JPWO2019044312A1 - Water treatment method and water treatment apparatus - Google Patents
Water treatment method and water treatment apparatus Download PDFInfo
- Publication number
- JPWO2019044312A1 JPWO2019044312A1 JP2019539086A JP2019539086A JPWO2019044312A1 JP WO2019044312 A1 JPWO2019044312 A1 JP WO2019044312A1 JP 2019539086 A JP2019539086 A JP 2019539086A JP 2019539086 A JP2019539086 A JP 2019539086A JP WO2019044312 A1 JPWO2019044312 A1 JP WO2019044312A1
- Authority
- JP
- Japan
- Prior art keywords
- water treatment
- water
- turbidity
- polymer
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 183
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000012528 membrane Substances 0.000 claims abstract description 92
- 229920006317 cationic polymer Polymers 0.000 claims abstract description 62
- 229920000642 polymer Polymers 0.000 claims abstract description 52
- 239000011368 organic material Substances 0.000 claims abstract description 17
- 238000001223 reverse osmosis Methods 0.000 claims description 29
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 26
- 229920006318 anionic polymer Polymers 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 21
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- 230000002776 aggregation Effects 0.000 claims description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 229920000768 polyamine Polymers 0.000 claims description 9
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- 239000004800 polyvinyl chloride Substances 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 239000004695 Polyether sulfone Substances 0.000 claims description 5
- 229920006393 polyether sulfone Polymers 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000005054 agglomeration Methods 0.000 claims description 3
- 238000005189 flocculation Methods 0.000 claims description 3
- 230000016615 flocculation Effects 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract description 6
- 239000005416 organic matter Substances 0.000 abstract description 6
- 230000000903 blocking effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 11
- 238000004220 aggregation Methods 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 9
- 238000001914 filtration Methods 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 239000012466 permeate Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 239000002207 metabolite Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 238000009287 sand filtration Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/16—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Filtering Materials (AREA)
Abstract
重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができる水処理方法および水処理装置を提供する。重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁工程を含み、被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する、水処理方法である。In the treatment using a turbidity-treating film containing polymer organic matter having a weight average molecular weight of 100,000 or more and 30,000,000 or less, the deterioration of the treated water is suppressed and the blocking of the turbidity film is suppressed. Provided are a water treatment method and a water treatment apparatus that can be used. It includes a turbidity treatment step for treating water to be treated containing a polymer organic material having a weight average molecular weight in the range of 100,000 to 30,000,000 using a turbidity membrane, and the weight average molecular weight is 30 in the water to be treated. A water treatment method in which a cationic polymer in the range of 3,000 to 3,000,000 is added.
Description
本発明は、水処理方法および水処理装置に関する。 The present invention relates to a water treatment method and a water treatment apparatus.
近年、上下水処理や工場排水処理等において、除濁膜が用いられる機会が増加している。しかし、被処理水に含まれる高分子有機物が除濁膜に膜閉塞をもたらすことが知られている。ここで除濁膜とは、精密ろ過膜(MF膜)および限外ろ過膜(UF膜)のことである。また、ここで高分子有機物とは、例えば、生物処理の処理水に含まれる生物代謝物や、凝集固液分離処理において添加されるアニオンポリマ等が挙げられる。 In recent years, opportunities for using turbidity membranes are increasing in water and sewage treatment and factory wastewater treatment. However, it is known that high molecular organic substances contained in the water to be treated cause membrane clogging in the turbidity membrane. Here, the turbidity membrane means a microfiltration membrane (MF membrane) and an ultrafiltration membrane (UF membrane). Examples of the polymer organic material include biological metabolites contained in treated water for biological treatment and anionic polymers added in the aggregation solid-liquid separation treatment.
このため、前処理でアニオンポリマを用いる凝集処理により高分子有機物を低減する、除濁工程を膜ではなく砂ろ過を用いて行う、または、前処理で触媒と酸化剤を用いて高分子有機物を酸化分解する(特許文献1参照)等の対策が取られている。 For this reason, the polymer organic matter is reduced by agglomeration treatment using an anionic polymer in the pretreatment, the turbidity process is performed using sand filtration instead of the membrane, or the polymer organic matter is removed using a catalyst and an oxidizing agent in the pretreatment. Measures such as oxidative decomposition (see Patent Document 1) are taken.
しかし、凝集処理で添加されるアニオンポリマは過剰に添加された場合に後段の除濁膜でさらなる膜閉塞を招くため、水質が変動する工場の排水処理や天然水の処理等では運転管理が難しい。また、砂ろ過を採用した場合は、処理水の水質が膜処理と比較して劣る。酸化分解を行う場合は、工程や装置が煩雑になる。 However, if the anionic polymer added in the coagulation treatment is excessively added, it will cause further membrane clogging in the subsequent turbidity membrane, so that it is difficult to manage the operation in the wastewater treatment or natural water treatment of the factory where the water quality varies. . Moreover, when sand filtration is employ | adopted, the quality of the treated water is inferior compared with a membrane process. When oxidative decomposition is performed, the process and apparatus become complicated.
本発明の目的は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができる水処理方法および水処理装置を提供することにある。 The object of the present invention is to remove water while suppressing deterioration of treated water in a treatment using a turbidity-treated membrane containing a polymer organic material having a weight average molecular weight in the range of 100,000 to 30,000,000. An object of the present invention is to provide a water treatment method and a water treatment apparatus capable of suppressing clogging of a turbid film.
本発明は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁工程を含み、前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する、水処理方法である。 The present invention includes a turbidity treatment step for treating water to be treated containing a polymer organic material having a weight average molecular weight in the range of 100,000 to 30,000,000 using a turbidity membrane, In this water treatment method, a cationic polymer having a weight average molecular weight of 30,000 or more and 3,000,000 or less is added.
前記水処理方法において、前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることが好ましい。 In the water treatment method, the cationic polymer is preferably a cationic polymer having a structure selected from polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based structures.
前記水処理方法において、前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることが好ましい。 In the water treatment method, the cationic polymer is preferably a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.
前記水処理方法において、前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることが好ましい。 In the water treatment method, the cationic polymer preferably has a weight average molecular weight in the range of 200,000 or more and 3,000,000 or less.
前記水処理方法において、前記除濁工程の前段において、アニオンポリマを用いる凝集固液分離処理、および生物処理のうちの少なくとも1つの前処理を行うことが好ましい。 In the water treatment method, it is preferable to perform at least one pretreatment of an aggregation solid-liquid separation treatment using an anionic polymer and a biological treatment before the turbidity removing step.
前記水処理方法における前記除濁工程の前段において、アクリルアミド系のアニオンポリマを用いる凝集固液分離処理を行うことが好ましい。 In the preceding stage of the turbidity step in the water treatment method, it is preferable to perform an aggregation solid-liquid separation treatment using an acrylamide-based anionic polymer.
前記水処理方法において、前記除濁膜の材質が、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであることが好ましい。 In the water treatment method, it is preferable that the material of the turbidity removal film is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyethersulfone.
前記水処理方法において、前記除濁工程の処理水を逆浸透膜によって処理する逆浸透膜処理工程をさらに含むことが好ましい。 The water treatment method preferably further includes a reverse osmosis membrane treatment step of treating the treated water in the turbidity removal step with a reverse osmosis membrane.
また、本発明は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水を、除濁膜を用いて処理する除濁装置と、前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する薬注手段と、を備える、水処理装置である。 In addition, the present invention provides a turbidity treatment apparatus for treating water to be treated containing a polymer organic material having a weight average molecular weight of 100,000 to 30,000,000 using a turbidity membrane, and the water to be treated. And a chemical injection means for adding a cationic polymer having a weight average molecular weight in the range of 30,000 or more and 3,000,000 or less.
前記水処理装置において、前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることが好ましい。 In the water treatment apparatus, the cationic polymer is preferably a cationic polymer having a structure of any one of polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based.
前記水処理装置において、前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることが好ましい。 In the water treatment apparatus, the cationic polymer is preferably a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.
前記水処理装置において、前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることが好ましい。 In the water treatment apparatus, the cationic polymer preferably has a weight average molecular weight in the range of 200,000 or more and 3,000,000 or less.
前記水処理装置において、前記除濁装置の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備えることが好ましい。 In the water treatment apparatus, it is preferable that a pretreatment apparatus which is at least one of an agglomerated solid-liquid separation treatment apparatus using an anionic polymer and a biological treatment apparatus is provided in the previous stage of the turbidity removal apparatus.
前記水処理装置において、前記除濁装置の前段に、アクリルアミド系のアニオンポリマを用いる凝集固液分離処理装置を備えることが好ましい。 In the water treatment apparatus, it is preferable that a flocculation solid-liquid separation treatment apparatus using an acrylamide-based anion polymer is provided upstream of the turbidity removal apparatus.
前記水処理装置において、前記除濁膜の材質が、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであることが好ましい。 In the water treatment apparatus, it is preferable that the material of the turbidity removal film is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyethersulfone.
前記水処理装置において、前記除濁装置の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備えることが好ましい。 The water treatment device preferably further includes a reverse osmosis membrane treatment device for treating the treated water of the turbidity removal device with a reverse osmosis membrane.
本発明により、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができる。 According to the present invention, in a treatment using a turbidity-treating film containing a polymer organic material having a weight average molecular weight of 100,000 or more and 30,000,000 or less, a turbidity-treating film while suppressing deterioration of the treated water quality. Can be prevented.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。水処理装置1は、除濁膜を用いて処理する除濁装置12を備える。水処理装置1は、必要に応じて、被処理水を貯留する被処理水槽10を備えてもよい。
An example of a water treatment apparatus according to an embodiment of the present invention is schematically shown in FIG. The
図1の水処理装置1において、被処理水槽10の入口には被処理水配管14が接続されている。被処理水槽10の出口と除濁装置12の入口とは被処理水供給配管16により接続されている。除濁装置12には処理水配管18が接続されている。被処理水槽10には、被処理水にカチオンポリマを添加する薬注手段として、カチオンポリマ添加配管20が接続されている。
In the
本実施形態に係る水処理方法および水処理装置1の動作について説明する。
The operation of the water treatment method and the
重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に貯留される。被処理水槽10において、被処理水にカチオンポリマ添加配管20を通して、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマが添加される(カチオンポリマ添加工程)。カチオンポリマは、被処理水配管14において添加されてもよいし、被処理水供給配管16において添加されてもよい。
To-be-treated water containing a high molecular weight organic material having a weight average molecular weight in the range of 100,000 to 30,000,000 is stored in the to-be-treated
カチオンポリマが添加された被処理水は、被処理水供給配管16を通して、除濁装置12へ送液され、除濁装置12において、除濁膜を用いて除濁処理される(除濁工程)。除濁工程された処理水は、処理水配管18を通して排出される。
The treated water to which the cationic polymer has been added is sent to the
本発明者らは、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、除濁膜の被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加することで、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができることを見出した。また、簡易な工程や装置で、上記高分子有機物を含む被処理水の除濁処理が可能となる。除濁膜の被処理水に上記カチオンポリマを添加することで、上記高分子有機物が上記カチオンポリマにより捕捉されることにより、高分子有機物による膜閉塞が抑制されると考えられる。また、除濁膜の被処理水に上記カチオンポリマを添加することで、除濁膜における差圧の上昇速度が抑制される。 In the treatment using a turbidity-treating film containing a polymer organic material having a weight-average molecular weight in the range of 100,000 to 30,000,000, the weight-average molecular weight of the turbidity-treated water is a weight average. It has been found that by adding a cationic polymer having a molecular weight in the range of 30,000 or more and 3,000,000 or less, it is possible to suppress clogging of the turbidity membrane while suppressing deterioration of treated water quality. Moreover, the turbidity treatment of the water to be treated containing the above-mentioned polymer organic substance can be performed with a simple process or apparatus. By adding the cationic polymer to the water to be treated of the turbidity removal membrane, it is considered that the macromolecular organic matter is trapped by the cationic polymer, whereby the membrane occlusion by the polymeric organic matter is suppressed. Moreover, the rate of increase in the differential pressure in the turbidity membrane is suppressed by adding the cationic polymer to the water to be treated of the turbidity membrane.
添加するカチオンポリマは、重量平均分子量が大き過ぎると除濁膜による膜ろ過の負荷になり、除濁膜の操作圧力の上昇を招く。重量平均分子量が小さ過ぎるとカチオンポリマが除濁膜を透過し、処理水質の悪化を招き、後段に逆浸透膜装置を備える場合に逆浸透膜の負荷になる。除濁膜の孔径は膜種や形状等により様々であるが、小さいもので分画分子量30,000Da程度である。また、重量平均分子量3,000,000以下であれば、除濁膜ろ過の過剰な負担にはならないと考えられる。よって、添加されるカチオンポリマの重量平均分子量は、30,000以上かつ3,000,000以下の範囲が良いと考えられる。 If the weight average molecular weight of the cationic polymer to be added is too large, it becomes a load of membrane filtration by the turbidity membrane, and increases the operating pressure of the turbidity membrane. If the weight average molecular weight is too small, the cationic polymer permeates through the turbidity membrane and causes deterioration of the quality of the treated water. When a reverse osmosis membrane device is provided in the subsequent stage, it becomes a load on the reverse osmosis membrane. The pore size of the turbidity membrane varies depending on the type and shape of the membrane, but is small and has a molecular weight cut-off of about 30,000 Da. Moreover, if it is a weight average molecular weight 3,000,000 or less, it will be considered that it will not become an excessive burden of turbidity membrane filtration. Therefore, it is considered that the weight average molecular weight of the added cationic polymer is preferably in the range of 30,000 or more and 3,000,000 or less.
添加するカチオンポリマの重量平均分子量は、30,000以上かつ3,000,000以下の範囲であり、200,000以上かつ3,000,000以下の範囲であることが好ましく、200,000以上かつ600,000以下の範囲であることがより好ましい。カチオンポリマの重量平均分子量が3,000,000を超えると、膜への負荷がやや大きくなり、ろ過所要時間の低減量が小さくなる場合がある。カチオンポリマの重量平均分子量が30,000未満では、膜透過率が大きくなる場合があり、特に200,000未満では、膜透過率が大きくなる場合がある。 The weight average molecular weight of the cationic polymer to be added is in the range of 30,000 to 3,000,000, preferably in the range of 200,000 to 3,000,000, preferably 200,000 and A range of 600,000 or less is more preferable. When the weight average molecular weight of the cationic polymer exceeds 3,000,000, the load on the membrane is slightly increased, and the reduction amount of the filtration time may be reduced. When the weight average molecular weight of the cationic polymer is less than 30,000, the membrane permeability may increase, and when it is less than 200,000, the membrane permeability may increase.
カチオンポリマとしては、重量平均分子量が30,000以上かつ3,000,000以下の範囲の、カチオンを有するポリマであればよく、特に制限はないが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることが好ましい。 The cationic polymer may be any polymer having a cation having a weight average molecular weight of 30,000 or more and 3,000,000 or less, and is not particularly limited, but polyamine-based, methacrylate-based, and polydiallyldimethylammonium. A cationic polymer having any one of the chloride structures is preferred.
ポリアミン系のカチオンポリマとしては、例えば、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物等が挙げられる。 Examples of the polyamine-based cationic polymer include a dimethylamine / epichlorohydrin / ammonia condensate, a dimethylamine / epichlorohydrin / ethylenediamine condensate, and the like.
ジメチルアミン・エピクロロヒドリン・アンモニア縮合物は、例えば、下記式(1)
で表される構造、および、下記式(2)
で表される構造を含むポリマである。上記ポリマでは、式(2)で表される構造と式(1)で表される構造の割合が、モル比(式(2)で表される構造:式(1)で表される構造)で例えば0.01:9.99〜7:3であればよい。Examples of the dimethylamine / epichlorohydrin / ammonia condensate include the following formula (1):
And a structure represented by the following formula (2)
It is a polymer containing the structure represented by these. In the polymer, the ratio of the structure represented by the formula (2) to the structure represented by the formula (1) is a molar ratio (structure represented by the formula (2): structure represented by the formula (1)). For example, it may be 0.01: 9.99 to 7: 3.
ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物は、例えば、式(1)で表される構造、および、下記式(3)
で表される構造を含むポリマである。上記ポリマでは、式(3)で表される構造と式(1)で表される構造の割合が、モル比(式(3)で表される構造:式(1)で表される構造)で例えば0.01:9.99〜7:3であればよい。Examples of the dimethylamine / epichlorohydrin / ethylenediamine condensate include the structure represented by the formula (1) and the following formula (3):
It is a polymer containing the structure represented by these. In the polymer, the ratio of the structure represented by the formula (3) to the structure represented by the formula (1) is a molar ratio (structure represented by the formula (3): structure represented by the formula (1)). For example, it may be 0.01: 9.99 to 7: 3.
メタクリレート系のカチオンポリマは、例えば、下記式(4)
で表される構造を含むポリマである。a,bはモノマのモル比(a:b=0.01:9.99〜9.99:0.01)を表す。The methacrylate-based cationic polymer is, for example, the following formula (4)
It is a polymer containing the structure represented by these. a and b represent the molar ratio of monomers (a: b = 0.01: 9.99 to 9.99: 0.01).
ポリジアリルジメチルアンモニウムクロリド系のカチオンポリマは、例えば、下記式(5)
で表される構造を含むポリマである。nは繰り返し単位を表す。The polydiallyldimethylammonium chloride cationic polymer is, for example, the following formula (5):
It is a polymer containing the structure represented by these. n represents a repeating unit.
カチオンポリマの添加量は、例えば、高分子有機物の重量に対して、1〜100重量%の範囲であり、2〜10重量%の範囲であることが好ましい。カチオンポリマの添加量が高分子有機物の重量に対して、1重量%未満であると、除濁膜の閉塞抑制効果が発揮されにくくなり、100重量%を超えると、処理水質の悪化やカチオンポリマ自体が膜を閉塞する場合がある。 The addition amount of the cationic polymer is, for example, in the range of 1 to 100% by weight and preferably in the range of 2 to 10% by weight with respect to the weight of the polymer organic material. When the addition amount of the cationic polymer is less than 1% by weight with respect to the weight of the high molecular organic substance, it becomes difficult to exert the effect of suppressing the clogging of the turbidity membrane. It may occlude the membrane itself.
カチオンポリマを添加する際の被処理水の温度は、特に制限はないが、例えば、5℃〜40℃の範囲である。 Although the temperature of the to-be-processed water at the time of adding a cationic polymer does not have a restriction | limiting in particular, For example, it is the range of 5 to 40 degreeC.
被処理水は、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む水であればよく、特に制限はない。被処理水に含まれる高分子有機物とは、LC−OCD分析装置(DOC−LABOR社製、model 8)において、バイオポリマとして検出される有機物のことであり、その特徴は、重量平均分子量が100,000以上であることであり、上限は特に定められていないが、例えば30,000,000以下である。被処理水に含まれる高分子有機物としては、例えば、生物処理の処理水に含まれる生物代謝物や、凝集固液分離処理において添加されるアニオン性高分子凝集剤等のアニオンポリマ等が挙げられる。 The water to be treated may be water containing a high molecular weight organic material having a weight average molecular weight in the range of 100,000 to 30,000,000, and is not particularly limited. The polymer organic substance contained in the water to be treated is an organic substance detected as a biopolymer in an LC-OCD analyzer (manufactured by DOC-LABOR, model 8), and has a weight average molecular weight of 100. The upper limit is not particularly defined, but is, for example, 30,000,000 or less. Examples of the polymer organic substance contained in the water to be treated include a biological metabolite contained in the treated water for biological treatment, an anionic polymer such as an anionic polymer flocculant added in the aggregation solid-liquid separation treatment, and the like. .
被処理水に含まれる高分子有機物の含有量は、例えば、0.1mg/L〜10mg/Lの範囲であり、特に0.2mg/L〜1.0mg/Lの範囲の場合に、本実施形態に係る水処理方法および水処理装置が有効である。 The content of the high molecular organic substance contained in the water to be treated is, for example, in the range of 0.1 mg / L to 10 mg / L, particularly in the case of the range of 0.2 mg / L to 1.0 mg / L. The water treatment method and the water treatment apparatus according to the embodiment are effective.
除濁処理で用いられる除濁膜は、精密ろ過膜(MF膜)または限外ろ過膜(UF膜)である。限外ろ過膜の公称孔径は、0.01μm以上、0.1μm未満であり、精密ろ過膜の孔径は、0.1μm以上、10μm以下である。分画分子量で表すと、限外ろ過膜の分画分子量は、1,000以上、1,000,000未満である。 The turbidity membrane used in the turbidity treatment is a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane). The nominal pore size of the ultrafiltration membrane is 0.01 μm or more and less than 0.1 μm, and the pore size of the microfiltration membrane is 0.1 μm or more and 10 μm or less. In terms of molecular weight cut-off, the molecular weight cut-off of the ultrafiltration membrane is 1,000 or more and less than 1,000,000.
除濁膜は、平膜タイプでも中空糸タイプであってもよい。 The turbidity removal membrane may be a flat membrane type or a hollow fiber type.
除濁膜の材質としては、水素結合を形成し、高分子有機物と化学的に結合しやすいものである場合に本技術は効果的であり、例えば、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリエーテルスルホン等が挙げられる。 The technology of the present invention is effective when the material of the turbidity film is one that forms a hydrogen bond and is likely to be chemically bonded to a high molecular organic substance. For example, polyvinylidene fluoride, polyvinyl chloride, polyethersulfone, etc. Etc.
本実施形態に係る水処理方法および水処理装置において、除濁装置12の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備え、除濁工程の処理水を逆浸透膜によって処理する逆浸透膜処理工程をさらに含むことが好ましい。
In the water treatment method and the water treatment apparatus according to the present embodiment, the water treatment method and the water treatment apparatus further include a reverse osmosis membrane treatment device that treats the treated water of the
本実施形態に係る水処理方法および水処理装置において、除濁装置12の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備え、除濁工程の前段において、アニオンポリマを用いる凝集固液分離処理、および生物処理のうちの少なくとも1つの前処理を行うことが好ましい。
In the water treatment method and the water treatment apparatus according to the present embodiment, a pretreatment apparatus that is at least one of an agglomerated solid-liquid separation treatment apparatus using an anionic polymer and a biological treatment apparatus is provided in the previous stage of the
本実施形態に係る水処理装置の他の例の概略構成を図2に示す。水処理装置3は、除濁膜を用いて処理する除濁装置12と、除濁装置12の処理水を逆浸透膜によって処理する逆浸透膜処理装置24をさらに備える。また、水処理装置3は、除濁装置12の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置22を備える。水処理装置3は、必要に応じて、被処理水を貯留する被処理水槽10を備えてもよい。
The schematic structure of the other example of the water treatment apparatus which concerns on this embodiment is shown in FIG. The
図2の水処理装置3において、前処理装置22の出口と被処理水槽10の入口とは被処理水配管14により接続されている。被処理水槽10の出口と除濁装置12の入口とは被処理水供給配管16により接続されている。除濁装置12の出口と逆浸透膜処理装置24の入口とは処理水配管18により接続されている。逆浸透膜処理装置24の透過水出口には、透過水配管26が接続され、濃縮水出口には、濃縮水配管28が接続されている。被処理水槽10には、被処理水にカチオンポリマを添加する薬注手段として、カチオンポリマ添加配管20が接続されている。
In the
水処理装置3において、前処理装置22から排出された、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水は、被処理水配管14を通して、必要に応じて被処理水槽10に貯留される。被処理水槽10において、被処理水にカチオンポリマ添加配管20を通して、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマが添加される(カチオンポリマ添加工程)。カチオンポリマは、被処理水配管14において添加されてもよいし、被処理水供給配管16において添加されてもよい。
In the
カチオンポリマが添加された被処理水は、被処理水供給配管16を通して、除濁装置12へ送液され、除濁装置12において、除濁膜を用いて除濁処理される(除濁工程)。除濁工程された処理水は、処理水配管18を通して、逆浸透膜処理装置24へ送液され、逆浸透膜処理装置24において、逆浸透膜を用いて逆浸透膜処理される(逆浸透膜処理工程)。透過水は、透過水配管26を通して排出され、濃縮水は、濃縮水配管28を通して排出される。
The treated water to which the cationic polymer has been added is sent to the
図2の水処理装置3のように、除濁装置の後段に除濁装置の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備える場合であっても、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを用いることにより、カチオンポリマの除濁膜の透過が抑制され、逆浸透膜への負荷が低減される。
Even in the case of further including a reverse osmosis membrane treatment device that treats the treated water of the turbidity treatment device with a reverse osmosis membrane in the subsequent stage of the turbidity removal device, as in the
図2の水処理装置3のように、除濁装置12の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備える場合であっても、重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを用いることにより、例えば、生物処理の処理水に含まれる生物代謝物や、凝集固液分離処理において添加されるアニオン性高分子凝集剤等のアニオンポリマ等の高分子有機物による除濁膜の閉塞を抑制することができる。
Like the
逆浸透膜処理としては、逆浸透膜を用いる処理であればよく、特に制限はない。 The reverse osmosis membrane treatment is not particularly limited as long as it is a treatment using a reverse osmosis membrane.
凝集固液分離処理としては、凝集剤を用いる凝集処理と、固液分離処理とを含む処理であればよく、特に制限はないが、例えば、凝集沈殿処理、凝集加圧浮上処理等が挙げられる。凝集固液分離処理において用いられるアニオンポリマは、例えば、アクリルアミド系のアニオン性高分子凝集剤等が挙げられる。凝集固液分離処理水には、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物として、このアニオンポリマが含まれる。特に、凝集固液分離処理水に、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物として、アクリルアミド系のアニオンポリマが含まれる場合に、本実施形態に係る水処理方法および水処理装置が好適に適用される。 The aggregation solid-liquid separation treatment is not particularly limited as long as it is a treatment including an aggregation treatment using a flocculant and a solid-liquid separation treatment. Examples of the aggregation solid-liquid separation treatment include an aggregation precipitation treatment and an aggregation pressure floating treatment. . Examples of the anionic polymer used in the flocculation solid-liquid separation treatment include an acrylamide type anionic polymer flocculant. The agglomerated solid-liquid separation treated water contains this anionic polymer as a high molecular weight organic material having a weight average molecular weight in the range of 100,000 to 30,000,000. In particular, when the flocculated solid-liquid separation treated water contains an acrylamide-based anionic polymer as a polymer organic material having a weight average molecular weight in the range of 100,000 to 30,000,000, the water treatment according to the present embodiment. The method and the water treatment apparatus are preferably applied.
生物処理としては、微生物等の生物を用いる処理であればよく、特に制限はない。生物処理水には、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物として、生物代謝物等のアニオンポリマが含まれる。 The biological treatment is not particularly limited as long as it uses a living organism such as a microorganism. Biologically treated water contains anionic polymers such as biological metabolites as high-molecular organic substances having a weight average molecular weight in the range of 100,000 to 30,000,000.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.
<実施例1〜5>
高分子有機物を含む被処理水を50L作製し、除濁膜に通水した。高分子有機物としては、重量平均分子量10,000,000のアニオンポリマ(アクリルアミド系のアニオン性高分子凝集剤)を0.2mg/L添加した。除濁膜としては、立昇社製、材質:ポリ塩化ビニル、分画分子量:50,000Da、孔径:0.01μmの限外ろ過膜(中空糸タイプ)を使用し、膜面積1m2となるモジュールを作製した。<Examples 1-5>
50 L of water to be treated containing a polymer organic material was prepared and passed through a turbidity membrane. As the high molecular organic substance, 0.2 mg / L of an anionic polymer (acrylamide-type anionic polymer flocculant) having a weight average molecular weight of 10,000,000 was added. As the turbidity removal membrane, an ultrafiltration membrane (hollow fiber type) having a material: polyvinyl chloride, a molecular weight cut off: 50,000 Da, and a pore size: 0.01 μm is used as the turbidity removal membrane, and the membrane area is 1 m 2. A module was produced.
通水は、被処理水に表1に示すカチオンポリマをそれぞれ2mg/L添加して行い、それぞれ被処理水を全てろ過するのに要した時間を測定した。また、除濁膜ろ過水(処理水)中のポリマ濃度を測定することで、ポリマの膜透過率(%)を測定した。 Water flow was performed by adding 2 mg / L of the cationic polymer shown in Table 1 to the water to be treated, and measuring the time required to filter all the water to be treated. Further, the membrane permeability (%) of the polymer was measured by measuring the polymer concentration in the turbidity membrane filtered water (treated water).
ポリマA(実施例1)は、ポリアミン系のカチオンポリマである、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(重量平均分子量30,000)であり、ポリマB(実施例2)は、ポリアミン系のカチオンポリマである、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物(重量平均分子量70,000)であり、ポリマC(実施例3)は、ポリアミン系のカチオンポリマである、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物(重量平均分子量200,000)であり、ポリマD(実施例4)は、ポリジアリルジメチルアンモニウムクロリド系のカチオンポリマ(重量平均分子量600,000)であり、ポリマE(実施例5)は、メタクリレート系のカチオンポリマ(重量平均分子量3,000,000)である。 Polymer A (Example 1) is a polyamine-based cationic polymer, dimethylamine / epichlorohydrin / ethylenediamine condensate (weight average molecular weight 30,000), and polymer B (Example 2) is a polyamine-based polymer. Dimethylamine / epichlorohydrin / ethylenediamine condensate (weight average molecular weight 70,000), and polymer C (Example 3) is a polyamine-based cationic polymer, dimethylamine / epichloro. It is a hydrin-ammonia condensate (weight average molecular weight 200,000), and polymer D (Example 4) is a polydiallyldimethylammonium chloride based cationic polymer (weight average molecular weight 600,000) and polymer E (implemented). Example 5) is a methacrylate-based cationic polymer (weight average molecular weight 3,000). , It is a 000).
除濁膜ろ過水(処理水)中のポリマ濃度は、燃焼法TOC分析装置(島津製作所製、TOC−V)を用いて測定した。 The polymer concentration in the turbidity membrane filtered water (treated water) was measured using a combustion method TOC analyzer (manufactured by Shimadzu Corporation, TOC-V).
<比較例1〜3>
比較例1では被処理水にカチオンポリマを添加せずに処理を行った。ポリマF(比較例2)は、ポリ塩化アルミニウム(重量平均分子量2,500)であり、ポリマG(比較例3)は、アクリレート系のカチオンポリマ(重量平均分子量10,000,000)である。<Comparative Examples 1-3>
In Comparative Example 1, treatment was performed without adding a cationic polymer to the water to be treated. Polymer F (Comparative Example 2) is polyaluminum chloride (weight average molecular weight 2,500), and Polymer G (Comparative Example 3) is an acrylate-based cationic polymer (weight average molecular weight 10,000,000).
結果を表1および図3,4に示す。図3には、実施例および比較例における、用いたカチオンポリマの重量平均分子量とろ過所要時間(分)との関係を示す。図4には、実施例および比較例における、用いたカチオンポリマの重量平均分子量と膜透過率(%)との関係を示す。 The results are shown in Table 1 and FIGS. FIG. 3 shows the relationship between the weight average molecular weight of the used cationic polymer and the time required for filtration (minutes) in Examples and Comparative Examples. FIG. 4 shows the relationship between the weight average molecular weight of the used cationic polymer and the membrane permeability (%) in Examples and Comparative Examples.
表1および図3,4に示すとおり、重量平均分子量30,000から3,000,000の範囲のカチオンポリマが最も除濁膜の閉塞抑制効果を示した。重量平均分子量30,000以下のポリマF(比較例2)は、ろ過所要時間は短くなったものの、カチオンポリマが除濁膜を透過しやすかったため好ましくない。重量平均分子量3,000,000以上のポリマG(比較例3)においては、ろ過所要時間が長くなり好ましくない。実施例3のポリマCが、ろ過所要時間と膜透過率のバランスに優れていた。 As shown in Table 1 and FIGS. 3 and 4, the cationic polymer having a weight average molecular weight in the range of 30,000 to 3,000,000 showed the most effective occlusion suppression effect on the turbidity membrane. Polymer F having a weight average molecular weight of 30,000 or less (Comparative Example 2) is not preferable because the time required for filtration is shortened but the cationic polymer easily permeates the turbidity membrane. In the polymer G (Comparative Example 3) having a weight average molecular weight of 3,000,000 or more, the time required for filtration is undesirably long. The polymer C of Example 3 was excellent in the balance between filtration time and membrane permeability.
このように、実施例では、重量平均分子量が100,000以上30,000,000以下の範囲の高分子有機物を含む被処理水の除濁膜を用いる処理において、処理水質の悪化を抑制しつつ、除濁膜の閉塞を抑制することができた。 As described above, in the examples, in the treatment using the turbidity-treating film containing the polymer organic material having the weight average molecular weight in the range of 100,000 to 30,000,000, the deterioration of the treated water quality is suppressed. The obstruction of the turbidity membrane could be suppressed.
1,3 水処理装置、10 被処理水槽、12 除濁装置、14 被処理水配管、16 被処理水供給配管、18 処理水配管、20 カチオンポリマ添加配管、22 前処理装置、24 逆浸透膜処理装置、26 透過水配管、28 濃縮水配管。 1,3 water treatment apparatus, 10 treated water tank, 12 turbidity removal apparatus, 14 treated water pipe, 16 treated water supply pipe, 18 treated water pipe, 20 cation polymer added pipe, 22 pretreatment apparatus, 24 reverse osmosis membrane Treatment equipment, 26 permeate piping, 28 concentrated water piping.
Claims (16)
前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加することを特徴とする水処理方法。Including a turbidity step of treating water to be treated containing a polymer organic material having a weight average molecular weight of 100,000 or more and 30,000,000 or less using a turbidity membrane;
A water treatment method comprising adding a cationic polymer having a weight average molecular weight of 30,000 to 3,000,000 to the water to be treated.
前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることを特徴とする水処理方法。The water treatment method according to claim 1,
The water treatment method, wherein the cationic polymer is a cationic polymer having a structure selected from polyamine-based, methacrylate-based, and polydiallyldimethylammonium chloride-based structures.
前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることを特徴とする水処理方法。The water treatment method according to claim 1 or 2,
The water treatment method, wherein the cationic polymer is a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.
前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることを特徴とする水処理方法。The water treatment method according to any one of claims 1 to 3,
A water treatment method, wherein the cationic polymer has a weight average molecular weight of 200,000 or more and 3,000,000 or less.
前記除濁工程の前段において、アニオンポリマを用いる凝集固液分離処理、および生物処理のうちの少なくとも1つの前処理を行うことを特徴とする水処理方法。The water treatment method according to any one of claims 1 to 4,
A water treatment method characterized by performing at least one pretreatment of an agglomeration solid-liquid separation treatment using an anionic polymer and a biological treatment in a previous stage of the turbidity removing step.
前記除濁工程の前段において、アクリルアミド系のアニオンポリマを用いる凝集固液分離処理を行うことを特徴とする水処理方法。The water treatment method according to claim 1, wherein
A water treatment method comprising performing an agglomeration solid-liquid separation process using an acrylamide-based anionic polymer in the previous stage of the turbidity removing step.
前記除濁膜の材質が、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであることを特徴とする水処理方法。The water treatment method according to any one of claims 1 to 6,
The water treatment method is characterized in that the material of the turbidity removal membrane is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyethersulfone.
前記除濁工程の処理水を逆浸透膜によって処理する逆浸透膜処理工程をさらに含むことを特徴とする水処理方法。The water treatment method according to any one of claims 1 to 7,
A water treatment method, further comprising a reverse osmosis membrane treatment step of treating the treated water in the turbidity removal step with a reverse osmosis membrane.
前記被処理水に重量平均分子量が30,000以上かつ3,000,000以下の範囲のカチオンポリマを添加する薬注手段と、
を備えることを特徴とする水処理装置。A turbidity treatment apparatus for treating water to be treated containing a polymer organic material having a weight average molecular weight of 100,000 or more and 30,000,000 or less using a turbidity membrane;
A chemical injection means for adding a cationic polymer having a weight average molecular weight of 30,000 or more and 3,000,000 or less to the water to be treated;
A water treatment apparatus comprising:
前記カチオンポリマが、ポリアミン系、メタクリレート系、およびポリジアリルジメチルアンモニウムクロリド系のうちのいずれかの構造を有するカチオンポリマであることを特徴とする水処理装置。The water treatment device according to claim 9,
The water treatment apparatus, wherein the cationic polymer is a cationic polymer having a structure selected from a polyamine system, a methacrylate system, and a polydiallyldimethylammonium chloride system.
前記カチオンポリマが、ジメチルアミン・エピクロロヒドリン・エチレンジアミン縮合物、または、ジメチルアミン・エピクロロヒドリン・アンモニア縮合物であることを特徴とする水処理装置。The water treatment device according to claim 9 or 10,
A water treatment apparatus, wherein the cationic polymer is a dimethylamine / epichlorohydrin / ethylenediamine condensate or a dimethylamine / epichlorohydrin / ammonia condensate.
前記カチオンポリマの重量平均分子量が200,000以上かつ3,000,000以下の範囲であることを特徴とする水処理装置。The water treatment device according to any one of claims 9 to 11,
A water treatment apparatus, wherein the cationic polymer has a weight average molecular weight of 200,000 or more and 3,000,000 or less.
前記除濁装置の前段に、アニオンポリマを用いる凝集固液分離処理装置、および生物処理装置のうちの少なくとも1つである前処理装置を備えることを特徴とする水処理装置。The water treatment device according to any one of claims 9 to 12,
A water treatment device comprising a pretreatment device that is at least one of an agglomerated solid-liquid separation treatment device using an anionic polymer and a biological treatment device, in a preceding stage of the turbidity removal device.
前記除濁装置の前段に、アクリルアミド系のアニオンポリマを用いる凝集固液分離処理装置を備えることを特徴とする水処理装置。It is a water treatment apparatus of Claims 9-12,
A water treatment apparatus comprising a flocculation solid-liquid separation treatment apparatus using an acrylamide-based anion polymer in a preceding stage of the turbidity removal apparatus.
前記除濁膜の材質が、ポリフッ化ビニリデン、ポリ塩化ビニル、およびポリエーテルスルホンのうちの少なくとも1つであることを特徴とする水処理装置。The water treatment apparatus according to any one of claims 9 to 14,
The water treatment apparatus is characterized in that a material of the turbidity removal film is at least one of polyvinylidene fluoride, polyvinyl chloride, and polyethersulfone.
前記除濁装置の処理水を逆浸透膜によって処理する逆浸透膜処理装置をさらに備えることを特徴とする水処理装置。The water treatment device according to any one of claims 9 to 15,
A water treatment device, further comprising a reverse osmosis membrane treatment device for treating the treated water of the turbidity removal device with a reverse osmosis membrane.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017166403 | 2017-08-31 | ||
JP2017166403 | 2017-08-31 | ||
PCT/JP2018/028247 WO2019044312A1 (en) | 2017-08-31 | 2018-07-27 | Water treatment method and water treatment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019044312A1 true JPWO2019044312A1 (en) | 2019-11-07 |
JP6816292B2 JP6816292B2 (en) | 2021-01-20 |
Family
ID=65525383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019539086A Active JP6816292B2 (en) | 2017-08-31 | 2018-07-27 | Water treatment method and water treatment equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6816292B2 (en) |
TW (1) | TWI760553B (en) |
WO (1) | WO2019044312A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7199215B2 (en) * | 2018-12-18 | 2023-01-05 | オルガノ株式会社 | water treatment method |
JP7441108B2 (en) | 2020-04-23 | 2024-02-29 | オルガノ株式会社 | Water treatment method and water treatment equipment |
WO2024071005A1 (en) * | 2022-09-28 | 2024-04-04 | 東レ株式会社 | Porous membrane and desalination method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4971098A (en) * | 1972-09-20 | 1974-07-09 | ||
JPH02174992A (en) * | 1988-12-28 | 1990-07-06 | Nippon Steel Corp | Treatment of suspension containing metal hydroxide |
JPH09168800A (en) * | 1995-10-17 | 1997-06-30 | Terunaito:Kk | Treatment of high water content dredging sludge |
JPH10249400A (en) * | 1997-03-14 | 1998-09-22 | Nippon Shokubai Co Ltd | Method for dehydrating sludge |
JP2009154095A (en) * | 2007-12-26 | 2009-07-16 | Kurita Water Ind Ltd | Water treatment method |
JP2012532020A (en) * | 2009-07-06 | 2012-12-13 | ハロソース インコーポレイテッド | Binary polymers for water recovery and separation of suspended solids from aqueous media |
JP2015157265A (en) * | 2014-02-25 | 2015-09-03 | 栗田工業株式会社 | Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus |
WO2016027302A1 (en) * | 2014-08-19 | 2016-02-25 | 栗田工業株式会社 | Reverse osmosis membrane device and method for operating same |
JP2017140577A (en) * | 2016-02-10 | 2017-08-17 | 栗田工業株式会社 | Water treatment method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7378023B2 (en) * | 2006-09-13 | 2008-05-27 | Nalco Company | Method of improving membrane bioreactor performance |
WO2015138092A1 (en) * | 2014-03-12 | 2015-09-17 | Ecolab Usa Inc. | Waste water decontamination |
-
2018
- 2018-07-27 JP JP2019539086A patent/JP6816292B2/en active Active
- 2018-07-27 WO PCT/JP2018/028247 patent/WO2019044312A1/en active Application Filing
- 2018-08-23 TW TW107129376A patent/TWI760553B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4971098A (en) * | 1972-09-20 | 1974-07-09 | ||
JPH02174992A (en) * | 1988-12-28 | 1990-07-06 | Nippon Steel Corp | Treatment of suspension containing metal hydroxide |
JPH09168800A (en) * | 1995-10-17 | 1997-06-30 | Terunaito:Kk | Treatment of high water content dredging sludge |
JPH10249400A (en) * | 1997-03-14 | 1998-09-22 | Nippon Shokubai Co Ltd | Method for dehydrating sludge |
JP2009154095A (en) * | 2007-12-26 | 2009-07-16 | Kurita Water Ind Ltd | Water treatment method |
JP2012532020A (en) * | 2009-07-06 | 2012-12-13 | ハロソース インコーポレイテッド | Binary polymers for water recovery and separation of suspended solids from aqueous media |
JP2015157265A (en) * | 2014-02-25 | 2015-09-03 | 栗田工業株式会社 | Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus |
WO2016027302A1 (en) * | 2014-08-19 | 2016-02-25 | 栗田工業株式会社 | Reverse osmosis membrane device and method for operating same |
JP2017140577A (en) * | 2016-02-10 | 2017-08-17 | 栗田工業株式会社 | Water treatment method |
Also Published As
Publication number | Publication date |
---|---|
TWI760553B (en) | 2022-04-11 |
TW201920002A (en) | 2019-06-01 |
JP6816292B2 (en) | 2021-01-20 |
WO2019044312A1 (en) | 2019-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007256957B2 (en) | Method of improving performance of ultrafiltration or microfiltration membrane process in backwash water treatment | |
Singh et al. | Introduction to membrane processes for water treatment | |
TWI458543B (en) | Method of improving performance of ultrafiltration or microfiltration membrane processes in landfill leachate treatment | |
KR101193902B1 (en) | Water-purifying system and method using membrane filtration for manufacturing purified water | |
KR20080031956A (en) | Monopersulfate treatment of membranes | |
JP2008229418A (en) | Method and apparatus for industrial water treatment | |
JP6816292B2 (en) | Water treatment method and water treatment equipment | |
JP2003154362A (en) | Method and apparatus for treating water | |
JP5867532B2 (en) | Water treatment dispersant and water treatment method | |
KR101550702B1 (en) | Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water | |
JP2016144778A (en) | Water treatment flocculant and water treatment method | |
JP6015811B1 (en) | Water treatment method and water treatment apparatus | |
WO2018105569A1 (en) | Water treatment method and water treatment device | |
Cséfalvay et al. | Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin | |
JP5461805B2 (en) | Method for processing emulsion-type water-soluble cutting oil | |
JP7168324B2 (en) | Silica-containing water treatment apparatus and treatment method | |
JP2019188338A (en) | Water treatment method and water treatment apparatus | |
CN111051253A (en) | Apparatus and method for treating silica-containing water | |
JP2024036939A (en) | Water treatment method and apparatus | |
JP7290911B2 (en) | Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system | |
Xiao et al. | A novel approach using a fouling index to evaluate NOM fouling behavior in a low pressure ultrafiltration process | |
JP2016187791A (en) | Method for processing water containing calcium ion and inorganic carbon | |
JP2006218341A (en) | Method and apparatus for treating water | |
JP2024529066A (en) | Method for dosing flocculants and adsorbents in membrane filtration systems | |
CN113072235A (en) | Method for treating polyvinyl alcohol swelling wastewater generated in polarizer production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6816292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |