JPH03293087A - Production of ultra-pure water - Google Patents

Production of ultra-pure water

Info

Publication number
JPH03293087A
JPH03293087A JP2093896A JP9389690A JPH03293087A JP H03293087 A JPH03293087 A JP H03293087A JP 2093896 A JP2093896 A JP 2093896A JP 9389690 A JP9389690 A JP 9389690A JP H03293087 A JPH03293087 A JP H03293087A
Authority
JP
Japan
Prior art keywords
pure water
water
membrane
primary pure
cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2093896A
Other languages
Japanese (ja)
Other versions
JPH074592B2 (en
Inventor
Hideo Azuma
東 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2093896A priority Critical patent/JPH074592B2/en
Publication of JPH03293087A publication Critical patent/JPH03293087A/en
Publication of JPH074592B2 publication Critical patent/JPH074592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Landscapes

  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To prevent the increase of pressure drop in a membrane separator fitted with a built-in permeable membrane by treating primary pure water by successive passing through a UV irradiation device, a polisher device, a cartridge type micro-filter and the membrane separator fitted with a built-in permeable membrane. CONSTITUTION:When primary pure water 1 obtd. from an apparatus for producing primary pure water is further treated to obtain ultra-pure water, the primary pure water 1 is treated by successive passing through a UV irradiation device 3, a polisher device 4 packed with ion exchange resin, a cartridge type micro- filter 5 and membrane separator 6 fitted with a build-in permeable membrane. The UV irradiation device 3 and the polisher device 4 may be reversed. In order to maintain high quality of water at a use point 7, water passed through the separator 6 is circulated through a circulating line 8.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体製造用および医薬製造用等に用いられる
超純水の製造方法に関するものであり、特に一次系純水
製造装置から得られる一次純水を更に処理して超純水を
得る方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing ultrapure water used for semiconductor manufacturing, pharmaceutical manufacturing, etc. The present invention relates to a method of further processing pure water to obtain ultrapure water.

〈従来技術〉 半導体製造および医薬製造に用いられる水には電解質、
微粒子、生菌等が極めて少ない高度に精製された超高度
純水、いわゆる超純水が必要とされている。
<Prior art> Water used in semiconductor manufacturing and pharmaceutical manufacturing contains electrolytes,
There is a need for highly purified ultra-pure water, so-called ultra-pure water, which contains extremely few particles, viable bacteria, and the like.

近年、これらの工業技術が高度化されるに従い、要求さ
れる水質も高くなってきており、更に高度に精製した超
純水の製造が必要になっている。
In recent years, as these industrial technologies have become more sophisticated, the required water quality has also become higher, and it has become necessary to produce even more highly purified ultrapure water.

超純水は従来から下記のようなシステムの組合せで製造
されるのが一般的である。まず凝集装置、濾過装置等で
原水中のコロイド状物質の除去を行い、次に純水装置、
逆浸透装置、脱気装置、ミックスベツドポリシャー等で
大半の電解質、微粒子、生菌等の除去を行い、このよう
な一次系純水製造装置から得られる一次純水を更に殺菌
およびまたは有機物分解をするための紫外線照射装置、
ポリシャー装置、膜分離装置等からなる二次系純水製造
装置で、前記一次純水に僅かに残留している極微量の不
純物の除去を最終的に行い超純水を製造するのである。
Ultrapure water has conventionally been generally produced using a combination of the following systems. First, colloidal substances in the raw water are removed using a flocculation device, filtration device, etc., then a water purification device,
Most electrolytes, particulates, viable bacteria, etc. are removed using reverse osmosis equipment, deaerators, mixed bed polishers, etc., and the primary pure water obtained from such primary water purification equipment is further sterilized and/or organic matter decomposed. UV irradiation equipment for
A secondary pure water production device consisting of a polisher device, a membrane separation device, etc. is used to finally remove extremely small amounts of impurities remaining in the primary pure water to produce ultrapure water.

上記の一連の装置により製造された超純水は各ユースポ
イントまで供給されるが、供給配管内での汚染を防止す
るために二次系純水製造装置は一次系純水製造装置とは
離れてユースポイント近傍に設置されることが多い。
The ultrapure water produced by the above series of equipment is supplied to each use point, but the secondary pure water production equipment is separated from the primary water production equipment to prevent contamination within the supply piping. They are often installed near points of use.

二次系純水製造装置に用いられる膜分離装置は限外濾過
膜や逆浸透膜から選択される透過膜を内蔵するものであ
り、特に超純水中への微細な非イオン性物質の混入を防
止するために、二次系純水製造装置においては当該膜分
離装置の設置が必須であるとされており、二次系純水製
造装置の末端に設置される。
Membrane separation equipment used in secondary pure water production equipment has a built-in permeation membrane selected from ultrafiltration membranes and reverse osmosis membranes, and is particularly effective against the contamination of fine nonionic substances into ultrapure water. In order to prevent this, it is essential to install the membrane separation device in the secondary pure water production equipment, and it is installed at the end of the secondary pure water production equipment.

しかし、この二次系純水製造装置に用いられる膜分離装
置は透過膜表面で一次系システムで除去できなかった微
粒子、あるいは配管材等より溶出した有機物等の微細な
非イオン物質を捕捉すると、これが膜表面に付着して圧
力損失が増大して超純水の生産量が減少してくる。
However, the membrane separator used in this secondary water purification system traps fine particles that could not be removed by the primary system on the surface of the permeable membrane, or fine nonionic substances such as organic matter eluted from piping materials, etc. This adheres to the membrane surface, increasing pressure loss and reducing the amount of ultrapure water produced.

このため、従来からこのように圧力損失が増大して超純
水の生産量が減少した透過膜は洗浄を行い圧力損失の回
復が計られる。透過膜の洗浄は圧力損失が所定の値に達
すると行われるが、この洗浄工程では薬品が用いられる
場合が多く、システムを薬品でよごすため系列内では洗
浄しないのが普通である。したがって、圧力損失が増大
した透過膜は別に設置した専用の洗浄設備で、洗浄に適
した薬品で洗浄が行われるが、系列内に設置し直す前に
洗浄に用いた薬品を更に洗浄する必要があり大量の超純
水が消費される。また設置し直した後に二次系純水製造
装置全体をクリーンアップする必要があるなど、透過膜
の洗浄は非常に高度の技術と多額の費用を必要とする。
For this reason, conventionally, permeable membranes whose pressure loss has increased and the production amount of ultrapure water has decreased have been cleaned to recover the pressure loss. The permeable membrane is cleaned when the pressure drop reaches a predetermined value, but chemicals are often used in this cleaning process, and because the chemicals contaminate the system, it is usually not cleaned within the series. Therefore, permeable membranes with increased pressure loss are cleaned using appropriate chemicals in a separate dedicated cleaning facility, but the chemicals used for cleaning must be further cleaned before being reinstalled in the system. Yes, a large amount of ultrapure water is consumed. Furthermore, cleaning the permeable membrane requires extremely advanced technology and a large amount of cost, as it is necessary to clean up the entire secondary pure water production equipment after reinstallation.

更に、洗浄を繰り返すことにより透過膜の膜劣化も懸念
されることになる。
Furthermore, repeated cleaning may cause deterioration of the permeable membrane.

〈発明が解決しようとする問題点〉 本発明は上述した従来の二次系純水製造装置に用いられ
る膜分離装置の圧力損失の増大を防止することができる
超純水の製造方法を提供することを目的とするものであ
る。
<Problems to be Solved by the Invention> The present invention provides a method for producing ultrapure water that can prevent an increase in pressure loss in the membrane separation device used in the conventional secondary pure water production device described above. The purpose is to

更に膜分離装置の圧力損失の増大を防止することにより
、前記薬品洗浄の回数を減少させて、洗浄に要する超純
水の消費を大幅に低下させることを目的とするものであ
る。
Furthermore, by preventing an increase in the pressure loss of the membrane separator, it is an object of the present invention to reduce the number of times the chemical cleaning is performed, and to significantly reduce the consumption of ultrapure water required for cleaning.

く問題点を解決するための手段〉 上述目的を達成するためになされた本発明よりなる超純
水の製造方法は、一次系純水製造装置から得られる一次
純水を更に処理して超純水を得るにあたり、当該一次純
水を紫外線照射装置、イオン交換樹脂が充填されたポリ
シャー装置の順、あるいはイオン交換樹脂が充填された
ポリシャー装置、紫外線照射装置の順に処理し、次いで
カートリッジ型精密濾過器、透過膜を内蔵する膜分離装
置の順に処理することを特徴とするものである。
Means for Solving the Problems〉 The method for producing ultrapure water according to the present invention, which has been made to achieve the above objects, further processes primary pure water obtained from a primary pure water production apparatus to obtain ultrapure water. To obtain water, the primary pure water is processed in the order of an ultraviolet irradiation device and a polisher device filled with ion exchange resin, or a polisher device filled with ion exchange resin and an ultraviolet irradiation device, and then cartridge-type precision filtration. It is characterized by processing in the following order: first, a membrane separation device containing a permeable membrane.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

超純水製造工程では前述したごとく上水、井水、河川水
等を原水として一次系純水製造装置で一次純水を製造す
るが、まず原水の水質に応じて前処理が行なわれる。前
処理装置としては疑集処理、濾過処理、活性炭処理等を
組み合わせて実施される。
In the ultrapure water production process, as described above, primary pure water is produced using a primary pure water production apparatus using tap water, well water, river water, etc. as raw water, but first, pretreatment is performed depending on the quality of the raw water. As a pretreatment device, a combination of collection treatment, filtration treatment, activated carbon treatment, etc. is used.

そして前処理を通過した原水は、通常の純水製造に適用
されるたとえば2床3塔式の純水装置およびまたは温床
式純水装置、更に逆浸透膜装置で処理される。あるいは
、逆浸透膜装置を先に置き次に2床3塔式の純水装置お
よびまたは温床式純水装置の順で処理される場合もある
The raw water that has passed through the pretreatment is then treated with, for example, a two-bed, three-column type water purification device and/or hot bed type water purification device, which is applied to normal pure water production, and further with a reverse osmosis membrane device. Alternatively, the reverse osmosis membrane device may be placed first, followed by a two-bed, three-column type water purification device and/or a hot bed type water purification device.

このような一次系純水製造装置で原水中の大部分の電解
質、微粒子、生菌類等が除去され、通常比抵抗が10〜
15MΩ・1、微粒子数が100〜500個/ml、生
菌数10個/ m 1以下程度の一次純水が得られる。
Most of the electrolytes, particulates, living bacteria, etc. in the raw water are removed in this type of primary water purification equipment, and the specific resistance is usually 10~10.
15 MΩ・1, the number of fine particles is 100 to 500/ml, and the number of viable bacteria is about 10/m1 or less. Primary pure water can be obtained.

一次系純水製造装置で得られた一次純水は次いで本発明
の二次系純水製造装置で更に処理され、一次系純水製造
装置で除去され得なかった電解質、微粒子、生菌類等が
更に除去され超純水のユースポイントに供給される。
The primary pure water obtained in the primary pure water production device is then further processed in the secondary pure water production device of the present invention to remove electrolytes, particulates, living bacteria, etc. that could not be removed by the primary pure water production device. It is further removed and supplied to the point of use of ultrapure water.

第一図は本発明の実施態様の一例の二次系純水製造装置
のフローを示す説明図である。
FIG. 1 is an explanatory diagram showing the flow of a secondary pure water production apparatus as an example of an embodiment of the present invention.

ユースポイント7における水質を維持するため、二次系
純水製造装置の末端に設置される膜分離装置6の透過水
は循環ライン8を使い常に循環させるシステムとする。
In order to maintain the water quality at the use point 7, a system is used in which permeated water from the membrane separation device 6 installed at the end of the secondary pure water production device is constantly circulated using a circulation line 8.

なお図に記載していないが、膜分離装置6の非透過水は
一次純水製造装置に戻し回収する。
Although not shown in the figure, non-permeated water from the membrane separation device 6 is returned to the primary pure water production device and recovered.

図中1は一次純水槽で一次系純水製造装置(図示せず)
で製造された一次純水を一旦貯蔵するもので、当該一次
純水は送水ポンプ2でまず紫外線照射装置3に導入され
る。
1 in the figure is the primary pure water tank and the primary pure water production equipment (not shown)
The primary pure water produced in the above is temporarily stored, and the primary pure water is first introduced into the ultraviolet irradiation device 3 by the water pump 2.

紫外線照射装置では紫外線の殺菌効果を利用して一次純
水中のバクテリア等の生菌を殺菌するために紫外線が照
射される。波長としては254nm付近、照射量として
50000μワツト・秒/d程度が採用される。なお2
54nm付近の波長は一般に殺菌線と言われるもので、
主に殺菌の目的で使用されるが、185nm付近の波長
も含まれており、当該波長は特に水中の有機物の分解に
効果があるので、殺菌とともに水中の有機物も分解され
る。また当該紫外線照射装置で185nm付近の紫外線
を主に照射して水中の有機物の分解を主目的とし、そこ
に含まれる25dnm付近の波長で同時に殺菌すること
もできる。
The ultraviolet irradiation device uses ultraviolet rays to sterilize living bacteria such as bacteria in primary pure water by utilizing the sterilizing effect of ultraviolet rays. The wavelength used is around 254 nm, and the irradiation amount is about 50,000 μW/sec/d. Note 2
Wavelengths around 54 nm are generally referred to as germicidal radiation.
Although it is mainly used for the purpose of sterilization, it also includes a wavelength around 185 nm, which is particularly effective in decomposing organic matter in water, so that it decomposes organic matter in water as well as sterilization. Further, the ultraviolet irradiation device can mainly irradiate ultraviolet rays around 185 nm to decompose organic matter in water, and simultaneously sterilize with the wavelength around 25 dnm contained therein.

紫外線照射された純水は引続いてポリシャー装置4に導
入される。
The ultraviolet irradiated pure water is subsequently introduced into the polisher device 4.

ポリシャー装置4はほぼ完全に再生された強塩基性陰イ
オン交換樹脂と強酸性陽イオン交換樹脂の混合層からな
っている0通常ポリシャー用樹脂の強塩基性陰イオン交
換樹脂と強酸性陽イオン交換樹脂を系外で再生し混合状
態にしてカートリッジ式のイオン交換塔に充填して用い
る。
The polisher device 4 consists of a mixed layer of a strongly basic anion exchange resin and a strongly acidic cation exchange resin that have been almost completely regenerated. The resin is regenerated outside the system, mixed, and filled into a cartridge-type ion exchange tower for use.

上述のポリシャー装置4から流出する純水はプリーツ状
、平板状等の0.1.〜1μmの孔径をもつカートリッ
ジ濾過体を内蔵するカートリッジ型精密濾過器5に供給
され、その全量をいわゆる直行流型で濾過し、その濾過
水を続いてポリアクリロニトリル、ポリアミド、ポリス
ルフォン等を主体とした限外濾過膜や逆浸透膜からなる
透過膜を内蔵した膜分離装置6に供給される。当該膜分
離装置6により、その上流の諸処環により除去できなか
った特に微細な非イオン性物質が除去され、得られる透
過水である高度に精製された超高純度純水は超純水とし
てユースポイント7に供給される。
The pure water flowing out from the above-mentioned polisher device 4 has a pleat shape, a flat plate shape, etc. of 0.1. It is supplied to a cartridge-type precision filter 5 which has a built-in cartridge filter with a pore size of ~1 μm, and the entire amount is filtered by a so-called cross-flow type, and the filtered water is then filtered using mainly polyacrylonitrile, polyamide, polysulfone, etc. The water is supplied to a membrane separation device 6 which has a built-in permeation membrane such as an ultrafiltration membrane or a reverse osmosis membrane. The membrane separator 6 removes particularly fine nonionic substances that could not be removed by the various processes upstream, and the resulting permeated water, highly purified ultra-high purity water, is used as ultra-pure water. fed to point 7.

この超純水の水質は比抵抗16〜18MΩ・口、微粒子
数20〜50個/ m l以下、生菌数1個/m1以下
である。
The quality of this ultrapure water is a specific resistance of 16 to 18 MΩ, a number of fine particles of 20 to 50 particles/ml or less, and a number of viable bacteria of 1 particle/ml or less.

従来の二次系純水製造装置には膜分離装置6の流入水を
カートリッジ型精密濾過器で処理することは行われてな
く、したがって前述したごとく比較的短期間で圧力損失
が増大するが、本発明のように当該膜分離装置f6の前
段でその流入水をカートリッジ型精密濾過器4で処理す
ると膜分離装置5の圧力損失の上昇傾向は大幅に軽減さ
れる。またカートリッジ型精密濾過器自身の圧力損失も
比較的長期間使用してもほとんど上昇しない。
Conventional secondary pure water production equipment does not treat the inflow water of the membrane separator 6 with a cartridge-type precision filter, and therefore, as mentioned above, pressure loss increases in a relatively short period of time. If the inflow water is treated with the cartridge-type precision filter 4 upstream of the membrane separator f6 as in the present invention, the tendency of the pressure loss in the membrane separator 5 to increase is significantly reduced. Moreover, the pressure loss of the cartridge-type precision filter itself hardly increases even if it is used for a relatively long period of time.

〈作用〉 このように二次系純水製造装置において、本発明のごと
くカートリッジ型精密濾過器を通過させた高純度純水を
膜分離装置に供給すると、如何なる理由により膜分離装
置の圧力損失の上昇傾向を大幅に軽減出来るのかは明確
には解明されていないが、微細な非イオン性物質はカー
トリッジ型濾過器を通過する際に、内蔵するカートリッ
ジ濾過体により、電気的に吸着除去されるものと考えら
れる。そしてこの膜分離装置の圧力損失の上昇傾向が大
幅に軽減される現象は透過膜の種類によらずどの膜にお
いても生じ、特定の透過膜に対して現われるものではな
い。なお本発明に用いるカートリッジ型濾過器に使用す
るカートリッジ濾過体としてはプリーツ状、平板状等い
ずれの形態でもよく、またその材質はポリスルフォン、
6ローナイロン、ポリプロピレン、ポリエステル等いず
れでも良いが、特にプラス荷電を有するカートリッジ濾
過体を用いた方が後段の膜分離装置の圧力損失の上昇傾
向を効果的に抑制することができる。
<Function> As described above, in a secondary pure water production apparatus, when high-purity pure water that has passed through a cartridge-type precision filter is supplied to a membrane separation apparatus as in the present invention, the pressure loss of the membrane separation apparatus may be reduced for any reason. It is not clear whether the upward trend can be significantly reduced, but fine nonionic substances are electrically adsorbed and removed by the built-in cartridge filter when they pass through the cartridge type filter. it is conceivable that. This phenomenon in which the tendency for pressure loss to rise in a membrane separator is significantly reduced occurs with any membrane, regardless of the type of membrane, and does not appear with respect to a specific membrane. The cartridge filter used in the cartridge type filter used in the present invention may be in any form such as pleated or flat plate, and its material may be polysulfone, polysulfone, etc.
Any of 6-row nylon, polypropylene, polyester, etc. may be used, but the use of a cartridge filter having a positive charge can effectively suppress the tendency for the pressure loss of the downstream membrane separation device to increase.

なお通水流速は0.7〜2.9n?/rrLhr付近が
採用される。
The water flow rate is 0.7 to 2.9n? /rrLhr vicinity is adopted.

また第1図に示した実施a様は紫外線照射装置をポリシ
ャー装置の前段に設置した例を示したが、ポリシャー装
置、紫外線照射装置、カートリッジ型精密濾過器、膜分
離装置の順で処理しても本発明の効果は同じである。
Furthermore, embodiment a shown in Fig. 1 shows an example in which the ultraviolet irradiation device is installed before the polisher device, but the polisher device, the ultraviolet irradiation device, the cartridge type precision filter, and the membrane separation device are processed in this order. The effect of the present invention is also the same.

次に実施例を挙げて本発明を説明するが、本発明は次の
実施例に限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited to the following Examples.

実施例1 工業用水(工水)に凝集剤を添加し、濾材としてアンス
ラサイトと砂を2層に充填した凝集濾過器に通水をした
あと、強酸性陽イオン交換樹脂、アンバーライト(登録
商標、以下同様、)IR−124を充填した陽イオン交
換塔、遊離炭酸を除去する脱炭酸塔を経て、弱塩基性陰
イオン交換樹脂アンバーライトIRA−94および強塩
基性陰イオン交換樹アンバーライトERA−400を充
填した陰イオン交換塔に順次通水を行い、次いで逆浸透
膜5C−1200(東し株式会社製)を装備した逆浸透
装置で操作圧20kg/aj、回収率85%で処理し、
さらにアンバーライト200CとアンバーライトIRA
−900が1=1の割合の混合樹脂層からなるミックス
ベッドボリシ中−に通水して処理を行いその流出水を一
次純水とした。
Example 1 A coagulant was added to industrial water (technical water), and the water was passed through a coagulation filter filled with two layers of anthracite and sand as filter media, and then a strongly acidic cation exchange resin, Amberlite (registered trademark) , the same applies hereafter) After passing through a cation exchange tower filled with IR-124 and a decarboxylation tower for removing free carbonic acid, the weakly basic anion exchange resin Amberlite IRA-94 and the strongly basic anion exchange resin Amberlite ERA are added. Water was sequentially passed through an anion exchange tower filled with 5C-400, and then treated with a reverse osmosis device equipped with a reverse osmosis membrane 5C-1200 (manufactured by Toshi Co., Ltd.) at an operating pressure of 20 kg/aj and a recovery rate of 85%. ,
Furthermore, Amberlight 200C and Amberlight IRA
Water was passed through a mixed bed solution consisting of a mixed resin layer with a ratio of -900 to 1=1 for treatment, and the effluent water was used as primary pure water.

当該一次純水の平均水質は第1表のようであった。The average quality of the primary pure water was as shown in Table 1.

上述の一次純水を第1図に示される本発明によるフロー
からなる二次系純水製造装置により超純水の製造を行っ
た。
The above-mentioned primary pure water was used to produce ultrapure water using a secondary pure water production apparatus having the flow according to the present invention shown in FIG.

一次純水は−HFRP製の一次純水貯槽に貯蔵した後、
送水ポンプで供給するようにした。
After storing the primary pure water in a primary pure water storage tank made of -HFRP,
It was supplied by a water pump.

一次系純水製造装置と二次系純水製造装置の距離は約2
00mであった。
The distance between the primary pure water production equipment and the secondary pure water production equipment is approximately 2
It was 00m.

二次系純水製造装置は生菌対策としてまず紫外線照射装
置を設け、UV光253.7層mを利用し、系内の性菌
数を出来るだけ少なくした。
The secondary pure water production equipment was first equipped with an ultraviolet irradiation device to prevent viable bacteria, and by utilizing UV light of 253.7 layers, the number of sexual bacteria in the system was reduced as much as possible.

紫外線照射装置の後段には外部で特別のコンデシッニン
グおよび再生を行った強酸性陽イオン交換樹脂と強塩基
性陰イオン交換樹脂とを1:1の割合で混合したカート
リッジ式のカラムに充填したポリシャー装置を設置し、
前記紫外線照射装置の処理水を通水した。なお通水流速
はSV30 hr−1とした。
After the ultraviolet irradiation device, a cartridge-type column was filled with a 1:1 mixture of a strong acidic cation exchange resin and a strong basic anion exchange resin that had been specially condensed and regenerated externally. Install the polisher device,
The treated water from the ultraviolet irradiation device was passed through. Note that the water flow rate was SV30 hr-1.

ポリシャー装置に続いて目開き0.2μm、プラス荷電
を有するプリーツ状カートリッジ濾過体を内蔵するカー
トリッジ型精密濾過器を設置し、前記ポリシャー装置の
処理水を全量、直行流で通水した。また濾過流速は約0
.6nf/ffr−hrとした。
Following the polisher device, a cartridge-type precision filter having a mesh opening of 0.2 μm and containing a pleated cartridge filter body having a positive charge was installed, and the entire amount of the water treated by the polisher device was passed through in a perpendicular flow. Also, the filtration flow rate is approximately 0
.. It was set to 6nf/ffr-hr.

膜分離装置としては限外濾過膜FCV−3010(旭化
成工業株式会社製)を装着したものを用い、前記カート
リッジ型精密濾過器の濾過水を通水した。なお入口圧力
3.0kg/cd、透過水回収率90%で運転した。
As a membrane separation device, a device equipped with an ultrafiltration membrane FCV-3010 (manufactured by Asahi Kasei Industries, Ltd.) was used, and the filtered water of the cartridge-type precision filter was passed through it. The inlet pressure was 3.0 kg/cd and the permeate recovery rate was 90%.

上述のような本発明の二次系純水製造装置において超純
水を製造した時の、膜分離装置の差圧の上昇を第2図A
(実線)に示した。
Figure 2A shows the rise in differential pressure in the membrane separation device when ultrapure water is produced in the secondary pure water production device of the present invention as described above.
(solid line).

第2図Aに示すごと〈実施例1においては通水日数が1
00日を経ても膜分離装置の差圧は初期差圧を保ってお
り、透過膜の薬品洗浄は全く必要がなかった。なおり−
トリッジ型精密濾過器の差圧も通水日数が100を経て
もほとんど上昇しなかった。
As shown in Figure 2A (in Example 1, the number of days of water flow was 1)
Even after 00 days, the differential pressure in the membrane separation device remained at the initial differential pressure, and there was no need to clean the permeable membrane with chemicals. Naori-
The differential pressure of the trige type microfilter also hardly increased even after 100 days of water flow.

比較例 実施例1のフローにおいて、カートリッジ型精密濾過器
を設置しないで従来の処理方法、すなわち紫外線照射装
置、ポリシャー装置、膜分離装置の順に処理した時の膜
分離装置の差圧の上昇を第2図C(点線)に示した。な
お第2図においてグラフCに矢印が付している部分は薬
品洗浄操作を示している。
Comparative Example In the flow of Example 1, the increase in the differential pressure of the membrane separation device when the cartridge-type microfilter is not installed and the conventional treatment method is used, that is, the ultraviolet irradiation device, the polisher device, and the membrane separation device are processed in this order, is as follows. It is shown in Figure 2C (dotted line). In FIG. 2, the portion of graph C with an arrow indicates the chemical cleaning operation.

比較例においては通水日数が約27日を経過すると差圧
が2.2kg/−に上昇し、薬品洗浄の必要が生じた。
In the comparative example, after approximately 27 days of water flow, the differential pressure rose to 2.2 kg/-, necessitating chemical cleaning.

薬品洗浄を実施すると差圧は回復するが、はぼ同様なピ
ッチで差圧が上昇し、約27日間の周期で薬品洗浄の必
要が生じた。
When chemical cleaning was performed, the differential pressure recovered, but the differential pressure rose at a similar pace, making chemical cleaning necessary at intervals of approximately 27 days.

実施例2 カートリッジ型精密濾過器に用いるカートリンジ濾過体
として目開き0.2μm1荷電を有しないプリーツ状カ
ートリッジ濾過体を用いる他は実施例1と同一条件とし
て、膜分離装置の差圧の上昇を測定した。その結果を第
2図B(−点鎖線)に示した。
Example 2 The conditions were the same as in Example 1, except that a pleated cartridge filter with an opening of 0.2 μm and no charge was used as the cartridge filter used in a cartridge type precision filter, and the increase in the differential pressure of the membrane separation device was It was measured. The results are shown in FIG. 2B (-dotted chain line).

実施例2においては通水日数が80日を越えたあたりか
ら膜分離装置の差圧がやや上昇する傾向となっているが
、通水日数が100日を越えても膜分離装置については
薬品洗浄する程差圧が上昇していない、なおり−トリッ
ジ型精密濾過器の差圧についても実施例1と同様に通水
日数が100日を経ても上昇しなかった。
In Example 2, the differential pressure of the membrane separation device tends to increase slightly after the number of days of water flow exceeds 80 days, but even if the number of days of water flow exceeds 100 days, the membrane separation device is not cleaned with chemicals. Similarly to Example 1, the differential pressure of the Naori-Tridge type microfilter did not increase even after 100 days of water flow.

〈発明の効果〉 以上の実施例で明らかな通り、本発明方法によれば二次
系純水製造装置に用いる膜分離装置の圧力損失の上昇傾
向を劇的に軽減させることができ、膜分離装置の洗浄工
程の回数を極めて少なくすることができるので、洗浄工
程に要する超純水の消費量を大幅に軽減することができ
る。
<Effects of the Invention> As is clear from the above examples, the method of the present invention can dramatically reduce the tendency for the pressure loss to increase in the membrane separation device used in the secondary pure water production device, and improve membrane separation. Since the number of cleaning steps for the device can be extremely reduced, the consumption of ultrapure water required for the cleaning step can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様の一例のフローを示す図であ
る。 第2図は実施例1、比較例、実施例2における膜分離装
置の差圧の上昇変化を示すグラフであり、縦軸は通過膜
の差圧(kg/ci)を横軸は通水日数(日)を示す。 1・・・一次純水貯槽   2・・・送水ポンプ3・・
・紫外線殺菌装置  4・・・ポリシャー装置5・・・
カートリッジ型精密濾過器 6・・・膜分離装置    7・・・ユースポイント8
・・・循環ライン 手続補正書
FIG. 1 is a diagram showing a flow of an example of an embodiment of the present invention. Fig. 2 is a graph showing the increase in the differential pressure of the membrane separation device in Example 1, Comparative Example, and Example 2, where the vertical axis is the differential pressure (kg/ci) of the membrane to be passed, and the horizontal axis is the number of days of water flow. (day). 1...Primary pure water storage tank 2...Water pump 3...
・Ultraviolet sterilizer 4...Polisher device 5...
Cartridge type precision filter 6...Membrane separation device 7...Use point 8
...Circulation line procedure amendment form

Claims (1)

【特許請求の範囲】 1、一次系純水製造装置から得られる一次純水を更に処
理して超純水を得るにあたり、当該一次純水を紫外線照
射装置、イオン交換樹脂が充填されたポリシャー装置の
順、あるいはイオン交換樹脂が充填されたポリシャー装
置、紫外線照射装置の順に処理し、次いでカートリッジ
型精密濾過器、透過膜を内蔵する膜分離装置の順に処理
することを特徴とする超純水の製造方法。 2、プラス荷電を有するカートリッジ濾過体を使用した
カートリッジ型精密濾過器を用いる請求項1に記載の超
純水の製造方法。
[Claims] 1. In order to obtain ultrapure water by further processing the primary pure water obtained from the primary pure water production device, the primary pure water is treated with an ultraviolet irradiation device and a polisher filled with ion exchange resin. or a polisher filled with ion exchange resin, an ultraviolet irradiation device, and then a cartridge-type precision filter and a membrane separation device with a built-in permeable membrane. Production method. 2. The method for producing ultrapure water according to claim 1, which uses a cartridge type precision filter using a cartridge filter body having a positive charge.
JP2093896A 1990-04-11 1990-04-11 Ultrapure water production method Expired - Fee Related JPH074592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093896A JPH074592B2 (en) 1990-04-11 1990-04-11 Ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093896A JPH074592B2 (en) 1990-04-11 1990-04-11 Ultrapure water production method

Publications (2)

Publication Number Publication Date
JPH03293087A true JPH03293087A (en) 1991-12-24
JPH074592B2 JPH074592B2 (en) 1995-01-25

Family

ID=14095248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093896A Expired - Fee Related JPH074592B2 (en) 1990-04-11 1990-04-11 Ultrapure water production method

Country Status (1)

Country Link
JP (1) JPH074592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010849A (en) * 2001-07-02 2003-01-14 Kurita Water Ind Ltd Secondary pure water making apparatus
JP2005297562A (en) * 2004-04-06 2005-10-27 Bayer Materialscience Ag Laminate and its manufacturing method
WO2017164361A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Ultrapure water manufacturing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230295027A1 (en) * 2022-03-21 2023-09-21 Taiwan Semiconductor Manufacturing Company Systems and methods for producing ultrapure water for semiconductor fabrication processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119993U (en) * 1984-01-19 1985-08-13 株式会社クラレ Sterile water supply device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119993U (en) * 1984-01-19 1985-08-13 株式会社クラレ Sterile water supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010849A (en) * 2001-07-02 2003-01-14 Kurita Water Ind Ltd Secondary pure water making apparatus
JP2005297562A (en) * 2004-04-06 2005-10-27 Bayer Materialscience Ag Laminate and its manufacturing method
WO2017164361A1 (en) * 2016-03-25 2017-09-28 栗田工業株式会社 Ultrapure water manufacturing system

Also Published As

Publication number Publication date
JPH074592B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JPH0790219B2 (en) Pure water production apparatus and production method
US20160159671A1 (en) Method and apparatus for treating water containing boron
JP5293551B2 (en) Water treatment system
JP2733573B2 (en) Ultrapure water production method and apparatus
CN214571340U (en) Deionized water treatment system
CN110759570A (en) Treatment method and treatment system for dye intermediate wastewater
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
JPS62110795A (en) Device for producing high-purity water
JP4608765B2 (en) Biodegradation method of TOC component
JPS6336890A (en) Apparatus for producing high-purity water
JPH03293087A (en) Production of ultra-pure water
JPH10192851A (en) Water purifying treatment apparatus
JP2002336886A (en) Extrapure water making device and extrapure water making method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
GB2197860A (en) Apparatus for and the method of water purification
CN212954669U (en) Multi-stage filtration water purification system and water purifier
JP2950621B2 (en) Ultrapure water production method
JPH0443705B2 (en)
JP5135654B2 (en) Secondary pure water production equipment
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
KR20210145125A (en) Membrane degassing device cleaning method and ultrapure water production system
JP3231606B2 (en) Ultrapure water production equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees