JP2003010849A - Secondary pure water making apparatus - Google Patents
Secondary pure water making apparatusInfo
- Publication number
- JP2003010849A JP2003010849A JP2001200992A JP2001200992A JP2003010849A JP 2003010849 A JP2003010849 A JP 2003010849A JP 2001200992 A JP2001200992 A JP 2001200992A JP 2001200992 A JP2001200992 A JP 2001200992A JP 2003010849 A JP2003010849 A JP 2003010849A
- Authority
- JP
- Japan
- Prior art keywords
- water
- pure water
- ion exchange
- secondary pure
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は二次純水製造装置に
係り、特に、二次純水製造装置の給水ポンプや熱交換器
等を構成する金属材料から発生する金属コロイドないし
微粒子を捕捉する手段を有し、これにより高純度の超純
水を製造することができる二次純水製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary pure water producing apparatus, and more particularly to capturing metal colloids or fine particles generated from a metal material constituting a water supply pump, a heat exchanger or the like of the secondary pure water producing apparatus. The present invention relates to a secondary pure water producing apparatus having a means and capable of producing high-purity ultrapure water.
【0002】[0002]
【従来の技術】半導体のウエハ洗浄水として用いられる
超純水の製造システムの構成例を図2に示す。2. Description of the Related Art FIG. 2 shows a structural example of a system for producing ultrapure water used as water for cleaning semiconductor wafers.
【0003】図2に示すように、原水(工業用水、市
水、井水等)は、凝集、加圧浮上(沈殿)、濾過装置等
よりなる前処理装置1で、懸濁物質やコロイド物質が除
去された後、逆浸透膜分離装置、脱気装置及びイオン交
換装置(混床式又は4床5塔式)を備える一次純水製造
装置2で、イオンや有機成分が除去され、一次純水が製
造される。一次純水はサブタンクを経て、二次純水製造
装置(一般に「サブシステム」と称される。)3の給水
ポンプにより、熱交換器、低圧紫外線(UV)酸化装
置、非再生型混床式イオン交換樹脂塔等のイオン交換純
水装置及び限外濾過(UF)膜分離装置に順次通水さ
れ、水の純度がより一層高められ超純水が製造される。
この二次純水製造装置3において、低圧UV酸化装置で
は、低圧UVランプより出される185nmのUVによ
りTOCを有機酸さらにはCO2にまで分解する。生成
した有機酸及びCO2は後段のイオン交換樹脂で除去さ
れる。UF膜分離装置では、微小粒子が除去されイオン
交換樹脂の流出粒子も除去される。As shown in FIG. 2, raw water (industrial water, city water, well water, etc.) is a pretreatment device 1 consisting of coagulation, pressure floating (precipitation), a filtration device, etc. After being removed, the primary pure water producing device 2 equipped with a reverse osmosis membrane separation device, a degassing device and an ion exchange device (mixed bed type or 4-bed 5 tower type) removes ions and organic components, Water is produced. The primary pure water passes through the sub-tank, and then the heat exchanger, low-pressure ultraviolet (UV) oxidizer, non-regeneration type mixed bed type is supplied by the water supply pump of the secondary pure water producing device (generally called “subsystem”) 3. Water is sequentially passed through an ion-exchange pure water device such as an ion-exchange resin tower and an ultrafiltration (UF) membrane separation device to further raise the purity of water to produce ultrapure water.
In the secondary pure water producing apparatus 3, the low pressure UV oxidation apparatus decomposes TOC into organic acid and further into CO 2 by UV of 185 nm emitted from a low pressure UV lamp. The generated organic acid and CO 2 are removed by the ion exchange resin in the subsequent stage. In the UF membrane separator, fine particles are removed and outflow particles of the ion exchange resin are also removed.
【0004】二次純水製造装置3からの超純水はユース
ポイントに送給され、余剰の超純水はサブタンクに戻さ
れ、再利用される。The ultrapure water from the secondary pure water producing apparatus 3 is sent to the use point, and the surplus ultrapure water is returned to the sub tank and reused.
【0005】なお、図2に示す前処理装置1、一次純水
製造装置2及び二次純水製造装置3は、いずれも各装置
の一例であって、各装置の構成は何ら図示のものに限定
されない。二次純水製造装置3は一般に、給水ポンプ、
熱交換器、UV照射装置、イオン交換装置、膜濾過装置
等で構成される。The pretreatment apparatus 1, the primary pure water producing apparatus 2 and the secondary pure water producing apparatus 3 shown in FIG. 2 are examples of the respective apparatuses, and the configurations of the respective apparatuses are not shown. Not limited. The secondary deionized water producing device 3 is generally a water supply pump,
It is composed of a heat exchanger, a UV irradiation device, an ion exchange device, a membrane filtration device, and the like.
【0006】[0006]
【発明が解決しようとする課題】二次純水製造装置3で
は、給水ポンプ、熱交換器、UV照射装置等において、
その水流接触面を構成する金属材料から、水流の影響、
特に流量の変動の影響で金属(Fe,Cr,Ni,Zn
等)のコロイドないし微粒子状物が発生する。発生した
金属コロイドないし微粒子は、後段のUF膜分離装置等
の膜濾過装置で捕捉されるが、UF膜分離装置の膜面に
捕捉された金属コロイドないし微粒子は経時により徐々
にイオン化して、水中に溶解してくる場合がある。この
場合には、溶解した金属イオンにより、得られる超純水
の残留イオン量が増大し、水質が低下する。In the secondary pure water production system 3, the water supply pump, the heat exchanger, the UV irradiation device, etc.
The influence of the water flow from the metal material that constitutes the water flow contact surface,
Especially due to the influence of fluctuations in flow rate, metals (Fe, Cr, Ni, Zn
Etc.) colloid or fine particles are generated. The generated metal colloids or fine particles are captured by a membrane filtration device such as a UF membrane separation device at a later stage, but the metal colloids or fine particles captured on the membrane surface of the UF membrane separation device are gradually ionized with the passage of time in water. May dissolve in. In this case, the dissolved metal ions increase the amount of residual ions in the obtained ultrapure water, and deteriorate the water quality.
【0007】本発明は上記従来の問題点を解決し、二次
純水製造装置の給水ポンプ、熱交換器、UV照射装置等
から発生した金属のコロイドや微粒子による水質低下の
問題がなく、残留イオン濃度10ng/L(ppt)以
下の高水質の超純水を安定に得ることができる二次純水
製造装置を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and there is no problem of deterioration of water quality due to metal colloids or fine particles generated from a water supply pump, a heat exchanger, a UV irradiation device, etc. of a secondary deionized water producing apparatus, and it remains. It is an object of the present invention to provide a secondary pure water production apparatus capable of stably obtaining high-quality ultrapure water having an ion concentration of 10 ng / L (ppt) or less.
【0008】[0008]
【課題を解決するための手段】本発明の二次純水製造装
置は、少なくとも上流側に給水ポンプを有し、下流側に
膜濾過装置を有する二次純水製造装置において、該給水
ポンプと膜濾過装置との間に、粒子径5μm以上の微粒
子を除去可能なイオン交換能を有するフィルタを設置し
たことを特徴とする。A secondary pure water producing apparatus of the present invention is a secondary pure water producing apparatus having at least an upstream side water supply pump and a downstream side membrane filtration device. It is characterized in that a filter having an ion exchange ability capable of removing fine particles having a particle diameter of 5 μm or more is installed between the membrane filtration device.
【0009】膜濾過装置の前段に、粒子経5μm以上の
微粒子を除去可能なイオン交換能を有するフィルタ(以
下「微粒子除去・イオン交換能フィルタ」と称す場合が
ある。)を設けることにより、給水ポンプ、熱交換器、
UV照射装置等で発生した金属コロイドないし微粒子を
膜濾過装置に流入する前に捕捉して除去することができ
る。また、このフィルタで捕捉された金属コロイドない
し微粒子がイオン化しても、フィルタのイオン交換能で
吸着することができるため、水中へのイオンの溶出を防
止することができる。Water is supplied by providing a filter having an ion exchange capacity capable of removing fine particles having a particle diameter of 5 μm or more (hereinafter sometimes referred to as “fine particle removing / ion exchange capacity filter”) in front of the membrane filtration device. Pump, heat exchanger,
The metal colloid or fine particles generated by the UV irradiation device or the like can be captured and removed before flowing into the membrane filtration device. Further, even if the metal colloid or fine particles captured by this filter are ionized, they can be adsorbed by the ion exchange ability of the filter, so that the elution of ions into water can be prevented.
【0010】本発明において、二次純水製造装置は、給
水ポンプ、熱交換器、UV照射装置及びUF膜分離装置
をこの順で配置することが好ましい。In the present invention, it is preferable that the secondary deionized water producing apparatus has a water supply pump, a heat exchanger, a UV irradiation device and a UF membrane separation device arranged in this order.
【0011】また、微粒子除去・イオン交換能フィルタ
としては、イオン交換基、好ましくはカチオン交換基を
導入した精密濾過(MF)膜が好適である。A microfiltration (MF) membrane having an ion-exchange group, preferably a cation-exchange group, introduced therein is suitable as the particulate removal / ion-exchange capacity filter.
【0012】[0012]
【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.
【0013】図1は本発明の二次純水製造装置の実施の
形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of a secondary pure water producing apparatus of the present invention.
【0014】この二次純水製造装置で処理される一次純
水は、図2に示す如く、原水(工業用水、市水、井水
等)を凝集、加圧浮上(沈殿)、濾過装置(UF膜濾過
装置又はMF膜濾過装置)等よりなる前処理装置1及び
一次純水製造装置2で処理して得られた一次純水であ
る。As shown in FIG. 2, the primary pure water treated in this secondary pure water producing apparatus is a condensing of raw water (industrial water, city water, well water, etc.), pressure floating (precipitation), and a filtering device ( The primary pure water is obtained by processing with a pretreatment device 1 and a primary pure water production device 2 each including a UF membrane filtration device or an MF membrane filtration device).
【0015】前処理装置及び一次純水製造装置の構成に
は特に制限はなく、一次純水製造装置としては、逆浸透
(RO)膜分離装置、イオン交換装置、非再生式電気脱
塩装置などの脱塩装置;活性炭、合成吸着樹脂などの吸
着装置;UV酸化装置などのTOC分解装置;膜式脱気
装置、真空式脱気装置、触媒式脱気装置などの脱気装
置;殺菌装置などを任意の順で配置したものを用いるこ
とができる。There are no particular restrictions on the configurations of the pretreatment device and the primary pure water producing device, and examples of the primary pure water producing device include a reverse osmosis (RO) membrane separation device, an ion exchange device, and a non-regenerative electric desalination device. Desalination equipment; Adsorption equipment such as activated carbon and synthetic adsorption resin; TOC decomposition equipment such as UV oxidation equipment; Membrane deaerator, vacuum deaerator, catalytic deaerator and other deaerator; sterilizer, etc. Can be used in any order.
【0016】このような一次純水製造装置により、好ま
しくは比抵抗10MΩ・cm以上の一次純水を製造し、
二次純水製造装置に導入する。With such a primary pure water producing apparatus, preferably, primary pure water having a specific resistance of 10 MΩ · cm or more is produced,
Installed in the secondary pure water production system.
【0017】図1に示す二次純水製造装置は、一次純水
をサブタンク10に受け、給水ポンプ11で微粒子除去
・イオン交換能フィルタ20、熱交換器12、低圧UV
酸化装置11、非再生型混床式イオン交換装置14及び
UF膜分離装置15で順次処理し、得られた超純水をユ
ースポイント16に送給し、余剰水をサブタンク10に
戻すものである。The secondary pure water producing apparatus shown in FIG. 1 receives primary pure water in a sub tank 10 and a water supply pump 11 for removing fine particles and an ion exchange filter 20, a heat exchanger 12, and a low pressure UV.
The ultrapure water thus obtained is sequentially processed by the oxidizer 11, the non-regeneration type mixed-bed ion exchange device 14 and the UF membrane separation device 15, and the obtained ultrapure water is sent to the use point 16 and excess water is returned to the subtank 10. .
【0018】サブタンク10は通常SUS又はFRP製
である。給水ポンプ11には特に制限はない。熱交換器
12としてはプレート型が一般的であるが何らこれに限
定されるものではない。低圧UV酸化装置13として
は、波長170nm以上、好ましくは180〜200n
mのUVを照射して純水中のTOCを分解するものであ
れば良く、特に制限はない。また、非再生型混床式イオ
ン交換装置14及びUF膜分離装置15としても、特に
制限はなく、通常の二次純水製造装置に用いられている
ものを使用することができる。The sub tank 10 is usually made of SUS or FRP. The water supply pump 11 is not particularly limited. A plate type is generally used as the heat exchanger 12, but the heat exchanger 12 is not limited to this. The low-pressure UV oxidizer 13 has a wavelength of 170 nm or more, preferably 180 to 200 n.
There is no particular limitation as long as it can irradiate m of UV to decompose TOC in pure water. Further, the non-regeneration type mixed bed ion exchange device 14 and the UF membrane separation device 15 are not particularly limited, and those used in a normal secondary pure water production device can be used.
【0019】微粒子除去・イオン交換能フィルタ20
は、微粒子5μm以上を微粒子を100%捕捉すること
ができ、かつイオン交換能を有するものであれば良く、
材質、型式等には特に制限はない。微粒子除去・イオン
交換能フィルタ20としては、市販の、イオン交換基を
MF膜等の膜素材に導入したものを用いることができ
る。このフィルタは、MF膜の細孔内にイオン交換基が
存在すること以外は、膜型式等において通常のMF膜フ
ィルタと同様であり、プリーツ型、中空糸型などが市販
されている。フィルタに導入されるイオン交換基はカチ
オン交換基(例えば水素イオン型)でもアニオン交換基
(例えば水酸化イオン型)でも良いが、主に金属イオン
を吸着するためにカチオン交換基が好ましい。Particle removal / ion exchange filter 20
Is only required to be capable of capturing 100% of fine particles of 5 μm or more and having an ion exchange ability,
There are no particular restrictions on the material or model. As the particle removal / ion exchange capacity filter 20, a commercially available one in which an ion exchange group is introduced into a membrane material such as an MF membrane can be used. This filter is similar to a normal MF membrane filter in terms of membrane type and the like except that an ion-exchange group is present in the pores of the MF membrane, and a pleat type, a hollow fiber type and the like are commercially available. The ion exchange group introduced into the filter may be a cation exchange group (for example, hydrogen ion type) or an anion exchange group (for example, hydroxide ion type), but a cation exchange group is preferable because it mainly adsorbs metal ions.
【0020】なお、このフィルタ20は、粒子径0.1
μmまでの極微粒子をも除去し得るUF膜機能を有する
ものであっても良いが、過度に細かい微粒子まで除去す
るフィルタでは、微粒子の除去による水の純度向上の面
からは好ましい反面、通水時の圧力損失が大きくなり、
装置が大型化する問題がある。The filter 20 has a particle size of 0.1.
Although it may have a UF membrane function capable of removing ultrafine particles up to μm, a filter that removes excessively fine particles is preferable from the viewpoint of improving the water purity by removing the particles, but the water passage. Pressure loss increases,
There is a problem that the device becomes large.
【0021】図1の二次純水製造装置では、このような
微粒子除去・イオン交換能フィルタ20を給水ポンプ1
1と熱交換器12との間に設けることにより、給水ポン
プ11等から発生する金属コロイドないし微粒子をその
フィルタ機能で捕捉すると共に、イオン化した金属をそ
のイオン交換能で吸着して保持することにより、後段の
装置への金属及び金属イオンの流出を防止することがで
きる。In the secondary pure water producing apparatus of FIG. 1, such a fine particle removing / ion exchange capacity filter 20 is provided in the water supply pump 1.
By providing between 1 and the heat exchanger 12, the metal colloid or fine particles generated from the water supply pump 11 or the like is captured by its filter function, and the ionized metal is adsorbed and retained by its ion exchange capacity. It is possible to prevent the outflow of metal and metal ions to the subsequent device.
【0022】この微粒子除去・イオン交換能フィルタ2
0は定期的に、例えば所定時間の通水毎、或いは所定量
の通水毎に新品と交換するか或いは、圧力損失が所定の
値に上昇した場合に新品と交換する。This particulate removal / ion exchange capacity filter 2
0 is replaced with a new one on a regular basis, for example, every time a predetermined amount of water is passed or a predetermined amount of water is passed, or when the pressure loss rises to a predetermined value.
【0023】図1に示す二次純水製造装置は、本発明の
実施の形態の一例を示すものであって本発明はその要旨
を超えない限り、何ら図示のものに限定されるものでは
ない。The secondary pure water producing apparatus shown in FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to what is shown in the drawings as long as the gist thereof is not exceeded. .
【0024】例えば、微粒子除去・イオン交換能フィル
タ20は、給水ポンプ11とUF膜分離装置15との間
に設置されていれば良く、図1において、熱交換器12
と低圧UV酸化装置13との間であっても良い。また、
低圧UV酸化装置13と非再生型混床式イオン交換装置
14との間、或いは非再生型混床式イオン交換装置14
とUF膜分離装置15との間に設けられていても良い。For example, the particulate removal / ion exchange capacity filter 20 may be installed between the water feed pump 11 and the UF membrane separation device 15, and in FIG.
Between the low pressure UV oxidation device 13 and the low pressure UV oxidation device 13. Also,
Between the low-pressure UV oxidation device 13 and the non-regeneration type mixed-bed ion exchange device 14 or the non-regeneration type mixed-bed ion exchange device 14
And the UF membrane separation device 15 may be provided.
【0025】また、図1に示す如く、微粒子除去・イオ
ン交換能フィルタ20に常時通水が行われるようフィル
タ20を設ける他、給水ポンプ11とUF膜分離装置1
5との間の任意の箇所に、微粒子除去・イオン交換能フ
ィルタ20を有するバイパスラインを設け、製造された
超純水中に金属又は金属イオンのリークが検出されたと
きにのみ、或いは水流の変動があるときにのみ微粒子除
去・イオン交換能フィルタ20に通水して処理を行うよ
うにしても良い。Further, as shown in FIG. 1, in addition to providing the filter 20 so that water is always passed through the particulate removal / ion exchange capacity filter 20, the water supply pump 11 and the UF membrane separation device 1 are provided.
5 is provided with a bypass line having a particle removal / ion exchange capacity filter 20 at an arbitrary position, and only when a leak of metal or metal ions is detected in the produced ultrapure water, or when a water flow is detected. The treatment may be performed by passing water through the fine particle removal / ion exchange capacity filter 20 only when there is a change.
【0026】更に、二次純水製造装置の装置構成につい
ても何ら図1に示すものに限定されない。一般に二次純
水製造装置は、給水ポンプ、熱交換器、低圧UV酸化装
置又は殺菌装置といったUV照射装置、非再生型混床式
イオン交換装置、UF膜分離装置又はMF膜分離装置等
の膜濾過装置で構成されるが、更に膜式脱気装置、真空
式脱気装置等の脱気装置、RO膜分離装置、電気脱塩装
置等の脱塩装置が設けられていても良い。Further, the apparatus structure of the secondary pure water producing apparatus is not limited to that shown in FIG. Generally, the secondary pure water producing device is a membrane such as a water supply pump, a heat exchanger, a UV irradiation device such as a low-pressure UV oxidation device or a sterilization device, a non-regenerative mixed bed ion exchange device, a UF membrane separation device or an MF membrane separation device. Although it is composed of a filtration device, it may be further provided with a degassing device such as a membrane degassing device, a vacuum degassing device, an RO membrane separating device, an electric desalting device, or the like.
【0027】このような本発明の二次純水製造装置によ
れば、金属イオン濃度を5ng/L以下に抑えて残留イ
オン濃度10ng/L以下で比抵抗18.0MΩ・cm
以上の高純度超純水を安定に製造することができ、例え
ばウエハ上の汚染管理基準値として、金属原子(Fe,
Cr,Ni,Zn等)数109atm/cm2以下が要
求されるウエハ洗浄機の洗浄水給水ライン等に有効に適
用することができる。According to the secondary pure water producing apparatus of the present invention, the metal ion concentration is suppressed to 5 ng / L or less, the residual ion concentration is 10 ng / L or less, and the specific resistance is 18.0 MΩ · cm.
The above high-purity ultrapure water can be stably produced. For example, as a contamination control reference value on a wafer, metal atoms (Fe,
(Cr, Ni, Zn, etc.) 10 9 atm / cm 2 or less is required, and it can be effectively applied to a cleaning water supply line of a wafer cleaning machine.
【0028】[0028]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.
【0029】実施例1
市水を第1段目のRO膜分離装置、第2段目のRO膜分
離装置及びイオン交換樹脂塔に順次通水して処理して得
られた水(比抵抗16.0〜17.0MΩ・cm)を1
m3容量のFRP製タンクに受け、この水を原水とし
て、図1に示す二次純水製造装置で処理を行った。Example 1 Water obtained by sequentially passing city water through a first-stage RO membrane separator, a second-stage RO membrane separator, and an ion exchange resin tower (specific resistance 16 0.0 to 17.0 MΩ · cm) is 1
The water was received in an m 3 capacity FRP tank, and this water was treated as raw water in the secondary pure water production apparatus shown in FIG.
【0030】各装置の仕様は次の通りである。
給水ポンプ:帝国ポンプ社製渦巻型ポンプ
微粒子除去・イオン交換能フィルタ:粒子径5μm以上
の微粒子を100%捕捉し得る、スルホン型のカチオン
交換基をH型としたフィルタ
熱交換器:SUS316使用プレート型熱交換器
低圧UV酸化装置:日本フォトサイエンス社製AUV型
混床式イオン交換装置:栗田工業(株)製CC30SS
(イオン交換樹脂量72L)
UF膜分離装置:栗田工業(株)製KU型The specifications of each device are as follows. Water supply pump: spiral pump manufactured by Teikoku Pump Co., Ltd. Fine particle removal / ion exchange filter: 100% capture of fine particles with a particle size of 5 μm or more, H-type sulfonation type cation exchange group Heat exchanger: SUS316 plate Type heat exchanger Low pressure UV oxidizer: AUV type mixed bed type ion exchanger manufactured by Nippon Photoscience Co., Ltd .: CC30SS manufactured by Kurita Water Industries Ltd.
(Ion exchange resin amount 72L) UF membrane separator: KU type manufactured by Kurita Water Industries Ltd.
【0031】原水を3m3/hrの一定流量で通水する
安定運転時と、原水を3m3/hrで5分間通水した後
2m3/hrで15分間通水し、この流量変動を繰り返
す変動運転時(変動運転開始から5時間後及び24時間
後)とのそれぞれについて、各部の水のT−Fe濃度
(イオン状の鉄及び不溶性の鉄を含む全鉄濃度)を測定
し、結果を表1に示した。[0031] and during stable operation for passing water at a constant flow rate of 3m 3 / hr raw water, for 15 minutes through the water at 2m 3 / hr after the raw water for 5 minutes through the water at 3m 3 / hr, repeat this flow variation The T-Fe concentration (total iron concentration including ionic iron and insoluble iron) in the water of each part was measured for each of the variable operation (5 hours and 24 hours after the start of the variable operation), and the result was obtained. The results are shown in Table 1.
【0032】比較例1
実施例1において、微粒子除去・イオン交換能フィルタ
を設けなかったこと以外は同様にして、安定運転時と変
動運転時のそれぞれについて、各部の水のT−Fe濃度
を調べ、結果を表1に示した。Comparative Example 1 In the same manner as in Example 1, except that the filter for removing fine particles and the ion exchange capacity was not provided, the T-Fe concentration of water in each part was examined for both stable operation and variable operation. The results are shown in Table 1.
【0033】[0033]
【表1】 [Table 1]
【0034】表1より次のことが明らかである。The following is clear from Table 1.
【0035】即ち、微粒子除去・イオン交換能フィルタ
を設けていない比較例1では、給水ポンプから、Feコ
ロイドないし微粒子が発生し、最後段のUF膜分離装置
のUF膜で捕捉される。このため、二次純水製造装置内
でのT−Fe濃度は安定しているが、UF膜からイオン
性のFeが溶出するためUF膜分離装置の出口水(超純
水)の水質は安定せず、特に変動運転時にはT−Fe濃
度が高くなる。That is, in Comparative Example 1 in which the particulate removal / ion exchange capacity filter is not provided, Fe colloids or particulates are generated from the water supply pump and are captured by the UF membrane of the last stage UF membrane separator. Therefore, the T-Fe concentration in the secondary pure water production apparatus is stable, but the ionic Fe is eluted from the UF membrane, so the water quality of the outlet water (ultra pure water) of the UF membrane separation apparatus is stable. Not doing so, the T-Fe concentration becomes high especially during variable operation.
【0036】これに対して、微粒子除去・イオン交換能
フィルタを設けた実施例1では、このフィルタで給水ポ
ンプからのFeコロイドないし微粒子が捕捉され、これ
がイオン化しても水中に溶出することはないため、熱交
換器以降のT−Fe濃度は比較例1に比べて格段に低
く、UF膜分離装置からのFeイオンの溶出の問題もな
いため、UF膜分離装置の出口水(超純水)の水質も著
しく良好で変動運転時でも安定している。On the other hand, in Example 1 in which the filter for removing fine particles and the ion exchange capacity is provided, the Fe colloid or fine particles from the feed water pump are captured by this filter and are not eluted into water even when they are ionized. Therefore, the T-Fe concentration after the heat exchanger is significantly lower than that of Comparative Example 1, and there is no problem of elution of Fe ions from the UF membrane separator, so the outlet water of the UF membrane separator (ultra pure water) The water quality is extremely good and stable even during fluctuating operation.
【0037】なお、実施例1で得られた超純水の残留イ
オン濃度は安定運転時も変動運転時も10ng/L以下
であり、比抵抗18.0MΩ・cm以上の高水質の超純
水を得ることができた。The residual ion concentration of the ultrapure water obtained in Example 1 was 10 ng / L or less in both stable operation and variable operation, and the high-quality ultrapure water having a specific resistance of 18.0 MΩ · cm or more was used. I was able to get
【0038】[0038]
【発明の効果】以上詳述した通り、本発明の二次純水製
造装置によれば、膜濾過装置の前段に微粒子除去・イオ
ン交換能フィルタを設けることにより、給水ポンプ、熱
交換器、UV照射装置等で発生した金属コロイドないし
微粒子を効率的に捕捉して除去することができ、しか
も、捕捉された金属コロイドないし微粒子がイオン化し
た場合でも、フィルタのイオン交換能で吸着して保持す
ることができるため、水中へのイオンの溶出も防止する
ことができる。As described in detail above, according to the secondary deionized water producing apparatus of the present invention, by providing the fine particle removing / ion exchange capacity filter in the preceding stage of the membrane filtration apparatus, a water feed pump, a heat exchanger, a UV It is possible to efficiently capture and remove metal colloids or fine particles generated by an irradiation device, etc., and even if the captured metal colloids or fine particles are ionized, they are adsorbed and held by the ion exchange capacity of the filter. Therefore, elution of ions into water can be prevented.
【0039】このため、本発明によればこの金属コロイ
ドないし微粒子によるイオンリークを防止して、残留イ
オン濃度10ng/L以下、比抵抗18.0MΩ・cm
以上の高水質の超純水を、水流の変動等に影響されるこ
となく安定に得ることができる。Therefore, according to the present invention, the ion leakage due to the metal colloid or fine particles is prevented, the residual ion concentration is 10 ng / L or less, and the specific resistance is 18.0 MΩ · cm.
The above high-quality ultrapure water can be stably obtained without being affected by fluctuations in the water flow.
【図1】本発明の二次純水製造装置の実施の形態を示す
系統図である。FIG. 1 is a system diagram showing an embodiment of a secondary pure water producing apparatus of the present invention.
【図2】従来の超純水製造システムを示す系統図であ
る。FIG. 2 is a system diagram showing a conventional ultrapure water production system.
1 前処理装置 2 一次純水製造装置 3 二次純水製造装置 10 タンク 11 給水ポンプ 12 熱交換器 13 低圧UV酸化装置 14 非再生型混床式イオン交換装置 15 UF膜分離装置 16 ユースポイント 20 微粒子除去・イオン交換能フィルタ 1 Pretreatment device 2 Primary pure water production equipment 3 Secondary pure water production equipment 10 tanks 11 Water supply pump 12 heat exchanger 13 Low pressure UV oxidizer 14 Non-regeneration type mixed bed type ion exchange device 15 UF membrane separator 16 Use points 20 Particle removal / ion exchange filter
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 C02F 9/00 502G 502J 502K 502N 503 503B 504 504B 504E Fターム(参考) 4D006 GA06 GA07 JA53A JA56A JA66A JA67A JA67C KA01 KA72 KB04 KB11 KB14 PA01 PB02 PC02 4D025 AA04 AB21 AB22 AB23 BA08 BB01 DA04 DA10 4D037 AA03 AB11 BA18 CA02 CA03 CA15 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 9/00 C02F 9/00 502G 502J 502K 502N 503 503B 504 504B 504E F term (reference) 4D006 GA06 GA07 JA53A JA56A JA66A JA67A JA67C KA01 KA72 KB04 KB11 KB14 PA01 PB02 PC02 4D025 AA04 AB21 AB22 AB23 BA08 BB01 DA04 DA10 4D037 AA03 AB11 BA18 CA02 CA03 CA15
Claims (4)
下流側に膜濾過装置を有する二次純水製造装置におい
て、該給水ポンプと膜濾過装置との間に、粒子径5μm
以上の微粒子を除去可能なイオン交換能を有するフィル
タを設置したことを特徴とする二次純水製造装置。1. A water supply pump is provided at least on the upstream side,
In a secondary pure water producing apparatus having a membrane filtration device on the downstream side, a particle diameter of 5 μm is provided between the water supply pump and the membrane filtration device.
An apparatus for producing secondary pure water, characterized in that a filter having an ion exchange capability capable of removing the above fine particles is installed.
器、紫外線照射装置、非再生型イオン交換装置、及び限
外濾過膜分離装置をこの順で配置したことを特徴とする
二次純水製造装置。2. The secondary pure water according to claim 1, wherein a water supply pump, a heat exchanger, an ultraviolet irradiation device, a non-regeneration type ion exchange device, and an ultrafiltration membrane separation device are arranged in this order. Manufacturing equipment.
イオン交換基を導入した精密濾過膜であることを特徴と
する二次純水製造装置。3. The secondary pure water producing apparatus according to claim 1 or 2, wherein the filter is a microfiltration membrane into which an ion exchange group is introduced.
チオン交換基であることを特徴とする二次純水製造装
置。4. The secondary pure water production apparatus according to claim 3, wherein the ion exchange group is a cation exchange group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001200992A JP5135654B2 (en) | 2001-07-02 | 2001-07-02 | Secondary pure water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001200992A JP5135654B2 (en) | 2001-07-02 | 2001-07-02 | Secondary pure water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003010849A true JP2003010849A (en) | 2003-01-14 |
JP5135654B2 JP5135654B2 (en) | 2013-02-06 |
Family
ID=19038024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001200992A Expired - Fee Related JP5135654B2 (en) | 2001-07-02 | 2001-07-02 | Secondary pure water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5135654B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330592C (en) * | 2003-03-14 | 2007-08-08 | 栗田工业株式会社 | Hyperpure water manufacturing systems |
JP2009112944A (en) * | 2007-11-06 | 2009-05-28 | Kurita Water Ind Ltd | Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members |
JP2014217830A (en) * | 2013-04-11 | 2014-11-20 | 栗田工業株式会社 | Ultrapure water production system and ultrapure water production and supply system |
JP2017172932A (en) * | 2016-03-25 | 2017-09-28 | 栗田工業株式会社 | Plate type heat exchanger and ultrapure water producing apparatus |
WO2020105494A1 (en) * | 2018-11-22 | 2020-05-28 | 野村マイクロ・サイエンス株式会社 | Starting up method for ultrapure water producing device and ultrapure water producing device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61167404A (en) * | 1985-01-18 | 1986-07-29 | Yuasa Battery Co Ltd | Separation module |
JPH0217994A (en) * | 1988-07-07 | 1990-01-22 | Toshiba Corp | Ultrapure water producer |
JPH02222763A (en) * | 1989-02-21 | 1990-09-05 | Shinko Pantec Co Ltd | Ultrapure water generator using heated deaerator |
JPH02280819A (en) * | 1989-04-24 | 1990-11-16 | Asahi Chem Ind Co Ltd | Multifunctional module |
JPH02293083A (en) * | 1989-05-02 | 1990-12-04 | Asahi Chem Ind Co Ltd | Production of ultrapure water |
JPH03293087A (en) * | 1990-04-11 | 1991-12-24 | Japan Organo Co Ltd | Production of ultra-pure water |
JPH0679273A (en) * | 1992-09-02 | 1994-03-22 | Hitachi Plant Eng & Constr Co Ltd | Ultra-pure water producing device |
JPH07195073A (en) * | 1994-01-06 | 1995-08-01 | Japan Organo Co Ltd | Method for washing ultra-pure water producing apparatus |
-
2001
- 2001-07-02 JP JP2001200992A patent/JP5135654B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61167404A (en) * | 1985-01-18 | 1986-07-29 | Yuasa Battery Co Ltd | Separation module |
JPH0217994A (en) * | 1988-07-07 | 1990-01-22 | Toshiba Corp | Ultrapure water producer |
JPH02222763A (en) * | 1989-02-21 | 1990-09-05 | Shinko Pantec Co Ltd | Ultrapure water generator using heated deaerator |
JPH02280819A (en) * | 1989-04-24 | 1990-11-16 | Asahi Chem Ind Co Ltd | Multifunctional module |
JPH02293083A (en) * | 1989-05-02 | 1990-12-04 | Asahi Chem Ind Co Ltd | Production of ultrapure water |
JPH03293087A (en) * | 1990-04-11 | 1991-12-24 | Japan Organo Co Ltd | Production of ultra-pure water |
JPH0679273A (en) * | 1992-09-02 | 1994-03-22 | Hitachi Plant Eng & Constr Co Ltd | Ultra-pure water producing device |
JPH07195073A (en) * | 1994-01-06 | 1995-08-01 | Japan Organo Co Ltd | Method for washing ultra-pure water producing apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330592C (en) * | 2003-03-14 | 2007-08-08 | 栗田工业株式会社 | Hyperpure water manufacturing systems |
JP2009112944A (en) * | 2007-11-06 | 2009-05-28 | Kurita Water Ind Ltd | Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members |
JP2014217830A (en) * | 2013-04-11 | 2014-11-20 | 栗田工業株式会社 | Ultrapure water production system and ultrapure water production and supply system |
JP2017172932A (en) * | 2016-03-25 | 2017-09-28 | 栗田工業株式会社 | Plate type heat exchanger and ultrapure water producing apparatus |
WO2020105494A1 (en) * | 2018-11-22 | 2020-05-28 | 野村マイクロ・サイエンス株式会社 | Starting up method for ultrapure water producing device and ultrapure water producing device |
JP2020081957A (en) * | 2018-11-22 | 2020-06-04 | 野村マイクロ・サイエンス株式会社 | Start-up method of ultrapure water production device, and ultrapure water production device |
JP7171386B2 (en) | 2018-11-22 | 2022-11-15 | 野村マイクロ・サイエンス株式会社 | Method for starting up ultrapure water production device and ultrapure water production device |
Also Published As
Publication number | Publication date |
---|---|
JP5135654B2 (en) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6304259B2 (en) | Ultrapure water production equipment | |
JP5045099B2 (en) | Ultrapure water production apparatus and operation method of ultrapure water production apparatus | |
JP6634918B2 (en) | Ultrapure water production system | |
JP5733351B2 (en) | Method and apparatus for treating boron-containing water | |
JP2009028695A (en) | Apparatus and method for manufacturing pure water | |
JP4599803B2 (en) | Demineralized water production equipment | |
JP2005000828A (en) | Pure water production apparatus | |
JP5135654B2 (en) | Secondary pure water production equipment | |
JPS62110795A (en) | Device for producing high-purity water | |
JP2005246126A (en) | Device and method for manufacturing pure water or ultra pure water | |
JP3985500B2 (en) | Ultrapure water supply method | |
JPH09253638A (en) | Ultrapure water making apparatus | |
TW201942067A (en) | Ultrapure water production system and ultrapure water production method | |
WO2022113431A1 (en) | Ultrapure water production system and ultrapure water production method | |
JP3732903B2 (en) | Ultrapure water production equipment | |
JP2002336886A (en) | Extrapure water making device and extrapure water making method | |
KR20210145125A (en) | Membrane degassing device cleaning method and ultrapure water production system | |
JP3231606B2 (en) | Ultrapure water production equipment | |
JPH074592B2 (en) | Ultrapure water production method | |
JP2002307080A (en) | Apparatus for producing ultrapure water | |
JP2015231609A (en) | Method for producing ultrapure water | |
JP2004154713A (en) | Ultrapure water manufacturing apparatus | |
WO2019188964A1 (en) | Ultrapure water production system and ultrapure water production method | |
JP2008086854A (en) | Pure water production apparatus | |
JPH0632817B2 (en) | Treatment method of terminal reverse osmosis membrane device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121029 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |