization of aquatic humic and scale-with-the-quantitative-chromatography. LC-OCD-OND) ”was measured according to the method of Huber et al., Water Research, 45, 879-885 (2011). As a pretreatment, the measurement sample was filtered with a 0.45 μm filter. By this measurement, each molecular weight fraction is detected as DOC (Dissolved Organic Carbon). Biopolymer concentration means the carbon component concentration of the biopolymer. As the biopolymer, xanthan gum (CAS No .: 11138-66-2) was used as a standard substance, and a calibration curve of LC-OCD was prepared to determine the concentration. The humic substance concentration means the carbon component concentration of the humic substance. As the humic substance, the standard substance humic acid (CAS No .: 1415-93-6) was used, and a concentration curve was determined by preparing a calibration curve of LC-OCD.
(実施例1)
 図1に示す水処理装置1を使って河川表流水より上水を得る目的で運転を実施した。フミン質低減手段2には、イオン交換樹脂MIEX樹脂(前沢工業製)を用い、凝集剤添加手段3にはポリ塩化アルミ添加装置を設けた。さらにその後段に10mのバッファータンク7を設けた。分離膜装置4のろ過膜モジュールには、ポリフッ化ビニリデン製中空糸MF膜(旭化成製)、平均孔径0.1μm、有効膜面積50mのものを用いた。ろ過膜モジュールの外形寸法は、直径180mm、長さ2000mm(円筒形)である。被処理水中のフミン質濃度およびバイオポリマー濃度はそれぞれ1.5mg/Lおよび70μg/Lであった。図3に前記Huberらの方法によるLC-OCD測定結果を示す。約30分の保持時間で検出されるピークがバイオポリマーを示し、40~45分で検出されるピークがフミン質を示している。イオン交換処理のみでは、フミン質は除去できるが、バイオポリマーを除去できないが、イオン交換処理、凝集処理の順に処理するとバイオポリマーも除去できる。一方、凝集処理だけではバイオポリマーは除去できない。
Example 1
Operation was performed for the purpose of obtaining clean water from river surface water using the water treatment apparatus 1 shown in FIG. The humic substance reducing means 2 was an ion exchange resin MIEX resin (manufactured by Maezawa Kogyo), and the flocculant adding means 3 was provided with a polyaluminum chloride addition device. Further, a 10 m 3 buffer tank 7 was provided at the subsequent stage. As the filtration membrane module of the separation membrane device 4, a polyvinylidene fluoride hollow fiber MF membrane (Asahi Kasei Co., Ltd.), an average pore size of 0.1 μm, and an effective membrane area of 50 m 2 was used. The outer dimensions of the filtration membrane module are a diameter of 180 mm and a length of 2000 mm (cylindrical). The humic substance concentration and the biopolymer concentration in the treated water were 1.5 mg / L and 70 μg / L, respectively. FIG. 3 shows the LC-OCD measurement results by the method of Huber et al. A peak detected at a retention time of about 30 minutes indicates a biopolymer, and a peak detected at 40 to 45 minutes indicates humic substances. The humic substances can be removed only by the ion exchange treatment, but the biopolymer cannot be removed, but the biopolymer can also be removed by the treatment in the order of the ion exchange treatment and the aggregation treatment. On the other hand, the biopolymer cannot be removed only by the aggregation treatment.
 運転膜ろ過流束は1.5m/Dに設定し、この時の膜ろ過流量は75m/hである。バッファータンク7のレベルに合わせて、原水供給ポンプ6によりイオン交換手段2に被処理を供給し、イオン交換処理、高分子凝集処理を実施し、バッファータンク7が空にならないように制御した。この時、イオン交換手段2における被処理水の滞留時間は20分に設定し、凝集剤の添加量は被処理水中のポリ塩化アルミの濃度が10mg/Lになるように調整して添加し、バッファータンク7における滞留時間は2分以上とした。これらの操作により、イオン交換樹脂処理後のフミン質低減水中のフミン質濃度は0.5mg/Lであった。また凝集剤添加後のバッファータンク7の凝集体含有水中のバイオポリマー濃度は、30μg/Lであった。 The operating membrane filtration flux is set to 1.5 m / D, and the membrane filtration flow rate at this time is 75 m 3 / h. In accordance with the level of the buffer tank 7, the raw water supply pump 6 supplies a treatment to the ion exchange means 2, performs ion exchange treatment and polymer aggregation treatment, and controls the buffer tank 7 not to be emptied. At this time, the retention time of the water to be treated in the ion exchange means 2 is set to 20 minutes, and the addition amount of the flocculant is adjusted and added so that the concentration of polyaluminum chloride in the water to be treated is 10 mg / L. The residence time in the buffer tank 7 was 2 minutes or more. By these operations, the humic substance concentration in the humic substance-reduced water after the ion exchange resin treatment was 0.5 mg / L. The biopolymer concentration in the aggregate-containing water in the buffer tank 7 after the addition of the flocculant was 30 μg / L.
