JPS62204892A - Desalting method - Google Patents

Desalting method

Info

Publication number
JPS62204892A
JPS62204892A JP61047298A JP4729886A JPS62204892A JP S62204892 A JPS62204892 A JP S62204892A JP 61047298 A JP61047298 A JP 61047298A JP 4729886 A JP4729886 A JP 4729886A JP S62204892 A JPS62204892 A JP S62204892A
Authority
JP
Japan
Prior art keywords
water
treated
tower
exchange resin
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61047298A
Other languages
Japanese (ja)
Inventor
Yuji Haraguchi
原口 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP61047298A priority Critical patent/JPS62204892A/en
Publication of JPS62204892A publication Critical patent/JPS62204892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To prevent the propagation of bacteria in an activated carbon tower, by treating raw water in an H-form cation exchange resin tower and passing acidic treated water through a granular activated carbon filter tank. CONSTITUTION:After raw water 1 is treated in a flocculative sedimentation apparatus 2 and a sand filter tower 3, treated water is treated in an H-form cation exchange resin tower 4. Herein, the cation in water is ion-exchanged with an H-ion and acidic soft water is treated in a decarbonation tower 5 to exclude dissolved gas. Thereafter, decarbonated water is passed through a granular activated carbon tower 6 to adsorb and remove the greater part of T, O, C in the decarbonated water. Subsequently, the decarbonated water is treated in a reverse osmosis membrane apparatus 7 and the greater part of an ion is removed to obtain transmitted water 8. By this method, T, O, C can be effectively removed and desalted water can be supplied at low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、粒状活性炭塔と逆浸透膜装置とイオン交換樹
脂塔を組み合わせて、原水中の全存機炭素(以下T、O
,Cと言う)を除去するとともに脱塩する場合において
、粒状活性炭塔および逆浸透膜装置に一般細菌が繁殖す
るのを防止する方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention combines a granular activated carbon column, a reverse osmosis membrane device, and an ion exchange resin column to remove total organic carbon (hereinafter referred to as T, O) in raw water.
This invention relates to a method for preventing the growth of common bacteria in a granular activated carbon tower and a reverse osmosis membrane device when removing and desalinating carbon (hereinafter referred to as "C").

〈従来の技術〉 LSIや超LSIを生産する電子工業においては、その
中間製品である半導体ウェハーの洗浄にあたり、その製
品の歩留まりを向上するために微粒子数、T、O,C、
イオン等をpI)bオーダーまで減少させた、いわゆる
超純水を必要とする。
<Prior art> In the electronics industry that produces LSI and VLSI, when cleaning semiconductor wafers, which are intermediate products, the number of particles, T, O, C,
It requires so-called ultrapure water in which ions and the like are reduced to the pI)b order.

このような超純水を製造する場合、近年において逆浸透
膜装置が用いられることが多い。
When producing such ultrapure water, reverse osmosis membrane devices are often used in recent years.

すなわち−次側処理装置として、原水を凝集沈殿、濾過
などをして原水中の懸濁物質等を除去し、当該原水を逆
浸透膜装置で脱塩し、次いで当該脱塩水をさらに2床3
塔式純水製造装置、混床式ポリシャー、精密濾過器等で
処理し、次いで当該−次側処理純水をさらに二次側処理
装置として混床式ポリシャー、紫外線殺菌装置、超濾過
膜装置あるいは逆浸透膜装置で処理して前記超純水を得
るものである。
In other words, as a next-side treatment device, the raw water is subjected to coagulation sedimentation, filtration, etc. to remove suspended substances, etc., the raw water is desalted with a reverse osmosis membrane device, and then the desalted water is further passed through two beds.
It is treated with a tower-type pure water production device, a mixed-bed polisher, a precision filter, etc., and then the next-side treated pure water is further processed as a secondary-side treatment device such as a mixed-bed polisher, an ultraviolet sterilizer, an ultrafiltration membrane device, or the like. The ultrapure water is obtained by processing with a reverse osmosis membrane device.

逆浸透膜装置は逆浸透膜に原水を溶解塩類の浸透圧以上
の加圧下で供給し、塩類の大半を逆浸透膜で阻止して塩
類を減少させた透過水を処理水として得るとともに、塩
類を濃縮した非透過水を排出するものであるが、この処
理中に原水に含まれているT、O,C等も逆浸透膜で阻
止することができ、前記超純水の製造には好都合である
A reverse osmosis membrane device supplies raw water to a reverse osmosis membrane under pressure higher than the osmotic pressure of dissolved salts, and the reverse osmosis membrane blocks most of the salts to obtain permeated water with reduced salts as treated water. During this treatment, T, O, C, etc. contained in the raw water can be blocked by the reverse osmosis membrane, which is convenient for producing ultrapure water. It is.

しかしながら前記逆浸透膜装置でT、O,C等を除去す
ることはできるが、原水中に多量のT、0゜C等が存在
していると逆浸透膜を汚染することとなり、その透過水
量が低下したりして好ましくない。
However, although it is possible to remove T, O, C, etc. with the reverse osmosis membrane device, if a large amount of T, 0°C, etc. is present in the raw water, it will contaminate the reverse osmosis membrane, and the amount of permeated water will decrease. This is not desirable as it may cause a decrease in

従って原水中のT、O,Cを出来るだけ逆浸透膜装置の
前段で除去するために、粒状活性炭塔が用いられること
が多い。
Therefore, in order to remove as much T, O, and C from raw water as possible before the reverse osmosis membrane device, a granular activated carbon column is often used.

すなわち原水を凝集沈殿、濾過などの前処理をした後、
粒状活性炭塔であらかじめ可能なかぎりT、O,Cを除
去した後、その処理水を逆浸透膜装置で処理するもので
ある。
In other words, after pretreatment of raw water such as coagulation sedimentation and filtration,
After removing as much T, O, and C as possible in advance in a granular activated carbon tower, the treated water is treated in a reverse osmosis membrane device.

しかしながら−次側処理装置に粒状活性炭塔を用いると
以下のような新たな問題が生ずることとなる。
However, when a granular activated carbon tower is used as a downstream treatment device, the following new problems arise.

すなわち粒状活性炭塔は水中のT、O,Cの除去に関し
ては、十分にその能力を発揮するが、粒状活性炭層は一
般細菌の温床となりやすく、粒状活性炭塔で原水を処理
すると、その処理水のT、O。
In other words, the granular activated carbon tower fully demonstrates its ability to remove T, O, and C from water, but the granular activated carbon layer tends to become a breeding ground for general bacteria, and when raw water is treated with the granular activated carbon tower, the treated water T.O.

Cは大幅に減少するが、生菌数が大幅に増加するという
欠点がある。さらに後段に設置されている逆浸透膜装置
内にも一般細菌が繁殖し、透過水量が低下したり、また
透過水中に生菌が多量に漏洩してくることとなる。
Although C is significantly reduced, the disadvantage is that the number of viable bacteria is significantly increased. Furthermore, general bacteria will grow in the reverse osmosis membrane device installed at the later stage, resulting in a decrease in the amount of permeated water and a large amount of living bacteria leaking into the permeated water.

前述した半導体ウェハーの洗浄用の超純水においては生
菌の存在も製品の歩留まりを低下させる原因となるので
、前記した生菌数の増加は好ましいものではない。
In the ultrapure water for cleaning semiconductor wafers described above, the presence of viable bacteria also causes a decrease in the yield of products, so the increase in the number of viable bacteria is not desirable.

なお一般細菌が繁殖した粒状活性炭塔および逆浸透膜装
置を定期的に熱水あるいは各種の殺菌剤で洗浄して殺菌
処理することも考えられるが、操作が繁雑となり、また
熱水を使用する場合は粒状活性炭塔、逆浸透膜装置、配
管等を耐熱性のものとする必要があり、設備費が増加し
、また殺菌剤を用いる場合は処理コストが増加するとい
う問題の他に、粒状活性炭塔においてはT、O,C吸着
量を低下させたり、また逆浸透膜装置においては使用す
る逆浸透膜に制約を受けたり、そして当該殺菌剤が通水
中に漏洩する等の問題があって好ましくない。
It is also possible to sterilize the granular activated carbon tower and reverse osmosis membrane equipment where general bacteria have grown by periodically cleaning them with hot water or various disinfectants, but this would be complicated to operate, and if hot water is used, In addition to the problem that the granular activated carbon tower, reverse osmosis membrane equipment, piping, etc. must be made heat-resistant, which increases equipment costs, and if a disinfectant is used, the processing cost increases. It is undesirable because it reduces the adsorption amount of T, O, and C in the case of a reverse osmosis membrane device, and there are restrictions on the reverse osmosis membrane used in a reverse osmosis membrane device, and there are problems such as the disinfectant leaking during water flow. .

〈発明が解決しようとする問題点〉 本発明は原水を粒状活性炭塔で濾過し、次いで当該濾過
水を逆浸透膜装置で処理し、次しくでイオン交換装置で
処理する際における前述の欠点を解決し、熱水あるいは
殺菌剤を全く使用することなく、かつ定期的な殺菌処理
等を行うことなく、かつ低コストで粒状活性炭塔および
逆浸透膜装置における一般細菌の繁殖を防止することを
目的とするものである。
<Problems to be Solved by the Invention> The present invention solves the above-mentioned drawbacks when raw water is filtered through a granular activated carbon tower, the filtered water is then treated with a reverse osmosis membrane device, and then treated with an ion exchange device. The purpose is to solve the problem and prevent the growth of general bacteria in granular activated carbon towers and reverse osmosis membrane equipment at low cost without using any hot water or disinfectants, without periodic sterilization, etc. That is.

く問題点を解決するための手段〉 微生物の生育はその環境pHによって影響を受け、それ
ぞれの微生物にはその生育好適pH帯がある。
Means for Solving Problems> The growth of microorganisms is affected by the pH of the environment, and each microorganism has its preferred pH range for growth.

たとえば一般細菌は中性から弱アルカリ性(pH7〜8
)に、酵母と黴は弱酸性(pH6〜7)に最適pH帯が
あると言われている。
For example, common bacteria are neutral to slightly alkaline (pH 7 to 8).
), yeast and mold are said to have an optimal pH range in a slightly acidic range (pH 6-7).

また最適pH帯から酸性側あるいはアルカリ性側に移る
に従って微生物の生育は次第に抑制され、追には死滅す
るとも言われている。
It is also said that the growth of microorganisms is gradually suppressed and eventually becomes extinct as the pH moves from the optimum pH range to the acidic or alkaline side.

従って通常の一般細菌はpHが低くなればなる程、その
生育が抑制されるようになる。
Therefore, the lower the pH, the more the growth of ordinary bacteria is inhibited.

本発明はこの点に鑑みてなされたもので、H形カチオン
交換樹脂塔の処理水が通常pH3前後の酸性であること
から、原水をまずH形カチオン交換樹脂塔で処理し、当
該酸性の処理水を粒状活性炭濾過塔に通水することによ
り、T、O,Cを除去するとともに、粒状活性炭塔にお
ける一般細菌の繁殖を効果的に防止し、次いで当該濾過
水を逆浸透膜装置で処理して残留T、O,Cを除去する
とともに大部分の脱塩を行い、次いでその透過水をOH
形アニオン交換樹脂の混床塔で処理することを特徴とす
る脱塩方法に関するものである。
The present invention was made in view of this point, and since the treated water of the H type cation exchange resin tower is usually acidic with a pH of around 3, the raw water is first treated in the H type cation exchange resin tower, and the acidic treatment is carried out by first treating the raw water in the H type cation exchange resin tower. By passing water through a granular activated carbon filtration tower, T, O, and C are removed, and the proliferation of general bacteria in the granular activated carbon tower is effectively prevented, and then the filtered water is treated with a reverse osmosis membrane device. The remaining T, O, and C are removed and most of the salt is desalted, and the permeated water is then treated with OH
The present invention relates to a desalination method characterized by treatment in a mixed bed column of type anion exchange resin.

く作用〉 図面は本発明の実施態様の一例を示すフローの説明図で
あるが、原水−1をまず凝集沈殿装置2および砂濾過塔
3で処理し、原水中に含有している懸濁物質、コロイド
シリカ、T、O,Cの一部等を除去する。
Action> The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention. Raw water-1 is first treated with a coagulation-sedimentation device 2 and a sand filter tower 3 to remove suspended substances contained in the raw water. , colloidal silica, and some of T, O, and C are removed.

なお原水1の水質によっては凝集沈殿装置2を省略して
も差し支えなく、あるいは砂濾過塔3の入口水に凝集剤
等を添加するマイクロフロック濾過を行ってもよい。
Note that depending on the quality of the raw water 1, the coagulation-sedimentation device 2 may be omitted, or microfloc filtration may be performed in which a coagulant or the like is added to the inlet water of the sand filtration tower 3.

次いで当該砂濾過塔3の処理水をH形カチオシ交換樹脂
塔4で処理する。当該カチオン交換樹脂塔4は、H膨強
酸性カチオン交換樹脂単独あるいはH形弱酸性カチオン
交換樹脂とH膨強酸性カチオン交換樹脂を複層床に充填
したもので、ここで水中のカチオンをHイオンにイオン
交換する。従ってその処理水は水中に含まれるCβイオ
ン、SO,イオン等の鉱酸イオンに相当する鉱酸が生成
されるとともに、水中に含まれているHCO3イオンは
遊離炭酸となり、そのpHは通常3前後の酸性を呈する
Next, the treated water from the sand filter tower 3 is treated in the H-type cation exchange resin tower 4. The cation exchange resin column 4 is a multi-layer bed packed with an H-swollen acidic cation exchange resin alone or an H-type weakly acidic cation exchange resin and an H-swollen strong acidic cation exchange resin, in which cations in water are converted into H ions. ion exchange. Therefore, in the treated water, mineral acids corresponding to mineral acid ions such as Cβ ions, SO, ions, etc. contained in the water are generated, and HCO3 ions contained in the water become free carbonic acid, and the pH thereof is usually around 3. exhibits acidic properties.

次いで当該酸性軟水を脱炭酸塔5で処理する。Next, the acidic soft water is treated in a decarboxylation tower 5.

当該脱炭酸塔5はラシヒリング等の充填層の上部から酸
性軟水を流下するとともに、充填層の下部から空気、窒
素等の気体を流入するもの、あるいは脱炭酸塔5内を減
圧して溶解気体を排除する、いわゆる真空脱気装置であ
り、このような気液接触あるいは減圧処理により、酸性
軟水中の遊離炭酸を除去する。
The decarboxylation tower 5 is one in which acidic soft water flows down from the upper part of a packed bed such as a Raschig ring, and gases such as air and nitrogen are introduced from the bottom of the packed bed, or the inside of the decarboxylation tower 5 is depressurized to remove dissolved gas. This is a so-called vacuum deaerator that removes free carbonic acid from acidic soft water through such gas-liquid contact or reduced pressure treatment.

なお原水中に含まれるHCO3イオンの量がそれ程多く
ない場合は、当該脱炭酸塔5の設置を省略しても差し支
えない。
Note that if the amount of HCO3 ions contained in the raw water is not so large, the installation of the decarbonation tower 5 may be omitted.

本発明は次いで脱炭酸塔5からの脱炭酸水を粒状活性炭
塔6に通水し、脱炭酸水中に含まれているT、O,Cの
大半をここで吸着除去する。
In the present invention, the decarbonated water from the decarbonation tower 5 is then passed through the granular activated carbon tower 6, where most of the T, O, and C contained in the decarbonated water are adsorbed and removed.

当該粒状活性炭塔6は粒状活性炭を充填したものである
が、本発明においては当該充填層に常にpH3前後の酸
性水が接触するので、当該充填層に一般細菌が繁殖する
のを効果的に防止することができる。
The granular activated carbon tower 6 is filled with granular activated carbon, and in the present invention, acidic water with a pH of around 3 is always in contact with the packed bed, so it is effective to prevent general bacteria from breeding in the packed bed. can do.

また一般に水中に含まれる有機物の内、親水性有機酸類
は系のpHが酸性になると溶解度が減少するので、その
結果として水に対する親和力が減少し、活性炭によりよ
く吸着すると言われており、従って本発明においてはこ
れらの親水性有機酸類に起因するT、O,Cの除去効果
を向上させることができる。
Furthermore, among the organic substances generally contained in water, the solubility of hydrophilic organic acids decreases when the pH of the system becomes acidic.As a result, their affinity for water decreases, and it is said that they are better adsorbed by activated carbon. In the present invention, the effect of removing T, O, and C caused by these hydrophilic organic acids can be improved.

このような処理により水中のT、O,Cの大部分を除去
した粒状活性炭塔6の処理水を次いで逆浸透膜装置7で
処理し、大部分のイオンを除去した透過水8を得るとと
もにイオンを濃縮した非透過水9を得、非透過水9はブ
ローする。なお場合によっては非透過水9の一部を回収
して原水に混合しても差し支えない。
The treated water from the granular activated carbon tower 6, from which most of the T, O, and C in the water have been removed through such treatment, is then treated with a reverse osmosis membrane device 7 to obtain permeated water 8 from which most of the ions have been removed, as well as ions. A non-permeate water 9 is obtained by concentrating the non-permeate water 9, and the non-permeate water 9 is blown. In some cases, a part of the non-permeated water 9 may be recovered and mixed with the raw water.

本発明においては逆浸透膜装置7の供給水が酸性なので
、逆浸透膜装置7においても一般細菌が繁殖するのを効
果的に防止することができる。
In the present invention, since the water supplied to the reverse osmosis membrane device 7 is acidic, it is possible to effectively prevent general bacteria from propagating in the reverse osmosis membrane device 7 as well.

逆浸透膜装置7の透過水8を次いでOH形アニオン交換
樹脂塔10に通水し、残留する鉱酸イオン、シリカ、遊
離炭酸等のアニオン成分を除去し、脱塩水を得る。当該
OH形アニオン交換樹脂塔は、OH形強塩基性アニオン
交換樹脂単独あるいはOH形弱塩基性アニオン交換樹脂
とOH形強塩基性アニオン交換樹脂を複層床に充填した
ものである。
The permeated water 8 from the reverse osmosis membrane device 7 is then passed through an OH type anion exchange resin column 10 to remove residual anion components such as mineral acid ions, silica, and free carbonic acid to obtain demineralized water. The OH type anion exchange resin column is a multilayer bed packed with an OH type strong basic anion exchange resin alone or an OH type weakly basic anion exchange resin and an OH type strong basic anion exchange resin.

なおOH形アニオン交換樹脂塔IOにかえてこの部分を
H膨強酸性カチオン交換樹脂とOH形強塩基性アニオン
交換樹脂の混床塔としても差し支えない。要は逆浸透膜
装置7の後段で透過水8中に残留する鉱酸イオン、シリ
カ、遊離炭酸等のアニオン成分を除去することができる
イオン交換塔を用いればよい。
Note that instead of the OH type anion exchange resin column IO, this portion may be used as a mixed bed column of an H-swelled acidic cation exchange resin and an OH type strong basic anion exchange resin. In short, an ion exchange column capable of removing anion components such as mineral acid ions, silica, and free carbonate remaining in the permeated water 8 after the reverse osmosis membrane device 7 may be used.

OH形アニオン交換樹脂塔10の処理水を次いで温床式
ポリシャー11、精密濾過塔12等で処理し、当該−次
側処理純水13を二次側処理装置に供給する。
The treated water from the OH type anion exchange resin column 10 is then treated in a hotbed polisher 11, a precision filtration column 12, etc., and the downstream treated pure water 13 is supplied to a secondary treatment device.

本発明の逆浸透膜装置7に使用する逆浸透膜としては、
酢酸セルローズ系膜、ポリアミド系膜およびポリアミド
系とポリスルホン系の複合膜等を用いることができるが
、T、O,Cの除去能力の優れている前記の複合膜を用
いることが望ましい。
The reverse osmosis membrane used in the reverse osmosis membrane device 7 of the present invention includes:
Although cellulose acetate membranes, polyamide membranes, composite membranes of polyamide and polysulfone membranes, etc. can be used, it is preferable to use the aforementioned composite membranes, which have excellent T, O, and C removal abilities.

〈効果〉 以上説明したごとく、本発明は原水を先にH形カチオン
交換樹脂塔で処理して酸性水を得、当該酸性水を粒状活
性炭塔および逆浸透膜装置で処理し、その透過水をOH
形アニオン交換樹脂塔もしくは混床塔で処理するので、
粒状活性炭塔、逆浸透膜装置には常に酸性水を接触させ
ることができ、両者に一般細菌を繁殖させることがなく
、効果的に原水中のT、O,Cを除去できるとともに、
脱塩することができる。
<Effects> As explained above, in the present invention, raw water is first treated in an H-type cation exchange resin column to obtain acidic water, then the acidic water is treated in a granular activated carbon column and a reverse osmosis membrane device, and the permeated water is OH
Because it is processed in a type anion exchange resin tower or a mixed bed tower,
Acidic water can be constantly brought into contact with the granular activated carbon tower and reverse osmosis membrane device, preventing general bacteria from propagating in both, effectively removing T, O, and C from raw water.
Can be desalinated.

また本発明は、殺菌するための余分な操作をすることな
く、かつ殺直剤を全く使用しないので、低コストでT、
O,Cが除去された脱塩水を供給できる。
In addition, the present invention does not require any extra operations for sterilization and does not use any directicides, so T.
Demineralized water from which O and C have been removed can be supplied.

また本発明では逆浸透膜装置の前段で原水中のカルシウ
ムイオン、マグネシウムイオンなどの硬度成分をH形カ
チオン交換樹脂塔で除去できるので、かかる硬度成分の
濃縮による逆浸透膜面におけるスケールの発生がなく、
従って透過水回収率全可能なかぎり高めることができ、
更にOH形アニオン交換樹脂塔もしくは混床塔の前段に
逆浸透膜装置を設置してここで大部分の塩類をあらかじ
め除去するので、使用すべきアニオン交換樹脂量を大幅
に減少せしめることができるという副次的効果も奏する
Furthermore, in the present invention, hardness components such as calcium ions and magnesium ions in the raw water can be removed by an H-type cation exchange resin tower before the reverse osmosis membrane device, so that the formation of scale on the reverse osmosis membrane surface due to the concentration of such hardness components is prevented. Without,
Therefore, the permeate recovery rate can be increased as much as possible,
Additionally, a reverse osmosis membrane device is installed before the OH-type anion exchange resin tower or mixed bed tower, and most of the salts are removed here in advance, making it possible to significantly reduce the amount of anion exchange resin that needs to be used. It also has secondary effects.

以下に本発明の効果をより明確とするために実施例を説
明する。
Examples will be described below to make the effects of the present invention more clear.

実施例 本発明の実施例として、図面に示したフローに従って、
砂濾過塔の処理水をFI形カチオン交換樹脂塔および脱
炭酸塔で処理した。
Example As an example of the present invention, according to the flow shown in the drawings,
The treated water from the sand filter tower was treated with an FI type cation exchange resin tower and a decarboxylation tower.

その結果pH2,7〜2.9の酸性軟水が得られた。As a result, acidic soft water with a pH of 2.7 to 2.9 was obtained.

この酸性軟水を充填層高2mの粒状活性炭塔にLV15
m/Hの条件で通水し、その濾過水を逆浸透膜としてポ
リアミド系とポリスルホン系の複合膜である日東電工(
41製NTR−7197を装着した逆浸透膜装置で処理
し、その透過水をOH形アニオン交換樹脂塔で処理した
This acidic soft water is transferred to a granular activated carbon tower with a packed bed height of 2m at LV15.
Nitto Denko (Nitto Denko), which is a composite membrane of polyamide and polysulfone, passes water under the conditions of m/H and uses the filtered water as a reverse osmosis membrane.
It was treated with a reverse osmosis membrane device equipped with NTR-7197 manufactured by No. 41, and the permeated water was treated with an OH type anion exchange resin column.

H形カチオン交換樹脂塔およびアニオン交換樹脂塔につ
いては、必要に応じ常法の再生操作を処理中に随時実施
したが、全処理時間として3,000時間処理を行った
Regarding the H-type cation exchange resin tower and anion exchange resin tower, regeneration operations using conventional methods were carried out as needed during the treatment, and the treatment was carried out for a total treatment time of 3,000 hours.

その結果、粒状活性炭塔の処理水のT、O,Cは0.0
5■asC/1となり、また当該処理水に生菌は全く漏
洩しなかった。
As a result, T, O, and C of the treated water from the granular activated carbon tower were 0.0.
5■asC/1, and no living bacteria leaked into the treated water.

更に逆浸透膜装置の透過水のT、O,Cは0.025■
asC/lとなり、また当該透過水中にも生菌は全く漏
洩せず、また透過水量が低下することもなかった。なお
砂濾過水のT、O,Cは1.0■asC/1である。
Furthermore, the T, O, and C of the permeated water from the reverse osmosis membrane device are 0.025■
asC/l, no viable bacteria leaked into the permeated water, and the amount of permeated water did not decrease. Note that T, O, and C of the sand-filtered water are 1.0 asC/1.

一方比較のために同様の砂濾過塔の処理水を本発明に用
いたと同じ粒状活性炭塔で同条件で処理し、次いで当該
濾過水を同じ逆浸透膜装置で3,000時間処理したと
ころ、粒状活性炭塔の処理水のT。
On the other hand, for comparison, treated water from a similar sand filtration tower was treated under the same conditions in the same granular activated carbon tower used in the present invention, and then the filtered water was treated for 3,000 hours in the same reverse osmosis membrane device. T of treated water from activated carbon tower.

O,Cは0.2mg as C/ 1となり、また当8
亥処理水の生菌数は運転初期6〜15個/mβ、運転中
期95〜185個/mβ、3,000時間後230〜3
10個/ m lであり、処理水中に流出した生菌数は
かなり増加した。
O, C is 0.2 mg as C/1, and this 8
The number of viable bacteria in the boar treated water was 6-15 cells/mβ at the beginning of operation, 95-185 cells/mβ during the middle period of operation, and 230-3 after 3,000 hours.
10 cells/ml, and the number of viable bacteria that leaked into the treated water increased considerably.

また逆浸透膜装置の透過水のT、O,Cはo、1■as
C7Nであり、また透過水の生菌数は運転3゜000時
間後で20〜32個/ m Aであった。更に逆浸透膜
装置の透過水量は運転初期と比較して40%も低下した
In addition, T, O, and C of the permeated water of the reverse osmosis membrane device are o, 1■ as
C7N, and the number of viable bacteria in the permeated water was 20 to 32 cells/mA after 3,000 hours of operation. Furthermore, the amount of water permeated through the reverse osmosis membrane device decreased by 40% compared to the initial period of operation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様の一例を示すフローの説明図で
ある。 ■・・・原水      2・・・凝集沈殿装置3・・
・砂濾過塔 4・・・H形カチオン交換樹脂塔 5・・・脱炭酸塔    6・・・粒状活性炭塔7・・
・逆浸透膜装置  8・・・透過水9・・・非透過水 10・・・OH形アニオン交換樹脂塔        
ゝ11・・・温床式ポリシャー 12・・・精密濾過塔 13・・・−次側処理純水
The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention. ■...Raw water 2...Coagulation sedimentation device 3...
・Sand filtration tower 4... H type cation exchange resin tower 5... Decarboxylation tower 6... Granular activated carbon tower 7...
・Reverse osmosis membrane device 8...Permeate water 9...Non-permeate water 10...OH type anion exchange resin tower
11...Hotbed polisher 12...Precision filtration tower 13...-next side treated pure water

Claims (1)

【特許請求の範囲】[Claims] 原水をH形カチオン交換樹脂塔で処理し、次いでその処
理水を粒状活性炭塔で処理し、次いでその濾過水を逆浸
透膜装置で処理し、次いでその透過水をOH形アニオン
交換樹脂塔もしくはH形カチオン交換樹脂とOH形アニ
オン交換樹脂の混床塔で処理することを特徴とする脱塩
方法
Raw water is treated in an H type cation exchange resin column, then the treated water is treated in a granular activated carbon column, the filtered water is then treated in a reverse osmosis membrane device, and then the permeated water is treated in an OH type anion exchange resin column or H A desalination method characterized by treatment in a mixed bed tower of a type cation exchange resin and an OH type anion exchange resin.
JP61047298A 1986-03-06 1986-03-06 Desalting method Pending JPS62204892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047298A JPS62204892A (en) 1986-03-06 1986-03-06 Desalting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047298A JPS62204892A (en) 1986-03-06 1986-03-06 Desalting method

Publications (1)

Publication Number Publication Date
JPS62204892A true JPS62204892A (en) 1987-09-09

Family

ID=12771375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047298A Pending JPS62204892A (en) 1986-03-06 1986-03-06 Desalting method

Country Status (1)

Country Link
JP (1) JPS62204892A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006483A1 (en) * 1996-08-12 1998-02-19 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US6306197B1 (en) 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
US6325983B1 (en) 2000-04-19 2001-12-04 Seh America, Inc. Nox scrubbing system and method
US6398965B1 (en) 1998-03-31 2002-06-04 United States Filter Corporation Water treatment system and process
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
JP2005351881A (en) * 2004-05-13 2005-12-22 National Institute Of Advanced Industrial & Technology Coexistent anion treatment device and method
US7186344B2 (en) * 2002-04-17 2007-03-06 Water Visions International, Inc. Membrane based fluid treatment systems
US7320756B2 (en) * 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
JP2008272693A (en) * 2007-05-01 2008-11-13 Cosmo Health Kk Water purifier
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
CN104692557A (en) * 2014-12-22 2015-06-10 内蒙古久科康瑞环保科技有限公司 Chemical pretreatment method and device thereof for treating high-salinity wastewater
CN104692574A (en) * 2014-12-22 2015-06-10 内蒙古久科康瑞环保科技有限公司 Treatment method of high saline wastewater
CN110468617A (en) * 2019-07-17 2019-11-19 南京工业大学 A kind of papermaking alkali ash processing liquid resource utilization method
WO2020195217A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Method and device for treating water containing calcium and organic matter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
WO1998006483A1 (en) * 1996-08-12 1998-02-19 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US8641905B2 (en) 1996-08-12 2014-02-04 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US6537456B2 (en) 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US6398965B1 (en) 1998-03-31 2002-06-04 United States Filter Corporation Water treatment system and process
US6306197B1 (en) 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
US6325983B1 (en) 2000-04-19 2001-12-04 Seh America, Inc. Nox scrubbing system and method
US7320756B2 (en) * 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
US7186344B2 (en) * 2002-04-17 2007-03-06 Water Visions International, Inc. Membrane based fluid treatment systems
JP2005351881A (en) * 2004-05-13 2005-12-22 National Institute Of Advanced Industrial & Technology Coexistent anion treatment device and method
JP2008272693A (en) * 2007-05-01 2008-11-13 Cosmo Health Kk Water purifier
CN104692557A (en) * 2014-12-22 2015-06-10 内蒙古久科康瑞环保科技有限公司 Chemical pretreatment method and device thereof for treating high-salinity wastewater
CN104692574A (en) * 2014-12-22 2015-06-10 内蒙古久科康瑞环保科技有限公司 Treatment method of high saline wastewater
WO2020195217A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Method and device for treating water containing calcium and organic matter
JP2020157223A (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Method and device of treating water that contains organic matter and calcium
TWI812844B (en) * 2019-03-26 2023-08-21 日商栗田工業股份有限公司 Method and device for treating water containing organic matter and calcium
CN110468617A (en) * 2019-07-17 2019-11-19 南京工业大学 A kind of papermaking alkali ash processing liquid resource utilization method

Similar Documents

Publication Publication Date Title
JP3321179B2 (en) Method and apparatus for high efficiency reverse infiltration treatment
JPS62204892A (en) Desalting method
AU2018201773B2 (en) Method for purifying water as well as plant suitable for said method
JP3646900B2 (en) Apparatus and method for treating boron-containing water
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
JP3565098B2 (en) Ultrapure water production method and apparatus
JP3413883B2 (en) Pure water production equipment
JPS6336890A (en) Apparatus for producing high-purity water
JPS62110795A (en) Device for producing high-purity water
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
JP3200314B2 (en) Organic wastewater treatment equipment
JP4110604B2 (en) Fluorine-containing water treatment method
JP2002355683A (en) Ultrapure water making method and apparatus
JP2006026543A (en) Apparatus and method for removing silica
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP3216256B2 (en) Ultrapure water production equipment
GB2197860A (en) Apparatus for and the method of water purification
RU2225369C1 (en) Natural water treatment process
JP2002336887A (en) Extrapure water making device and extrapure water making method
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same
JP2001205297A (en) Apparatus for producing pure water
JP3115750B2 (en) Pure water production method
JPS61111199A (en) Method for producing washing water for semiconductor wafer of chip
JPH0671256A (en) Method for purifying water
JPS6242787A (en) Apparatus for producing high-purity water