JP6816292B2 - Water treatment method and water treatment equipment - Google Patents

Water treatment method and water treatment equipment Download PDF

Info

Publication number
JP6816292B2
JP6816292B2 JP2019539086A JP2019539086A JP6816292B2 JP 6816292 B2 JP6816292 B2 JP 6816292B2 JP 2019539086 A JP2019539086 A JP 2019539086A JP 2019539086 A JP2019539086 A JP 2019539086A JP 6816292 B2 JP6816292 B2 JP 6816292B2
Authority
JP
Japan
Prior art keywords
water treatment
water
treated
molecular weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019539086A
Other languages
Japanese (ja)
Other versions
JPWO2019044312A1 (en
Inventor
雄大 鈴木
雄大 鈴木
臨太郎 前田
臨太郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Publication of JPWO2019044312A1 publication Critical patent/JPWO2019044312A1/en
Application granted granted Critical
Publication of JP6816292B2 publication Critical patent/JP6816292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtering Materials (AREA)

Description

本発明は、水処理方法および水処理装置に関する。 The present invention relates to a water treatment method and a water treatment apparatus.

近年、上下水処理や工場排水処理等において、除濁膜が用いられる機会が増加している。しかし、被処理水に含まれる高分子有機物が除濁膜に膜閉塞をもたらすことが知られている。ここで除濁膜とは、精密ろ過膜(MF膜)および限外ろ過膜(UF膜)のことである。また、ここで高分子有機物とは、例えば、生物処理の処理水に含まれる生物代謝物や、凝集固液分離処理において添加されるアニオンポリマ等が挙げられる。 In recent years, there have been increasing opportunities for opaque membranes to be used in water and sewage treatment, factory wastewater treatment, and the like. However, it is known that high molecular weight organic substances contained in the water to be treated cause membrane blockage in the turbid film. Here, the opaque membrane refers to a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). Further, examples of the high molecular weight organic substance include biological metabolites contained in treated water for biological treatment, anionic polymers added in agglomeration solid-liquid separation treatment, and the like.

このため、前処理でアニオンポリマを用いる凝集処理により高分子有機物を低減する、除濁工程を膜ではなく砂ろ過を用いて行う、または、前処理で触媒と酸化剤を用いて高分子有機物を酸化分解する(特許文献1参照)等の対策が取られている。 Therefore, the polymer organic matter is reduced by the aggregation treatment using an anion polymer in the pretreatment, the turbidity step is performed by sand filtration instead of the membrane, or the polymer organic matter is prepared by using a catalyst and an oxidizing agent in the pretreatment. Measures such as oxidative decomposition (see Patent Document 1) have been taken.

しかし、凝集処理で添加されるアニオンポリマは過剰に添加された場合に後段の除濁膜でさらなる膜閉塞を招くため、水質が変動する工場の排水処理や天然水の処理等では運転管理が難しい。また、砂ろ過を採用した場合は、処理水の水質が膜処理と比較して劣る。酸化分解を行う場合は、工程や装置が煩雑になる。 However, if the anionic polymer added in the coagulation treatment is excessively added, it causes further membrane blockage in the opaque membrane in the subsequent stage, so it is difficult to manage the operation in wastewater treatment or natural water treatment in factories where the water quality fluctuates. .. Further, when sand filtration is adopted, the quality of the treated water is inferior to that of the membrane treatment. When performing oxidative decomposition, the process and equipment become complicated.

特許第6128964号公報Japanese Patent No. 6128964

本発明の目的は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができる水処理方法および水処理装置を提供することにある。 An object of the present invention is to remove deterioration of treated water quality in a treatment using a turbid membrane of water to be treated containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less. It is an object of the present invention to provide a water treatment method and a water treatment apparatus capable of suppressing clogging of a turbid film.

本発明は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁工程を含み、前記除濁膜の材質は、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであり、前記高分子有機物は、アニオン性高分子凝集剤であり、前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する、水処理方法である。 The present invention includes a decontamination step of treating water to be treated containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 3,000,000 or less using a decontamination film . The material is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyether sulfone, the high molecular weight organic substance is an anionic polymer flocculant, and the weight average molecular weight of the water to be treated is 30. A water treatment method in which a cation polymer in the range of 000 or more and 3,000,000 or less is added.

前記水処理方法において、前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることが好ましい。 In the water treatment method, it is preferable that the cationic polymer has a structure of any one of polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based.

前記水処理方法において、前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることが好ましい。 In the water treatment method, the cationic polymer is preferably a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.

前記水処理方法において、前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることが好ましい。 In the water treatment method, the weight average molecular weight of the cationic polymer is preferably in the range of 200,000 or more and 3,000,000 or less.

前記水処理方法において、前記除濁工程の前段において、アニオン性高分子凝集剤を用いる凝集固液分離処理、および生物処理のうちの少なくとも1つの前処理を行うことが好ましい。 In the water treatment method, it is preferable to perform at least one pretreatment of agglomeration solid-liquid separation treatment using an anionic polymer flocculant and a biological treatment in the first stage of the turbidity step.

前記水処理方法における前記除濁工程の前段において、アクリルアミド系のアニオン性高分子凝集剤を用いる凝集固液分離処理を行うことが好ましい。 In the first stage of the turbidity step in the water treatment method, it is preferable to perform a coagulation solid-liquid separation treatment using an acrylamide-based anionic polymer flocculant .

前記水処理方法において、前記除濁工程の処理水を逆浸透膜によって処理する逆浸透膜処理工程をさらに含むことが好ましい。 It is preferable that the water treatment method further includes a reverse osmosis membrane treatment step in which the treated water in the turbidity step is treated with a reverse osmosis membrane.

また、本発明は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁装置と、前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する薬注手段と、を備え、前記除濁膜の材質は、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであり、前記高分子有機物は、アニオン性高分子凝集剤である、水処理装置である。 Further, the present invention comprises a decontamination device for treating water to be treated containing a polymer organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less using a decontamination film, and the water to be treated. A chemical injection means for adding a cationic polymer having a weight average molecular weight of 30,000 or more and a weight average molecular weight of 3,000,000 or less is provided , and the material of the turbid film is polyvinylidene fluoride, polyvinyl chloride, and poly. is at least one of polyethersulfone, the polymer organic material, Ru der anionic polymeric flocculant is a water treatment device.

前記水処理装置において、前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることが好ましい。 In the water treatment apparatus, it is preferable that the cationic polymer has a structure of any one of polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based.

前記水処理装置において、前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることが好ましい。 In the water treatment apparatus, the cationic polymer is preferably a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.

前記水処理装置において、前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることが好ましい。 In the water treatment apparatus, the weight average molecular weight of the cationic polymer is preferably in the range of 200,000 or more and 3,000,000 or less.

前記水処理装置において、前記除濁装置の前段に、アニオン性高分子凝集剤を用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備えることが好ましい。 In the water treatment device, it is preferable to provide a coagulation solid-liquid separation treatment device using an anionic polymer flocculant and a pretreatment device which is at least one of the biological treatment devices in front of the turbidity device.

前記水処理装置において、前記除濁装置の前段に、アクリルアミド系のアニオン性高分子凝集剤を用いる凝集固液分離処理装置を備えることが好ましい。 In the water treatment device, it is preferable to provide a coagulation solid-liquid separation treatment device using an acrylamide-based anionic polymer flocculant in front of the deturbation device.

前記水処理装置において、前記除濁装置の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備えることが好ましい。 It is preferable that the water treatment apparatus further includes a reverse osmosis membrane treatment apparatus that treats the treated water of the decontamination apparatus with a reverse osmosis membrane.

本発明により、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができる。 According to the present invention, in a treatment using a turbid film of water to be treated containing a polymer organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less, the turbid film while suppressing deterioration of the treated water quality. Can suppress the blockage of.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the water treatment apparatus which concerns on embodiment of this invention. 実施例および比較例における、用いたカチオンポリマの重量平均分子量とろ過所要時間(分)との関係を示すグラフである。It is a graph which shows the relationship between the weight average molecular weight of the cation polymer used and the time required for filtration (minutes) in an Example and a comparative example. 実施例および比較例における、用いたカチオンポリマの重量平均分子量と膜透過率(%)との関係を示すグラフである。It is a graph which shows the relationship between the weight average molecular weight and the membrane transmittance (%) of the cation polymer used in an Example and a comparative example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。水処理装置1は、除濁膜を用いて処理する除濁装置12を備える。水処理装置1は、必要に応じて、被処理水を貯留する被処理水槽10を備えてもよい。 An outline of an example of a water treatment apparatus according to an embodiment of the present invention is shown in FIG. 1, and its configuration will be described. The water treatment device 1 includes a decontamination device 12 for treating with a decontamination film. The water treatment device 1 may include a water tank 10 to be treated to store water to be treated, if necessary.

図1の水処理装置1において、被処理水槽10の入口には被処理水配管14が接続されている。被処理水槽10の出口と除濁装置12の入口とは被処理水供給配管16により接続されている。除濁装置12には処理水配管18が接続されている。被処理水槽10には、被処理水にカチオンポリマを添加する薬注手段として、カチオンポリマ添加配管20が接続されている。 In the water treatment device 1 of FIG. 1, a water treatment pipe 14 is connected to the inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the inlet of the decontamination device 12 are connected by a water supply pipe 16 to be treated. A treated water pipe 18 is connected to the decontamination device 12. A cation polymer addition pipe 20 is connected to the water tank 10 to be treated as a chemical injection means for adding the cation polymer to the water to be treated.

本実施形態に係る水処理方法および水処理装置1の動作について説明する。 The water treatment method and the operation of the water treatment device 1 according to the present embodiment will be described.

重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に貯留される。被処理水槽10において、被処理水にカチオンポリマ添加配管20を通して、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマが添加される(カチオンポリマ添加工程)。カチオンポリマは、被処理水配管14において添加されてもよいし、被処理水供給配管16において添加されてもよい。 The water to be treated containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less is stored in the water tank 10 to be treated as needed through the water pipe 14 to be treated. In the water tank 10 to be treated, the cation polymer having a weight average molecular weight of 30,000 or more and 3,000,000 or less is added to the water to be treated through the cation polymer addition pipe 20 (cation polymer addition step). The cation polymer may be added in the water to be treated pipe 14 or may be added in the water supply pipe 16 to be treated.

カチオンポリマが添加された被処理水は、被処理水供給配管16を通して、除濁装置12へ送液され、除濁装置12において、除濁膜を用いて除濁処理される(除濁工程)。除濁工程された処理水は、処理水配管18を通して排出される。 The water to be treated to which the cation polymer is added is sent to the decontamination device 12 through the water supply pipe 16 to be treated, and is deturbidized in the decontamination device 12 using a decontamination film (deturbation step). .. The treated water that has undergone the turbidization step is discharged through the treated water pipe 18.

本発明者らは、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、除濁膜の被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加することで、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができることを見出した。また、簡易な工程や装置で、上記高分子有機物を含む被処理水の除濁処理が可能となる。除濁膜の被処理水に上記カチオンポリマを添加することで、上記高分子有機物が上記カチオンポリマにより捕捉されることにより、高分子有機物による膜閉塞が抑制されると考えられる。また、除濁膜の被処理水に上記カチオンポリマを添加することで、除濁膜における差圧の上昇速度が抑制される。 In the treatment using a turbid film of the water to be treated containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less, the present inventors have weight-averaged the weight of the water to be treated of the turbid film. It has been found that by adding a cationic polymer having a molecular weight in the range of 30,000 or more and 3,000,000 or less, it is possible to suppress the clogging of the turbid membrane while suppressing the deterioration of the treated water quality. In addition, it is possible to deturbate the water to be treated containing the above-mentioned polymer organic matter by a simple process or apparatus. It is considered that by adding the cationic polymer to the water to be treated of the turbid membrane, the polymer organic substance is captured by the cationic polymer, and the membrane clogging due to the polymer organic substance is suppressed. Further, by adding the above-mentioned cation polymer to the water to be treated of the turbid membrane, the rate of increase of the differential pressure in the turbid membrane is suppressed.

添加するカチオンポリマは、重量平均分子量が大き過ぎると除濁膜による膜ろ過の負荷になり、除濁膜の操作圧力の上昇を招く。重量平均分子量が小さ過ぎるとカチオンポリマが除濁膜を透過し、処理水質の悪化を招き、後段に逆浸透膜装置を備える場合に逆浸透膜の負荷になる。除濁膜の孔径は膜種や形状等により様々であるが、小さいもので分画分子量30,000Da程度である。また、重量平均分子量3,000,000以下であれば、除濁膜ろ過の過剰な負担にはならないと考えられる。よって、添加されるカチオンポリマの重量平均分子量は、30,000以上かつ3,000,000以下の範囲が良いと考えられる。 If the weight average molecular weight of the added cation polymer is too large, it becomes a load for membrane filtration by the turbid membrane, which causes an increase in the operating pressure of the turbid membrane. If the weight average molecular weight is too small, the cation polymer permeates the turbidizing membrane, causing deterioration of the treated water quality, which becomes a load on the reverse osmosis membrane when a reverse osmosis membrane device is provided in the subsequent stage. The pore size of the opaque membrane varies depending on the type and shape of the membrane, but the smaller one has a molecular weight cut-off of about 30,000 Da. Further, if the weight average molecular weight is 3,000,000 or less, it is considered that the turbid membrane filtration is not excessively burdened. Therefore, it is considered that the weight average molecular weight of the added cationic polymer is preferably in the range of 30,000 or more and 3,000,000 or less.

添加するカチオンポリマの重量平均分子量は、30,000以上かつ3,000,000以下の範囲であり、200,000以上かつ3,000,000以下の範囲であることが好ましく、200,000以上かつ600,000以下の範囲であることがより好ましい。カチオンポリマの重量平均分子量が3,000,000を超えると、膜への負荷がやや大きくなり、ろ過所要時間の低減量が小さくなる場合がある。カチオンポリマの重量平均分子量が30,000未満では、膜透過率が大きくなる場合があり、特に200,000未満では、膜透過率が大きくなる場合がある。 The weight average molecular weight of the cation polymer to be added is in the range of 30,000 or more and 3,000,000 or less, preferably 200,000 or more and 3,000,000 or less, and is 200,000 or more and 200,000 or more. More preferably, it is in the range of 600,000 or less. When the weight average molecular weight of the cation polymer exceeds 3,000,000, the load on the membrane becomes slightly large, and the reduction amount of the filtration time may be small. When the weight average molecular weight of the cationic polymer is less than 30,000, the membrane permeability may be large, and particularly when it is less than 200,000, the membrane permeability may be large.

カチオンポリマとしては、重量平均分子量が30,000以上かつ3,000,000以下の範囲の、カチオンを有するポリマであればよく、特に制限はないが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることが好ましい。 The cation polymer may be a polymer having a cation having a weight average molecular weight in the range of 30,000 or more and 3,000,000 or less, and is not particularly limited, but is polyamine-based, methacrylate-based, and polydiallyldimethylammonium. It is preferably a cationic polymer having any of the structures of the chloride system.

ポリアミン系のカチオンポリマとしては、例えば、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物等が挙げられる。 Examples of the polyamine-based cationic polymer include dimethylamine / epichlorohydrin / ammonia condensate, dimethylamine / epichlorohydrin / ethylenediamine condensate, and the like.

ジメチルアミン・エピクロロヒドリン・アンモニア縮合物は、例えば、下記式(1)

Figure 0006816292
(1)
で表される構造、および、下記式(2)
Figure 0006816292
(2)
で表される構造を含むポリマである。上記ポリマでは、式(2)で表される構造と式(1)で表される構造の割合が、モル比(式(2)で表される構造:式(1)で表される構造)で例えば0.01:9.99〜7:3であればよい。The dimethylamine / epichlorohydrin / ammonia condensate is, for example, the following formula (1).
Figure 0006816292
(1)
The structure represented by and the following formula (2)
Figure 0006816292
(2)
It is a polymer containing the structure represented by. In the above polymer, the ratio of the structure represented by the formula (2) to the structure represented by the formula (1) is the molar ratio (structure represented by the formula (2): structure represented by the formula (1)). For example, it may be 0.01: 9.99 to 7: 3.

ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物は、例えば、式(1)で表される構造、および、下記式(3)

Figure 0006816292
(3)
で表される構造を含むポリマである。上記ポリマでは、式(3)で表される構造と式(1)で表される構造の割合が、モル比(式(3)で表される構造:式(1)で表される構造)で例えば0.01:9.99〜7:3であればよい。The dimethylamine / epichlorohydrin / ethylenediamine condensate has, for example, a structure represented by the formula (1) and the following formula (3).
Figure 0006816292
(3)
It is a polymer containing the structure represented by. In the above polymer, the ratio of the structure represented by the formula (3) to the structure represented by the formula (1) is the molar ratio (structure represented by the formula (3): structure represented by the formula (1)). For example, it may be 0.01: 9.99 to 7: 3.

メタクリレート系のカチオンポリマは、例えば、下記式(4)

Figure 0006816292
(4)
で表される構造を含むポリマである。a,bはモノマのモル比(a:b=0.01:9.99〜9.99:0.01)を表す。The methacrylate-based cationic polymer is, for example, the following formula (4).
Figure 0006816292
(4)
It is a polymer containing the structure represented by. a and b represent the molar ratio of monomas (a: b = 0.01: 9.99 to 9.99: 0.01).

ポリジアリルジメチルアンモニウムクロリド系のカチオンポリマは、例えば、下記式(5)

Figure 0006816292
(5)
で表される構造を含むポリマである。nは繰り返し単位を表す。The polydiallyldimethylammonium chloride-based cationic polymer is, for example, the following formula (5).
Figure 0006816292
(5)
It is a polymer containing the structure represented by. n represents a repeating unit.

カチオンポリマの添加量は、例えば、高分子有機物の重量に対して、1〜100重量%の範囲であり、2〜10重量%の範囲であることが好ましい。カチオンポリマの添加量が高分子有機物の重量に対して、1重量%未満であると、除濁膜の閉塞抑制効果が発揮されにくくなり、100重量%を超えると、処理水質の悪化やカチオンポリマ自体が膜を閉塞する場合がある。 The amount of the cation polymer added is, for example, in the range of 1 to 100% by weight and preferably in the range of 2 to 10% by weight with respect to the weight of the polymer organic substance. If the amount of the cation polymer added is less than 1% by weight with respect to the weight of the polymer organic substance, the effect of suppressing clogging of the turbid film is less likely to be exhibited, and if it exceeds 100% by weight, the quality of treated water deteriorates and the cation polymer deteriorates. It may itself block the membrane.

カチオンポリマを添加する際の被処理水の温度は、特に制限はないが、例えば、5℃〜40℃の範囲である。 The temperature of the water to be treated when the cation polymer is added is not particularly limited, but is, for example, in the range of 5 ° C to 40 ° C.

被処理水は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む水であればよく、特に制限はない。被処理水に含まれる高分子有機物とは、LC−OCD分析装置(DOC−LABOR社製、model 8)において、バイオポリマとして検出される有機物のことであり、その特徴は、重量平均分子量が100,000以上であることであり、上限は特に定められていないが、例えば30,000,000以下である。被処理水に含まれる高分子有機物としては、例えば、生物処理の処理水に含まれる生物代謝物や、凝集固液分離処理において添加されるアニオン性高分子凝集剤等のアニオンポリマ等が挙げられる。 The water to be treated may be any water containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less, and is not particularly limited. The high molecular weight organic substance contained in the water to be treated is an organic substance detected as a biopolymer in an LC-OCD analyzer (DOC-LABOR, model 8), and its characteristic is that the weight average molecular weight is 100. It is 3,000 or more, and the upper limit is not particularly set, but is, for example, 30,000,000 or less. Examples of the polymer organic matter contained in the water to be treated include biotransformers contained in the treated water for biological treatment, anionic polymers such as anionic polymer flocculants added in the coagulation solid-liquid separation treatment, and the like. ..

被処理水に含まれる高分子有機物の含有量は、例えば、0.1mg/L〜10mg/Lの範囲であり、特に0.2mg/L〜1.0mg/Lの範囲の場合に、本実施形態に係る水処理方法および水処理装置が有効である。 The content of the high molecular weight organic substance contained in the water to be treated is, for example, in the range of 0.1 mg / L to 10 mg / L, and particularly in the case of the range of 0.2 mg / L to 1.0 mg / L. The water treatment method and the water treatment apparatus according to the form are effective.

除濁処理で用いられる除濁膜は、精密ろ過膜(MF膜)または限外ろ過膜(UF膜)である。限外ろ過膜の公称孔径は、0.01μm以上、0.1μm未満であり、精密ろ過膜の孔径は、0.1μm以上、10μm以下である。分画分子量で表すと、限外ろ過膜の分画分子量は、1,000以上、1,000,000未満である。 The sterilization membrane used in the sterilization treatment is a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane). The nominal pore size of the ultrafiltration membrane is 0.01 μm or more and less than 0.1 μm, and the pore diameter of the microfiltration membrane is 0.1 μm or more and 10 μm or less. Expressed in terms of molecular weight cut-off, the molecular weight cut-off of the ultrafiltration membrane is 1,000 or more and less than 1,000,000.

除濁膜は、平膜タイプでも中空糸タイプであってもよい。 The opaque film may be a flat film type or a hollow fiber type.

除濁膜の材質としては、水素結合を形成し、高分子有機物と化学的に結合しやすいものである場合に本技術は効果的であり、例えば、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリエーテルスルホン等が挙げられる。 This technique is effective when the material of the dehumidifying film is one that forms hydrogen bonds and easily chemically bonds with high molecular weight organic substances. For example, polyvinylidene fluoride, polyvinyl chloride, and polyether sulfone are effective. And so on.

本実施形態に係る水処理方法および水処理装置において、除濁装置12の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備え、除濁工程の処理水を逆浸透膜によって処理する逆浸透膜処理工程をさらに含むことが好ましい。 In the water treatment method and the water treatment apparatus according to the present embodiment, a reverse osmosis membrane treatment apparatus for treating the treated water of the decontamination apparatus 12 with a reverse osmosis membrane is further provided, and the treated water in the decontamination step is treated with the reverse osmosis membrane. It is preferable to further include a reverse osmosis membrane treatment step.

本実施形態に係る水処理方法および水処理装置において、除濁装置12の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備え、除濁工程の前段において、アニオンポリマを用いる凝集固液分離処理、および生物処理のうちの少なくとも1つの前処理を行うことが好ましい。 In the water treatment method and the water treatment apparatus according to the present embodiment, the coagulation solid-liquid separation treatment apparatus using an anion polymer and the pretreatment apparatus which is at least one of the biological treatment apparatus are provided in front of the sterilization apparatus 12. In the first stage of the turbidity step, it is preferable to perform at least one pretreatment of agglomeration solid-liquid separation treatment using an anion polymer and a biological treatment.

本実施形態に係る水処理装置の他の例の概略構成を図2に示す。水処理装置3は、除濁膜を用いて処理する除濁装置12と、除濁装置12の処理水を逆浸透膜によって処理する逆浸透膜処理装置24をさらに備える。また、水処理装置3は、除濁装置12の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置22を備える。水処理装置3は、必要に応じて、被処理水を貯留する被処理水槽10を備えてもよい。 FIG. 2 shows a schematic configuration of another example of the water treatment apparatus according to the present embodiment. The water treatment device 3 further includes a decontamination device 12 for treating with a decontamination membrane and a reverse osmosis membrane treatment device 24 for treating the treated water of the decontamination device 12 with a reverse osmosis membrane. In addition, the water treatment device 3 includes a coagulation solid-liquid separation treatment device using an anion polymer and a pretreatment device 22 which is at least one of the biological treatment devices in front of the turbidity removal device 12. The water treatment device 3 may include a water tank 10 to be treated to store the water to be treated, if necessary.

図2の水処理装置3において、前処理装置22の出口と被処理水槽10の入口とは被処理水配管14により接続されている。被処理水槽10の出口と除濁装置12の入口とは被処理水供給配管16により接続されている。除濁装置12の出口と逆浸透膜処理装置24の入口とは処理水配管18により接続されている。逆浸透膜処理装置24の透過水出口には、透過水配管26が接続され、濃縮水出口には、濃縮水配管28が接続されている。被処理水槽10には、被処理水にカチオンポリマを添加する薬注手段として、カチオンポリマ添加配管20が接続されている。 In the water treatment device 3 of FIG. 2, the outlet of the pretreatment device 22 and the inlet of the water tank 10 to be treated are connected by a water pipe 14 to be treated. The outlet of the water tank 10 to be treated and the inlet of the decontamination device 12 are connected by a water supply pipe 16 to be treated. The outlet of the decontamination device 12 and the inlet of the reverse osmosis membrane treatment device 24 are connected by a treated water pipe 18. A permeated water pipe 26 is connected to the permeated water outlet of the reverse osmosis membrane treatment device 24, and a concentrated water pipe 28 is connected to the concentrated water outlet. A cation polymer addition pipe 20 is connected to the water tank 10 to be treated as a chemical injection means for adding the cation polymer to the water to be treated.

水処理装置3において、前処理装置22から排出された、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に貯留される。被処理水槽10において、被処理水にカチオンポリマ添加配管20を通して、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマが添加される(カチオンポリマ添加工程)。カチオンポリマは、被処理水配管14において添加されてもよいし、被処理水供給配管16において添加されてもよい。 In the water treatment device 3, the water to be treated containing the polymer organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less, which is discharged from the pretreatment device 22, is required through the water treatment pipe 14. It is stored in the water tank 10 to be treated according to the above. In the water tank 10 to be treated, the cation polymer having a weight average molecular weight of 30,000 or more and 3,000,000 or less is added to the water to be treated through the cation polymer addition pipe 20 (cation polymer addition step). The cation polymer may be added in the water to be treated pipe 14 or may be added in the water supply pipe 16 to be treated.

カチオンポリマが添加された被処理水は、被処理水供給配管16を通して、除濁装置12へ送液され、除濁装置12において、除濁膜を用いて除濁処理される(除濁工程)。除濁工程された処理水は、処理水配管18を通して、逆浸透膜処理装置24へ送液され、逆浸透膜処理装置24において、逆浸透膜を用いて逆浸透膜処理される(逆浸透膜処理工程)。透過水は、透過水配管26を通して排出され、濃縮水は、濃縮水配管28を通して排出される。 The water to be treated to which the cation polymer is added is sent to the decontamination device 12 through the water supply pipe 16 to be treated, and is deturbidized in the decontamination device 12 using a decontamination film (deturbation step). .. The treated water that has undergone the turbidization step is sent to the reverse osmosis membrane treatment device 24 through the treated water pipe 18, and is treated with the reverse osmosis membrane using the reverse osmosis membrane in the reverse osmosis membrane treatment device 24 (reverse osmosis membrane). Processing process). The permeated water is discharged through the permeated water pipe 26, and the concentrated water is discharged through the concentrated water pipe 28.

図2の水処理装置3のように、除濁装置の後段に除濁装置の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備える場合であっても、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを用いることにより、カチオンポリマの除濁膜の透過が抑制され、逆浸透膜への負荷が低減される。 Even when a reverse osmosis membrane treatment device for treating the treated water of the decontamination device with a reverse osmosis membrane is further provided after the water treatment device 3 as in the water treatment device 3 of FIG. 2, the weight average molecular weight is 30. By using a cationic polymer in the range of 000 or more and 3,000,000 or less, the permeation of the turbid film of the cationic polymer is suppressed, and the load on the reverse osmosis membrane is reduced.

図2の水処理装置3のように、除濁装置12の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備える場合であっても、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを用いることにより、例えば、生物処理の処理水に含まれる生物代謝物や、凝集固液分離処理において添加されるアニオン性高分子凝集剤等のアニオンポリマ等の高分子有機物による除濁膜の閉塞を抑制することができる。 As in the case of the water treatment device 3 of FIG. 2, a pretreatment device which is at least one of a coagulation solid-liquid separation treatment device using an anion polymer and a biological treatment device is provided in front of the sterilization device 12. However, by using a cationic polymer having a weight average molecular weight in the range of 30,000 or more and 3,000,000 or less, for example, it is added to a biological metabolite contained in treated water for biological treatment or in agglomeration solid-liquid separation treatment. It is possible to suppress the clogging of the turbid film by a high molecular weight organic substance such as an anionic polymer such as an anionic polymer flocculant.

逆浸透膜処理としては、逆浸透膜を用いる処理であればよく、特に制限はない。 The reverse osmosis membrane treatment may be any treatment using a reverse osmosis membrane, and is not particularly limited.

凝集固液分離処理としては、凝集剤を用いる凝集処理と、固液分離処理とを含む処理であればよく、特に制限はないが、例えば、凝集沈殿処理、凝集加圧浮上処理等が挙げられる。凝集固液分離処理において用いられるアニオンポリマは、例えば、アクリルアミド系のアニオン性高分子凝集剤等が挙げられる。凝集固液分離処理水には、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物として、このアニオンポリマが含まれる。特に、凝集固液分離処理水に、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物として、アクリルアミド系のアニオンポリマが含まれる場合に、本実施形態に係る水処理方法および水処理装置が好適に適用される。 The coagulation solid-liquid separation treatment may be a treatment including a coagulation treatment using a coagulant and a solid-liquid separation treatment, and is not particularly limited, and examples thereof include a coagulation sedimentation treatment and a coagulation pressure flotation treatment. .. Examples of the anion polymer used in the coagulation solid-liquid separation treatment include an acrylamide-based anionic polymer flocculant. The agglomerated solid-liquid separation treated water contains this anionic polymer as a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less. In particular, when the agglomerated solid-liquid separation treated water contains an acrylamide-based anion polymer as a polymer organic substance having a weight average molecular weight in the range of 100,000 or more and 3,000,000 or less, the water treatment according to the present embodiment. The method and water treatment equipment are preferably applied.

生物処理としては、微生物等の生物を用いる処理であればよく、特に制限はない。生物処理水には、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物として、生物代謝物等のアニオンポリマが含まれる。 The biological treatment may be any treatment using organisms such as microorganisms, and is not particularly limited. The biotreated water contains anionic polymers such as biotransformers as high molecular weight organic substances having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1〜5>
高分子有機物を含む被処理水を50L作製し、除濁膜に通水した。高分子有機物としては、重量平均分子量10,000,000のアニオンポリマ(アクリルアミド系のアニオン性高分子凝集剤)を0.2mg/L添加した。除濁膜としては、立昇社製、材質:ポリ塩化ビニル、分画分子量:50,000Da、孔径:0.01μmの限外ろ過膜(中空糸タイプ)を使用し、膜面積1mとなるモジュールを作製した。
<Examples 1 to 5>
50 L of water to be treated containing a high molecular weight organic substance was prepared and passed through a turbid film. As the polymer organic substance, 0.2 mg / L of an anion polymer (acrylamide-based anionic polymer flocculant) having a weight average molecular weight of 10,000,000 was added. As the turbidity membrane, an ultrafiltration membrane (hollow fiber type) manufactured by Ritsusho Co., Ltd., material: polyvinyl chloride, molecular weight cut-off: 50,000 Da, pore diameter: 0.01 μm is used, and the membrane area is 1 m 2. The module was made.

通水は、被処理水に表1に示すカチオンポリマをそれぞれ2mg/L添加して行い、それぞれ被処理水を全てろ過するのに要した時間を測定した。また、除濁膜ろ過水(処理水)中のポリマ濃度を測定することで、ポリマの膜透過率(%)を測定した。 The water flow was carried out by adding 2 mg / L of each of the cationic polymers shown in Table 1 to the water to be treated, and the time required to filter all the water to be treated was measured. In addition, the membrane transmittance (%) of the polymer was measured by measuring the polymer concentration in the turbid membrane filtered water (treated water).

ポリマA(実施例1)は、ポリアミン系のカチオンポリマである、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(重量平均分子量30,000)であり、ポリマB(実施例2)は、ポリアミン系のカチオンポリマである、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(重量平均分子量70,000)であり、ポリマC(実施例3)は、ポリアミン系のカチオンポリマである、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物(重量平均分子量200,000)であり、ポリマD(実施例4)は、ポリジアリルジメチルアンモニウムクロリド系のカチオンポリマ(重量平均分子量600,000)であり、ポリマE(実施例5)は、メタクリレート系のカチオンポリマ(重量平均分子量3,000,000)である。 Polymer A (Example 1) is a polyamine-based cationic polymer, a dimethylamine / epichlorohydrin / ethylenediamine condensate (weight average molecular weight of 30,000), and polymer B (Example 2) is a polyamine-based polymer. Dimethylamine / epichlorohydrin / ethylenediamine condensate (weight average molecular weight 70,000), which is a cationic polymer of the above, and polymer C (Example 3) is a polyamine-based cationic polymer, dimethylamine / epichloro. It is a hydrin-ammonia condensate (weight average molecular weight 200,000), and the polymer D (Example 4) is a polydialyldimethylammonium chloride-based cationic polymer (weight average molecular weight 600,000), and the polymer E (implementation). Example 5) is a methacrylate-based cationic polymer (weight average molecular weight 3,000,000).

除濁膜ろ過水(処理水)中のポリマ濃度は、燃焼法TOC分析装置(島津製作所製、TOC−V)を用いて測定した。 The polyma concentration in the opaque membrane filtered water (treated water) was measured using a combustion method TOC analyzer (TOC-V, manufactured by Shimadzu Corporation).

<比較例1〜3>
比較例1では被処理水にカチオンポリマを添加せずに処理を行った。ポリマF(比較例2)は、ポリ塩化アルミニウム(重量平均分子量2,500)であり、ポリマG(比較例3)は、アクリレート系のカチオンポリマ(重量平均分子量10,000,000)である。
<Comparative Examples 1 to 3>
In Comparative Example 1, the water to be treated was treated without adding a cation polymer. The polymer F (Comparative Example 2) is polyaluminum chloride (weight average molecular weight 2,500), and the polymer G (Comparative Example 3) is an acrylate-based cationic polymer (weight average molecular weight 10,000,000).

結果を表1および図3,4に示す。図3には、実施例および比較例における、用いたカチオンポリマの重量平均分子量とろ過所要時間(分)との関係を示す。図4には、実施例および比較例における、用いたカチオンポリマの重量平均分子量と膜透過率(%)との関係を示す。 The results are shown in Table 1 and FIGS. 3 and 4. FIG. 3 shows the relationship between the weight average molecular weight of the cation polymer used and the time required for filtration (minutes) in Examples and Comparative Examples. FIG. 4 shows the relationship between the weight average molecular weight of the cation polymer used and the membrane transmittance (%) in Examples and Comparative Examples.

表1および図3,4に示すとおり、重量平均分子量30,000から3,000,000の範囲のカチオンポリマが最も除濁膜の閉塞抑制効果を示した。重量平均分子量30,000以下のポリマF(比較例2)は、ろ過所要時間は短くなったものの、カチオンポリマが除濁膜を透過しやすかったため好ましくない。重量平均分子量3,000,000以上のポリマG(比較例3)においては、ろ過所要時間が長くなり好ましくない。実施例3のポリマCが、ろ過所要時間と膜透過率のバランスに優れていた。 As shown in Table 1 and FIGS. 3 and 4, cationic polymers having a weight average molecular weight in the range of 30,000 to 3,000,000 showed the most effect of suppressing obstruction of the opaque membrane. A polymer F having a weight average molecular weight of 30,000 or less (Comparative Example 2) is not preferable because the cation polymer easily permeates the turbid membrane, although the filtration time is shortened. In the polymer G having a weight average molecular weight of 3,000,000 or more (Comparative Example 3), the filtration time becomes long, which is not preferable. The polymer C of Example 3 had an excellent balance between the time required for filtration and the membrane transmittance.

Figure 0006816292
Figure 0006816292

このように、実施例では、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができた。 As described above, in the examples, in the treatment using the turbid film of the water to be treated containing the polymer organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less, the deterioration of the treated water quality is suppressed. , It was possible to suppress the blockage of the turbid film.

1,3 水処理装置、10 被処理水槽、12 除濁装置、14 被処理水配管、16 被処理水供給配管、18 処理水配管、20 カチオンポリマ添加配管、22 前処理装置、24 逆浸透膜処理装置、26 透過水配管、28 濃縮水配管。 1,3 Water treatment equipment, 10 Water tank to be treated, 12 Decontamination equipment, 14 Water treatment pipe, 16 Water treatment water supply pipe, 18 Treated water pipe, 20 Cationic polymer addition pipe, 22 Pretreatment equipment, 24 Reverse osmosis membrane Treatment equipment, 26 permeated water pipes, 28 concentrated water pipes.

Claims (14)

重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁工程を含み、
前記除濁膜の材質は、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであり、
前記高分子有機物は、アニオン性高分子凝集剤であり、
前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加することを特徴とする水処理方法。
A decontamination step of treating water to be treated containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less using a decontamination film is included.
The material of the turbid film is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyether sulfone.
The polymer organic substance is an anionic polymer flocculant and is
A water treatment method comprising adding a cationic polymer having a weight average molecular weight of 30,000 or more and 3,000,000 or less to the water to be treated.
請求項1に記載の水処理方法であって、
前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることを特徴とする水処理方法。
The water treatment method according to claim 1.
A water treatment method, wherein the cationic polymer is a cationic polymer having a structure of any one of polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based.
請求項1または2に記載の水処理方法であって、
前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることを特徴とする水処理方法。
The water treatment method according to claim 1 or 2.
A water treatment method, wherein the cationic polymer is a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.
請求項1〜3のいずれか1項に記載の水処理方法であって、
前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることを特徴とする水処理方法。
The water treatment method according to any one of claims 1 to 3.
A water treatment method, wherein the weight average molecular weight of the cationic polymer is in the range of 200,000 or more and 3,000,000 or less.
請求項1〜4のいずれか1項に記載の水処理方法であって、
前記除濁工程の前段において、アニオン性高分子凝集剤を用いる凝集固液分離処理、および生物処理のうちの少なくとも1つの前処理を行うことを特徴とする水処理方法。
The water treatment method according to any one of claims 1 to 4.
A water treatment method comprising at least one pretreatment of a coagulation solid-liquid separation treatment using an anionic polymer flocculant and a biological treatment in the first stage of the turbidity step.
請求項1〜4に記載の水処理方法であって、
前記除濁工程の前段において、アクリルアミド系のアニオン性高分子凝集剤を用いる凝集固液分離処理を行うことを特徴とする水処理方法。
The water treatment method according to claims 1 to 4.
A water treatment method characterized by performing a coagulation solid-liquid separation treatment using an acrylamide-based anionic polymer flocculant in the first stage of the turbidity step.
請求項1〜のいずれか1項に記載の水処理方法であって、
前記除濁工程の処理水を逆浸透膜によって処理する逆浸透膜処理工程をさらに含むことを特徴とする水処理方法。
The water treatment method according to any one of claims 1 to 6 .
A water treatment method further comprising a reverse osmosis membrane treatment step of treating the treated water in the turbidity step with a reverse osmosis membrane.
重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁装置と、
前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する薬注手段と、
を備え
前記除濁膜の材質は、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであり、
前記高分子有機物は、アニオン性高分子凝集剤であることを特徴とする水処理装置。
A decontamination device that treats water to be treated containing a high molecular weight organic substance having a weight average molecular weight in the range of 100,000 or more and 30,000,000 or less using a decontamination film.
A medicinal injection means for adding a cationic polymer having a weight average molecular weight of 30,000 or more and 3,000,000 or less to the water to be treated.
Equipped with a,
The material of the turbid film is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyether sulfone.
The polymer organic material, the water treatment apparatus according to claim der Rukoto anionic polymer flocculant.
請求項に記載の水処理装置であって、
前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることを特徴とする水処理装置。
The water treatment apparatus according to claim 8 .
A water treatment apparatus, wherein the cationic polymer is a cationic polymer having a structure of any one of polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based.
請求項またはに記載の水処理装置であって、
前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることを特徴とする水処理装置。
The water treatment apparatus according to claim 8 or 9 .
A water treatment apparatus, wherein the cationic polymer is a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.
請求項10のいずれか1項に記載の水処理装置であって、
前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 8 to 10 .
A water treatment apparatus characterized in that the weight average molecular weight of the cationic polymer is in the range of 200,000 or more and 3,000,000 or less.
請求項11のいずれか1項に記載の水処理装置であって、
前記除濁装置の前段に、アニオン性高分子凝集剤を用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備えることを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 8 to 11 .
A water treatment device characterized in that a coagulation solid-liquid separation treatment device using an anionic polymer flocculant and a pretreatment device which is at least one of biological treatment devices are provided in front of the turbidity device.
請求項11に記載の水処理装置であって、
前記除濁装置の前段に、アクリルアミド系のアニオン性高分子凝集剤を用いる凝集固液分離処理装置を備えることを特徴とする水処理装置。
The water treatment apparatus according to claims 8 to 11 .
A water treatment apparatus characterized in that a coagulation solid-liquid separation treatment apparatus using an acrylamide-based anionic polymer flocculant is provided in front of the deturbation apparatus.
請求項13のいずれか1項に記載の水処理装置であって、
前記除濁装置の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備えることを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 8 to 13 .
A water treatment apparatus further comprising a reverse osmosis membrane treatment apparatus for treating the treated water of the turbidity apparatus with a reverse osmosis membrane.
JP2019539086A 2017-08-31 2018-07-27 Water treatment method and water treatment equipment Active JP6816292B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017166403 2017-08-31
JP2017166403 2017-08-31
PCT/JP2018/028247 WO2019044312A1 (en) 2017-08-31 2018-07-27 Water treatment method and water treatment device

Publications (2)

Publication Number Publication Date
JPWO2019044312A1 JPWO2019044312A1 (en) 2019-11-07
JP6816292B2 true JP6816292B2 (en) 2021-01-20

Family

ID=65525383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019539086A Active JP6816292B2 (en) 2017-08-31 2018-07-27 Water treatment method and water treatment equipment

Country Status (3)

Country Link
JP (1) JP6816292B2 (en)
TW (1) TWI760553B (en)
WO (1) WO2019044312A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199215B2 (en) * 2018-12-18 2023-01-05 オルガノ株式会社 water treatment method
JP7441108B2 (en) 2020-04-23 2024-02-29 オルガノ株式会社 Water treatment method and water treatment equipment
WO2024071005A1 (en) * 2022-09-28 2024-04-04 東レ株式会社 Porous membrane and desalination method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1408111A (en) * 1972-09-20 1975-10-01 Nalco Chemical Co Dimethylamine-epichlorohydrin-ammonia polymers and process of making same
JPH0696149B2 (en) * 1988-12-28 1994-11-30 新日本製鐵株式会社 Method for treating suspension containing metal hydroxide
JP3723625B2 (en) * 1995-10-17 2005-12-07 株式会社テルナイト Treatment method for high water content sludge
JPH10249400A (en) * 1997-03-14 1998-09-22 Nippon Shokubai Co Ltd Method for dehydrating sludge
US7378023B2 (en) * 2006-09-13 2008-05-27 Nalco Company Method of improving membrane bioreactor performance
JP2009154095A (en) * 2007-12-26 2009-07-16 Kurita Water Ind Ltd Water treatment method
EP2451550A4 (en) * 2009-07-06 2013-11-13 Halosource Inc Dual polymer system for water recovery and separation of suspended solids from aqueous media
JP2015157265A (en) * 2014-02-25 2015-09-03 栗田工業株式会社 Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus
CN106103352A (en) * 2014-03-12 2016-11-09 艺康美国股份有限公司 Purification of waste water
KR102235424B1 (en) * 2014-08-19 2021-04-01 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane device and method for operating same
JP6115661B1 (en) * 2016-02-10 2017-04-19 栗田工業株式会社 Water treatment method

Also Published As

Publication number Publication date
TW201920002A (en) 2019-06-01
TWI760553B (en) 2022-04-11
WO2019044312A1 (en) 2019-03-07
JPWO2019044312A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
Singh et al. Introduction to membrane processes for water treatment
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
CN105392552B (en) The treating method and apparatus of boron water
Nataraj et al. Cellulose acetate-coated α-alumina ceramic composite tubular membranes for wastewater treatment
KR20080031956A (en) Monopersulfate treatment of membranes
JP6816292B2 (en) Water treatment method and water treatment equipment
JP3698093B2 (en) Water treatment method and water treatment apparatus
US20190135671A1 (en) Systems and Methods for Multi-Stage Fluid Separation
WO2013111826A1 (en) Desalination method and desalination device
JP6194887B2 (en) Fresh water production method
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
Keucken et al. Evaluation of novel hollow fibre membranes for NOM removal by advanced membrane autopsy
KR101197022B1 (en) A reverse osmosis water treatment system with backwash
JP6735830B2 (en) Membrane filtration method and membrane filtration system
WO2013031231A1 (en) Seawater desalination method
WO2013047466A1 (en) Membrane module cleaning method
JP7113454B2 (en) Water treatment method and equipment
JP4825932B2 (en) Water treatment method
JP2016159240A (en) Membrane clogging degree evaluation method of water to be treated
WO2012057176A1 (en) Water-treatment method and desalinization method
JP3444202B2 (en) Water treatment equipment
JP4825933B1 (en) Water treatment method
JP2001000970A (en) High-degree treatment of wastewater using membrane module
JP5054289B2 (en) Operation method of membrane separator
JP2014061488A (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6816292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250