 分離膜装置4は、ろ過ポンプ8を用いて29分間のろ過を継続し、その後、1分間のろ過水による逆圧洗浄を実施し、膜面の洗浄を実施した。こうした運転を実施することによって、14日後の分離膜装置4の膜間差圧は50kPaで運転することができた。 The separation membrane device 4 continued filtration for 29 minutes using the filtration pump 8, and then performed reverse pressure cleaning with filtered water for 1 minute to clean the membrane surface. By carrying out such operation, the transmembrane pressure difference of the separation membrane device 4 after 14 days could be operated at 50 kPa.
(実施例2)
 実施例1のフミン質低減手段2には、カラーカッター吸着剤(日本原料社製)を用い、凝集剤添加手段3には塩化第2鉄添加装置を設けた以外は、同様の装置構成にした。
(Example 2)
The humic substance reducing means 2 of Example 1 has the same apparatus configuration except that a color cutter adsorbent (manufactured by Nippon Raw Materials Co., Ltd.) is used, and the coagulant adding means 3 is provided with a ferric chloride addition apparatus. .
 被ろ過水に海水を用いた以外は実施例1と同様ろ過試験を実施し、この時、フミン質低減手段2における被処理水の滞留時間は20分に設定し、凝集剤の添加量は被処理水中の塩化第2鉄の濃度が10mg/Lになるように調整して添加し、バッファータンク7における滞留時間は2分以上とした。これらの操作により、カラーカッター処理後のフミン質低減水中のフミン質濃度は0.5mg/Lであった。また凝集剤添加後のバッファータンク7の凝集体含有水中のバイオポリマー濃度は、30μg/Lであった。 A filtration test was conducted in the same manner as in Example 1 except that seawater was used as the water to be filtered. At this time, the residence time of the water to be treated in the humic substance reducing means 2 was set to 20 minutes, and the amount of flocculant added was Adjustment was made so that the concentration of ferric chloride in the treated water was 10 mg / L, and the residence time in the buffer tank 7 was 2 minutes or longer. By these operations, the humic substance concentration in the humic substance-reduced water after the color cutter treatment was 0.5 mg / L. The biopolymer concentration in the aggregate-containing water in the buffer tank 7 after the addition of the flocculant was 30 μg / L.
 分離膜装置4は、ろ過ポンプ8を用いて29分間のろ過を継続し、その後、1分間のろ過水による逆圧洗浄を実施し、膜面の洗浄を実施した。こうした運転を実施することによって、14日後の分離膜装置4の膜間差圧は50kPaで運転することができた。 The separation membrane device 4 continued filtration for 29 minutes using the filtration pump 8, and then performed reverse pressure cleaning with filtered water for 1 minute to clean the membrane surface. By carrying out such operation, the transmembrane pressure difference of the separation membrane device 4 after 14 days could be operated at 50 kPa.
(実施例3)
 実施例1のフミン質低減手段2には、次亜塩素酸ソーダ添加手段を用い、凝集剤添加手段3には塩化第2鉄添加装置を設けた以外は、同様の装置構成にした。
(Example 3)
The apparatus configuration was the same except that sodium hypochlorite adding means was used for the humic substance reducing means 2 of Example 1 and ferric chloride adding apparatus was provided for the flocculant adding means 3.
 実施例2と同様ろ過試験を実施し、この時、フミン質低減手段2における次亜塩素酸ソーダの添加量は5mg/l設定し、凝集剤の添加量は被処理水中の塩化第2鉄の濃度が10mg/Lになるように調整して添加し、バッファータンク7における滞留時間は2分以上とした。これらの操作により、カラーカッター処理後のフミン質低減水中のフミン質濃度は0.5mg/Lであった。また凝集剤添加後のバッファータンク7の凝集体含有水中のバイオポリマー濃度は、30μg/Lであった。 A filtration test was conducted in the same manner as in Example 2. At this time, the amount of sodium hypochlorite added in the humic substance reducing means 2 was set to 5 mg / l, and the amount of flocculant added was the ferric chloride in the water to be treated. The concentration was adjusted to 10 mg / L and added, and the residence time in the buffer tank 7 was 2 minutes or longer. By these operations, the humic substance concentration in the humic substance-reduced water after the color cutter treatment was 0.5 mg / L. The biopolymer concentration in the aggregate-containing water in the buffer tank 7 after the addition of the flocculant was 30 μg / L.
 分離膜装置4は、ろ過ポンプ8を用いて29分間のろ過を継続し、その後、1分間のろ過水による逆圧洗浄を実施し、膜面の洗浄を実施した。こうした運転を実施することによって、14日後の分離膜装置4の膜間差圧は50kPaで運転することができた。 The separation membrane device 4 continued filtration for 29 minutes using the filtration pump 8, and then performed reverse pressure cleaning with filtered water for 1 minute to clean the membrane surface. By carrying out such operation, the transmembrane pressure difference of the separation membrane device 4 after 14 days could be operated at 50 kPa.
[比較例1]
 実施例1と同様の水処理装置1および条件を用い、凝集剤添加を停止し、イオン交換処理のみ実施例1と同条件で実施した。運転14日後の膜間差圧は150kPaを超えた。
[Comparative Example 1]
Using the same water treatment apparatus 1 and conditions as in Example 1, the addition of the flocculant was stopped, and only the ion exchange treatment was carried out under the same conditions as in Example 1. The transmembrane pressure difference after 14 days of operation exceeded 150 kPa.
[比較例2]
 実施例1と同様の水処理装置1および条件を用い、イオン交換樹脂は除去し、凝集剤添加を実施例1と同条件で実施した。これらの操作により、バッファータンク7の水中のフミン質濃度およびバイオポリマー濃度は、それぞれ1.2mg/Lであった。65μg/Lであった。運転14日後の膜間差圧は100kPaを超えた。
[Comparative Example 2]
Using the same water treatment apparatus 1 and conditions as in Example 1, the ion exchange resin was removed, and the flocculant was added under the same conditions as in Example 1. By these operations, the humic substance concentration and the biopolymer concentration in the water of the buffer tank 7 were 1.2 mg / L, respectively. It was 65 μg / L. The transmembrane pressure difference after 14 days of operation exceeded 100 kPa.
[比較例3]
 実施例1と同様の水処理装置1および条件を用い、イオン交換樹脂を除去し、凝集剤添加も停止した。これらの操作により、バッファータンク7の水中のフミン質濃度およびバイオポリマー濃度は、それぞれ1.5mg/Lであった。70μg/Lであった。運転14日後の膜間差圧は150kPaを超えた。
[Comparative Example 3]
Using the same water treatment apparatus 1 and conditions as in Example 1, the ion exchange resin was removed, and the addition of the flocculant was also stopped. By these operations, the humic substance concentration and the biopolymer concentration in the water of the buffer tank 7 were 1.5 mg / L, respectively. It was 70 μg / L. The transmembrane pressure difference after 14 days of operation exceeded 150 kPa.
[比較例4]
 実施例1と同様の水処理装置1および条件を用い、凝集剤添加手段3の位置をイオン交換手段2の前に設置した。イオン交換処理、および凝集剤添加量は実施例1と同様とした。これらの操作により、バッファータンク7の水中のフミン質濃度およびバイオポリマー濃度は、それぞれ0.5mg/Lであった。60μg/Lであった。運転14日後の膜間差圧は90kPaであった。
[Comparative Example 4]
Using the same water treatment apparatus 1 and conditions as in Example 1, the position of the flocculant addition means 3 was installed in front of the ion exchange means 2. The ion exchange treatment and the amount of flocculant added were the same as in Example 1. By these operations, the humic substance concentration and the biopolymer concentration in the water of the buffer tank 7 were 0.5 mg / L, respectively. It was 60 μg / L. The transmembrane pressure difference after 14 days of operation was 90 kPa.
 以上のようにイオン交換処理および凝集処理をこの順に行うことによってその後段の膜ろ過を安定的に稼働させることができた。 As described above, the subsequent membrane filtration could be stably operated by performing the ion exchange treatment and the aggregation treatment in this order.
1   水処理装置
2   フミン質低減手段
3   凝集剤添加手段
4   分離膜装置
5   バイオポリマー測定装置
6   原水供給ポンプ
7   バッファータンク
8   ろ過ポンプ
DESCRIPTION OF SYMBOLS 1 Water treatment apparatus 2 Humic substance reduction means 3 Flocculant addition means 4 Separation membrane apparatus 5 Biopolymer measuring apparatus 6 Raw water supply pump 7 Buffer tank 8 Filtration pump

Claims (14)

  1.  フミン質と高分子物質とが含まれる被処理水を清澄化する水処理方法において、
     前記被処理水に対し、フミン質を除去し、フミン質低減水を生成する処理を施すフミン質除去工程と、
     前記フミン質低減水中の高分子物質を凝集剤により凝集させた凝集体含有水を生成する処理を行う高分子凝集工程と、
     前記凝集体含有水を膜によりろ過する膜ろ過工程とを有する水処理方法。
    In a water treatment method for clarifying water to be treated containing humic substances and polymer substances,
    A humic substance removing step for removing the humic substance from the treated water and performing a process for generating humic substance-reduced water;
    A polymer agglomeration step for performing a treatment to produce agglomerate-containing water obtained by aggregating the polymer substance in the humic substance-reduced water with an aggregating agent;
    A water treatment method comprising a membrane filtration step of filtering the aggregate-containing water through a membrane.
  2.  前記フミン質除去工程では、イオン交換処理によりフミン質を除去することを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein in the humic substance removing step, humic substance is removed by ion exchange treatment.
  3.  前記高分子凝集工程では、無機凝集剤により高分子物質を凝集させることを特徴とする請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein in the polymer aggregation step, the polymer substance is aggregated with an inorganic flocculant.
  4.  前記高分子物質は、バイオポリマーであることを特徴とする請求項1から3いずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, wherein the polymer substance is a biopolymer.
  5.  前記凝集体含有水中のバイオポリマー濃度に応じて、前記フミン質除去工程を行うフミン質除去手段における前記被処理水の滞留時間、前記高分子凝集工程を行う凝集手段における前記フミン質低減水の滞留時間、および前記凝集剤の添加量の少なくとも1つを変化させることを特徴とする請求項1から4いずれか1項に記載の水処理方法。 Depending on the biopolymer concentration in the aggregate-containing water, the retention time of the water to be treated in the humic substance removing unit that performs the humic substance removing step, and the retention of the humic substance-reduced water in the flocculating unit that performs the polymer coagulating step 5. The water treatment method according to claim 1, wherein at least one of time and the amount of the flocculant added is changed.
  6.  前記フミン質低減水中のフミン質濃度が0.7mg/L以下になるように、フミン質除去工程に用いられるイオン交換樹脂の添加量および前記フミン質除去手段における被処理水の滞留時間の少なくとも1つを調整することを特徴とする請求項5に記載の水処理方法。 At least one of the amount of ion exchange resin used in the humic substance removing step and the residence time of the water to be treated in the humic substance removing means so that the humic substance concentration in the humic substance-reduced water is 0.7 mg / L or less. The water treatment method according to claim 5, wherein the water is adjusted.
  7.  前記凝集体含有水を、0.45μmのフィルターでろ過した後の水中のバイオポリマー濃度を40μg/L以下に制御することを特徴とする請求項1から6いずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 6, wherein a biopolymer concentration in the water after the aggregate-containing water is filtered through a 0.45 µm filter is controlled to 40 µg / L or less. .
  8.  フミン質と高分子物質とが含まれる被処理水の膜ろ過を行う水処理装置であって、
     前記被処理水に対し、フミン質を除去し、フミン質低減水を生成する処理を施すフミン質除去処理手段と、
     前記フミン質低減水中の高分子物質を凝集剤により凝集させた凝集体含有水を生成する処理を行う凝集手段と、
     前記凝集体含有水の膜ろ過を行う膜ろ過手段とを備え、
     前記膜ろ過手段よりも前段に前記フミン質除去処理手段および前記凝集手段がこの順に設けられていることを特徴とする水処理装置。
    A water treatment apparatus that performs membrane filtration of water to be treated containing humic substances and polymer substances,
    Humic substance removing treatment means for removing the humic substance from the treated water and performing a process of generating humic substance-reduced water;
    An aggregating means for performing a treatment for producing aggregate-containing water obtained by aggregating the polymer substance in the humic substance-reduced water with an aggregating agent;
    A membrane filtration means for performing membrane filtration of the aggregate-containing water,
    The water treatment apparatus, wherein the humic substance removing treatment means and the aggregating means are provided in this order before the membrane filtration means.
  9.  前記フミン質除去処理手段は、粉末イオン交換樹脂を用いたイオン交換手段であることを特徴とする請求項8に記載の水処理装置。 The water treatment apparatus according to claim 8, wherein the humic substance removing treatment means is an ion exchange means using a powder ion exchange resin.
  10.  前記凝集手段は、無機系凝集剤を用いるものであることを特徴とする請求項8または9に記載の水処理装置。 The water treatment apparatus according to claim 8 or 9, wherein the aggregating means uses an inorganic aggregating agent.
  11.  前記膜ろ過手段は、孔径0.2μm以下のろ過膜を用いることを特徴とする請求項8から10いずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 8 to 10, wherein the membrane filtration means uses a filtration membrane having a pore diameter of 0.2 µm or less.
  12.  前記凝集手段の後にバイオポリマー測定装置が設けられていることを特徴とする請求項8から11いずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 8 to 11, wherein a biopolymer measuring device is provided after the aggregating means.
  13.  前記バイオポリマー測定装置は、LC-OCD(Liquid Chromatography-Organic Carbon Detection)であることを特徴とする請求項12に記載の水処理装置。 The water treatment apparatus according to claim 12, wherein the biopolymer measuring apparatus is an LC-OCD (Liquid Chromatography-Organic Carbon Detection).
  14.  前記バイオポリマー測定装置は、前記フミン質除去処理手段によって前記被処理水からフミン質を除去した後、平均孔径50nm以下のろ過膜で膜ろ過した後の水に含まれる全有機炭素濃度を測定するものであることを特徴とする請求項12に記載の水処理装置。 The said biopolymer measuring apparatus measures the total organic carbon concentration contained in the water after removing humic substance from the said to-be-processed water by the said humic substance removal process means, and carrying out membrane filtration with the filter membrane with an average pore diameter of 50 nm or less The water treatment device according to claim 12, wherein the water treatment device is a thing.
PCT/JP2017/043524 2016-12-05 2017-12-04 Water treatment method and water treatment device WO2018105569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554993A JP7113454B2 (en) 2016-12-05 2017-12-04 Water treatment method and equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-236248 2016-12-05
JP2016236248 2016-12-05

Publications (1)

Publication Number Publication Date
WO2018105569A1 true WO2018105569A1 (en) 2018-06-14

Family

ID=62491109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043524 WO2018105569A1 (en) 2016-12-05 2017-12-04 Water treatment method and water treatment device

Country Status (2)

Country Link
JP (1) JP7113454B2 (en)
WO (1) WO2018105569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951492A (en) * 2019-11-19 2020-04-03 西北农林科技大学 Preparation method and application of soil remediation medicament humin based on modified peat
CN114641342A (en) * 2019-10-25 2022-06-17 株式会社钟化 Process for producing aqueous polymer dispersion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504995A (en) * 1994-09-09 1998-05-19 サウス オーストラリアン ウォーター コーポレイション Water treatment method
WO2009020157A1 (en) * 2007-08-07 2009-02-12 Kurita Water Industries Ltd. Membrane separation method and membrane separation device
JP2016040030A (en) * 2014-08-12 2016-03-24 株式会社クラレ Water treatment system
WO2016185788A1 (en) * 2015-05-19 2016-11-24 栗田工業株式会社 Coagulant and water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504995A (en) * 1994-09-09 1998-05-19 サウス オーストラリアン ウォーター コーポレイション Water treatment method
WO2009020157A1 (en) * 2007-08-07 2009-02-12 Kurita Water Industries Ltd. Membrane separation method and membrane separation device
JP2016040030A (en) * 2014-08-12 2016-03-24 株式会社クラレ Water treatment system
WO2016185788A1 (en) * 2015-05-19 2016-11-24 栗田工業株式会社 Coagulant and water treatment method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUBER, S. A. ET AL.: "Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection(LC-OCD-OND", WATER RESEARCH, vol. 45, 29 September 2010 (2010-09-29), pages 879 - 885, XP027574613 *
LIU, J. X. ET AL.: "Fouling behaviors correlating to water characteristics during the ultrafiltration of micro-polluted water with and without the addition of powdered activated carbon", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 511, 13 October 2016 (2016-10-13), pages 320 - 328, XP029800406 *
METCALFE, D. ET AL.: "Pre-treatment of surface waters for ceramic microfiltration", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 163, 26 February 2016 (2016-02-26), pages 173 - 180, XP029466446 *
WRAY, H. E. ET AL.: "Optimization of coagulant dose for biopolymer removal: Impact on ultrafiltration fouling and retention of organic micropollutants", JOURNAL OF WATER PROCESS ENGINEERING, vol. 1, 24 April 2014 (2014-04-24), pages 74 - 83, XP055510402 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641342A (en) * 2019-10-25 2022-06-17 株式会社钟化 Process for producing aqueous polymer dispersion
CN110951492A (en) * 2019-11-19 2020-04-03 西北农林科技大学 Preparation method and application of soil remediation medicament humin based on modified peat

Also Published As

Publication number Publication date
JPWO2018105569A1 (en) 2019-10-24
JP7113454B2 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
Chang et al. Hydraulic backwashing for low-pressure membranes in drinking water treatment: A review
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
Choi et al. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
Chen et al. Membrane separation: basics and applications
JP3698093B2 (en) Water treatment method and water treatment apparatus
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
Zhang et al. The change of NOM in a submerged UF membrane with three different pretreatment processes compared to an individual UF membrane
JP2007245003A (en) Seawater desalination method
WO2018105569A1 (en) Water treatment method and water treatment device
JP6816292B2 (en) Water treatment method and water treatment equipment
Boffa et al. Potential of nanofiltration technology in recirculating aquaculture systems in a context of circular economy
JP2012213676A (en) Water quality evaluation method and operation management method for water treatment apparatus
Meier et al. Wastewater reclamation by the PAC-NF process
TW593161B (en) System for producing purified water
Lerch et al. Research experiences in direct potable water treatment using coagulation/ultrafiltration
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
ZHANG et al. River water purification via a coagulation-porous ceramic membrane hybrid process
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
JP6486799B2 (en) MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX
JP2008302333A (en) Method and apparatus for production of fresh water
JP4033094B2 (en) Method for detecting membrane damage of membrane filtration device and apparatus therefor
JP2007117997A (en) Membrane filtration system and membrane filtration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018554993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879608

Country of ref document: EP

Kind code of ref document: A1