JP6015811B1 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP6015811B1
JP6015811B1 JP2015101956A JP2015101956A JP6015811B1 JP 6015811 B1 JP6015811 B1 JP 6015811B1 JP 2015101956 A JP2015101956 A JP 2015101956A JP 2015101956 A JP2015101956 A JP 2015101956A JP 6015811 B1 JP6015811 B1 JP 6015811B1
Authority
JP
Japan
Prior art keywords
water
treatment
melamine
flocculant
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101956A
Other languages
Japanese (ja)
Other versions
JP2016215113A (en
Inventor
藤井 昭宏
昭宏 藤井
孝博 川勝
孝博 川勝
隆彦 内田
隆彦 内田
真一 和田
真一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015101956A priority Critical patent/JP6015811B1/en
Priority to PCT/JP2016/059145 priority patent/WO2016185788A1/en
Priority to CN201680023057.0A priority patent/CN107530592A/en
Priority to TW105111223A priority patent/TWI694974B/en
Application granted granted Critical
Publication of JP6015811B1 publication Critical patent/JP6015811B1/en
Publication of JP2016215113A publication Critical patent/JP2016215113A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/246Membrane extraction
    • B01D61/2461Membrane extraction comprising multiple membrane extraction steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds

Landscapes

  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

【課題】有機物を含む被処理水を、凝集、固液分離した後、膜分離処理あるいはイオン交換樹脂処理する水処理において、分離膜やイオン交換樹脂の汚染原因物質となる被処理水中の高分子有機物や腐植物質を効率的に凝集処理して、これを高度に固液分離することにより、膜分離処理あるいはイオン交換樹脂処理の性能低下を抑制して長期に亘り安定かつ効率的な水処理を行う。【解決手段】凝集剤として、メラミン・アルデヒド縮合物を含む凝集剤を添加する。この凝集剤は、メラミン・アルデヒド縮合物の酸溶液であり、メラミン・アルデヒド縮合物の分子量は400〜10,000,000の範囲、コロイド粒径は5〜500nmの範囲であることが好ましい。【選択図】図3Polymers in water to be treated that cause contamination of separation membranes and ion exchange resins in water treatment in which water to be treated containing organic substances is agglomerated, solid-liquid separated, and then subjected to membrane separation treatment or ion exchange resin treatment By efficiently coagulating organic matter and humic substances and separating them to a high degree by solid-liquid separation, stable and efficient water treatment can be achieved over a long period of time by suppressing deterioration in the performance of membrane separation treatment or ion exchange resin treatment. Do. A flocculant containing a melamine aldehyde condensate is added as a flocculant. The flocculant is an acid solution of melamine / aldehyde condensate, and the molecular weight of the melamine / aldehyde condensate is preferably in the range of 400 to 10,000,000, and the colloidal particle size is preferably in the range of 5 to 500 nm. [Selection] Figure 3

Description

本発明は、各種産業排水や生活排水または該排水の生物処理水あるいは表層水、地下水などの被処理水に含まれる有機物を、効率的に凝集処理するための凝集剤および水処理方法に関する。詳しくは、本発明は、有機物を含む被処理水を膜分離処理あるいはイオン交換樹脂処理する際の前処理として、凝集、固液分離処理を行う際に、該被処理水に添加する凝集剤と、この凝集剤を用いた水処理方法に関する。   The present invention relates to a flocculant and a water treatment method for efficiently agglomerating organic substances contained in various industrial wastewater, domestic wastewater, biologically treated water of the wastewater, surface water, groundwater, or the like. Specifically, the present invention relates to a flocculant to be added to the water to be treated when performing agglomeration and solid-liquid separation as a pretreatment when subjecting the water to be treated containing organic matter to membrane separation treatment or ion exchange resin treatment. And a water treatment method using the flocculant.

i) 排水や表層水、地下水から、純水を得るために、不純物やイオンを取り除くための高度処理として膜分離処理やイオン交換樹脂処理が用いられている。これらの水処理工程に先立ち、膜や樹脂に対し処理性能を低下させる汚染物質である水溶性有機物を低減させるための凝集、固液分離処理による前処理が広く行われている。 i) Membrane separation treatment and ion exchange resin treatment are used as advanced treatment for removing impurities and ions in order to obtain pure water from wastewater, surface water, and groundwater. Prior to these water treatment steps, pretreatment by agglomeration and solid-liquid separation treatment for reducing water-soluble organic substances, which are contaminants that degrade the treatment performance of membranes and resins, is widely performed.

ii) 汚染物質の例としては、生物代謝物(多糖、タンパク質)、腐植物質(フミン酸、フルボ酸)などが挙げられ、これらの高分子有機物は、膜分離処理においては、精密濾過膜、限外濾過膜、逆浸透膜の膜面に付着したり、あるいは膜モジュールの流路を閉塞させたりして、透過水量の低下を引き起こす。また、イオン交換樹脂処理では、イオン交換樹脂に吸着して再生不良を引き起こす。 ii) Examples of pollutants include biological metabolites (polysaccharides, proteins), humic substances (humic acid, fulvic acid), etc. These high molecular organic substances are not suitable for microfiltration membranes, Adhering to the membrane surface of the outer filtration membrane or reverse osmosis membrane, or blocking the flow path of the membrane module, causes a decrease in the amount of permeated water. Further, in the ion exchange resin treatment, it is adsorbed on the ion exchange resin to cause regeneration failure.

iii) 従来、汚染物質を除去するための前処理には、塩化第二鉄やポリ塩化アルミニウムなどの無機凝集剤が用いられてきた。しかし、無機凝集剤のみでの凝集処理では、大量の無機凝集剤が必要となり、汚泥発生量の増加に繋がる。無機凝集剤とカチオン性の高分子凝集剤を併用して汚泥発生量を削減する試みも行われてきたが(例えば、特許文献1)、生物代謝物に対しての凝集除去効果は十分なものではなかった。 iii) Conventionally, inorganic flocculants such as ferric chloride and polyaluminum chloride have been used for pretreatment to remove contaminants. However, in the flocculation process using only the inorganic flocculant, a large amount of inorganic flocculant is required, which leads to an increase in the amount of sludge generated. Attempts have been made to reduce the amount of sludge generated by using an inorganic flocculant and a cationic polymer flocculant in combination (for example, Patent Document 1), but the aggregation removal effect on biological metabolites is sufficient. It wasn't.

iv) 有機物を含む被処理水、特に生物代謝物由来の高分子有機物を含む被処理水を、凝集、固液分離処理した後、後段に膜分離処理、特に逆浸透膜分離処理を行う水処理において、凝集処理による多糖類の除去は不十分であり(非特許文献1)、残存した多糖類は逆浸透膜の透水性能を低下させるほか、非可逆性のファウリングを引きこす原因物質となっている。 iv) Water treatment that includes organic matter, especially treated water that contains macromolecular organic matter derived from biological metabolites, followed by agglomeration and solid-liquid separation treatment followed by membrane separation treatment, particularly reverse osmosis membrane separation treatment In this case, the removal of the polysaccharide by the coagulation treatment is insufficient (Non-patent Document 1), and the remaining polysaccharide decreases the water permeability of the reverse osmosis membrane and becomes a causative substance that causes irreversible fouling. ing.

また、イオン交換樹脂においても、本発明者らが調査した結果、腐植物質がアニオン交換樹脂に吸着することで、イオン交換樹脂の性能が低下することが分かっている。具体的には、有機炭素検出型サイズ排除クロマトグラフ法(LC−OCD)および、三次元蛍光分光法により、イオン交換樹脂通水前後において腐植物質の濃度が減少していることから、腐植物質が樹脂に吸着されることが確認されている。本発明者らが試験を行った結果、腐植物質を含んだ水をイオン交換樹脂に通水すると、腐植物質が吸着し、図1に示すように、全交換容量と中性塩分解能が減少するという知見が得られている(図1)。   Moreover, also in ion exchange resin, as a result of investigation by the present inventors, it has been found that the performance of the ion exchange resin is deteriorated due to adsorption of humic substances to the anion exchange resin. Specifically, the organic matter detection type size exclusion chromatography (LC-OCD) and the three-dimensional fluorescence spectroscopy reduce the concentration of the humic substance before and after the ion exchange resin flow, so that the humic substance is reduced. It has been confirmed that it is adsorbed by the resin. As a result of the tests conducted by the present inventors, when water containing humic substance is passed through an ion exchange resin, the humic substance is adsorbed, and as shown in FIG. 1, the total exchange capacity and neutral salt resolution are reduced. This knowledge has been obtained (Fig. 1).

特開2013−202452号公報JP 2013-202452 A

Tambo et al. Water Research,Vol. 12(1978),931-950Tambo et al. Water Research, Vol. 12 (1978), 931-950

本発明は、有機物を含む被処理水を膜分離処理あるいはイオン交換樹脂処理する際の前処理としての凝集、固液分離処理を行う際に、該被処理水に添加する凝集剤として、後段の分離膜やイオン交換樹脂の汚染原因物質となる被処理水中の高分子有機物や腐植物質を効率的に凝集処理することができる凝集剤と、この凝集剤を用いた水処理方法を提供することを課題とする。   The present invention provides a flocculating agent to be added to the water to be treated when the water to be treated containing organic matter is subjected to a membrane separation treatment or an ion exchange resin treatment as a pretreatment or a solid-liquid separation treatment. To provide a flocculant capable of efficiently aggregating high-molecular organic substances and humic substances in water to be treated, which is a cause of contamination of separation membranes and ion exchange resins, and a water treatment method using this aggregating agent. Let it be an issue.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、凝集剤としてメラミン・アルデヒド縮合物を用いることにより、被処理水中の高分子有機物や腐植物質を効率的に凝集処理してこれを高度に固液分離することができることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have effectively agglomerated the polymer organic matter and humic substances in the water to be treated by using a melamine / aldehyde condensate as a flocculant. The present inventors have found that this can be highly solid-liquid separated and completed the present invention.
That is, the gist of the present invention is as follows.

] 有機物を含む被処理水に凝集剤を添加して凝集、固液分離処理し、得られた分離水を逆浸透膜分離処理あるいはイオン交換樹脂処理する水処理方法において、該凝集剤として、メラミン・アルデヒド縮合物を含む凝集剤を用いると共に、重亜硫酸および/またはその塩を、前記固液分離前の凝集処理水あるいは前記固液分離後の分離水に添加することを特徴とする水処理方法。 [ 1 ] In a water treatment method in which a coagulant is added to water to be treated containing an organic substance to perform coagulation and solid-liquid separation treatment, and the resulting separated water is subjected to reverse osmosis membrane separation treatment or ion exchange resin treatment, Water containing a flocculant containing a melamine aldehyde condensate and adding bisulfite and / or a salt thereof to the agglomerated water before the solid-liquid separation or the separated water after the solid-liquid separation. Processing method.

] []において、前記被処理水が分子量1万以上の高分子有機物および/または腐植物質を含むことを特徴とする水処理方法。 [ 2 ] The water treatment method according to [ 1 ], wherein the water to be treated contains a high molecular weight organic substance having a molecular weight of 10,000 or more and / or a humic substance.

] []または[]において、前記固液分離処理が沈殿処理、加圧浮上処理、濾過処理、もしくは膜分離処理のいずれかであることを特徴とする水処理方法。 [ 3 ] The water treatment method according to [ 1 ] or [ 2 ], wherein the solid-liquid separation treatment is any one of a precipitation treatment, a pressure levitation treatment, a filtration treatment, and a membrane separation treatment.

] []ないし[]のいずれかにおいて、前記凝集剤の添加前、添加後、あるいは添加と同時に、前記被処理水に無機凝集剤を添加して凝集、固液分離処理することを特徴とする水処理方法。 [ 4 ] In any one of [ 1 ] to [ 3 ], before or after the addition of the flocculant, or simultaneously with the addition, an inorganic flocculant is added to the water to be treated for aggregation and solid-liquid separation. A water treatment method characterized by the above.

[1]ないし[4]のいずれかにおいて、前記重亜硫酸および/またはその塩の添加で、前記逆浸透膜分離処理あるいはイオン交換樹脂処理により得られる処理水のアルデヒド濃度を0.01mg/L以下とすることを特徴とする水処理方法。 [ 5 ] In any one of [1] to [4], an aldehyde concentration of treated water obtained by the reverse osmosis membrane separation treatment or the ion exchange resin treatment with the addition of the bisulfurous acid and / or a salt thereof is 0.01 mg. / L or less, The water treatment method characterized by the above-mentioned.

本発明によれば、有機物を含む被処理水を凝集、固液分離した後、膜分離処理あるいはイオン交換樹脂処理する水処理において、分離膜やイオン交換樹脂の汚染原因物質となる被処理水中の高分子有機物や腐植物質を効率的に凝集処理して、これを高度に固液分離することができるため、膜分離処理あるいはイオン交換樹脂処理の性能低下を抑制して長期に亘り安定かつ効率的な水処理を行える。   According to the present invention, water to be treated containing organic matter is agglomerated, solid-liquid separated, and then subjected to membrane separation treatment or ion exchange resin treatment. High-molecular organic substances and humic substances can be efficiently agglomerated and separated into a highly solid-liquid separation. This suppresses the performance degradation of membrane separation or ion-exchange resin treatment and is stable and efficient for a long time. Water treatment.

腐植物質を含んだ水をイオン交換樹脂に通水したときの通水量に対する全交換容量と中性塩分解能の低下率を示すグラフである。It is a graph which shows the fall rate of the total exchange capacity | capacitance with respect to the amount of water flow, and neutral salt resolution | decomposability when water containing humic substance is passed through an ion exchange resin. 実施例で用いたRO平膜評価装置を示す模式図である。It is a schematic diagram which shows the RO flat membrane evaluation apparatus used in the Example. 実施例4−1および比較例4−1の結果を示すグラフである。It is a graph which shows the result of Example 4-1 and Comparative Example 4-1. 比較例5−1および比較例5−1の結果を示すグラフである。It is a graph which shows the result of comparative example 5-1 and comparative example 5-1.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[作用機構]
本発明による作用機構は以下の通りである。
メラミン・アルデヒド縮合物の酸溶液中に含まれるメラミン・アルデヒド縮合物を被処理水に添加すると、メラミン・アルデヒド縮合物がpH上昇とともに不溶化し、被処理水中の有機物、特に多糖と結合した状態で会合する。その結果、分離膜やイオン交換樹脂の汚染原因物質である多糖、タンパク質、腐植物質等を効率よく凝集除去することができる。
[Action mechanism]
The operation mechanism according to the present invention is as follows.
When the melamine / aldehyde condensate contained in the acid solution of the melamine / aldehyde condensate is added to the water to be treated, the melamine / aldehyde condensate is insolubilized as the pH increases, and in a state of being bound to organic substances in the water to be treated, particularly polysaccharides. To meet. As a result, it is possible to efficiently aggregate and remove polysaccharides, proteins, humic substances, and the like, which are contaminants of separation membranes and ion exchange resins.

[メラミン・アルデヒド縮合物]
本発明で使用されるメラミン・アルデヒド縮合物は、メラミン・アルデヒド縮合物の酸溶液、具体的には、メラミン・アルデヒド縮合物の酸コロイド溶液、あるいは低分子メラミン・アルデヒド縮合物の酸溶液として使用される。
特に、メラミン・アルデヒド縮合物は、メラミン・アルデヒド縮合物の酸コロイド溶液として用いることが好ましい。これは、酸溶液中においてコロイド状態で溶解しているメラミン・アルデヒド縮合物は、pHの上昇とともに直ちに不溶化し、凝集物の核となるため、高い凝集効果が望めるためである。
[Melamine aldehyde condensate]
The melamine / aldehyde condensate used in the present invention is used as an acid solution of melamine / aldehyde condensate, specifically, an acid colloid solution of melamine / aldehyde condensate or an acid solution of low molecular weight melamine / aldehyde condensate. Is done.
In particular, the melamine / aldehyde condensate is preferably used as an acid colloid solution of the melamine / aldehyde condensate. This is because the melamine aldehyde condensate dissolved in a colloidal state in the acid solution is immediately insolubilized as the pH rises and becomes a nucleus of the aggregate, so that a high aggregation effect can be expected.

メラミン・アルデヒド縮合物の酸溶液はメラミンとアルデヒドを反応させて得られたメチロールメラミンにさらに酸を添加することで製造されるが、必要に応じて、メチロールメラミンをさらにアルキルエーテル化したものに酸を加えても良い。   The acid solution of the melamine / aldehyde condensate is produced by further adding acid to methylolmelamine obtained by reacting melamine and aldehyde. May be added.

反応に用いられるアルデヒドとしては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒドなどが挙げられ、その中でも、ホルムアルデヒドやパラホルムアルデヒドが反応効率や取り扱い性の面で好ましい。   Examples of the aldehyde used in the reaction include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, etc. Among them, formaldehyde and paraformaldehyde are preferable in terms of reaction efficiency and handleability.

メラミン・アルデヒド縮合物の酸溶液の製造例として、特に、メラミン・アルデヒド縮合物の酸コロイド溶液の製造については以下の方法が挙げられる。   As an example of the production of an acid solution of a melamine / aldehyde condensate, the following method may be mentioned particularly for the production of an acid colloid solution of a melamine / aldehyde condensate.

メチロールメラミンを製造する際のメラミンとアルデヒドとの仕込み割合は、メラミン1モルに対してアルデヒド1〜6モルとするのが好ましい。但し、メラミン1モルに対してアルデヒドが2.5モルを超えると酸コロイド溶液としたときに遊離のアルデヒド量が多くなるので、アルデヒドはメラミン1モルに対して2.5モル以下とするのが好ましい。   The production ratio of melamine and aldehyde when producing methylolmelamine is preferably 1 to 6 mol of aldehyde with respect to 1 mol of melamine. However, if the amount of aldehyde exceeds 2.5 moles relative to 1 mole of melamine, the amount of free aldehyde increases when the acid colloid solution is prepared. Therefore, the aldehyde should be 2.5 moles or less per mole of melamine. preferable.

得られたメチロールメラミンは水には溶解しないが、酸溶液にはコロイド状となって溶解する。メチロールメラミンをさらにアルキルエーテル化して得られるアルキル化メチロールメラミンは水溶性であり、酸を加えるとコロイド状になる。   The obtained methylol melamine does not dissolve in water but dissolves in a colloidal form in the acid solution. The alkylated methylol melamine obtained by further alkylating methylol melamine is water-soluble and becomes colloidal when an acid is added.

ここで用いる酸としては、一塩基性酸が適している。具体的には、塩酸、硝酸等の鉱酸の他、蟻酸、酢酸、乳酸、プロピオン酸等の有機酸が挙げられる。とりわけ塩酸は安定したコロイド溶液が得られるので好ましい。   A monobasic acid is suitable as the acid used here. Specific examples include organic acids such as formic acid, acetic acid, lactic acid, and propionic acid in addition to mineral acids such as hydrochloric acid and nitric acid. Hydrochloric acid is particularly preferable because a stable colloidal solution can be obtained.

一塩基性酸、特に塩酸の添加量は、メラミン1モルに対し、0.5〜1.5モル程度、好ましくは0.7〜1.3モルとするのが好適である。   The amount of the monobasic acid, particularly hydrochloric acid, is about 0.5 to 1.5 mol, preferably 0.7 to 1.3 mol, per 1 mol of melamine.

コロイド溶液調製初期においては、遊離のアルデヒドが多く存在するが、調整後、室温で放置して熟成すると、遊離のアルデヒドが減少する。熟成時間は、室温の場合には5日〜3ケ月、加熱する場合には50℃で2〜3時間程度が適当である。
メラミン・アルデヒド縮合物の酸溶液のメラミン・アルデヒド縮合物の含有量は、通常5〜20重量%、pHは1.5〜2.5程度である。
In the initial stage of preparation of the colloidal solution, there are many free aldehydes. However, after the preparation, the free aldehydes are reduced when left standing at room temperature for aging. The aging time is suitably 5 days to 3 months at room temperature and about 2 to 3 hours at 50 ° C. when heating.
The content of the melamine / aldehyde condensate in the acid solution of the melamine / aldehyde condensate is usually 5 to 20% by weight, and the pH is about 1.5 to 2.5.

本発明で用いるメラミン・アルデヒド縮合物は、分子量が400〜10,000,000、特に1,000〜100,000の範囲であることが好ましい。メラミン・アルデヒド縮合物の分子量が大きい方が凝集効果に優れる傾向があるが過度に大きいと、酸溶液とする際にメラミン・アルデヒド縮合物の溶解性が低下する。なお、メラミン・アルデヒド縮合物の分子量は、例えば、後掲の実施例の項に記載される方法で求めることができる。   The melamine aldehyde condensate used in the present invention preferably has a molecular weight in the range of 400 to 10,000,000, particularly 1,000 to 100,000. When the molecular weight of the melamine / aldehyde condensate is large, the aggregation effect tends to be excellent, but when it is excessively large, the solubility of the melamine / aldehyde condensate decreases when an acid solution is formed. The molecular weight of the melamine / aldehyde condensate can be determined, for example, by the method described in the Examples section below.

また、本発明で用いるメラミン・アルデヒド縮合物は、酸コロイド溶液としたときのコロイド粒径が5〜50nm、特に10〜30nmであることが好ましい。このコロイド粒径が大きい方が凝集効果に優れるが、大き過ぎるものは添加したコロイドの総表面積が小さくなるため、効率が悪くなる。メラミン・アルデヒド縮合物の酸コロイド溶液のコロイド粒径は例えば動的光散乱法により測定し、その平均値として求めることができる。   The melamine / aldehyde condensate used in the present invention preferably has a colloid particle size of 5 to 50 nm, particularly 10 to 30 nm, when an acid colloid solution is used. The larger the colloid particle size, the better the agglomeration effect. However, when the colloid particle size is too large, the total surface area of the added colloid becomes small, and the efficiency becomes worse. The colloidal particle size of the acid colloid solution of the melamine / aldehyde condensate can be measured, for example, by a dynamic light scattering method and obtained as an average value.

前述の方法で製造したメラミン・アルデヒド縮合物には、その製造原料であるアルデヒドが残留して含まれていたり、保存中にメラミン・アルデヒド縮合物からアルデヒドが遊離してアルデヒドが含まれることとなる場合がある。メラミン・アルデヒド縮合物中に含まれているアルデヒドは、凝集処理水、更には固液分離水中に含まれることとなるが、アルデヒド、特にホルムアルデヒドは低分子量かつ電荷を持たないため、後段の逆浸透(RO)膜処理やイオン交換樹脂処理で十分に除去し得ない。例えば、本発明による水処理で得られた処理水を超純水の原水とする場合、処理水のTOCは0.01mg/L以下に保つことが好ましいが、ホルムアルデヒドが混入するとTOCを十分に低減することができない。このため、本発明の凝集剤を用いる際には、メラミン・アルデヒド縮合物を精製してアルデヒド含有量を低減することが好ましい。この場合、メラミン・アルデヒド縮合物の精製方法としては、分画分子量500〜1,000,000程度の限外濾過膜あるいは透析膜を用いた膜処理が挙げられる。また、後述のように、重亜硫酸処理でホルムアルデヒドをヒドロキシメタンスルホネートに変換してもよい。ヒドロキシメタンスルホネートは負の電荷を有するため、RO膜処理やイオン交換樹脂処理で容易に除去することができる。   In the melamine / aldehyde condensate produced by the above-mentioned method, the aldehyde which is the production raw material remains or is contained, or aldehyde is liberated from the melamine / aldehyde condensate during storage, and the aldehyde is contained. There is a case. Aldehyde contained in the melamine aldehyde condensate will be contained in the coagulated water and solid-liquid separation water, but aldehyde, especially formaldehyde, has low molecular weight and no charge, so reverse osmosis in the latter stage (RO) It cannot be sufficiently removed by membrane treatment or ion exchange resin treatment. For example, when the treated water obtained by the water treatment according to the present invention is used as ultrapure raw water, it is preferable to keep the TOC of the treated water at 0.01 mg / L or less. However, when formaldehyde is mixed, the TOC is sufficiently reduced. Can not do it. For this reason, when using the flocculant of this invention, it is preferable to refine | purify a melamine aldehyde condensate and to reduce aldehyde content. In this case, the purification method of the melamine / aldehyde condensate includes membrane treatment using an ultrafiltration membrane or a dialysis membrane having a molecular weight cut off of about 500 to 1,000,000. Further, as will be described later, formaldehyde may be converted to hydroxymethanesulfonate by bisulfite treatment. Since hydroxymethanesulfonate has a negative charge, it can be easily removed by RO membrane treatment or ion exchange resin treatment.

精製によりメラミン・アルデヒド縮合物中のアルデヒドを除去する場合、メラミン・アルデヒド縮合物1g中のアルデヒドの含有量が7mg以下、特に4mg以下となるように精製することが好ましい。
なお、メラミン・アルデヒド縮合物中のアルデヒドの含有量は、後掲の実施例の項に記載の方法で定量することができる。
When the aldehyde in the melamine / aldehyde condensate is removed by purification, it is preferable that the aldehyde content in 1 g of the melamine / aldehyde condensate is 7 mg or less, particularly 4 mg or less.
The aldehyde content in the melamine / aldehyde condensate can be quantified by the method described in the Examples section below.

[被処理水]
本発明で凝集処理する被処理水は有機物、特に、分子量が1万以上の高分子有機物や腐植物質を含む水であり、例えば、各種産業排水や生活排水または該排水の生物処理水あるいは表層水、地下水などが挙げられる。被処理水中の有機物濃度については特に制限はないが、通常上記のような水を被処理水とする場合、被処理水中の分子量1万以上の高分子有機物や腐植物質の含有量は0.1mg/L以上、例えば0.1〜1mg/L程度である。
[Treatment water]
The treated water to be agglomerated in the present invention is water containing organic matter, particularly high molecular weight organic matter having a molecular weight of 10,000 or more, and humic substance. For example, various industrial wastewater, domestic wastewater, biologically treated water or surface water of the wastewater. And groundwater. Although there is no restriction | limiting in particular about the organic substance density | concentration in to-be-processed water, When the above water is made into to-be-processed water, content of the high molecular organic substance and humic substance of molecular weight 10,000 or more in to-be-processed water is 0.1 mg. / L or more, for example, about 0.1 to 1 mg / L.

この被処理水は、本発明の凝集剤により凝集処理した後固液分離し、分離水は膜分離処理またはイオン交換樹脂処理される。   This water to be treated is agglomerated by the aggregating agent of the present invention and then solid-liquid separated, and the separated water is subjected to membrane separation treatment or ion exchange resin treatment.

[凝集処理]
有機物を含む被処理水に本発明の凝集剤であるメラミン・アルデヒド縮合物の酸溶液を添加して凝集処理する際の添加量は、被処理水中の有機物含有量にもよるが、有効成分(メラミン・アルデヒド縮合物)の添加量として、0.1〜5mg/L、特に0.2〜2mg/Lが望ましい。この添加量が少な過ぎると十分な凝集効果を得ることができず、多過ぎると未反応のメラミン・アルデヒド縮合物が残留し、処理水の有機物濃度が増加する。
[Aggregation treatment]
The amount of melamine aldehyde condensate acid solution, which is the flocculant of the present invention, is added to the water to be treated containing the organic matter for flocculation treatment, and the amount added depends on the content of organic matter in the water to be treated. The addition amount of the melamine / aldehyde condensate is preferably 0.1 to 5 mg / L, particularly preferably 0.2 to 2 mg / L. If the amount added is too small, a sufficient coagulation effect cannot be obtained. If the amount added is too large, unreacted melamine / aldehyde condensate remains, and the organic matter concentration in the treated water increases.

また、メラミン・アルデヒド縮合物の酸溶液を添加する際の、被処理水のpHは中性付近が望ましく、pH4以上、中でもpH5〜10が望ましい。pHが低すぎるとメラミン・アルデヒド縮合物が不溶化しにくく、凝集能力が落ちるためである。pHが10を超えると、pH調整剤によるコストが増加するほか、中和時に塩濃度が増加するため不適当である。   Further, the pH of the water to be treated when adding the acid solution of the melamine / aldehyde condensate is preferably near neutral, and is preferably pH 4 or more, and more preferably pH 5-10. This is because if the pH is too low, the melamine / aldehyde condensate is hardly insolubilized and the aggregating ability is lowered. If the pH exceeds 10, the cost due to the pH adjusting agent increases, and the salt concentration increases during neutralization, which is inappropriate.

従って、被処理水にメラミン・アルデヒド縮合物の酸溶液を添加した後、必要に応じて水酸化ナトリウム等のアルカリを添加して上記のpHに調整して凝集処理を行う。   Therefore, after adding an acid solution of a melamine / aldehyde condensate to the water to be treated, an alkali such as sodium hydroxide is added as necessary to adjust the pH to perform the aggregation treatment.

本発明においては、メラミン・アルデヒド縮合物と共に、無機凝集剤や有機高分子凝集剤を併用して凝集処理を行ってもよい。この場合、無機凝集剤、有機高分子凝集剤は、メラミン・アルデヒド縮合物の酸溶液を添加する前に添加してもよく、メラミン・アルデヒド縮合物の酸溶液の添加後に添加してもよく、メラミン・アルデヒド縮合物の酸溶液の添加と同時に添加してもよい。   In the present invention, an aggregating treatment may be performed using an inorganic flocculant or an organic polymer flocculant together with a melamine / aldehyde condensate. In this case, the inorganic flocculant and the organic polymer flocculant may be added before the acid solution of the melamine / aldehyde condensate is added, or may be added after the addition of the acid solution of the melamine / aldehyde condensate, You may add simultaneously with the addition of the acid solution of a melamine aldehyde condensate.

併用する無機凝集剤としては、塩化アルミニウム、硫酸バンド、塩化第二鉄、硫酸第一鉄などが挙げられる。また、有機高分子凝集剤としては、アクリルアミド系やアニオン系の有機高分子凝集剤が望ましく、ポリアクリルアミド、ポリメタクリルアミド、ポリアクリル酸、ポリビニルスルホン酸などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the inorganic flocculant used in combination include aluminum chloride, sulfuric acid band, ferric chloride, and ferrous sulfate. The organic polymer flocculant is preferably an acrylamide-based or anionic organic polymer flocculant, and examples thereof include polyacrylamide, polymethacrylamide, polyacrylic acid, and polyvinyl sulfonic acid. These may be used alone or in combination of two or more.

無機凝集剤を併用する場合、無機凝集剤の添加量は、被処理水の水質、用いる無機凝集剤の種類によっても異なるが、無機凝集剤の添加量は、5〜100mg/L程度とすることが好ましい。また有機高分子凝集剤を併用する場合の添加量も被処理水の水質や用いる有機高分子凝集剤の種類によっても異なるが、有機高分子凝集剤の添加量は、1〜20mg/L程度とすることが好ましい。   When an inorganic flocculant is used in combination, the amount of inorganic flocculant added depends on the quality of the water to be treated and the type of inorganic flocculant used, but the amount of inorganic flocculant added should be about 5 to 100 mg / L. Is preferred. Moreover, although the addition amount in the case of using an organic polymer flocculent also changes with the quality of to-be-processed water and the kind of organic polymer flocculant to be used, the addition amount of an organic polymer flocculant is about 1-20 mg / L. It is preferable to do.

なお、無機凝集剤を併用する場合、凝集処理時のpHは、前述のpH範囲において、用いる無機凝集剤の種類に応じて、無機凝集剤による凝集処理に適したpHとすることが好ましい。例えば、鉄系の無機凝集剤であればpH4〜10程度、アルミニウム系の無機凝集剤であればpH4〜8程度とすることが好ましい。   In the case where an inorganic flocculant is used in combination, the pH during the flocculant treatment is preferably set to a pH suitable for the flocculant treatment with the inorganic flocculant in the above-described pH range depending on the type of the inorganic flocculant used. For example, the pH is preferably about 4 to 10 for an iron-based inorganic flocculant and about 4 to 8 for an aluminum-based inorganic flocculant.

本発明による凝集処理は、通常撹拌下に2〜30分程度行われる。   The aggregation treatment according to the present invention is usually performed for about 2 to 30 minutes with stirring.

[固液分離]
本発明において凝集処理水の固液分離方法には特に制限はなく、常法に従って、沈殿処理、加圧浮上処理、濾過処理、膜分離処理等で固液分離することができる。これらの2種以上を組み合わせて固液分離してもよい。
[Solid-liquid separation]
In the present invention, the solid-liquid separation method of the agglomerated treated water is not particularly limited, and the solid-liquid separation can be performed by precipitation, pressure flotation, filtration, membrane separation, or the like according to a conventional method. Two or more of these may be combined for solid-liquid separation.

[重亜硫酸処理]
メラミン・アルデヒド縮合物と共存するあるいはメラミン・アルデヒド縮合物から遊離したアルデヒドを除去するために重亜硫酸処理を行ってもよい。
即ち、凝集処理水または、これを固液分離して得られた分離水に重亜硫酸或いは重亜硫酸塩(以下、「重亜硫酸(塩)」と記載する。)を添加して、メラミン・アルデヒド縮合物中に含まれて凝集処理水中に持ち込まれたアルデヒド、特にホルムアルデヒドをヒドロキシメタンスルホネートに変換してもよい。ヒドロキシメタンスルホネートは、前述の通り、RO膜処理やイオン交換樹脂処理で容易に除去することができ、処理水のTOCに影響することがない。
[Bisulfite treatment]
Bisulfite treatment may be performed in order to remove the aldehyde that coexists with or is liberated from the melamine / aldehyde condensate.
That is, bisulfite or bisulfite (hereinafter referred to as “bisulfite (salt)”) is added to the agglomerated water or separated water obtained by solid-liquid separation, and melamine aldehyde condensation is performed. Aldehydes, especially formaldehyde, contained in the product and brought into the flocculated water may be converted into hydroxymethanesulfonate. As described above, hydroxymethanesulfonate can be easily removed by RO membrane treatment or ion exchange resin treatment, and does not affect the TOC of treated water.

この場合、重亜硫酸(塩)の添加量は、凝集処理水中のアルデヒド含有量によって適宜調整され、固液分離水を膜分離処理またはイオン交換樹脂処理して得られる水溶液のアルデヒド濃度が0.01mg/L以下となるように添加することが好ましい。   In this case, the amount of bisulfite (salt) added is appropriately adjusted depending on the aldehyde content in the coagulation treated water, and the aldehyde concentration in the aqueous solution obtained by subjecting the solid-liquid separated water to membrane separation treatment or ion exchange resin treatment is 0.01 mg. It is preferable to add so that it may become / L or less.

[後段処理]
本発明においては、上述のようにして被処理水を凝集、固液分離して得られた分離水を、膜分離処理あるいはイオン交換樹脂処理する。
この膜分離処理としては、特にRO膜分離処理を行うことが好ましい。
[Post-processing]
In the present invention, the separated water obtained by agglomerating and solid-liquid separating the water to be treated as described above is subjected to membrane separation treatment or ion exchange resin treatment.
As this membrane separation treatment, it is particularly preferable to perform RO membrane separation treatment.

本発明によれば、前段の凝集、固液分離処理で、分離膜やイオン交換樹脂の汚染原因物質となる被処理水中の高分子有機物や腐植物質を高度に除去することができるため、この膜分離処理またはイオン交換樹脂処理において、分離膜やイオン交換樹脂の性能低下を抑制して長期に亘り安定かつ効率的な水処理を行える。   According to the present invention, the organic matter and humic substances in the water to be treated, which are contamination-causing substances of the separation membrane and ion exchange resin, can be highly removed by the aggregation and solid-liquid separation treatment in the previous stage. In separation treatment or ion exchange resin treatment, it is possible to perform stable and efficient water treatment over a long period of time by suppressing performance degradation of the separation membrane or ion exchange resin.

以下に実施例および比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

以下の実施例および比較例において、凝集剤としては、以下のものを用いた。また、以下に示す無機凝集剤の添加量は、水溶液としての添加量である。   In the following examples and comparative examples, the following were used as flocculants. Moreover, the addition amount of the inorganic flocculant shown below is the addition amount as an aqueous solution.

<無機凝集剤>
塩化第二鉄(FeCl、38重量%水溶液)
ポリ塩化アルミニウム(PAC、10重量%水溶液)
<Inorganic flocculant>
Ferric chloride (FeCl 3 , 38% by weight aqueous solution)
Polyaluminum chloride (PAC, 10 wt% aqueous solution)

<メラミン・アルデヒド縮合物>
MF−1:メラミン・アルデヒド縮合物の酸コロイド溶液
メラミン1モルに対し、2モルのホルムアルデヒドを反応させて得られたメチロール化メラミン0.05モルを1.35重量%塩酸水溶液100ml(メラミン1モルに対して塩酸0.75モル)に加えて熟成調製したもの(メラミン・ホルムアルデヒド縮合物含有量10重量%、pH2)
MF−2:低分子メラミン・アルデヒド縮合物の酸溶液:メチル化メラミン・ホルムアルデヒド縮合物(重量平均分子量432、シグマ・アルドリッチ)を0.1M塩酸水溶液に溶解したもの(メラミン・ホルムアルデヒド縮合物10重量%水溶液、pH1)
<Melamine aldehyde condensate>
MF-1: Acid colloid solution of melamine aldehyde condensate 1 mol of melamine 0.05 mol of methylolated melamine obtained by reacting 2 mol of formaldehyde with 100 ml of 1.35 wt% hydrochloric acid aqueous solution (1 mol of melamine) Aged and prepared in addition to hydrochloric acid (0.75 mol) (melamine / formaldehyde condensate content 10% by weight, pH 2)
MF-2: Acid solution of low molecular weight melamine / aldehyde condensate: Methylated melamine / formaldehyde condensate (weight average molecular weight 432, Sigma / Aldrich) dissolved in 0.1M hydrochloric acid aqueous solution (melamine / formaldehyde condensate 10 weight) % Aqueous solution, pH 1)

上記のMF−1に含まれるメラミン・アルデヒド縮合物の酸コロイドの分子量については、動的光散乱法を用いて得られた粒径のピークに起因する拡散係数をもとに、以下の換算式を用いて換算分子量を算出した(日本膜学会(編)、膜分離プロセスの設計法)。その結果、分子量は660万であった。
D=8.76×10−9(Mw)−0.48
(D:拡散係数(m/s),Mw:分子量)
About the molecular weight of the acid colloid of the melamine aldehyde condensate contained in the above MF-1, the following conversion formula is based on the diffusion coefficient resulting from the particle size peak obtained by using the dynamic light scattering method. The calculated molecular weight was calculated by using (Membrane Society of Japan (ed.), Design method of membrane separation process). As a result, the molecular weight was 6.6 million.
D = 8.76 × 10 −9 (Mw) −0.48
(D: diffusion coefficient (m 2 / s), Mw: molecular weight)

<実施例1−1>
生物処理水をRO膜処理して得られる濃縮水(分子量1万以上の高分子有機物を0.1mg/L含む)を被処理水とした。
25℃の被処理水500mLをビーカーに入れ、150rpmで5分間撹拌している最中に、MF−1を有効成分濃度1mg/Lとなるよう添加した後、FeCl水溶液を20mg/L添加し、水酸化ナトリウム水溶液を用いてpHを5.5に合わせた。さらに、50rpmで10分間撹拌することで凝集処理を行った。凝集処理後の水は、孔径0.45μmの親水性PTFE(ポリテトラフルオロエチレン)シリンジフィルターで濾過し、固液分離を行った。この濾過水をLC−OCDで分析し、分子量1万以上の有機炭素成分のピーク面積を算出した。なお、分子量マーカーとしてデキストランを使用した。有機物の除去率は下記式で算出した。
除去率(%)=(1−凝集処理水の有機炭素成分ピーク面積/未凝集処理水の有機炭素成分ピーク面積)×100
<Example 1-1>
Concentrated water (containing 0.1 mg / L of a high molecular organic substance having a molecular weight of 10,000 or more) obtained by subjecting biologically treated water to RO membrane treatment was used as water to be treated.
While 500 mL of water to be treated at 25 ° C. was put into a beaker and stirred at 150 rpm for 5 minutes, MF-1 was added to an active ingredient concentration of 1 mg / L, and then 20 mg / L of FeCl 3 aqueous solution was added. The pH was adjusted to 5.5 using an aqueous sodium hydroxide solution. Furthermore, the aggregation process was performed by stirring for 10 minutes at 50 rpm. The water after the aggregation treatment was filtered through a hydrophilic PTFE (polytetrafluoroethylene) syringe filter having a pore diameter of 0.45 μm to perform solid-liquid separation. This filtered water was analyzed by LC-OCD, and the peak area of an organic carbon component having a molecular weight of 10,000 or more was calculated. Dextran was used as a molecular weight marker. The organic substance removal rate was calculated by the following formula.
Removal rate (%) = (1-Organic carbon component peak area of coagulated treated water / Organic carbon component peak area of non-aggregated treated water) × 100

<実施例1−2>
MF−1の代わりにMF−2を添加したこと以外は実施例1−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Example 1-2>
Aggregation treatment was performed in the same manner as in Example 1-1 except that MF-2 was added instead of MF-1, and the organic matter removal rate was determined.

<比較例1−1>
MF−1の代わりに同量の純水を添加したこと以外は実施例1−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Comparative Example 1-1>
Aggregation treatment was performed in the same manner as in Example 1-1 except that the same amount of pure water was added instead of MF-1, and the organic matter removal rate was determined.

<比較例1−2>
MF−1の代わりに、カチオン性有機高分子凝集剤であるポリ(2−メタクリロイルオキシエチルトリメチルアンモニウム)(PMETMA、分子量900万)を1mg/L添加したこと以外は実施例1−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Comparative Example 1-2>
In the same manner as in Example 1-1 except that 1 mg / L of poly (2-methacryloyloxyethyltrimethylammonium) (PMETMA, molecular weight 9 million), which is a cationic organic polymer flocculant, was added instead of MF-1. Aggregation treatment was performed to determine the organic matter removal rate.

<比較例1−3>
MF−1の代わりに、カチオン性有機高分子凝集剤であるポリ(2−メタクリロイルオキシエチル)−N−ベンジル−N,N−ジメチルアンモニウム(PMEBDA、分子量1000万)を1mg/L添加したこと以外は実施例1−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Comparative Example 1-3>
Other than the addition of 1 mg / L of poly (2-methacryloyloxyethyl) -N-benzyl-N, N-dimethylammonium (PMEBDA, molecular weight 10 million) which is a cationic organic polymer flocculant instead of MF-1. Was agglomerated in the same manner as in Example 1-1 to determine the organic matter removal rate.

<実施例2−1>
実施例1−1において、FeCl水溶液の代わりにPAC水溶液を20mg/L添加し、水酸化ナトリウム水溶液を用いてpHを6.5に合わせたこと以外は実施例1−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Example 2-1>
In Example 1-1, aggregation treatment was performed in the same manner as in Example 1-1 except that 20 mg / L of a PAC aqueous solution was added instead of the FeCl 3 aqueous solution and the pH was adjusted to 6.5 using a sodium hydroxide aqueous solution. And the removal rate of organic matter was determined.

<比較例2−1>
MF−1の代わりに同量の純水を添加したこと以外は実施例2−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Comparative Example 2-1>
Aggregation treatment was performed in the same manner as in Example 2-1 except that the same amount of pure water was added instead of MF-1, and the organic matter removal rate was determined.

<実施例3−1>
実施例1−1において、MF−1添加後、FeCl水溶液を添加せずに、水酸化ナトリウム水溶液を用いてpHを7.0に合わせたこと以外は実施例1−1と同様に凝集処理を行って、有機物の除去率を求めた。
<Example 3-1>
In Example 1-1, after addition of MF-1, agglomeration treatment was performed in the same manner as in Example 1-1 except that the pH was adjusted to 7.0 using a sodium hydroxide aqueous solution without adding an FeCl 3 aqueous solution. And the removal rate of organic matter was determined.

<比較例3−1>
MF−1の代わりにFeCl水溶液を20mg/L添加したこと以外は実施例3−1と同様に凝集処理を行って、有機物の除去率を求めた。
上記の結果を表1に示す。
<Comparative Example 3-1>
Aggregation treatment was performed in the same manner as in Example 3-1 except that 20 mg / L of an FeCl 3 aqueous solution was added in place of MF-1, and the organic matter removal rate was determined.
The results are shown in Table 1.

Figure 0006015811
Figure 0006015811

表1より次のことが分かる。
実施例1−1,実施例1−2および比較例1−1より、無機凝集剤(FeCl)添加前に、メラミン・アルデヒド縮合物を添加することで、除去率の上昇が確認できた。また、比較例1−2,1−3より、無機凝集剤(FeCl)とカチオン性高分子凝集剤を併用しても、除去率の向上はほとんど見られないことが分かる。
実施例2−1および比較例2−1より、無機凝集剤としてPACを用いた場合でも、メラミン・アルデヒド縮合物を添加した方が高い除去率を示すことが分かる。
実施例3−1および比較例3−1より、中性条件では、無機凝集剤を用いるよりメラミン・アルデヒド縮合物を用いたほうが高い除去率を示すことが分かる。
Table 1 shows the following.
From Example 1-1, Example 1-2, and Comparative Example 1-1, an increase in the removal rate could be confirmed by adding the melamine-aldehyde condensate before adding the inorganic flocculant (FeCl 3 ). Further, Comparative Examples 1-2 and 1-3 show that the removal rate is hardly improved even when the inorganic flocculant (FeCl 3 ) and the cationic polymer flocculant are used in combination.
From Example 2-1 and Comparative Example 2-1, it can be seen that even when PAC is used as the inorganic flocculant, the removal rate is higher when melamine / aldehyde condensate is added.
From Example 3-1 and Comparative Example 3-1, it can be seen that, under neutral conditions, the removal rate is higher when a melamine / aldehyde condensate is used than when an inorganic flocculant is used.

<実施例4−1>
多糖のモデル物質としてグアガム(グアーコールF50、三栄薬品貿易製)を純水に溶かし、グアガム濃度1mg/L、pH6.5の水溶液を2L調製し、ビーカーに入れた。ビーカー内の水溶液を150rpmで5分間撹拌している最中に、MF−1を有効成分濃度1mg/Lとなるよう添加した後、水酸化ナトリウム水溶液を用いてpHを6.5に合わせた。さらに、50rpmで10分間撹拌することで凝集処理を行った。凝集処理後の水は、孔径0.45μmの酢酸セルロース膜で吸引濾過し、固液分離を行った。
<Example 4-1>
Gua gum (Guarcoal F50, manufactured by Sanei Pharmaceutical Co., Ltd.) was dissolved in pure water as a polysaccharide model substance, and 2 L of an aqueous solution having a guar gum concentration of 1 mg / L and pH 6.5 was prepared and placed in a beaker. While the aqueous solution in the beaker was being stirred at 150 rpm for 5 minutes, MF-1 was added to an active ingredient concentration of 1 mg / L, and then the pH was adjusted to 6.5 using an aqueous sodium hydroxide solution. Furthermore, the aggregation process was performed by stirring for 10 minutes at 50 rpm. The water after the aggregation treatment was subjected to solid-liquid separation by suction filtration through a cellulose acetate membrane having a pore diameter of 0.45 μm.

この濾過水を図2に示したRO平膜評価装置を用い、以下の通水条件で通水し、フラックスの経時変化を測定した。
<測定条件>
供給水流量:0.7mL/min
水温:25℃
回収率:80%
This filtered water was passed through the RO flat membrane evaluation apparatus shown in FIG. 2 under the following water passage conditions, and the change with time of the flux was measured.
<Measurement conditions>
Supply water flow rate: 0.7 mL / min
Water temperature: 25 ° C
Recovery rate: 80%

この平膜試験装置は、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜セル2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置し、ポンプ4で供給水(濾過水)を配管11を介して原水室1Aに給水すると共に、容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出すものである。供給水給水配管11には圧力計6が設けられ、濃縮水取り出し配管13には開閉バルブ7が設けられている。
平膜セル2には、膜面積8cmのポリアミド系RO膜:(日東電工社製「ES−20」)を設置した。
This flat membrane test apparatus is provided with a flat membrane cell 2 at an intermediate position in the height direction of a cylindrical container 1 having a bottom and a lid, and the inside of the container is divided into a raw water chamber 1A and a permeated water chamber 1B, and the container 1 is divided into a stirrer. 3, feed water (filtered water) is supplied to the raw water chamber 1 </ b> A via the pipe 11 by the pump 4, and the stirrer 5 in the container 1 is rotated to stir the raw water chamber 1 </ b> A. Is taken out from the permeate water chamber 1B through the pipe 12, and the concentrated water is taken out from the raw water chamber 1A through the pipe 13. The feed water supply pipe 11 is provided with a pressure gauge 6, and the concentrated water outlet pipe 13 is provided with an opening / closing valve 7.
In the flat membrane cell 2, a polyamide RO membrane (“ES-20” manufactured by Nitto Denko Corporation) having a membrane area of 8 cm 2 was installed.

なお、回収率、フラックスは以下の式で算出した。後述の実施例6−1においても同様である。
回収率[%]=(透過水流量[mL/min]/供給水流量[mL/min])×100
フラックス[m/(m・d)]]=透過水流量[m/d]/膜面積[m]×温度換算係数[−]
The recovery rate and flux were calculated by the following formulas. The same applies to Example 6-1 described later.
Recovery [%] = (permeate flow rate [mL / min] / feed water flow rate [mL / min]) × 100
Flux [m 3 / (m 2 · d)]] = permeate flow rate [m 3 / d] / membrane area [m 2 ] × temperature conversion coefficient [−]

<比較例4−1>
MF−1の代わりに同量の純水を添加したこと以外は、実施例4−1と同様に凝集処理を行って、得られた濾過水のフラックスの経時変化を測定した。
<Comparative Example 4-1>
Aggregation treatment was performed in the same manner as in Example 4-1, except that the same amount of pure water was added instead of MF-1, and the change over time in the flux of the obtained filtrate was measured.

<実施例5−1>
腐植物質のモデル物質としてカナディアンフルボ(ピィアイシィ・バイオ製)を1mg/Lになるよう純水に溶かし、カルシウムを10mg/L含んだpH6.5の水溶液を2L調製し、ビーカーに入れた。ビーカー内の水溶液を150rpmで5分間撹拌している最中に、MF−1を有効成分濃度1mg/Lとなるよう添加した後、水酸化ナトリウム水溶液を用いてpHを6.5に合わせた。さらに、50rpmで10分間撹拌することで凝集処理を行った。凝集処理後の水は、孔径0.22μmの酢酸セルロース膜で吸引濾過し、固液分離を行った。この濾過水について実施例4−1と同様にRO平膜試験装置を用いてフラックスの変化を測定した。
<Example 5-1>
Canadian fulvo (manufactured by PII Bio) as a humic substance was dissolved in pure water to 1 mg / L, and 2 L of a pH 6.5 aqueous solution containing 10 mg / L of calcium was prepared and placed in a beaker. While the aqueous solution in the beaker was being stirred at 150 rpm for 5 minutes, MF-1 was added to an active ingredient concentration of 1 mg / L, and then the pH was adjusted to 6.5 using an aqueous sodium hydroxide solution. Furthermore, the aggregation process was performed by stirring for 10 minutes at 50 rpm. The water after the aggregation treatment was subjected to solid-liquid separation by suction filtration through a cellulose acetate membrane having a pore diameter of 0.22 μm. About this filtered water, the change of the flux was measured using the RO flat membrane test apparatus similarly to Example 4-1.

<比較例5−1>
MF−1の代わりに同量の純水を添加したこと以外は、実施例5−1と同様に凝集処理を行って、得られた濾過水のフラックスの経時変化を測定した。
<Comparative Example 5-1>
Aggregation treatment was performed in the same manner as in Example 5-1, except that the same amount of pure water was added instead of MF-1, and the change over time in the flux of the obtained filtrate was measured.

実施例4−1および比較例4−1の結果を図3に、実施例5−1および比較例5−1の結果を図4にそれぞれ示す。   The results of Example 4-1 and Comparative Example 4-1 are shown in FIG. 3, and the results of Example 5-1 and Comparative Example 5-1 are shown in FIG.

図3,4より、グアガム溶液もしくはカナディアンフルボ溶液にメラミン・アルデヒド縮合物を添加することで、フラックスの低下を抑制することができた。メラミン・アルデヒド縮合物を添加し濾過することで、膜汚染物質である多糖および腐植物質が凝集除去できることが確認された。   3 and 4, it was possible to suppress a decrease in flux by adding a melamine-aldehyde condensate to a guar gum solution or a Canadian flvo solution. It was confirmed that polysaccharides and humic substances, which are membrane contaminants, can be aggregated and removed by adding melamine-aldehyde condensate and filtering.

<実施例6−1>
MF−1を限外濾過膜を用いて精製した。具体的には、MF−1の6mLを、分画分子量3,000の遠心式限外濾過ユニット(アミコンウルトラ、ミリポア社)に入れ、さらに酸性液(純水に塩酸を加え、pH2に調整したもの)を9mL加えた。その後、重力加速度2,500Gで1時間遠心操作を行い、透過液と濃縮液に分離した。濃縮液に酸性液を加え15mLに希釈し、再び遠心操作を行った。この手順をさらに2回繰り返し、濃縮液を回収することで、精製したMF−1を得た。
<Example 6-1>
MF-1 was purified using an ultrafiltration membrane. Specifically, 6 mL of MF-1 was put into a centrifugal ultrafiltration unit (Amicon Ultra, Millipore) having a molecular weight cut-off of 3,000, and further adjusted to pH 2 by adding hydrochloric acid to pure water. 9 mL) was added. Thereafter, centrifugation was performed at a gravitational acceleration of 2,500 G for 1 hour to separate the permeate and the concentrate. The acidic solution was added to the concentrate to dilute to 15 mL, and the centrifugation was performed again. This procedure was repeated two more times, and the concentrated liquid was collected to obtain purified MF-1.

この精製MF−1に含まれるホルムアルデヒド含有量を以下のアセチルアセトン法による比色定量で求めた。   The formaldehyde content contained in this purified MF-1 was determined by colorimetric determination by the following acetylacetone method.

<アセチルアセトン法>
サンプル:供給水および透過水
アセチルアセトン試薬:酢酸アンモニウム15g、酢酸0.3mL、アセチルアセトン0.2mLを純水に溶かし100mLとしたもの
定量法:サンプル5mLとアセチルアセトン試薬を混ぜ、40℃で30min加熱し、30min静置した。その後、波長413nmの吸光度を測定し、濃度が既知のホルムアルデヒド水溶液から作成した検量線をもとに、ホルムアルデヒド含有量を算出した。
<Acetylacetone method>
Sample: supply water and permeated water Acetylacetone reagent: ammonium acetate 15 g, acetic acid 0.3 mL, acetylacetone 0.2 mL dissolved in pure water to make 100 mL Determination method: sample 5 mL and acetylacetone reagent were mixed and heated at 40 ° C. for 30 min. It was allowed to stand for 30 minutes. Thereafter, the absorbance at a wavelength of 413 nm was measured, and the formaldehyde content was calculated based on a calibration curve prepared from an aqueous formaldehyde solution having a known concentration.

また、精製したMF−1を有効成分濃度1mg/Lとなるよう純水に添加した後、水酸化ナトリウム水溶液を用いてpHを6.5に合わせた。このMF−1を添加した純水を、図2に示したRO平膜評価装置(膜面積8cmのポリアミド系RO膜:(日東電工社製「ES−20」))を用い、以下の通水条件で通水し、供給水と透過水のホルムアルデヒド含有量をGC/MS法で測定した。なお、透過水は、2時間通水を行ったのち採取した。
<通水条件>
供給水流量:1.6mL/min
水温:25℃
回収率:75%
Moreover, after adding refined MF-1 to pure water so that an active ingredient density | concentration might be 1 mg / L, pH was adjusted to 6.5 using sodium hydroxide aqueous solution. The pure water to which MF-1 was added was subjected to the following procedure using the RO flat membrane evaluation apparatus shown in FIG. 2 (polyamide RO membrane having a membrane area of 8 cm 2 : “ES-20” manufactured by Nitto Denko Corporation). Water was passed under water conditions, and the formaldehyde content of feed water and permeated water was measured by the GC / MS method. The permeated water was collected after passing through for 2 hours.
<Water flow conditions>
Supply water flow rate: 1.6 mL / min
Water temperature: 25 ° C
Recovery rate: 75%

<実施例6−2>
MF−1を透析膜を用いて精製した。具体的には、MF−1の6mLを分画分子量7,000の透析膜ユニット(再生セルロース製、サーモフィッシャーサイエンティフィック社製)に入れ、5Lの酸性液(純水に塩酸を加え、pH2に調整したもの)に対し、1週間透析を行った。精製したMF−1のホルムアルデヒド含有量を実施例6−1と同様にアセチルアセトン法で求めた。
<Example 6-2>
MF-1 was purified using a dialysis membrane. Specifically, 6 mL of MF-1 was put into a dialysis membrane unit (manufactured by regenerated cellulose, manufactured by Thermo Fisher Scientific Co., Ltd.) having a molecular weight cut off of 7,000, and 5 L of acidic solution (hydrochloric acid was added to pure water, pH 2 Dialyzed for 1 week. The formaldehyde content of the purified MF-1 was determined by the acetylacetone method as in Example 6-1.

<実施例6−3>
未精製のMF−1を有効成分濃度1mg/Lとなるように添加した純水に、35重量%重亜硫酸ナトリウム水溶液を10mg/L添加して混合した後、水酸化ナトリウム水溶液を用いてpHを6.5に合わせた。この混合液について、実施例6−1と同様にしてRO平膜評価装置に通水し、供給水と透過水のホルムアルデヒド含有量を測定した。
<Example 6-3>
After adding 10 mg / L of 35% by weight aqueous sodium bisulfite solution to pure water to which unrefined MF-1 was added to an active ingredient concentration of 1 mg / L, the pH was adjusted using an aqueous sodium hydroxide solution. Adjusted to 6.5. About this liquid mixture, it passed through the RO flat membrane evaluation apparatus similarly to Example 6-1, and measured the formaldehyde content of supply water and permeated water.

<比較例6−1>
未精製のMF−1のホルムアルデヒド含有量を実施例6−1と同様にアセチルアセトン法で求めた。
精製したMF−1の代わりに未精製のMF−1を用いたこと以外は、実施例6−1と同様にしてRO平膜評価装置に通水し、供給水と透過水のホルムアルデヒド含有量を測定した。
実施例6−1〜6−3および比較例6−1の結果を表2に示す。
<Comparative Example 6-1>
The formaldehyde content of unpurified MF-1 was determined by the acetylacetone method as in Example 6-1.
Except that unpurified MF-1 was used instead of purified MF-1, water was passed through the RO flat membrane evaluation device in the same manner as in Example 6-1, and the formaldehyde content of the feed water and permeate was determined. It was measured.
The results of Examples 6-1 to 6-3 and Comparative Example 6-1 are shown in Table 2.

Figure 0006015811
Figure 0006015811

比較例6−1では未精製のMF−1を用いたため、ホルムアルデヒドは2000mg/L以上含まれており、供給水に含まれているホルムアルデヒドはRO膜処理を用いても十分に除去されずに透過水中に残留していた。
実施例6−1は限外濾過膜で精製したMF−1を用いており、ホルムアルデヒド量は1/3以下に低減できていた。そのため、供給水および透過水に含まれるホルムアルデヒド量は分析の検出下限値未満となり、透過水中のTOCを低減できることが明らかとなった。
実施例6−2は透析膜で精製したMF−1であり、ホルムアルデヒド量は1/40以下に低減できた。この精製法でも同様に透過水中のTOCを低減できることが期待できる。
実施例6−3では、ホルムアルデヒドと重亜硫酸ナトリウムが反応した結果、ヒドロキシメタンスルホネートが生成し、供給水および透過水中でホルムアルデヒドは検出下限値未満となった。
Since unpurified MF-1 was used in Comparative Example 6-1, formaldehyde was contained in an amount of 2000 mg / L or more, and the formaldehyde contained in the feed water was not sufficiently removed even when RO membrane treatment was used. It remained in the water.
Example 6-1 used MF-1 purified with an ultrafiltration membrane, and the amount of formaldehyde could be reduced to 1/3 or less. Therefore, the amount of formaldehyde contained in the feed water and the permeated water is less than the detection lower limit value of the analysis, and it has become clear that the TOC in the permeated water can be reduced.
Example 6-2 was MF-1 purified with a dialysis membrane, and the amount of formaldehyde could be reduced to 1/40 or less. It can be expected that the TOC in the permeated water can be similarly reduced by this purification method.
In Example 6-3, as a result of the reaction between formaldehyde and sodium bisulfite, hydroxymethanesulfonate was produced, and formaldehyde was below the lower limit of detection in the feed water and permeated water.

1 容器
1A 原水室
1B 透過水室
2 平膜セル
3 スターラー
1 container 1A raw water chamber 1B permeate water chamber 2 flat membrane cell 3 stirrer

Claims (18)

有機物を含む被処理水に凝集剤を添加して凝集、固液分離処理し、得られた分離水を逆浸透膜分離処理あるいはイオン交換樹脂処理する水処理方法において、該凝集剤として、メラミン・アルデヒド縮合物を含む凝集剤を用いると共に、重亜硫酸および/またはその塩を、前記固液分離前の凝集処理水あるいは前記固液分離後の分離水に添加することを特徴とする水処理方法。 In a water treatment method in which an aggregating agent is added to water to be treated containing organic matter and agglomerated and solid-liquid separated, and the resulting separated water is subjected to reverse osmosis membrane separation treatment or ion exchange resin treatment , A water treatment method characterized by using a flocculant containing an aldehyde condensate and adding bisulfurous acid and / or a salt thereof to the flocculated water before the solid-liquid separation or the separated water after the solid-liquid separation . 請求項において、前記被処理水が分子量1万以上の高分子有機物および/または腐植物質を含むことを特徴とする水処理方法。 The water treatment method according to claim 1 , wherein the water to be treated contains a high molecular weight organic substance having a molecular weight of 10,000 or more and / or a humic substance. 請求項またはにおいて、前記固液分離処理が沈殿処理、加圧浮上処理、濾過処理、もしくは膜分離処理のいずれかであることを特徴とする水処理方法。 3. The water treatment method according to claim 1 , wherein the solid-liquid separation treatment is any one of a precipitation treatment, a pressure flotation treatment, a filtration treatment, and a membrane separation treatment. 請求項ないしのいずれか1項において、前記凝集剤の添加前、添加後、あるいは添加と同時に、前記被処理水に無機凝集剤を添加して凝集、固液分離処理することを特徴とする水処理方法。 The inorganic flocculant is added to the water to be treated before, after, or simultaneously with the addition of the flocculant according to any one of claims 1 to 3 , wherein the flocculant is subjected to agglomeration and solid-liquid separation treatment. Water treatment method. 請求項1ないし4のいずれか1項において、前記重亜硫酸および/またはその塩の添加で、前記逆浸透膜分離処理あるいはイオン交換樹脂処理により得られる処理水のアルデヒド濃度を0.01mg/L以下とすることを特徴とする水処理方法。 5. The aldehyde concentration in treated water obtained by the reverse osmosis membrane separation treatment or the ion exchange resin treatment by adding the bisulfuric acid and / or a salt thereof according to claim 1, is 0.01 mg / L or less. And a water treatment method. 請求項1ないし5のいずれか1項において、前記凝集剤がメラミン・アルデヒド縮合物の酸溶液であることを特徴とする水処理方法In any one of claims 1 to 5, water treatment method, wherein the coagulant is an acid solution of a melamine-aldehyde condensation product. 請求項1ないし6のいずれか1項において、前記メラミン・アルデヒド縮合物の分子量が400〜10,000,000の範囲あるいはコロイド粒径が5〜500nmの範囲であることを特徴とする水処理方法The water treatment method according to any one of claims 1 to 6 , wherein the melamine aldehyde condensate has a molecular weight in the range of 400 to 10,000,000 or a colloidal particle size in the range of 5 to 500 nm. . 請求項1ないしのいずれか1項において、前記メラミン・アルデヒド縮合物1g中の遊離のアルデヒドの含有量が7mg以下であることを特徴とする水処理方法The water treatment method according to any one of claims 1 to 7 , wherein the content of free aldehyde in 1 g of the melamine / aldehyde condensate is 7 mg or less. 請求項において、前記凝集剤は、限外濾過膜処理あるいは透析膜処理により前記アルデヒドの除去処理がなされたものであることを特徴とする水処理方法According to claim 8, wherein the coagulant is water treatment wherein the ultrafiltration membrane treatment or dialysis membrane process in which removal process of the aldehyde has been made. 有機物を含む被処理水に凝集剤を添加して凝集、固液分離処理する手段と、得られた分離水を逆浸透膜分離処理あるいはイオン交換樹脂処理する手段とを有する水処理装置において、該凝集剤として、メラミン・アルデヒド縮合物を含む凝集剤を用いる水処理装置であって、重亜硫酸および/またはその塩を、前記固液分離前の凝集処理水あるいは前記固液分離後の分離水に添加する手段を有することを特徴とする水処理装置。In a water treatment apparatus comprising means for adding a flocculant to water to be treated containing organic matter and aggregating and solid-liquid separation treatment, and means for subjecting the obtained separated water to reverse osmosis membrane separation treatment or ion exchange resin treatment, A water treatment apparatus using a flocculant containing a melamine aldehyde condensate as a flocculant, wherein bisulfurous acid and / or a salt thereof is added to the flocculant treated water before the solid-liquid separation or the separated water after the solid-liquid separation. A water treatment apparatus comprising means for adding. 請求項10において、前記被処理水が分子量1万以上の高分子有機物および/または腐植物質を含むことを特徴とする水処理装置。The water treatment apparatus according to claim 10, wherein the water to be treated contains a high molecular weight organic substance having a molecular weight of 10,000 or more and / or a humic substance. 請求項10または11において、前記固液分離処理する手段が沈殿処理、加圧浮上処理、濾過処理、もしくは膜分離処理のいずれかで固液分離する手段であることを特徴とする水処理装置。12. The water treatment apparatus according to claim 10 or 11, wherein the solid-liquid separation treatment means is a solid-liquid separation means by any of precipitation treatment, pressurized flotation treatment, filtration treatment, or membrane separation treatment. 請求項10ないし12のいずれか1項において、前記凝集剤の添加前、添加後、あるいは添加と同時に、前記被処理水に無機凝集剤を添加する手段を有し、該無機凝集剤が添加された被処理水が凝集、固液分離処理されることを特徴とする水処理装置。13. The method according to claim 10, further comprising means for adding an inorganic flocculant to the water to be treated before, after, or simultaneously with the addition of the flocculant. The water treatment apparatus is characterized in that the water to be treated is agglomerated and solid-liquid separated. 請求項10ないし13のいずれか1項において、前記重亜硫酸および/またはその塩の添加で、前記逆浸透膜分離処理あるいはイオン交換樹脂処理する手段で得られる処理水のアルデヒド濃度が0.01mg/L以下となることを特徴とする水処理装置。14. The aldehyde concentration in treated water obtained by means of the reverse osmosis membrane separation treatment or the ion exchange resin treatment by adding the bisulfite and / or a salt thereof according to any one of claims 10 to 13 is 0.01 mg / A water treatment apparatus characterized by being L or less. 請求項10ないし14のいずれか1項において、前記凝集剤がメラミン・アルデヒド縮合物の酸溶液であることを特徴とする水処理装置。15. The water treatment apparatus according to claim 10, wherein the flocculant is an acid solution of melamine / aldehyde condensate. 請求項10ないし15のいずれか1項において、前記メラミン・アルデヒド縮合物の分子量が400〜10,000,000の範囲あるいはコロイド粒径が5〜500nmの範囲であることを特徴とする水処理装置。The water treatment apparatus according to any one of claims 10 to 15, wherein the melamine aldehyde condensate has a molecular weight in the range of 400 to 10,000,000 or a colloidal particle size in the range of 5 to 500 nm. . 請求項10ないし16のいずれか1項において、前記メラミン・アルデヒド縮合物1g中の遊離のアルデヒドの含有量が7mg以下であることを特徴とする水処理装置。The water treatment device according to any one of claims 10 to 16, wherein the content of free aldehyde in 1 g of the melamine-aldehyde condensate is 7 mg or less. 請求項17において、前記凝集剤は、限外濾過膜処理あるいは透析膜処理により前記アルデヒドの除去処理がなされたものであることを特徴とする水処理装置。18. The water treatment apparatus according to claim 17, wherein the flocculant has been subjected to the aldehyde removal treatment by ultrafiltration membrane treatment or dialysis membrane treatment.
JP2015101956A 2015-05-19 2015-05-19 Water treatment method and water treatment apparatus Active JP6015811B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015101956A JP6015811B1 (en) 2015-05-19 2015-05-19 Water treatment method and water treatment apparatus
PCT/JP2016/059145 WO2016185788A1 (en) 2015-05-19 2016-03-23 Coagulant and water treatment method
CN201680023057.0A CN107530592A (en) 2015-05-19 2016-03-23 Agglutinant and method for treating water
TW105111223A TWI694974B (en) 2015-05-19 2016-04-11 Coagulant and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101956A JP6015811B1 (en) 2015-05-19 2015-05-19 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP6015811B1 true JP6015811B1 (en) 2016-10-26
JP2016215113A JP2016215113A (en) 2016-12-22

Family

ID=57197574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101956A Active JP6015811B1 (en) 2015-05-19 2015-05-19 Water treatment method and water treatment apparatus

Country Status (4)

Country Link
JP (1) JP6015811B1 (en)
CN (1) CN107530592A (en)
TW (1) TWI694974B (en)
WO (1) WO2016185788A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113454B2 (en) * 2016-12-05 2022-08-05 旭化成株式会社 Water treatment method and equipment
JP6848615B2 (en) * 2017-03-31 2021-03-24 栗田工業株式会社 How to clarify industrial water
CN110272107A (en) * 2019-06-19 2019-09-24 晋江市吉发环保科技有限公司 A kind of waste-water treatment efficient composite flocculation agent and its application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543370B2 (en) * 1973-07-23 1980-11-06
JPS5710305A (en) * 1980-06-19 1982-01-19 Nitto Electric Ind Co Ltd Membrane separation for compound having aldehyde group
JPS59177190A (en) * 1983-03-28 1984-10-06 Kurita Water Ind Ltd Coagulation of organic waste water
JPS60129184A (en) * 1983-12-13 1985-07-10 Kurita Water Ind Ltd Treatment of water containing starch
JP2009226373A (en) * 2008-03-25 2009-10-08 Kurita Water Ind Ltd Biological treatment method of organic substance containing water
JP2013233489A (en) * 2012-05-07 2013-11-21 Miura Co Ltd Water treatment method, and water treatment system
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW312685B (en) * 1993-06-22 1997-08-11 Betz Internat Inc
US8011514B2 (en) * 2004-12-23 2011-09-06 Georgia-Pacific Chemicals Llc Modified amine-aldehyde resins and uses thereof in separation processes
JP5223219B2 (en) * 2007-03-30 2013-06-26 栗田工業株式会社 Organic wastewater treatment equipment
CN102515384A (en) * 2011-11-24 2012-06-27 重庆锐致环保科技有限公司 Technology for turning wastewater of melamine resin production into resource

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543370B2 (en) * 1973-07-23 1980-11-06
JPS5710305A (en) * 1980-06-19 1982-01-19 Nitto Electric Ind Co Ltd Membrane separation for compound having aldehyde group
JPS59177190A (en) * 1983-03-28 1984-10-06 Kurita Water Ind Ltd Coagulation of organic waste water
JPS60129184A (en) * 1983-12-13 1985-07-10 Kurita Water Ind Ltd Treatment of water containing starch
JP2009226373A (en) * 2008-03-25 2009-10-08 Kurita Water Ind Ltd Biological treatment method of organic substance containing water
JP2013233489A (en) * 2012-05-07 2013-11-21 Miura Co Ltd Water treatment method, and water treatment system
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment

Also Published As

Publication number Publication date
JP2016215113A (en) 2016-12-22
TWI694974B (en) 2020-06-01
CN107530592A (en) 2018-01-02
TW201708122A (en) 2017-03-01
WO2016185788A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
TWI458543B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in landfill leachate treatment
AU2007256957B2 (en) Method of improving performance of ultrafiltration or microfiltration membrane process in backwash water treatment
JP4577122B2 (en) Advanced treatment method for biologically treated water and coagulation accelerator for biologically treated water
US20160347631A1 (en) Tannin-based polymer as filter aid for reducing fouling in filtration of high tds water
JP7311951B2 (en) Water treatment method and water treatment equipment
JP6015811B1 (en) Water treatment method and water treatment apparatus
JP5867532B2 (en) Water treatment dispersant and water treatment method
TWI760553B (en) Water treatment method and water treatment device
WO2010050325A1 (en) Membrane separation process
CN107250052A (en) The removal device of particulate and ultra-pure water manufacture/feed system in water
JP6738492B2 (en) Water treatment method and water treatment device
WO2013099857A1 (en) Seawater treatment method
JP2016144778A (en) Water treatment flocculant and water treatment method
JP6644014B2 (en) Water treatment method
JP6202115B2 (en) Industrial water clarification method and clarification device
JP5461805B2 (en) Method for processing emulsion-type water-soluble cutting oil
JP2015157265A (en) Flocculation solid-liquid separation method, and flocculation solid-liquid separation apparatus
Xanthopoulou et al. Chromium ions removal from groundwaters by functionalized ultra-filtration membranes
JP2016093789A (en) Water treatment method and water treatment system
JP2019188338A (en) Water treatment method and water treatment apparatus
JP2020058964A (en) Water treatment chemical for membrane, and membrane treatment method
CN111051253A (en) Apparatus and method for treating silica-containing water
JP2011025143A (en) Virus removal method
JP2017131824A (en) Water treatment method, and adsorbent for biological metabolite
JP6287402B2 (en) Aggregated solid-liquid separation method and agglomerated solid-liquid separation apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250