JPS61111199A - Method for producing washing water for semiconductor wafer of chip - Google Patents

Method for producing washing water for semiconductor wafer of chip

Info

Publication number
JPS61111199A
JPS61111199A JP59233059A JP23305984A JPS61111199A JP S61111199 A JPS61111199 A JP S61111199A JP 59233059 A JP59233059 A JP 59233059A JP 23305984 A JP23305984 A JP 23305984A JP S61111199 A JPS61111199 A JP S61111199A
Authority
JP
Japan
Prior art keywords
water
exchange resin
tower
mixed
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233059A
Other languages
Japanese (ja)
Inventor
Yuji Haraguchi
原口 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP59233059A priority Critical patent/JPS61111199A/en
Publication of JPS61111199A publication Critical patent/JPS61111199A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce titled washing water without propagating bacteria in an active carbon filtration column by treating previously mixed water composed of waste water formed in washing chips, etc. and feed water in a cation exchange column to obtain acidic water then treating the acidic water in the active carbon filtration column. CONSTITUTION:The waste water 5 formed in washing the semiconductor wafers or chips is recovered and is mixed with the feed water 1. The mixed water is treated in the cation exchange resin column, the active carbon filtration column 8, an anion exchange resin column 9 or a mixed bed column. contg. a cation exchange resin and anion exchange resin and a reverse osmosis membrane device 10 in this order. As a result the ultra-pure water ideal for washing the semiconductor wafers is obtd. without propagating the bacteria in the active carbon filtration column. An extra operation for sterilizing the active carbon layer is not required and since no extra drugs are used at all, the supply of the ultra-pure water at the low cost is made possible.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はLSIや超LSIを生産する電子工業において
、その中間製品である半導体ウェハーまたはチップ(以
下半導体ウェハーという。)の洗浄水を製造する方法に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is used in the electronics industry that produces LSIs and VLSIs to produce cleaning water for semiconductor wafers or chips (hereinafter referred to as semiconductor wafers), which are intermediate products thereof. It is about the method.

〈従来の技術〉 LSIや超LSIを生産する電子工業においては、その
中間製品である半導体ウェハーの洗浄にあたり、その歩
留りを向上するためにイオンの量をppbオーダーまで
減少させるだけでなく、T。
<Prior art> In the electronics industry that produces LSIs and VLSIs, when cleaning semiconductor wafers, which are intermediate products, in order to improve the yield, not only the amount of ions is reduced to ppb order, but also T.

0、 C(全有機炭素)を数10ppbまで、および生
菌数を10−1個/ m lまで減少させた、いわゆる
超純水を必要とする。一方最近の水不足および廃水排出
制限により、近年では前記半導体ウェハーの洗浄廃水の
一部を回収し、これを原水と混合して超純水を製造する
ことが行われている。
0.0, C (total organic carbon) is reduced to several tens of ppb, and the number of viable bacteria is reduced to 10-1 cells/ml, so-called ultrapure water is required. On the other hand, due to recent water shortages and restrictions on wastewater discharge, in recent years, a portion of the semiconductor wafer cleaning wastewater has been recovered and mixed with raw water to produce ultrapure water.

このような混合水を処理して超純水を製造する場合、前
記洗浄廃水中の有機物を除去する目的で活性炭濾過塔を
加えることが不可欠となり、通常、原水を凝集沈澱装置
(または浮上分離装置)、砂濾過塔で処理し、当該濾過
水に前記洗浄廃水を混合し4、次いで当該混合水を活性
炭濾過塔、カチオン交換樹脂塔、脱炭酸塔、アニオン交
換樹脂塔からなる純水製造装置、逆浸透膜装置の順に処
理して脱塩水を得、当該脱塩水を温床式ポリシャー、紫
外線処理等を経て超純水を製造し、当該超純水を前記半
導体ウェハーの洗浄水として用いている。
When processing such mixed water to produce ultrapure water, it is essential to add an activated carbon filtration tower to remove organic matter from the washing wastewater. ), the filtered water is treated with a sand filtration tower, the washing wastewater is mixed with the filtered water, and the mixed water is then mixed with an activated carbon filtration tower, a cation exchange resin tower, a decarboxylation tower, and an anion exchange resin tower. Demineralized water is obtained by sequential treatment with a reverse osmosis membrane device, and ultrapure water is produced by subjecting the demineralized water to a hotbed polisher, ultraviolet treatment, etc., and the ultrapure water is used as water for cleaning the semiconductor wafer.

〈従来技術の問題点〉 ところが前述の従来技術については以下のような問題点
がある。
<Problems with the prior art> However, the above-mentioned prior art has the following problems.

すなわち活性炭濾過塔は水中の有機物の除去に関しては
、十分にその能力を発揮するが、活性炭層は菌の温床と
なりやすく、活性炭濾過塔で混合水を処理すると、その
処理水の有機物量は大幅に減少するが、生菌数が大幅に
増加するという欠点がある。特に前述したごとく半導体
ウェハーを洗浄した洗浄廃水には細菌の繁殖に適した各
種の有機物が含まれており、通常の水処理における活性
炭濾過塔よりも生菌数の増加量が大きい。
In other words, activated carbon filtration towers fully demonstrate their ability to remove organic matter from water, but the activated carbon layer tends to become a breeding ground for bacteria, and when mixed water is treated with activated carbon filtration towers, the amount of organic matter in the treated water is significantly reduced. However, the disadvantage is that the number of viable bacteria increases significantly. In particular, as mentioned above, the cleaning wastewater from cleaning semiconductor wafers contains various organic substances suitable for the propagation of bacteria, and the increase in the number of viable bacteria is greater than in activated carbon filtration towers in ordinary water treatment.

当該活性炭濾過塔の処理水は次いで純水製造装置、逆浸
透膜装置などで処理されるが、このように生菌数が増加
すると末端純水中の生菌数も増加することとなり、半導
体ウェハーの洗浄水としては好ましくないものとなる。
The treated water from the activated carbon filtration tower is then treated with a pure water production device, a reverse osmosis membrane device, etc., but as the number of viable bacteria increases, the number of viable bacteria in the terminal pure water also increases, and semiconductor wafers are This makes it undesirable as cleaning water.

なお、このような細r      菌が繁殖した活性炭
濾過塔を定期的に熱水あるいは各種の殺菌剤で洗浄して
殺菌処理することも考えられるが、操作が繁雑となり、
また熱水を使用する場合は塔および配管等を耐熱性のも
のとする必要があり、設備費が増加し、また殺菌剤を用
いる場合は処理コストの増加とともに、活性炭の有機物
吸着量を低下させたり、あるいは当該殺菌剤が通水中に
リークしてくるなどの問題があって好ましくない。
It is also possible to sterilize the activated carbon filtration tower in which such bacteria have grown by periodically washing it with hot water or various disinfectants, but this would be complicated and
In addition, when hot water is used, the tower and piping must be made heat-resistant, which increases equipment costs.When using disinfectants, treatment costs increase and the amount of organic matter adsorbed by activated carbon is reduced. This is undesirable because there are problems such as the disinfectant being contaminated or the disinfectant leaking into the water.

〈発明の目的〉 本発明は°従来の半導体ウェハーの洗浄水を製造する際
におけるかかる欠点を解決し、熱水あるいは殺菌剤等を
全く使用することなく、かつ定期的な殺菌処理等を行う
ことなく、さらに低コストで活性炭濾過塔に°おける細
菌の繁殖を防止することを目的とするものである。
<Purpose of the Invention> The present invention solves the drawbacks of conventional semiconductor wafer cleaning water and performs periodic sterilization without using any hot water or sterilizers. The purpose is to prevent bacterial growth in activated carbon filtration towers at a lower cost.

く問題点を解決する手段〉 微生物の生育はその環境のpHによって影響を受け、そ
れぞれの微生物にはその生育好適pH帯がある。たとえ
ば細菌は中性から弱アルカリ性(pH7〜8)に、酵母
と黴は弱酸性(p H6〜7)に最適pH帯があると言
われている。また最適pH帯から酸性側あるいはアルカ
リ性側に移るに従って微生物の生育は次第に抑制され、
追には死滅するとも言われている。従って通常の細菌は
pHが低くなればなる程、その生育が抑制されるよ゛ 
 うになる。
Means for Solving Problems> The growth of microorganisms is affected by the pH of the environment, and each microorganism has its preferred pH range for growth. For example, it is said that bacteria have an optimal pH range between neutral and slightly alkaline (pH 7-8), and yeast and mold have an optimal pH range between slightly acidic (pH 6-7). Furthermore, as the pH shifts from the optimum pH range to the acidic or alkaline side, the growth of microorganisms is gradually suppressed.
It is said that it will die if it is chased. Therefore, the lower the pH, the more inhibited the growth of normal bacteria.
I'm going to growl.

本発明はこの点に鑑みてなされたもので、カチオン交換
樹脂塔の処理水が通常pH3前後の酸性であることから
、前記混合水をまずカチオン交換樹脂塔で処理し、当該
酸性の処理水を活性炭濾過塔に通水することにより、有
機物を除去するとともに活性炭濾過塔における細菌の繁
殖を効果的に防止し、次いで当該濾過水をアニオン交換
樹脂塔またはカチオン交換樹脂とアニオン交換樹脂の混
合床、逆浸透膜装置で処理することを特徴とする半導体
ウェハーの洗浄水を製造する方法に関するものである。
The present invention was made in view of this point, and since the treated water of the cation exchange resin tower is usually acidic with a pH of around 3, the mixed water is first treated in the cation exchange resin tower, and the acidic treated water is By passing water through the activated carbon filtration tower, organic matter is removed and the proliferation of bacteria in the activated carbon filtration tower is effectively prevented, and then the filtered water is passed through an anion exchange resin tower or a mixed bed of cation exchange resin and anion exchange resin, The present invention relates to a method for producing cleaning water for semiconductor wafers, which is characterized by processing with a reverse osmosis membrane device.

図面は本発明の実施態様の一例を示すフローの説明図で
あるが、原水1をまず凝集沈澱装置2および砂濾過塔3
で処理し、原水中に含有される懸濁物質、有機物、コロ
イドシリカ等を除去し、当該濾過水を貯槽4に供給する
。なお原水1の水質によっては凝集沈澱装置2を省略し
ても差し支えなく、あるいは砂濾過塔3の入口水に凝集
剤等を添加するマイクロフロック濾過を行ってもよい。
The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention. Raw water 1 is first passed through a coagulation sedimentation device 2 and a sand filter tower 3.
The filtered water is treated to remove suspended solids, organic matter, colloidal silica, etc. contained in the raw water, and the filtered water is supplied to the storage tank 4. Note that depending on the quality of the raw water 1, the coagulation-sedimentation device 2 may be omitted, or microfloc filtration may be performed in which a coagulant or the like is added to the inlet water of the sand filtration tower 3.

一方半導体つエバーの洗浄廃水5を貯槽4に供給し、貯
槽4で砂濾過水と洗浄廃水5とを混合する。
On the other hand, the waste water 5 for cleaning semiconductors is supplied to the storage tank 4, and the sand filtered water and the waste water 5 for cleaning are mixed in the storage tank 4.

次いで貯槽4内の混合水をカチオン交換樹脂塔6で処理
する。当該カチオン交換樹脂塔6は、H膨強酸性カチオ
ン交換樹脂単独あるいはH形弱酸性カチオン交換樹脂と
H膨強酸性カチオン交換樹脂を複層床に充填したもので
、ここで水中のカチオンを対応するHイオンにイオン交
換する。
Next, the mixed water in the storage tank 4 is treated in the cation exchange resin column 6. The cation exchange resin column 6 is a multi-layer bed filled with an H-type weakly acidic cation exchange resin or an H-type weakly acidic cation exchange resin and a strongly H-swelled acidic cation exchange resin. Ion exchange to H ions.

したがってその処理水は水中に含まれるCIイオン、S
04イオン等の鉱酸イオンに相当する鉱酸が生成される
とともに、水中に含まれているHCO3イオンは遊離炭
酸となりそのpHは通常3前後の酸性を呈する。次いで
当該酸性軟水を脱炭酸塔7出処理する。
Therefore, the treated water contains CI ions, S
Mineral acids corresponding to mineral acid ions such as 04 ions are produced, and HCO3 ions contained in the water become free carbonic acid, and its pH usually exhibits acidity of around 3. Next, the acidic soft water is subjected to a decarboxylation tower 7 treatment.

当該脱炭酸塔7はラシヒリング等の充填層の上部から酸
性軟水を流下するとともに、充填層の下部から空気、窒
素等の気体を流入するもの、ある、いは脱炭酸塔7内を
減圧して溶解気体を排除する、いわゆる真空脱気装置で
このような気液接触あるいは減圧処理により、酸性軟水
中の遊離炭酸が除去される。なお酸性軟水中に揮発性の
有機物等が含まれている場合は当該有機物もここで除去
することができる。従って洗浄廃水5に揮発性の有機物
が含まれている場合は、これを除去するのに効果的であ
る。
The decarboxylation tower 7 is one in which acidic soft water flows down from the upper part of a packed bed such as a Raschig ring, and gases such as air and nitrogen are introduced from the bottom of the packed bed, or the inside of the decarboxylation tower 7 is depressurized. Free carbonic acid in the acidic soft water is removed by such gas-liquid contact or depressurization treatment using a so-called vacuum deaerator that removes dissolved gases. Note that if the acidic soft water contains volatile organic substances, the organic substances can also be removed here. Therefore, if the cleaning wastewater 5 contains volatile organic matter, it is effective for removing this.

本発明は次いで脱炭酸塔7からの脱炭酸水を活性炭濾過
塔8に通水し、脱炭酸水中の有機物を除去する。
In the present invention, the decarbonated water from the decarbonation tower 7 is then passed through the activated carbon filtration tower 8 to remove organic substances from the decarbonated water.

当該活性炭濾過塔8は粒状活性炭を充填したものである
が、本発明においては当該充填層に常にpH3前後の酸
性水が接触するので、当該充填層に細菌が繁殖するのを
効果的に防止することができる。また一般に水中に含ま
れる有機物の内、親l     水性有機酸類は系のp
Hが酸性となると溶解度が減少するので、その結果とし
て水に対する親和力が減少し、活性炭によりよく吸着さ
れると言われており、従って本発明においてはこれらの
親水性有機酸類の除去効果を向上することにも効果を発
揮する。
The activated carbon filtration tower 8 is filled with granular activated carbon, and in the present invention, acidic water with a pH of around 3 is always in contact with the packed bed, so that it effectively prevents bacteria from propagating in the packed bed. be able to. In addition, among the organic substances generally contained in water, hydrophilic organic acids are
It is said that when H becomes acidic, its solubility decreases, and as a result, its affinity for water decreases and it is better adsorbed by activated carbon. Therefore, in the present invention, the removal effect of these hydrophilic organic acids is improved. It is also effective.

このような処理により有機物を除去した活性炭濾過塔8
の処理水を次いでアニオン交換樹脂塔9に通水し、鉱酸
イオン、シリカ、残留遊離炭酸および残留有機物等を吸
着し、脱塩水を得る。なおアニオン交換樹脂塔9にかえ
てこの部分をカチオン交換樹脂とアニオン交換樹脂の混
床塔としても差し支えない。要は活性炭濾過塔8の後段
で鉱酸イオン、シリカ、残留遊離炭酸等のアニオン成分
を除去することができるイオン交換塔を用いればよい。
Activated carbon filtration tower 8 from which organic matter has been removed through such treatment
The treated water is then passed through an anion exchange resin tower 9, where mineral acid ions, silica, residual free carbonic acid, residual organic matter, etc. are adsorbed to obtain demineralized water. Note that instead of the anion exchange resin column 9, this portion may be used as a mixed bed column of cation exchange resin and anion exchange resin. In short, an ion exchange column capable of removing anion components such as mineral acid ions, silica, and residual free carbonate may be used after the activated carbon filtration column 8.

次いで逆浸透膜装置10にて当該脱塩水を処理し、残留
する各種イオン、シリカおよびコロイド状物質を除去し
た透過水を得、当該透過水をカチオン交換樹脂とアニオ
ン交換樹脂を充填した温床式ポリシャー11で処理し、
さらに紫外線処理等(図示せず)をして超純水を得る。
The demineralized water is then treated in a reverse osmosis membrane device 10 to obtain permeated water from which residual ions, silica, and colloidal substances have been removed. Processed with 11,
Further, ultrapure water is obtained by ultraviolet treatment (not shown).

本発明においては逆浸透膜装置10の前段で逆浸透膜を
汚染するような、Caイオン、Mgイオン、SO4イオ
ン、シリカ、有機物等を除去しているので、逆浸透膜装
置10の透過水回収率を可能なかぎり高めることができ
、全体の処理コストを低下させて半導体ウェハーの洗浄
に適した超純水を得ることができる。なお逆浸透膜装置
10の非゛透過水は原水lの貯槽(図示せず)に回収す
ることも可能である。
In the present invention, since Ca ions, Mg ions, SO4 ions, silica, organic substances, etc. that contaminate the reverse osmosis membrane are removed at the front stage of the reverse osmosis membrane device 10, the permeated water of the reverse osmosis membrane device 10 is recovered. It is possible to obtain ultrapure water suitable for cleaning semiconductor wafers by increasing the efficiency as much as possible, reducing the overall processing cost. Note that the non-permeated water of the reverse osmosis membrane device 10 can also be collected into a storage tank (not shown) for raw water.

〈発明の効果〉 以上説明したごとく、本発明は混合水を先にカチオン交
換樹脂塔で処理して酸性水を得、当該酸性水を活性炭濾
過塔で処理するので、活性炭濾過塔に細菌を繁殖させる
ことなく、半導体ウェハーの洗浄に理想的な超純水を得
ることができる。
<Effects of the Invention> As explained above, in the present invention, mixed water is first treated in a cation exchange resin tower to obtain acidic water, and the acidic water is then treated in an activated carbon filtration tower, so that bacteria do not breed in the activated carbon filtration tower. It is possible to obtain ultrapure water, which is ideal for cleaning semiconductor wafers, without causing any damage.

また本発明は、活性炭層を殺菌するための余分な操作を
することなく、かつ余分な薬剤を全(使用しないので、
低コストで超純水を供給できる。
In addition, the present invention does not require any extra operations to sterilize the activated carbon layer, and does not use any unnecessary chemicals.
Ultra-pure water can be supplied at low cost.

以下に本発明の効果を明確にするために実施例を説明す
る。
Examples will be described below to clarify the effects of the present invention.

実施例 本発明の実施例として、まず砂濾過水と半導体ウェハー
洗浄廃水を1対1に混合したp H5,4〜6.2の混
合水をカチオン交換樹脂塔、脱炭酸塔で処理した。その
結果pH2,7〜2.9の酸性軟水が得られた。この酸
性軟水を活性炭濾過塔にLV。
EXAMPLE As an example of the present invention, first, mixed water with a pH of 5.4 to 6.2, which was a 1:1 mixture of sand filtered water and semiconductor wafer cleaning waste water, was treated in a cation exchange resin tower and a decarboxylation tower. As a result, acidic soft water with a pH of 2.7 to 2.9 was obtained. This acidic soft water is passed through an activated carbon filter tower.

20 m / h rの条件で3.000時間通水運転
を行った結果、処理水に流出した生菌数は運転初期4〜
12個/ m 1!、運転中期3〜8個/m I! 、
3,000時間時間−10個/ m lであり、処理水
に流出した生菌数の増加はなかった。なお混合水中の生
菌数は11〜18個/mlであった。
As a result of water flow operation for 3,000 hours under the condition of 20 m / hr, the number of viable bacteria that leaked into the treated water was 4 to 4 at the beginning of operation.
12 pieces/m1! , mid-term operation 3-8 pieces/m I! ,
3,000 hours - 10 cells/ml, and there was no increase in the number of viable bacteria that leaked into the treated water. Note that the number of viable bacteria in the mixed water was 11 to 18 cells/ml.

この活性炭処理水をアニオン交換樹脂塔で処理した後、
低圧逆浸透膜装置で処理し、その透過水中の生菌数を測
定したところ1個/m1以下であった。
After treating this activated carbon-treated water with an anion exchange resin tower,
When treated with a low-pressure reverse osmosis membrane device and the number of viable bacteria in the permeated water was measured, it was less than 1 cell/m1.

一方比較のために本発明の実施例に用いたと同じp H
5,4〜6.2の混合水を先に活性炭濾過塔でLV、2
0m/hrの条件で3,000時間通水運転を行った結
果、処理水に流出した生菌数は運転初期5〜11個/ 
m l、運転中期92〜180個/m l 、3.00
0時間後210〜290個/ m lであり、処理水中
に流出した生菌数は大変に増加した。
On the other hand, for comparison, the same pH as used in the examples of the present invention was used.
The mixed water of 5.4 to 6.2 was first filtered to LV and 2 in an activated carbon filtration tower.
As a result of water flow operation for 3,000 hours under the condition of 0 m/hr, the number of viable bacteria that leaked into the treated water was 5 to 11 per hour at the initial stage of operation.
ml, middle stage of operation 92-180 pieces/ml, 3.00
After 0 hours, the number of viable bacteria leaked into the treated water was 210 to 290 cells/ml, which greatly increased.

なお混合水中の生菌数は本発明の実施例と同じ11〜1
8個/ m I!である。
The number of viable bacteria in the mixed water was 11 to 1, which is the same as in the example of the present invention.
8 pieces/m I! It is.

この活性炭処理水をカチオン交換樹脂塔、脱炭酸塔、ア
ニオン交換樹脂塔で処理した後、本発明の実施例と同じ
逆浸透膜装置で処理し、その透過水中の生菌数を測定し
たところ運転3,000時間経過後で18〜28個/m
eであった。
After this activated carbon-treated water was treated with a cation exchange resin tower, a decarboxylation tower, and an anion exchange resin tower, it was treated with the same reverse osmosis membrane device as in the example of the present invention, and the number of viable bacteria in the permeated water was measured. 18-28 pieces/m after 3,000 hours
It was e.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様の一例を示すフローの説明図で
ある。 1・・・原水      2・・・凝集沈澱装置3・・
・砂濾過塔    4・・・貯槽5・・・洗浄廃水  
  6・・・カチオン交換樹脂塔7・・・脱炭酸塔  
  8・・・活性炭濾過塔9・・・アニオン交換樹脂塔 10・・・逆浸透膜装置 11・・・混床式ポリシャー
12・・・非透過水
The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention. 1...Raw water 2...Coagulation sedimentation device 3...
・Sand filter tower 4...Storage tank 5...Washing wastewater
6...Cation exchange resin tower 7...Decarboxylation tower
8...Activated carbon filtration tower 9...Anion exchange resin tower 10...Reverse osmosis membrane device 11...Mixed bed polisher 12...Non-permeated water

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェハーまたはチップの洗浄廃水を回収して原水
と混合し、当該混合水をカチオン交換樹脂塔、活性炭濾
過塔、アニオン交換樹脂塔またはカチオン交換樹脂とア
ニオン交換樹脂の混床塔、逆浸透膜装置の順に処理する
ことを特徴とする半導体ウェハーまたはチップの洗浄水
を製造する方法。
Semiconductor wafer or chip cleaning wastewater is collected and mixed with raw water, and the mixed water is passed through a cation exchange resin tower, an activated carbon filtration tower, an anion exchange resin tower, a mixed bed tower of cation exchange resin and anion exchange resin, or a reverse osmosis membrane device. A method for producing cleaning water for semiconductor wafers or chips, comprising processing in the following order.
JP59233059A 1984-11-07 1984-11-07 Method for producing washing water for semiconductor wafer of chip Pending JPS61111199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233059A JPS61111199A (en) 1984-11-07 1984-11-07 Method for producing washing water for semiconductor wafer of chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233059A JPS61111199A (en) 1984-11-07 1984-11-07 Method for producing washing water for semiconductor wafer of chip

Publications (1)

Publication Number Publication Date
JPS61111199A true JPS61111199A (en) 1986-05-29

Family

ID=16949151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233059A Pending JPS61111199A (en) 1984-11-07 1984-11-07 Method for producing washing water for semiconductor wafer of chip

Country Status (1)

Country Link
JP (1) JPS61111199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187243A (en) * 1987-01-30 1988-08-02 Fuji Photo Film Co Ltd Cleaning method for automatic developing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187243A (en) * 1987-01-30 1988-08-02 Fuji Photo Film Co Ltd Cleaning method for automatic developing device

Similar Documents

Publication Publication Date Title
JPS62204892A (en) Desalting method
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP3200314B2 (en) Organic wastewater treatment equipment
JP3565098B2 (en) Ultrapure water production method and apparatus
JP2006142283A (en) Water purification system
JPH0649190B2 (en) High-purity water manufacturing equipment
JPS62110795A (en) Device for producing high-purity water
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
JPH01231988A (en) Two-step treatment with reverse osmosis membrane
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JPS61111199A (en) Method for producing washing water for semiconductor wafer of chip
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2002355683A (en) Ultrapure water making method and apparatus
JP2546750B2 (en) How to sterilize activated carbon
KR20100107592A (en) Treatment process of water for aquatic products and treatment system thereof
JPH0632821B2 (en) Method for suppressing the growth of microorganisms in pure water
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JPS63141694A (en) Production of ultra-pure water
JPH0686997A (en) Ultra pure water preparing device
JPS6397284A (en) Method for removing trace organic matter in ultrapure water
JPS6359392A (en) Drinking water production system
CN210103652U (en) River water purification system
JPH03293087A (en) Production of ultra-pure water
JPS6242787A (en) Apparatus for producing high-purity water
JP6531441B2 (en) Method and apparatus for membrane treatment of water containing organic matter