JPS62110795A - Device for producing high-purity water - Google Patents

Device for producing high-purity water

Info

Publication number
JPS62110795A
JPS62110795A JP60248413A JP24841385A JPS62110795A JP S62110795 A JPS62110795 A JP S62110795A JP 60248413 A JP60248413 A JP 60248413A JP 24841385 A JP24841385 A JP 24841385A JP S62110795 A JPS62110795 A JP S62110795A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
membrane separator
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60248413A
Other languages
Japanese (ja)
Other versions
JPH0638953B2 (en
Inventor
Kiyohiko Inagaki
稲垣 清彦
Masabumi Imaizumi
今泉 正文
Koichi Yabe
矢部 江一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP60248413A priority Critical patent/JPH0638953B2/en
Publication of JPS62110795A publication Critical patent/JPS62110795A/en
Publication of JPH0638953B2 publication Critical patent/JPH0638953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently produce high-purity water by using a disinfectant, a means for adding a pH regulator, the first reverse osmosis membrane separator, an activated carbon adsorption tower, the second reverse osmosis membrane separator, etc., to treat raw water. CONSTITUTION:A disinfectant and/or a pH regulator are added while raw water pretreated with activated carbon, etc., is supplied to a degasification tower 1 through a pipeline 11. The raw water is treated by the first reverse osmosis membrane separator 2. The permeated water is then treated with activated carbon in the activated carbon adsorption tower 3. The treated water is subsequently treated by the second reverse osmosis membrane separator 4. The permeated water of the reverse osmosis membrane separator 4 is taken out, and the concentrated water of the reverse osmosis membrane separator 4 is returned to the raw water supply system of the reverse osmosis membrane separator 2. Consequently, the troubles in the conventional water purifying device provided with an ion-exchange device are eliminated and high-purity water can be efficiently produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体製造工場や原子力発電所等で広く使用
されている純水やいわゆる超純水を連続的に製造する高
純度水の製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of high-purity water that continuously produces pure water or so-called ultrapure water, which is widely used in semiconductor manufacturing factories, nuclear power plants, etc. Regarding equipment.

[従来の技術] LSIや超LSIの製造においては、多量の純水や超純
水が用いられている。超純水は理論純水(H2Oのみか
らなる水)の比抵抗18.24MΩ・cmに極めて近く
、17〜18MΩ・cmの比抵抗を有する純水である。
[Prior Art] In the manufacture of LSIs and VLSIs, large amounts of pure water and ultrapure water are used. Ultrapure water is pure water having a specific resistance of 17 to 18 MΩ·cm, which is extremely close to the specific resistance of theoretically pure water (water consisting only of H2O), which is 18.24 MΩ·cm.

従来の超純水製造装置は第2図に示す如く、前処理シス
テムA、1次純水システムB及びサブシステムCから構
成されている。しかして、第2図の装置において、市水
、工業用水又は井水等の原水は、前処理システムAにお
いて、活性炭、砂、その他の濾材等で濾過処理され、ま
たは凝集沈殿処理され、あるいはこれらの処理を組合せ
た処理等を施され、1次純水システムBに送給される。
A conventional ultrapure water production apparatus is composed of a pretreatment system A, a primary pure water system B, and a subsystem C, as shown in FIG. In the apparatus shown in Fig. 2, raw water such as city water, industrial water, or well water is filtered with activated carbon, sand, or other filter media, or subjected to coagulation and sedimentation treatment in the pretreatment system A. The water is subjected to a combination of treatments, etc., and then sent to the primary pure water system B.

1次純水システムBは逆浸透(RO)装置21、カチオ
ン交換塔及びアニオン交換塔(両交換塔の間にアニオン
交換樹脂の負担を軽減するための脱炭酸塔(図示せず)
を備える)からなるイオン交換装置22、並びに、処理
水の純度を更に高めるためのカチオン交換樹脂とアニオ
ン交換樹脂との混合イオン交換処理装置である混床塔2
3からなる。この混床塔23の処理水は、紫外線殺菌処
理装置及び非再生型イオン交換器又は限外濾過器等から
なるサブシステムCにおいて、最終的に処理され、超純
水が得られる。製造された超純水は、ウェハー洗浄工程
等のユースポイントへ送られる。
The primary pure water system B includes a reverse osmosis (RO) device 21, a cation exchange tower, and an anion exchange tower (a decarboxylation tower (not shown) is installed between both exchange towers to reduce the burden on the anion exchange resin).
), and a mixed bed tower 2 which is a mixed ion exchange treatment device using a cation exchange resin and an anion exchange resin to further improve the purity of treated water.
Consists of 3. The treated water from the mixed bed tower 23 is finally treated in a subsystem C consisting of an ultraviolet sterilizer, a non-regenerative ion exchanger, an ultrafilter, etc., to obtain ultrapure water. The produced ultrapure water is sent to points of use such as wafer cleaning processes.

第2図の従来装置において、1次純水システムBの構成
の詳細は第3図に示す通りである。第3図の如く、前処
理された原水は、HOCI及び酸を添加した後、逆浸透
装置21で膜分離処理される。この透過水は、含有する
残留塩素を還元作用により除去するためにN a HS
 O3が添加された後、イオン交換装置22に送られる
。このイオン交換装置22は、2床3塔式のうちイオン
交換塔を2系列設置してあり、カチオン交換塔(H塔)
31a及び31b、脱ガス塔32、アニオン交換塔(O
H塔)33a及び33bよりなる。カチオン塔31a、
b及びアニオン塔33a、bは、各々、並列に2基ずつ
設けられているが、これは、一方が再生時のときでも他
方で処理することにより、運転を停止l二せず、純水採
水を継続してできるようにするためである。なお、34
はカチオン塔再生装置、35はアニオン塔再生装置であ
る。イオン交換装置22の処理水は、前述の如く、混床
塔23で処理された後、サブシステムに送られる。なお
、この混床塔23のイオン交換樹脂も再生する必要があ
るが、再生の頻度は前段のイオン交換装置22のアニオ
ン塔やカチオン塔に比べて低く、ユースポイントの休止
時等に再生することができることから、特に並列して設
ける必要はない。
In the conventional apparatus shown in FIG. 2, the details of the configuration of the primary pure water system B are as shown in FIG. As shown in FIG. 3, the pretreated raw water is subjected to membrane separation treatment in a reverse osmosis device 21 after adding HOCI and acid. This permeated water is treated with N a HS in order to remove residual chlorine contained therein by reducing action.
After the O3 is added, it is sent to the ion exchanger 22. This ion exchange device 22 is of a two-bed, three-column type, with two lines of ion exchange columns installed, including a cation exchange column (H column).
31a and 31b, degassing tower 32, anion exchange tower (O
H tower) consists of 33a and 33b. Cation tower 31a,
Two anion columns 33a and 33b are each provided in parallel, but even when one is regenerating, the other is used for processing, so that pure water can be extracted without stopping operation. This is to ensure continuous water supply. In addition, 34
35 is a cation column regenerator, and 35 is an anion column regenerator. The treated water of the ion exchanger 22 is treated in the mixed bed tower 23, as described above, and then sent to the subsystem. Note that the ion exchange resin in this mixed bed column 23 also needs to be regenerated, but the frequency of regeneration is lower than that of the anion column and cation column of the ion exchange device 22 in the previous stage, and it is necessary to regenerate it when the point of use is suspended. Therefore, there is no particular need to provide them in parallel.

[発明が解決しようとする問題点] このような従来の純水製造装置は、1次純水システムに
イオン交換装置を備えているところから、次の問題があ
った。
[Problems to be Solved by the Invention] Such conventional pure water production apparatuses have the following problems because the primary pure water system is equipped with an ion exchange device.

■ イオン交換装置は、平均して、1〜5日に1回の割
合でイオン交換樹脂の再生操作が必要でり、再生のため
の設備が不可欠である。また、l系列のみで構成した単
一装置による連続運転は不可能であり、単一装置の場合
には運転を休止して再生を行わねばならない。
(2) Ion exchange equipment requires regeneration of the ion exchange resin once every 1 to 5 days on average, and equipment for regeneration is essential. Further, it is impossible to continuously operate a single device composed of only 1 series, and in the case of a single device, the operation must be stopped and regeneration is performed.

■ 第2図に示すようにイオン交換装置を2基列とすれ
ば、連続運転が可能であるが、この場合においても、再
生装置等を省くことはできず、再生剤の消費も伴う。
(2) Continuous operation is possible if two ion exchange devices are arranged in rows as shown in FIG. 2, but even in this case, the regenerator etc. cannot be omitted and the regenerator is consumed.

■ 前段のイオン交換装置のイオン交換樹脂からの溶出
物が、後段へ悪影響を及ぼす恐れがある。
■ There is a possibility that the eluate from the ion exchange resin of the ion exchange device in the front stage may have an adverse effect on the rear stage.

■ イオン交換装置の給水(逆浸透装置透過水)中の残
留塩素を還元作用により消去する目的でN a HS 
O3が使用されているが、このN a HS O3は後
段のイオン交換樹脂を劣化させることがある。
■ Na HS is used for the purpose of eliminating residual chlorine in the ion exchange equipment feed water (reverse osmosis equipment permeate water) by reduction action.
Although O3 is used, this N a HS O3 may deteriorate the ion exchange resin in the subsequent stage.

E問題点を解決するための手段] 本発明の高純度水の製造装置は、活性炭等により前処理
した原水に殺菌剤及び/又はpH調整剤を添加する手段
と、該殺菌剤及び/又はpH調整剤を添加した原水を逆
浸透膜処理する第1の逆浸透膜分離器と、該第1の逆浸
透膜分離器の透過水を活性炭処理する活性炭吸着塔と、
該活性炭吸着塔の処理水をさらに逆浸透膜処理する第2
の逆浸透膜分離器と、第2の逆浸透膜分離器の透過水を
取り出す系及び第2の逆浸透膜分離器の濃縮水を前記第
1の逆浸透膜分離器の原水供給系に返送するための系と
を備えたものである。
Means for Solving Problem E] The high-purity water production apparatus of the present invention includes a means for adding a disinfectant and/or a pH adjuster to raw water pretreated with activated carbon, etc. a first reverse osmosis membrane separator that performs a reverse osmosis membrane treatment on raw water to which a conditioning agent has been added; an activated carbon adsorption tower that performs an activated carbon treatment on the permeated water of the first reverse osmosis membrane separator;
A second step in which the treated water of the activated carbon adsorption tower is further treated with a reverse osmosis membrane.
a reverse osmosis membrane separator, a system for taking out the permeated water of the second reverse osmosis membrane separator, and returning concentrated water of the second reverse osmosis membrane separator to the raw water supply system of the first reverse osmosis membrane separator. It is equipped with a system for

即ち、上記従来の問題点を解消するものとして、本出願
人は、活性炭等により前処理した原水に殺菌剤及び/又
はpH調整剤を添加する手段と、該殺菌剤及び/又はp
H調整剤を添加した原水を逆浸透膜処理する第1の逆浸
透膜分離器と、該第1の逆浸透膜分離器の透過水にヒド
ラジンを添加する手段と、該ヒドラジンを添加した第1
の逆浸透膜分離器の透過水をさらに逆浸透膜処理する第
2の逆浸透膜分離器と、第2の逆浸透膜分離器の透過水
を取り出す系及び第2の逆浸透膜分離器の濃縮水を前記
第1の逆浸透膜分離器の原水供給系に返送するための系
とを備えてなる高純度水の製造装置を見い出し、先に特
許出願した(特願昭60−179630号。以下、「先
願」という。)。
That is, in order to solve the above-mentioned conventional problems, the present applicant has proposed a means for adding a disinfectant and/or a pH adjusting agent to raw water pretreated with activated carbon, etc.
a first reverse osmosis membrane separator that performs reverse osmosis membrane treatment on raw water to which an H regulator has been added; a means for adding hydrazine to the permeated water of the first reverse osmosis membrane separator;
a second reverse osmosis membrane separator that further processes the permeated water of the reverse osmosis membrane separator, a system for taking out the permeated water of the second reverse osmosis membrane separator, and a system of the second reverse osmosis membrane separator. We discovered a high-purity water production apparatus comprising a system for returning concentrated water to the raw water supply system of the first reverse osmosis membrane separator, and previously filed a patent application (Japanese Patent Application No. 179,630/1983). (hereinafter referred to as the "first application").

上記先願によれば、従来のイオン交換装置を備える純水
製造装置の問題点を解消し、極めて純度の高い超純水を
効率的に製造することがn(能であるが、この先願の装
置は、第1の逆浸透成分#I−器の透過水中の残留nム
素の除去のために、ヒドラジンを添加する手段を備える
。このヒドラジン添加の如く、薬品添加を行なうものは
、通水SVの変化等により必要話加酸が変化することか
ら、過剰添加や過少添加等の添加ミスが発生し易く、添
加ミス等が発生した場合、後玉程の第2の逆透過11り
分離器の膜に悲影響を与えることがあり、装Ffの安定
運転が損なわれる可能性がある。
According to the above-mentioned earlier application, it is possible to solve the problems of conventional pure water production equipment equipped with an ion exchange device and efficiently produce ultrapure water of extremely high purity. The device is equipped with a means for adding hydrazine in order to remove residual nitrogen in the permeated water of the first reverse osmosis component #I-device. Since the necessary amount of added acid changes due to changes in SV, etc., addition errors such as over-addition or under-addition are likely to occur, and if an addition error occurs, the second reverse filtration separator 11 is installed at the rear end. This may have a negative effect on the membrane of the Ff, and the stable operation of the Ff may be impaired.

そこで、木発明者らは、」−記先願に基き、更に容易か
つ安定な純水製造を行なうことができる装置を開発すべ
く検討を重ね、第1の逆運過膜分離器の透過水中の残留
塩素の除去手段として、活性炭吸着塔を設けた装置を見
い出し、本発明を完成させたものである。
Therefore, based on the above-mentioned application, the inventors of the present invention have conducted repeated studies to develop a device that can produce pure water more easily and stably, and the permeated water of the first reverse filtration membrane separator As a means for removing residual chlorine, they discovered a device equipped with an activated carbon adsorption tower and completed the present invention.

[作用] 本発明の高純成木製造装置は、市水、工業用水、井水等
を前処理した原水を、2段に設けた逆浸透膜分離器から
なる主要システムで処理するものであり、基糸の作用は
下記の通りである。
[Function] The high-purity mature tree manufacturing apparatus of the present invention processes raw water, which has been pretreated with city water, industrial water, well water, etc., using a main system consisting of a two-stage reverse osmosis membrane separator. The action of the thread is as follows.

■ 原水に殺菌剤を榛加することにより、第1の逆浸透
膜分離器の逆浸透膜が殺菌され、微生物による劣化やス
ライム発生による回収率の低下等が防止される。
(2) By adding a disinfectant to the raw water, the reverse osmosis membrane of the first reverse osmosis membrane separator is sterilized, and deterioration due to microorganisms and reduction in recovery rate due to slime generation are prevented.

■ 原水にpH調整剤を添加することにより、第1の逆
浸透膜分離器の逆浸透膜の加水分解が最小限におさえら
れ、CaCO3等の膜面への析出が防1にされる。
(2) By adding a pH adjuster to the raw water, hydrolysis of the reverse osmosis membrane of the first reverse osmosis membrane separator is minimized, and precipitation of CaCO3 and the like on the membrane surface is prevented.

■ 第1の逆浸透膜分離器により十分に脱塩され、被処
理水中の電解質の大部分、例えば95%程度が分離され
る。
(2) The water is sufficiently desalinated by the first reverse osmosis membrane separator, and most of the electrolyte in the water to be treated, for example, about 95%, is separated.

■ 第1の逆浸透膜分離器の透過水な活性炭吸着塔で活
性炭処理することにより、透過水中の残留塩素が吸着除
去される。
(2) Residual chlorine in the permeated water is adsorbed and removed by treating the permeated water of the first reverse osmosis membrane separator with activated carbon in an activated carbon adsorption tower.

■ 第1の逆浸透膜分離器の透過水にpH調整剤を添加
することにより、水中のCO2がHC03−となり、第
2の逆浸透膜分離器での炭酸成分の高効率除去が可能と
なる。また第2の逆浸透膜分離器には、−変説分離され
た低濃度の透過水が供給されるため、脱塩性能が極めて
高いものとなる。
■ By adding a pH adjuster to the permeated water of the first reverse osmosis membrane separator, CO2 in the water becomes HC03-, which enables highly efficient removal of carbonic acid components in the second reverse osmosis membrane separator. . Further, since the second reverse osmosis membrane separator is supplied with the low concentration permeate water that has been subjected to the -transformation separation, the desalination performance is extremely high.

■ 第2の逆浸透膜分離器により更に脱塩が行われ、原
水中に含まれていた電解質の殆ど全て、例えば98%程
度が分離される。また濃縮液を第1の逆浸透膜分離器の
原水供給系に戻すことにより、濃縮液の有効利用が図れ
る。
(2) Further desalination is performed by the second reverse osmosis membrane separator, and almost all of the electrolyte contained in the raw water, for example, about 98%, is separated. Further, by returning the concentrated liquid to the raw water supply system of the first reverse osmosis membrane separator, the concentrated liquid can be used effectively.

[実施例] 以下に本発明の実施例を図面を参照して詳細に説明する
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の高純度水の製造装置の一実施例を示す
系統図である。
FIG. 1 is a system diagram showing an embodiment of the high-purity water production apparatus of the present invention.

図示の実施例に係る装置は、脱ガス塔1.第1の逆浸透
膜分離器2、活性炭吸着塔3、第2の逆浸透膜分離器4
及び混床塔5から主として構成されており、活性炭等に
より前処理した原水を脱ガス塔1に送給する配管11、
原水に殺菌剤を添加する配管12、原水にPH調整剤を
添加する配管13、脱ガス塔lの処理水を第1の逆浸透
膜分離器2に送給する配管14、第1の逆浸透膜分離器
2の透過水を活性炭吸着塔3に送給する配管15、活性
炭吸着塔3の処理水を第2の逆浸透膜分離器4に送給す
る配管16、第1の逆浸透膜分離器2の透過水にpH調
整剤を添加する配管17、第2の逆浸透膜分離器4の透
過水を混床塔5に送給する配管18、第2の逆浸透膜分
離器4の濃縮水な第1の逆浸透膜分離器2の上流側に戻
す配管19、混床塔5の処理水をサブシステム等に送給
する配管20を備えている。
The apparatus according to the illustrated embodiment includes a degassing tower 1. First reverse osmosis membrane separator 2, activated carbon adsorption tower 3, second reverse osmosis membrane separator 4
and a mixed bed tower 5, and a pipe 11 for feeding raw water pretreated with activated carbon or the like to the degassing tower 1;
A pipe 12 for adding a disinfectant to raw water, a pipe 13 for adding a PH adjuster to the raw water, a pipe 14 for feeding treated water from the degassing tower 1 to the first reverse osmosis membrane separator 2, and a first reverse osmosis Piping 15 that feeds the permeated water of the membrane separator 2 to the activated carbon adsorption tower 3, Piping 16 that feeds the treated water of the activated carbon adsorption tower 3 to the second reverse osmosis membrane separator 4, and the first reverse osmosis membrane separation. Piping 17 for adding a pH adjuster to the permeated water of the second reverse osmosis membrane separator 4, piping 18 for feeding the permeated water of the second reverse osmosis membrane separator 4 to the mixed bed column 5, and concentration of the second reverse osmosis membrane separator 4 It includes a pipe 19 for returning water to the upstream side of the first reverse osmosis membrane separator 2, and a pipe 20 for feeding treated water from the mixed bed tower 5 to subsystems and the like.

このような本発明の装置による原水の処理手順について
、以下に説明する。
The procedure for treating raw water using the apparatus of the present invention will be described below.

第1図に示す如く、原水である市水、工業用水、井水等
に活性炭吸着等の通常の前処理を施した前処理水は、配
管11により脱ガス塔lに供給されるが、その過程で配
管12及び配管13より殺菌剤及びpH調整剤が添加さ
れる。
As shown in Fig. 1, pretreated water, which is obtained by subjecting raw water such as city water, industrial water, well water, etc. to normal pretreatment such as activated carbon adsorption, is supplied to the degassing tower l through a pipe 11. During the process, a disinfectant and a pH adjuster are added through the pipes 12 and 13.

配管12により添加される殺菌剤としては、HOCuや
N acJljo等塩素系のものが好適に用いられ、原
水中の残留塩素が0.5〜ippm程度検出されるよう
に調整・添加される。
As the disinfectant added through the pipe 12, a chlorine-based disinfectant such as HOCu or NacJljo is preferably used, and is adjusted and added so that the residual chlorine in the raw water is detected at about 0.5 to ippm.

この殺菌剤の注入により、後段の第1の逆浸透膜分離器
2の逆浸透膜が微生物により劣化したり、スライムの発
生・付着により透過率が低下したりするのが防止される
。なお、小型装置においては、殺菌剤としてNaCl0
を用いるのが好適である。
By injecting this disinfectant, the reverse osmosis membrane of the first reverse osmosis membrane separator 2 at the rear stage is prevented from being deteriorated by microorganisms, and the permeability is prevented from decreasing due to the generation and adhesion of slime. In addition, in small equipment, NaCl0 is used as a disinfectant.
It is preferable to use

配管13より添加されるpH調整剤としては、H2S 
O4、HC1等の酸が用いられ、原水のpt+が4〜6
となるように調整される。原水のPHを4〜6に調整す
ることにより、後段の第1の逆浸透膜分離器2の逆浸透
膜の加水分解が最小限におさえられ、CaCO3等の膜
面への析出41着も防止される。また、後段の脱ガス塔
lでの脱ガスが容易となる。
The pH adjuster added from the pipe 13 is H2S.
Acids such as O4 and HC1 are used, and the raw water has a pt+ of 4 to 6.
It is adjusted so that By adjusting the pH of the raw water to 4 to 6, hydrolysis of the reverse osmosis membrane in the first reverse osmosis membrane separator 2 in the subsequent stage is minimized, and precipitation of CaCO3 etc. on the membrane surface is also prevented. be done. Further, degassing in the subsequent degassing tower 1 becomes easy.

脱ガス塔lとしては、原水を真空中に置くことにより、
溶存ガスを除去する方式の真空脱気塔、気曝により溶存
ガスを除去する脱炭酸塔等が用いられる。
As a degassing tower l, by placing the raw water in a vacuum,
A vacuum degassing tower that removes dissolved gas, a decarbonation tower that removes dissolved gas by aeration, etc. are used.

脱ガス塔lにより原水中の溶存ガスを除去することによ
り、逆浸透膜による除去性能の低いC02成分が最大限
に除去され、処理水の純度が高められると共に、後段の
逆浸透膜分離器の脱負荷が低減される。この脱ガス塔l
におけるC O2成分の効率的除去の面からは、原水の
pHは5〜5.5程度となるように調整するのが特に好
ましい。
By removing the dissolved gas in the raw water using the degassing tower 1, the CO2 component, which has low removal performance by the reverse osmosis membrane, is removed to the maximum extent, increasing the purity of the treated water, and improving the efficiency of the downstream reverse osmosis membrane separator. Unloading is reduced. This degassing tower
In terms of efficient removal of the CO2 component, it is particularly preferable to adjust the pH of the raw water to about 5 to 5.5.

なお、本発明において、脱ガス塔は活性炭吸着塔3の前
に設けても良いが、必ずしも必要ではなく、脱ガス塔自
体省略しても十分に高純度の純水を製造することができ
る。
In the present invention, the degassing tower may be provided before the activated carbon adsorption tower 3, but it is not always necessary, and sufficiently high purity water can be produced even if the degassing tower itself is omitted.

脱ガス塔lの処理水は、配管14により第1の逆浸透膜
分離器2に送給される。第1の逆浸透膜分離器2におい
ては、被処理水の有効利用の面から回収率を比較的高く
、例えば75〜90%程度で運転するのが好ましい。ま
た逆浸透膜としては、長期運転における安定性に優れる
酢酸セルロース膜を用いるのが好ましい。
The treated water from the degassing tower 1 is sent to the first reverse osmosis membrane separator 2 through a pipe 14. In the first reverse osmosis membrane separator 2, it is preferable to operate the recovery rate at a relatively high rate, for example, about 75 to 90%, in order to effectively utilize the water to be treated. Further, as the reverse osmosis membrane, it is preferable to use a cellulose acetate membrane, which has excellent stability in long-term operation.

第1の逆浸透膜分離器2により、被処理水中の電解質の
大部分、例えば95%程度が脱塩される。
The first reverse osmosis membrane separator 2 desalinates most of the electrolyte in the water to be treated, for example, about 95%.

第1の逆浸透膜分離器2の透過水(以下、「第1の透過
水」ということがある。)は、次いで配管15により活
性炭吸着塔3に送給されるが、その際に配管17よりp
H調整剤が添加される。
The permeated water of the first reverse osmosis membrane separator 2 (hereinafter sometimes referred to as "first permeated water") is then fed to the activated carbon adsorption tower 3 via the pipe 15, but at that time the pipe 17 More p
H regulator is added.

pH調整剤としては、NaOH等の塩基が用いられ、第
1の透過水のpHが8〜9となるように調整される。
A base such as NaOH is used as the pH adjuster, and the pH of the first permeated water is adjusted to 8 to 9.

このように、第1の透過水のpHを調整することにより
、第2の逆浸透膜分離器3における炭酸成分の除去効率
を大幅に向−卜させることが可能となる。
In this way, by adjusting the pH of the first permeated water, it becomes possible to significantly improve the removal efficiency of carbonic acid components in the second reverse osmosis membrane separator 3.

即ち、第1の透過水中の炭酸成分は CO2+ H20: H” + HCOa−のような平
衡状態にある。一般に逆浸透膜はCO2の除去性能は低
いが、HCOa−の除去能は高い。このためpHを8〜
9に調整して、この平衡を右に移行させて、[HCOa
l / [CO2]を大きくすることによって、炭酸成
分の除去効率を向」ニさせることが可能となるのである
That is, the carbonic acid component in the first permeate water is in an equilibrium state such as CO2 + H20: H" + HCOa-. Generally, reverse osmosis membranes have a low ability to remove CO2, but a high ability to remove HCOa-. pH 8~
9 to shift this equilibrium to the right, [HCOa
By increasing l/[CO2], it is possible to improve the removal efficiency of carbonic acid components.

pH調整剤を添加した後、活性炭吸着塔3に送給された
第1の透過水は、活性炭吸着塔3内の活性炭層を通過す
る間に、水中の残留塩素や有機物成分等が速やかに吸着
除去される。
After adding the pH adjuster, the first permeated water is sent to the activated carbon adsorption tower 3. While passing through the activated carbon layer in the activated carbon adsorption tower 3, residual chlorine and organic components in the water are quickly adsorbed. removed.

後述の如く、第2の逆浸透膜分離器4においては、逆浸
透膜としてポリアミド膜等の高分子膜を用いるのが好ま
しいが、一般に、高分子膜は耐酸化剤性が殆どない。こ
のため、活性炭処理により、残留塩素等の酸化剤を吸着
除去しておくことにより、膜劣化を防止することができ
る。しかも活性炭処理は通水Sv等により処理効率等は
殆ど影響されず、煩雑な運転操作を要することなく、確
実かつ安定な高吸着能により、第1の透過水中の残留塩
素を除去することができる。
As will be described later, in the second reverse osmosis membrane separator 4, it is preferable to use a polymer membrane such as a polyamide membrane as the reverse osmosis membrane, but generally polymer membranes have little resistance to oxidants. Therefore, membrane deterioration can be prevented by adsorbing and removing oxidizing agents such as residual chlorine through activated carbon treatment. Moreover, in activated carbon treatment, the treatment efficiency is hardly affected by water flow Sv, etc., and residual chlorine in the first permeated water can be removed with reliable and stable high adsorption capacity without requiring complicated operation. .

なお、活性炭吸着塔の活性炭の粒径、吸着塔の規模等は
特に制限はなく、第1の透過水の水質、通水SV等に応
じて適宜決定される。
Note that the particle size of the activated carbon in the activated carbon adsorption tower, the scale of the adsorption tower, etc. are not particularly limited, and are appropriately determined depending on the quality of the first permeated water, the water flow SV, etc.

活性炭吸着塔3で吸着処理された処理水は、次いで配管
16より第2の逆浸透膜分離器4に送給される。第2の
逆浸透膜分離器4においては、処理水の有効利用の面か
ら、回収率は90%程度とし、また濃縮水は配管19に
より脱ガス塔1に戻すのが好ましい。この場合、脱ガス
塔を省いた装置においては、濃縮水は第1の逆浸透膜分
離器の原水導入側へ返送する。また逆浸透膜としては、
pH8〜9の高pH域での炭酸成分の除去効率が高いポ
リアミド膜を用いるのが好ましい。勿論、逆浸透膜は高
pH域での除去効率に優れるものであれば他の材質のも
のでも良い。
The treated water adsorbed in the activated carbon adsorption tower 3 is then sent to the second reverse osmosis membrane separator 4 through the pipe 16. In the second reverse osmosis membrane separator 4, from the viewpoint of effective use of the treated water, the recovery rate is preferably about 90%, and the concentrated water is preferably returned to the degassing tower 1 through the pipe 19. In this case, in an apparatus that does not include a degassing tower, the concentrated water is returned to the raw water introduction side of the first reverse osmosis membrane separator. In addition, as a reverse osmosis membrane,
It is preferable to use a polyamide membrane that has high removal efficiency of carbonic acid components in a high pH range of pH 8 to 9. Of course, the reverse osmosis membrane may be made of other materials as long as it has excellent removal efficiency in a high pH range.

第2の逆浸透膜分離器4により、被処理水中の電解質の
殆ど、例えば98%程度が脱塩される。
The second reverse osmosis membrane separator 4 desalinates most of the electrolyte in the water to be treated, for example, about 98%.

第2の逆浸透膜分離器4の透過水(以下、「第2の透過
水」ということがある。)は、十分に高純度であるが、
更に配管18により混床塔5に送給して処理することに
より、より一層高純度な純水を得ることが可能となる。
Although the permeated water of the second reverse osmosis membrane separator 4 (hereinafter sometimes referred to as "second permeated water") has a sufficiently high purity,
Further, by feeding the water to the mixed bed tower 5 through the pipe 18 for treatment, it becomes possible to obtain pure water with even higher purity.

混床塔5の処理水は配管20によりサブシステム等に送
給され、更に処理された後、ユースポイントに供給され
る。
The treated water from the mixed bed tower 5 is sent to subsystems etc. through piping 20, and after being further treated, is supplied to a point of use.

以下、実験例について説明する。An experimental example will be explained below.

実験例1 第1図に示す本発明の高純度水製造装置(ただし、脱ガ
ス塔lは省略した)を用い、神奈川県横浜市の市水を活
性炭吸着法により前処理した原水(電導度160Ω・C
m)の処理を行った。
Experimental Example 1 Using the high-purity water production apparatus of the present invention shown in Fig. 1 (however, the degassing tower 1 is omitted), city water in Yokohama City, Kanagawa Prefecture was pretreated using the activated carbon adsorption method (conductivity: 160Ω).・C
The process m) was performed.

なお、第1の逆浸透膜分離器2の逆浸透膜としでは、酢
酸セルロース膜を用い、第2の逆浸透膜分離器4の逆浸
透膜としてはポリアミド膜を用いた。
Note that a cellulose acetate membrane was used as the reverse osmosis membrane of the first reverse osmosis membrane separator 2, and a polyamide membrane was used as the reverse osmosis membrane of the second reverse osmosis membrane separator 4.

原水はNaCJloにより残留塩素が1 m g / 
nとなるようにし、またHCMによりpH5に調整して
、第1の逆浸透膜分離器2に送給した。第1の逆浸透膜
分離器の透過水は、Na0I(によりpH8,5に調整
し、通水5V20hr  ’−c’活性炭吸着塔3に供
給した後、その処理水を第2の逆浸透膜分離器4に送給
した。
The raw water has a residual chlorine content of 1 mg/g by NaCJlo.
n, and adjusted to pH 5 with HCM, and then fed to the first reverse osmosis membrane separator 2. The permeated water from the first reverse osmosis membrane separator was adjusted to pH 8.5 with Na0I (water was passed through it for 5V, 20 hours) and supplied to the '-c' activated carbon adsorption tower 3, and then the treated water was separated by the second reverse osmosis membrane. It was fed to vessel 4.

各々の逆浸透膜分離器の回収率は、第1の逆浸透膜分離
器2で80%、第2の逆浸透膜分離器4で90%とし、
第2の逆浸透膜分離器4の濃縮水は、全量第1の逆浸透
膜分離器2の前に戻し、ブローは行わずに運転した。
The recovery rate of each reverse osmosis membrane separator is 80% for the first reverse osmosis membrane separator 2 and 90% for the second reverse osmosis membrane separator 4,
The entire concentrated water of the second reverse osmosis membrane separator 4 was returned to the front of the first reverse osmosis membrane separator 2, and the operation was performed without blowing.

このようにして、運転を1ケ月間継続したときの第2の
逆浸透膜分離器の処理水の電導度は、1.5〜2.5M
Ω・cmであり、S i O2は0 、03〜0 、0
4mg/lであった。そして、この処理水を混床塔5に
5V50hr ’で通過させた処理水の電導度は17〜
18MΩ・Cmであった。
In this way, when the operation is continued for one month, the conductivity of the treated water of the second reverse osmosis membrane separator is 1.5 to 2.5M.
Ω・cm, and S i O2 is 0,03~0,0
It was 4 mg/l. Then, the conductivity of the treated water passed through the mixed bed tower 5 at 5V50hr' is 17~
It was 18 MΩ·Cm.

この実験結果から、本発明の高純度水の製造装置によれ
ば、極めて高純度の純水が得られ、しかも長期間にわた
って装置の連続運転が可能であることが明らかである。
From the results of this experiment, it is clear that according to the high-purity water production apparatus of the present invention, extremely high-purity pure water can be obtained, and furthermore, the apparatus can be operated continuously for a long period of time.

実験例2 実験例1において、活性炭吸着塔3に供給する第1の透
過水の残留塩素及びその通水Svを、第1表の如く変え
て処理を行ない、各々の場合の活性炭吸着塔3からの処
理水中の塩素濃度を調べた。
Experimental Example 2 In Experimental Example 1, the residual chlorine and the water flow Sv of the first permeated water supplied to the activated carbon adsorption tower 3 were changed as shown in Table 1. The chlorine concentration in the treated water was investigated.

結果を第1表に示す。The results are shown in Table 1.

第  1  表 第1表より、活性炭吸着塔における活性炭の残留塩素除
去能は、通水SVや供給される被処理水の水質等に影響
されず、常に安定した高除去能を発揮し得ることが明ら
かである。このため、このような活性炭吸着塔により、
第1の透過水中の残留塩素を除去する本発明の装置によ
れば、厳密な運転管理等を要することなく、安定な処理
を行なうことができる。
Table 1 From Table 1, it can be seen that the residual chlorine removal ability of activated carbon in the activated carbon adsorption tower is not affected by the water flow SV or the quality of the supplied water to be treated, and can always exhibit a stable high removal ability. it is obvious. For this reason, such an activated carbon adsorption tower allows
According to the apparatus of the present invention for removing residual chlorine in the first permeated water, stable treatment can be performed without requiring strict operational management.

[発明の効果1 以上詳述した通り、本発明の高純度水の製造装置は、 ■ 従来装置のイオン交換装置の如く、同一機能を有す
る装置を並列させることなく、単一系列のみで、6ケ月
〜1年以上という長期間にわたって連続運転が可能であ
る。
[Effect of the invention 1 As detailed above, the high-purity water production device of the present invention is capable of: ■ producing 600 ml of water in a single system without paralleling devices with the same function as in conventional ion exchange devices; Continuous operation is possible for a long period of time, from several months to over one year.

■ イオン交換装置を用いていないため、イオン交換樹
脂の再生、イオン交換樹脂溶出物による影響等の問題が
解消される。
■ Since no ion exchange device is used, problems such as regeneration of the ion exchange resin and effects of ion exchange resin eluates are eliminated.

■ 第1の透過水の残留塩素除去手段として活性炭吸着
塔を備えており、この活性炭吸着能は通水SV等に影響
を受けず、常に安定した高11X素除去能を有するため
、装置の運転管理が容易で、安定処理を行なうことがで
きる。
■ An activated carbon adsorption tower is equipped as a means for removing residual chlorine from the first permeate water, and this activated carbon adsorption capacity is not affected by water flow SV, etc., and has a constantly stable high 11X element removal capacity, so the equipment can be easily operated. It is easy to manage and allows stable processing.

■ 炭酸成分の高度除去が可能である。■ High-level removal of carbonic acid components is possible.

■ 第2の逆浸透膜分離器の除去性能が向上される。■ The removal performance of the second reverse osmosis membrane separator is improved.

■ 第2の逆浸透膜分離器の処理水中のS i 02は
、2床3塔式の後にイオン交換塔を接続したイオン交換
樹脂方式と同等まで処理できる。
(2) S i 02 in the treated water of the second reverse osmosis membrane separator can be treated to the same level as the ion exchange resin system in which an ion exchange tower is connected after the two bed three tower system.

等の様々な効果を有する0本発明装置によれば。According to the present invention device, which has various effects such as.

例えば電導度l〜5MΩ・Cm程度の極めて高純度の超
純水を、極めて容易かつ効率的に製造することが可能と
なる。
For example, extremely high purity ultrapure water with an electrical conductivity of about 1 to 5 MΩ·Cm can be produced extremely easily and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高純度水の製造装置を示す系統図、第
2図は従来の純水製造装置を示す系統図、第3図は第2
図に示す装置の1次純水システムの詳細を示す系統図で
ある。 l・・・脱ガス塔、 2・・・第1の逆浸透膜分離器、 3・・・活性炭吸着塔、 4・・・第2の逆浸透膜分離器。 5・・・混床塔・
Fig. 1 is a system diagram showing the high purity water production device of the present invention, Fig. 2 is a system diagram showing a conventional pure water production device, and Fig. 3 is a system diagram showing the high purity water production device of the present invention.
FIG. 2 is a system diagram showing details of the primary pure water system of the device shown in the figure. l... Degassing tower, 2... First reverse osmosis membrane separator, 3... Activated carbon adsorption tower, 4... Second reverse osmosis membrane separator. 5...Mixed bed tower/

Claims (1)

【特許請求の範囲】[Claims] (1)活性炭等により前処理した原水に殺菌剤及び/又
はpH調整剤を添加する手段と、該殺菌剤及び/又はp
H調整剤を添加した原水を逆浸透膜処理する第1の逆浸
透膜分離器と、該第1の逆浸透膜分離器の透過水を活性
炭処理する活性炭吸着塔と、該活性炭吸着塔の処理水を
さらに逆浸透膜処理する第2の逆浸透膜分離器と、第2
の逆浸透膜分離器の透過水を取り出す系及び第2の逆浸
透膜分離器の濃縮水を前記第1の逆浸透膜分離器の原水
供給系に返送するための系とを備えてなることを特徴と
する高純度水の製造装置。
(1) A means for adding a disinfectant and/or a pH adjuster to raw water pretreated with activated carbon, etc., and
A first reverse osmosis membrane separator that performs a reverse osmosis membrane treatment on raw water to which an H regulator has been added, an activated carbon adsorption tower that performs an activated carbon treatment on the permeated water of the first reverse osmosis membrane separator, and a treatment of the activated carbon adsorption tower. a second reverse osmosis membrane separator for further reverse osmosis membrane treatment of water;
a system for taking out the permeated water of the reverse osmosis membrane separator, and a system for returning the concentrated water of the second reverse osmosis membrane separator to the raw water supply system of the first reverse osmosis membrane separator. High purity water production equipment featuring:
JP60248413A 1985-11-06 1985-11-06 High-purity water manufacturing equipment Expired - Fee Related JPH0638953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248413A JPH0638953B2 (en) 1985-11-06 1985-11-06 High-purity water manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248413A JPH0638953B2 (en) 1985-11-06 1985-11-06 High-purity water manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS62110795A true JPS62110795A (en) 1987-05-21
JPH0638953B2 JPH0638953B2 (en) 1994-05-25

Family

ID=17177746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248413A Expired - Fee Related JPH0638953B2 (en) 1985-11-06 1985-11-06 High-purity water manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0638953B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328486A (en) * 1986-07-21 1988-02-06 Shinko Fuaudoraa Kk Method for removing dissolved carbon dioxide in pure water producing apparatus
JPH01231988A (en) * 1988-03-14 1989-09-18 Japan Organo Co Ltd Two-step treatment with reverse osmosis membrane
JPH06269640A (en) * 1993-03-18 1994-09-27 Nippon Memutetsuku Kk Membrane treatment apparatus
JPH10249340A (en) * 1997-03-10 1998-09-22 Kurita Water Ind Ltd Production of pure water
JPH10272455A (en) * 1997-03-31 1998-10-13 Kurita Water Ind Ltd Process for making pure water
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2008055317A (en) * 2006-08-31 2008-03-13 Toyobo Co Ltd Equipment and method for desalting seawater by reverse osmosis membrane
JP2011161409A (en) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd Apparatus for producing pure water
JP2012510365A (en) * 2008-12-01 2012-05-10 テクニシェ・ユニヴェルシテイト・デルフト Process for producing ultrapure water using membranes
CN107892400A (en) * 2017-11-28 2018-04-10 北京中科康仑环境科技研究院有限公司 A kind of mud contacts type powder electroless plating processing system and its method based on UF membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328486A (en) * 1986-07-21 1988-02-06 Shinko Fuaudoraa Kk Method for removing dissolved carbon dioxide in pure water producing apparatus
JPH0790215B2 (en) * 1986-07-21 1995-10-04 神鋼パンテツク株式会社 Method for removing dissolved carbon dioxide gas in pure water production equipment
JPH01231988A (en) * 1988-03-14 1989-09-18 Japan Organo Co Ltd Two-step treatment with reverse osmosis membrane
JPH06269640A (en) * 1993-03-18 1994-09-27 Nippon Memutetsuku Kk Membrane treatment apparatus
JPH10249340A (en) * 1997-03-10 1998-09-22 Kurita Water Ind Ltd Production of pure water
JPH10272455A (en) * 1997-03-31 1998-10-13 Kurita Water Ind Ltd Process for making pure water
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2008055317A (en) * 2006-08-31 2008-03-13 Toyobo Co Ltd Equipment and method for desalting seawater by reverse osmosis membrane
JP2012510365A (en) * 2008-12-01 2012-05-10 テクニシェ・ユニヴェルシテイト・デルフト Process for producing ultrapure water using membranes
JP2011161409A (en) * 2010-02-15 2011-08-25 Panasonic Environmental Systems & Engineering Co Ltd Apparatus for producing pure water
CN107892400A (en) * 2017-11-28 2018-04-10 北京中科康仑环境科技研究院有限公司 A kind of mud contacts type powder electroless plating processing system and its method based on UF membrane

Also Published As

Publication number Publication date
JPH0638953B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
WO1999050184A1 (en) Water treatment system and process comprising ph-adjustment
US8119008B2 (en) Fluid purification methods and devices
WO2005095280A1 (en) Apparatus for producing ultrapure water
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
JPS62110795A (en) Device for producing high-purity water
JPS62204892A (en) Desalting method
JPS6336890A (en) Apparatus for producing high-purity water
JP5055662B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2002210494A (en) Device for manufacturing extrapure water
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JPH09253638A (en) Ultrapure water making apparatus
JP3948337B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP4208270B2 (en) Pure water production method
GB2197860A (en) Apparatus for and the method of water purification
JPS6242787A (en) Apparatus for producing high-purity water
JP3969185B2 (en) Pure water production equipment
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JP3215277B2 (en) Method and apparatus for producing pure water or ultrapure water from which boron has been removed
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
JPH04354581A (en) Water treating apparatus
JPH03293087A (en) Production of ultra-pure water
JP3674475B2 (en) Pure water production method
CN219044891U (en) Ultrapure water deep boron removal system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees