JP2546750B2 - How to sterilize activated carbon - Google Patents

How to sterilize activated carbon

Info

Publication number
JP2546750B2
JP2546750B2 JP3184024A JP18402491A JP2546750B2 JP 2546750 B2 JP2546750 B2 JP 2546750B2 JP 3184024 A JP3184024 A JP 3184024A JP 18402491 A JP18402491 A JP 18402491A JP 2546750 B2 JP2546750 B2 JP 2546750B2
Authority
JP
Japan
Prior art keywords
activated carbon
tower
sterilization
waste liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3184024A
Other languages
Japanese (ja)
Other versions
JPH0592183A (en
Inventor
勘六 長南
利郎 宮内
智 尾崎
茂夫 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3184024A priority Critical patent/JP2546750B2/en
Publication of JPH0592183A publication Critical patent/JPH0592183A/en
Application granted granted Critical
Publication of JP2546750B2 publication Critical patent/JP2546750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活性炭の殺菌方法に係
り、特に食品製造用水、半導体製造用水等に用いる純水
の製造において、使用する活性炭内に増殖する微生物を
効果的に殺菌する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sterilizing activated carbon, and more particularly to a method for effectively sterilizing microorganisms growing in activated carbon used in the production of pure water used for food manufacturing water, semiconductor manufacturing water and the like. .

【0002】[0002]

【従来の技術】原料水、洗浄水製造処理プロセス及び回
収水再利用処理プロセスの一工程として、脱色、脱臭、
有害有機物除去あるいは残留塩素除去用に活性炭を用
い、その後段にカチオン樹脂とアニオン樹脂を混床で用
いる混床式イオン交換塔又は、各樹脂を個別に充填した
2床式あるいは更に脱炭酸塔を加えた2床3塔式等種々
の多床式脱塩装置を設置した処理プロセスが用いられて
いる。しかし、活性炭を用いる処理プロセスにおいて
は、通水が進むと活性炭の脱色、脱臭、有害有機物の除
去あるいは残留塩素の除去能力が充分残っていても、活
性炭層に微生物がしだいに増殖し、殺菌処理等により活
性炭塔入口で殆んど微生物が検出されない場合でも、処
理水中には一般細菌数で103 〜107 コ/mlの微生
物が検出される場合が多い。更にひどい時は微生物スラ
イムやマッドボールが生成し、活性炭の性能を劣化させ
るとともに、微生物の分解及び/又は生産により生成す
る臭気物質等が処理水中にリークすることがある。
2. Description of the Prior Art Decolorization, deodorization,
A mixed bed type ion exchange tower using activated carbon for removing harmful organic substances or residual chlorine, and a cation resin and anion resin in a mixed bed at the subsequent stage, or a two bed type or further decarbonation tower in which each resin is individually packed A treatment process in which various multi-bed type desalination devices such as an added two-bed, three-column type is installed is used. However, in the treatment process using activated carbon, even if the decolorization, deodorization, removal of harmful organic substances or removal of residual chlorine of activated carbon is sufficient with the passage of water, microorganisms gradually grow in the activated carbon layer and sterilization treatment is performed. Even if almost no microorganisms are detected at the inlet of the activated carbon tower due to factors such as the above, there are many cases in which a general bacterial count of 10 3 to 10 7 microorganisms / ml is detected in the treated water. Further, in severe cases, microbial slime and mud balls are generated, which deteriorates the performance of activated carbon, and odorous substances and the like generated by decomposition and / or production of microorganisms may leak into the treated water.

【0003】混床式イオン交換塔は微生物の除去率が2
床式又は2床3塔式の装置よりかなり高く、99.9%
の除去率が得られることが知られているが、上記のよう
に活性炭層から多量の微生物あるいは臭気成分等がリー
クして来る状況では、十分な除去が行えず、一般細菌数
にして10〜104 コ/ml程度の微生物が処理水中に
リークして来る。而して図3又は図4のような処理プロ
セスの後段、特に処理水貯槽に微生物による後汚染を生
じさせる。例えば清涼飲料水等の分野では、活性炭塔が
設けられていると微生物による後汚染が懸念されるた
め、微生物の増殖を抑え、リークを少くするべく通常蒸
気殺菌或いは熱水殺菌が適用されている。この殺菌を塩
素又はオゾンで行う方法も検討されたが、活性炭粒子内
の殺菌ができず、ただ活性炭層の支持層(砂、砂利等)
及び出口側配管の殺菌に効果及び用途が限定されてしま
う。
The mixed bed type ion exchange tower has a microbial removal rate of 2
Significantly higher than floor type or 2 bed 3 tower type equipment, 99.9%
It is known that the removal rate is obtained, but in the situation where a large amount of microorganisms or odorous components leak from the activated carbon layer as described above, sufficient removal cannot be performed, and the number of general bacteria is 10 to 10. About 10 4 / ml of microorganisms leak into the treated water. As a result, post-contamination by microorganisms occurs in the latter stage of the treatment process as shown in FIG. 3 or 4, particularly in the treated water storage tank. For example, in the field of soft drinks and the like, if an activated carbon tower is provided, there is concern about post-contamination by microorganisms, so steam sterilization or hot water sterilization is usually applied to suppress the growth of microorganisms and reduce leaks. . A method of performing this sterilization with chlorine or ozone was also examined, but the sterilization inside the activated carbon particles could not be performed, and only a support layer for the activated carbon layer (sand, gravel, etc.)
In addition, the effect and application are limited to the sterilization of the outlet side pipe.

【0004】図3では、殺菌装置として紫外線殺菌装置
(UV)を有するだけであり、処理水貯槽及び配管系統
の定期的殺菌(CIP処理)が必要である。図4では、
処理水に再度殺菌剤として塩素又はオゾンを注入して処
理水貯槽の微生物増殖を抑えている。しかし、原料水、
洗浄用水として使用する場合、塩素等があっては困るの
で脱塩素装置が追加されている。蒸気殺菌は塔内へ直接
蒸気を吹き込む方法であるが、活性炭層にチャンネリン
グが生じ易く均一に活性炭層内の温度を上昇させること
が困難である。塔内の温度をむらなく80〜90℃に上
昇させるための殺菌操作に5〜7時間を要し、また蒸気
を一過性で用いるためエネルギーコストがかさむ。
In FIG. 3, only the ultraviolet sterilizer (UV) is provided as a sterilizer, and periodic sterilization (CIP treatment) of the treated water storage tank and the piping system is required. In FIG.
Chlorine or ozone is injected again into the treated water as a bactericide to suppress the growth of microorganisms in the treated water storage tank. But raw water,
When used as cleaning water, chlorine is not a problem, so a dechlorination unit has been added. Steam sterilization is a method in which steam is blown directly into the tower, but channeling is likely to occur in the activated carbon layer, and it is difficult to uniformly raise the temperature in the activated carbon layer. It takes 5 to 7 hours for sterilization operation to uniformly raise the temperature in the tower to 80 to 90 ° C, and the energy cost is high because the steam is used transiently.

【0005】熱水殺菌は処理プロセスに熱水循環系を形
成させ、循環系の水を熱水交換器で85〜90℃に加熱
して行う。しかし活性炭層を均一に最低80℃以上に加
熱するには、やはり大量のエネルギーコストがかかる。
更に間接加熱のため低効率、また塔径が大きい程配管
系、活性炭塔自体からの熱損失も大きい等の問題があ
り、殺菌操作に4〜5時間を要している。そのため、や
むをえず、製品にレトルト殺菌を行う場合には、活性炭
塔から微生物リークが生じてもすぐには蒸気又は熱水殺
菌を行なわず、殺菌頻度を7日〜1ケ月毎に延長してい
るケースも見られる。レトルト殺菌のできない炭酸飲
料、ビール用水等では頻繁な殺菌操作(1〜7日毎)が
必要である。
The hot water sterilization is carried out by forming a hot water circulation system in the treatment process and heating the water in the circulation system to 85 to 90 ° C. in a hot water exchanger. However, a large amount of energy cost is still required to uniformly heat the activated carbon layer to at least 80 ° C or higher.
Further, there are problems such as low efficiency due to indirect heating, large heat loss from the piping system and the activated carbon tower itself as the tower diameter is large, and sterilization operation requires 4 to 5 hours. Therefore, when it is unavoidable to sterilize the product by retort, steam or hot water sterilization is not performed immediately even if a microbial leak occurs from the activated carbon tower, and the sterilization frequency is extended every 7 days to 1 month. You can also see the case. Frequent sterilization operations (every 1 to 7 days) are required for carbonated drinks, beer water, etc. that cannot be sterilized by retort.

【0006】活性炭の薬品殺菌については、先に下記の
結果が得られている(特願平2−16031号)、即ち
無機酸(塩酸・硫酸)の殺菌効果が優れており、pH
1.5以下に保持した酸に活性炭を30〜90分接触さ
せることにより次のように良好な殺菌効果が得られる。 殺菌効果の持続日数は熱水殺菌が2〜3日であるの
に対し、酸による殺菌は6〜7日間と長い。 かつ活性炭処理水中の微生物数も熱水殺菌の1/1
00以下である。 また酸によって活性炭表面を覆っていた鉄マンガン
等が溶解され、表面が活性化し、例えば残留塩素除去に
ついては酸処理前には処理水中の塩素が0.1mg/l
であったものが、酸処理後は0.05mg/l以下に回
復する。 しかし、この殺菌上有効な方法も、殺菌処理後の処理水
のpH回復のため洗浄に長期間を要し、したがって洗浄
排水量も多くなってしまう。
Regarding the chemical sterilization of activated carbon, the following results have previously been obtained (Japanese Patent Application No. 2-16031), that is, the bactericidal effect of inorganic acids (hydrochloric acid / sulfuric acid) is excellent, and the pH value is
By bringing the activated carbon into contact with the acid held at 1.5 or less for 30 to 90 minutes, the following good bactericidal effect can be obtained. The duration of the bactericidal effect is 2 to 3 days for hot water sterilization, and 6 to 7 days for acid sterilization. And the number of microorganisms in the activated carbon treated water is 1/1 of that of hot water sterilization.
It is 00 or less. Further, iron manganese and the like that had covered the activated carbon surface with an acid is dissolved and the surface is activated. For example, for removal of residual chlorine, chlorine in the treated water is 0.1 mg / l before acid treatment.
However, it recovers to 0.05 mg / l or less after the acid treatment. However, this sterilization-effective method also requires a long time for washing because of the pH recovery of the treated water after the sterilization treatment, so that the amount of waste water for washing increases.

【0007】[0007]

【発明が解決しようとする課題】上記のように、蒸気殺
菌、熱水殺菌は確実な殺菌が行えるが、殺菌効果の確実
な持続日数は2〜3日間であるため、ほぼ完全な微生物
リーク防止達成のためには2〜3日毎の殺菌が必要であ
る。また蒸気殺菌、熱水殺菌においては、活性炭の使用
が進むにつれて活性炭表層が原水中の鉄マンガン等の無
機性SSによって覆われ、残留塩素除去能力、有機物吸
着能力の低下が見られる。また、無機酸を用いる薬品処
理も有効な殺菌効果を持つが、処理後の処理水のpH回
復に長時間を用し、多量の洗浄排水が生じる等の問題が
あった。本発明は、上記のような従来技術の問題点を解
決し、純水製造プロセスの適切、効率的運転ができるよ
う、活性炭中に増殖した微生物の効果的な殺菌方法を提
供することを目的とする。
As described above, although steam sterilization and hot water sterilization can surely perform sterilization, the sterilization effect can last for a few days, so almost complete microbial leak prevention is possible. Sterilization every 2-3 days is necessary to achieve. Further, in steam sterilization and hot water sterilization, as the use of activated carbon progresses, the surface layer of activated carbon is covered with inorganic SS such as iron-manganese in raw water, and residual chlorine removal ability and organic matter adsorption ability decrease. Further, although chemical treatment using an inorganic acid also has an effective bactericidal effect, there is a problem in that it takes a long time to recover the pH of the treated water after the treatment and a large amount of cleaning drainage occurs. The present invention aims to solve the above-mentioned problems of the conventional techniques, and to provide an effective sterilization method of microorganisms grown in activated carbon so that the pure water production process can be appropriately and efficiently operated. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、活性炭塔を通した後、カチオン樹脂と
アニオン樹脂を有する混床式イオン交換塔又は多床式イ
オン交換塔を通して純水を得る工程において、カチオン
樹脂及びアニオン樹脂の再生に使用した酸廃液及び/又
はアルカリ廃液を、前記活性炭塔に通薬して活性炭中の
微生物を殺菌することを特徴とする活性炭の殺菌方法と
したものである。前記殺菌方法において、活性炭塔への
廃液の通薬は、イオン交換樹脂の再生に使用した酸廃液
のみで行う方法(A)と、同アルカリ廃液を通薬し、つ
いで酸廃液を通薬して行う方法(B)とを適宜組合わせ
て行う。特に、前記活性炭へ酸排液のみを通薬する
(A)においては、後段のイオン交換塔への通薬はまず
酸を先に、次いでアルカリを通薬して樹脂を再生するの
が良い。
In order to achieve the above object, in the present invention, after passing through an activated carbon tower, a pure mixed bed type ion exchange tower or a multi-bed type ion exchange tower containing a cation resin and an anion resin is used. In the step of obtaining water, an acid waste solution and / or an alkali waste solution used for the regeneration of a cation resin and an anion resin are passed through the activated carbon tower to sterilize microorganisms in the activated carbon, and It was done. In the sterilization method, the waste liquid is passed through the activated carbon tower by a method (A) in which only the acid waste liquid used to regenerate the ion-exchange resin is used, and the same alkali waste liquid is passed through, and then the acid waste liquid is passed through. The method (B) to be performed is combined appropriately. In particular, in the case (A) in which only the acid waste liquid is passed through the activated carbon, it is preferable that the ion exchange column in the latter stage is passed through an acid first and then an alkali to regenerate the resin.

【0009】本発明は、例えば図5のような清涼飲料用
の処理プロセスにおいて、微生物が最も集中的に増殖
し、プロセス全体の微生物汚染の発生源の1つとなって
いる活性炭塔33を、プロセス後段の混床式イオン交換
塔34の再生剤で薬品殺菌するものである。
According to the present invention, for example, in the treatment process for a soft drink as shown in FIG. 5, the activated carbon tower 33 in which the microorganisms are most concentratedly grown and which is one of the sources of microbial contamination of the entire process, This is a chemical sterilization with a regenerant of the mixed bed type ion exchange tower 34 in the latter stage.

【0010】[0010]

【作用】本発明者は活性炭の無機酸による殺菌方法の研
究を進め、下記の知見を得た。 殺菌効果は主にpH1.5以下の強酸性条件下で達
成される。アルカリ条件下では殺菌効果はわずかである
が、SS、スライムが剥離し、更に活性炭に吸着した一
部有機物も除去できる。 後段に酸・アルカリをそのイオン交換樹脂の再生に
用いる設備、例えば混床式イオン交換塔を有する場合、
これらの再生廃液を直接、活性炭塔に通薬しても、前記
の効果が得られる。従って、活性炭の殺菌には特別の
薬品や、熱水殺菌等の手段は必要としない。 の効果により活性炭表面の鉄、マンガン、スライ
ム等が解消し、残留塩素除去能力が回復する。
The present inventor has conducted research on a sterilization method of activated carbon with an inorganic acid, and has obtained the following findings. The bactericidal effect is mainly achieved under strongly acidic conditions of pH 1.5 or less. Although the bactericidal effect is slight under alkaline conditions, SS and slime are peeled off, and a part of organic substances adsorbed on activated carbon can be removed. In the case where a facility using an acid / alkali for regeneration of the ion exchange resin, for example, having a mixed bed type ion exchange tower in the latter stage,
Even if these recycled waste liquids are directly passed through the activated carbon tower, the above effects can be obtained. Therefore, no special chemicals or means such as hot water sterilization are required for sterilization of activated carbon. By this effect, iron, manganese, slime, etc. on the surface of activated carbon are eliminated, and the residual chlorine removal capacity is restored.

【0011】 で樹脂再生廃液酸・アルカリを活性
炭に通薬すると、薬洗後の水洗時に活性炭層から酸又は
アルカリが少しずつリークし、処理水を原水並みのpH
に回復させるために長時間を要し、多量の洗浄排液が発
生する。しかし、活性炭塔の後段には混床式イオン交換
塔等の脱塩装置があるため、リークした酸・アルカリは
そこで除去される。洗浄排水中のイオン負荷は樹脂のイ
オン交換能の数%であって、プロセス全体としての純水
採取量は極わずか減少するだけで運用上何らさしつかえ
ない程度である。
When the acid / alkali of the resin-recycled waste liquid is passed through the activated carbon, acid or alkali leaks little by little from the activated carbon layer during the washing with water after the chemical washing, and the treated water has a pH similar to that of raw water.
It takes a long time to recover, and a large amount of cleaning drainage occurs. However, since there is a desalting device such as a mixed bed type ion exchange column in the latter stage of the activated carbon column, the leaked acid / alkali is removed there. The ion load in the cleaning waste water is several% of the ion exchange capacity of the resin, and the amount of pure water collected in the process as a whole is only slightly reduced, which is not a problem in operation.

【0012】図2は、例として、塩酸単独、苛性ソーダ
単独、及びまず苛性ソーダついで塩酸を微生物に汚染さ
れた活性炭に通薬し殺菌処理した時の洗浄時間とpHの
回復状況を示している。ここで示す洗浄方法は実験に供
した1例であり、実施にあたっての具体的条件は、この
通りでなくても良い。 <洗浄方法> 充填塔:50φ×1300Hmmアクリル製カラム 活性炭:1.5リットル充填、充填層高さ800mm 薬品処理 (イ)〔2%HCl〕 1) 2%HCl 1.8リットルを下向流(SV3)で通薬: 24分 2) 保持 : 30分 3) 原水(水道水)で押出し(SV3) : 30分 4) カラム最上部から原水を導入し洗浄(SV20) :図2による (ロ)〔2%NaOH〕 (イ)と同様に行った。
FIG. 2 shows, as an example, a recovery time of pH and a recovery time when hydrochloric acid alone, caustic soda alone, and first caustic soda and then hydrochloric acid are passed through sterilized activated carbon that has been contaminated with microorganisms. The cleaning method shown here is an example used in the experiment, and the specific conditions for implementation need not be as described above. <Washing method> Packing tower: 50φ x 1300 Hmm acrylic column Activated carbon: 1.5 liters packed, height of packed bed 800 mm Chemical treatment (ii) [2% HCl] 1) Downflow of 2% HCl 1.8 liters ( SV3) Penetration: 24 minutes 2) Retention: 30 minutes 3) Extrusion with raw water (tap water) (SV3): 30 minutes 4) Washing by introducing raw water from the top of the column (SV20): According to Figure 2 (b) [2% NaOH] The same procedure as in (a) was performed.

【0013】 (ハ)〔2%NaOH−2%HCl〕 1) 2%NaOH 1.8リットルを下向流(SV3)で通薬: 24分 2) 保持 : 30分 3) 原水(水道水)で押出し(SV3) : 30分 4) 2%HCl 1.8リットルを下向流(SV3)で通薬 : 24分 5) 保持 : 30分 6) 原水(水道水)で押出し(SV3) : 30分 7) カラム最上部から原水を導入し洗浄(SV20) :図2による。 <原水の性状> 水道水:pH 7.2、 導電率 240μs/cm
(at 25℃、) 塩素 1〜2mg/l、Mアルカリ度 40〜45mg
/l、
(C) [2% NaOH-2% HCl] 1) 2 liters of NaOH 1.8 liters in downward flow (SV3) through: 24 minutes 2) Hold: 30 minutes 3) Raw water (tap water) Extrusion (SV3): 30 minutes 4) 1.8 liters of 2% HCl in downward flow (SV3): 24 minutes 5) Retention: 30 minutes 6) Extrusion with raw water (tap water) (SV3): 30 Minute 7) Washing by introducing raw water from the top of the column (SV20): According to FIG. <Properties of raw water> Tap water: pH 7.2, conductivity 240 μs / cm
(At 25 ° C.) chlorine 1-2 mg / l, M alkalinity 40-45 mg
/ L,

【0014】図2中(a)は洗浄方法(イ)及び(ハ)
の結果を示しており、両条件でのpH回復状況は殆んど
同様であった。また(b)は洗浄方法(ロ)の結果を示
す。表1は各洗浄方法での洗浄終点pHまでに要した洗
浄排水量を示す。
In FIG. 2, (a) shows cleaning methods (a) and (c).
The results show that the pH recovery conditions under both conditions were almost the same. Further, (b) shows the result of the cleaning method (b). Table 1 shows the amount of cleaning waste water required until the cleaning end point pH in each cleaning method.

【表1】 [Table 1]

【0015】又、洗浄方法(イ)(ハ)において各洗浄
終点pHから設定pHまで洗浄し、その後混床式イオン
交換塔に通水した場合のイオン負荷量は概ね表2のよう
に求められる。従って例えば次の様な活性炭塔−混床式
イオン交換塔系において酸廃液による薬品殺菌により消
費されるアニオン樹脂量は表3のように試算される。
In addition, in the cleaning methods (a) and (c), when the cleaning is performed from the end pH of each cleaning to the set pH and then water is passed through the mixed bed type ion exchange column, the ion loading amount is generally obtained as shown in Table 2. . Therefore, for example, in the following activated carbon tower-mixed bed type ion exchange tower system, the amount of anion resin consumed by chemical sterilization with an acid waste solution is calculated as shown in Table 3.

【表2】 [Table 2]

【0016】<活性炭塔−混床式イオン交換塔系設計条
件例> 原水負荷イオン量:120mg/l as CaCO3 処理水量 :300m3 /c(30m3 /時×1
0時間) 安全係数 :カチオン樹脂 1.2 アニオン樹脂 1.45 貫流容量 :カチオン樹脂 45g/lR as
CaCO3 アニオン樹脂 35g/lR as CaCO3 再生剤量 :HCl 100kg/c 100
% NaOH 150kg/c 100% 樹脂量 :カチオン樹脂 1000リットル アニオン樹脂 1500リットル
<Example of activated carbon tower-mixed bed type ion exchange tower system design conditions> Raw water load ion amount: 120 mg / l as CaCO 3 treated water amount: 300 m 3 / c (30 m 3 / hour × 1)
0 hours) Safety factor: Cation resin 1.2 Anion resin 1.45 Flow-through capacity: Cation resin 45 g / lR as
CaCO 3 anion resin 35 g / lR as CaCO 3 regenerant amount: HCl 100 kg / c 100
% NaOH 150 kg / c 100% Resin amount: Cationic resin 1000 liters Anion resin 1500 liters

【表3】 [Table 3]

【0017】このように活性炭の洗浄終点をpH2.0
とすると、洗浄水通水時に後段の混床式イオン交換塔内
のアニオン樹脂の8%が消費されてしまい、その分1サ
イクル当りの処理水量(能力)が低下し、実用上問題で
ある。しかし洗浄終点をpH3.0に設定すると、アニ
オン樹脂の消費率は1.5%と少なく、実用上の問題と
はならない。即ち洗浄方法(イ)塩酸廃液で殺菌する場
合、洗浄方法(ハ)まず苛性ソーダ廃液を通液し、つい
で塩酸廃液で殺菌する場合、洗浄終点をpH3.0以上
にすれば後段のアニオン樹脂への負荷は極小さい。洗浄
終点pH3.0までの洗浄排水量は7リットル/リット
ル−活性炭、又洗浄時間もSV20で20分間となる。
洗浄終点pH2.0でも設計当初からアニオン樹脂の安
全係数を10%程大きくしておけば実用可能である。
Thus, the end point of washing the activated carbon is adjusted to pH 2.0.
In that case, 8% of the anion resin in the mixed bed type ion exchange column in the subsequent stage is consumed when the wash water is passed, and the amount of treated water (capacity) per cycle is reduced accordingly, which is a practical problem. However, when the washing end point is set to pH 3.0, the consumption rate of the anion resin is as small as 1.5%, which is not a practical problem. That is, when the cleaning method (a) is sterilized with a hydrochloric acid waste liquid, the cleaning method (c) is first passed through a caustic soda waste liquid, and then when the hydrochloric acid waste liquid is sterilized, if the pH of the cleaning end point is set to 3.0 or more, the anion resin in the subsequent stage is The load is extremely small. The amount of waste water for cleaning up to pH 3.0 of the end of cleaning is 7 l / l-activated carbon, and the cleaning time is 20 minutes at SV20.
Even at the cleaning end point pH of 2.0, it can be practically used by increasing the safety factor of the anion resin by about 10% from the beginning of the design.

【0018】酸廃液の活性炭への通薬殺菌を、3〜7日
毎に1回とすれば、活性炭出口の微生物量は一般細菌数
で通常100コ/ml(最大1000コ/ml以下)に
抑えられる。更に後段の混床式イオン交換塔による微生
物除去率は99.0〜99.9%が得られるので、混床
式イオン交換塔後のプロセス処理水中の一般細菌数は常
に1〜10コ/ml以下に維持されている。これは、活
性炭を酸殺菌しない場合の10〜104 コ/mlに比較
し、非常に低いレベルである。洗浄方法(ハ)苛性ソー
ダ廃液を通薬した場合は、洗浄終点pH 13.0では
後段のカチオン樹脂にかかる負荷が大きく実用は困難で
ある。洗浄終点12.0では、その後の通水による負荷
イオン量は約2.0g/l−活性炭 as CaCO3
であり全カチオン樹脂の約8.8%が消費され、pH1
1.0では約2.2%が消費される。処理水の安全確保
を考えるとpH 11.0程度まで洗浄する必要がある
が、この場合、SV20で洗浄時間65分、洗浄排水量
22リットル/リットル−活性炭と、塩酸の場合に比較
し約3倍の排水量となる。
If the sterilization of the acid waste liquid through activated carbon is carried out once every 3 to 7 days, the amount of microorganisms at the activated carbon outlet is generally 100 co / ml (maximum 1000 co / ml or less). To be Further, since the microorganism removal rate by the mixed bed type ion exchange tower in the latter stage is 99.0 to 99.9%, the number of general bacteria in the process water after the mixed bed type ion exchange tower is always 1 to 10 co / ml. It is maintained below. This is a very low level as compared with 10 to 10 4 co / ml when the activated carbon is not acid-sterilized. Washing method (C) When a caustic soda waste liquid is passed, at the washing end point pH of 13.0, the load on the cationic resin in the subsequent stage is large and practical use is difficult. At the cleaning end point 12.0, the amount of loaded ions due to the subsequent passage of water is about 2.0 g / l-activated carbon as CaCO 3.
And about 8.8% of the total cationic resin is consumed, and the pH is 1
At 1.0, about 2.2% is consumed. In order to ensure the safety of treated water, it is necessary to wash to a pH of about 11.0, but in this case, the washing time is 65 minutes with SV20, the washing drainage volume is 22 liters / liter-Activated carbon, and about 3 times as much as in the case of hydrochloric acid. It becomes the amount of drainage.

【0019】従って、酸廃液についでアルカリ廃液(N
aOH)を通薬し殺菌する方法は、洗浄時間が長く洗浄
排水量が多量となること、また、アルカリ廃液の活性炭
への通薬量を適正にし、適正pHに素早く回復させるた
めの工程が複雑となる等の欠点もあるが、実用に供する
ことはさしつかえない。酸廃液のみを活性炭に通薬し殺
菌する方法(A)は、例えば下記のように行えば、混床
式イオン交換塔の再生時間内で通液を終わらせることが
できる。
Therefore, the acid waste liquid is followed by the alkali waste liquid (N
The method of sterilizing by passing aOH) requires a long washing time and a large amount of washing waste water, and the process for adjusting the amount of alkali waste liquid to be passed to activated carbon to restore the pH to a proper pH is complicated. However, it can be put to practical use. The method (A) in which only the acid waste liquid is passed through the activated carbon to sterilize it can be completed within the regeneration time of the mixed bed type ion exchange column, for example, by the following method.

【0020】 <工程> 1)混床式イオン交換塔の逆洗分離 15分 2)HCl通薬(混床式イオン交換塔から上向流にて活性炭塔へ) 30〜40分 3)HCl押出し(同上) 20分 4)混床式イオン交換塔にNaOH通薬 活性炭HCl保持 30〜40分 5)混床式イオン交換塔のNaOH押出 活性炭HCl保持 30分 6)混床式イオン交換塔ドレン排出 活性炭塔逆洗 15分 7)混床式イオン交換塔混合 活性炭塔洗浄 15分 8)混床式イオン交換塔および活性炭塔洗浄 15分<Step> 1) Backwash separation of mixed bed type ion exchange tower 15 minutes 2) HCl feed (upstream flow from mixed bed type ion exchange tower to activated carbon tower) 30 to 40 minutes 3) HCl extrusion (Same as above) 20 minutes 4) NaOH admixture in mixed bed ion exchange tower, activated carbon HCl retention 30-40 minutes 5) NaOH extrusion of mixed bed ion exchange tower activated carbon HCl retention 30 minutes 6) Mixed bed ion exchange tower drain discharge Activated carbon tower backwash 15 minutes 7) Mixed bed type ion exchange tower mixing Activated carbon tower wash 15 minutes 8) Mixed bed type ion exchange tower and activated carbon tower wash 15 minutes

【0021】以上の工程において酸がpH1.5以下で
活性炭に接触している時間は概ね80〜90分となり、
殺菌に充分な時間が得られ、プロセス全体としての再生
殺菌の所要時間は170〜195分である。なお、活性
炭にまずアルカリ廃液、ついで酸廃液を通液殺菌する方
法(B)の頻度は、酸廃液のみの通液(A)の数回に1
回、即ち2〜4週間に1度程度行えば良く、耐酸性菌の
殺菌、スライムの防止を目的とする。
In the above steps, the time during which the acid is in contact with the activated carbon at a pH of 1.5 or less is about 80 to 90 minutes,
Sufficient time is obtained for sterilization, and the time required for regenerated sterilization as a whole process is 170 to 195 minutes. The method (B) of sterilizing the activated carbon by passing the alkaline waste solution first and then the acid waste solution is 1 times every several times of the passing of the acid waste solution only (A).
It may be performed once, or about once every 2 to 4 weeks, for the purpose of sterilizing acid-resistant bacteria and preventing slime.

【0022】[0022]

【実施例】以下、実施例により具体的に説明するが、本
発明はこれに限定されない。 実施例1 本発明の詳細な実施方法を図1を用いて、活性炭塔と混
床式イオン交換塔を有するプロセスを例に述べる。図1
において、活性炭2を充填した活性炭塔1および、カチ
オン樹脂4とアニオン樹脂5を充填した混床式イオン交
換塔3を用い下記のように本発明を実施する。カチオン
樹脂4とアニオン樹脂5を混合状態とし、原水6を弁
7,8,9,10を開とし、活性炭塔1、混床式イオン
交換塔3に通水、処理水を得る。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Example 1 A detailed implementation method of the present invention will be described with reference to FIG. 1 by taking a process having an activated carbon column and a mixed bed type ion exchange column as an example. FIG.
In the above, the present invention is carried out as follows using the activated carbon tower 1 filled with the activated carbon 2 and the mixed bed type ion exchange tower 3 filled with the cation resin 4 and the anion resin 5. The cation resin 4 and the anion resin 5 are mixed, the raw water 6 is opened with the valves 7, 8, 9, 10 to pass water through the activated carbon tower 1 and the mixed bed type ion exchange tower 3 to obtain treated water.

【0023】ついで混床式イオン交換塔3、活性炭塔1
の再生逆洗等を行うが、通常時すなわち活性炭塔の殺菌
を行わない時は、従来法に従って混床式イオン交換塔3
の再生逆洗を行えばよい。又、活性炭塔1へアルカリ廃
液を通薬した後、酸廃液を通薬し殺菌する方法も、次に
述べる酸廃液のみを通薬して殺菌する方法の混床式イオ
ン交換塔3へのHCl、NaOHの通薬の順序を変更し
ただけなので略す。活性炭塔1に酸廃液を通薬し殺菌す
る場合は、弁13、14を開とし、活性炭層を5分程度
スルージングし緩めた後、混床式イオン交換塔3のHC
l通薬を先に行う。HCl計量槽22の元弁23、弁1
4、18、21、26を開とし、カチオン樹脂4に通薬
し、中間コレクタC2 から排出し、活性炭塔に上向流で
通薬する。元弁23を閉としHCl押出を同一フローで
20分間以内行い、ついで活性炭塔(以下AC塔と略記
する)は酸に接触した状態で混床式イオン交換塔(以下
MB塔と略記する)のNaOH押出が終了するまで保持
する。
Next, a mixed bed type ion exchange tower 3 and an activated carbon tower 1
Recycle backwashing, etc., but normally, that is, when the activated carbon tower is not sterilized, the mixed bed ion exchange tower 3 is used according to the conventional method.
It is sufficient to carry out the reproduction backwash. Further, a method of passing an alkali waste liquid through the activated carbon tower 1 and then passing an acid waste liquid therethrough for sterilization is also a method of passing through only the acid waste liquid described below for sterilization. , NaOH is omitted because it has only been changed in the order of passage. When the acid waste liquid is passed through the activated carbon tower 1 for sterilization, the valves 13 and 14 are opened, and the activated carbon layer is sluged for about 5 minutes to loosen it, and then the HC of the mixed bed ion exchange tower 3 is used.
l Do medicine first. Main valve 23 and valve 1 of HCl metering tank 22
4, 18, 21, and 26 are opened, the cation resin 4 is charged, discharged from the intermediate collector C 2 , and passed through the activated carbon tower in an upward flow. The main valve 23 is closed and HCl extrusion is carried out within the same flow for 20 minutes or less, and then the activated carbon tower (hereinafter abbreviated as AC tower) of the mixed bed type ion exchange tower (hereinafter abbreviated as MB tower) is in contact with acid. Hold until NaOH extrusion is complete.

【0024】これに続くMB塔3の工程は次のとおりで
ある。NaOH計量槽28の元弁17を開とし、弁1
8、19、26を開とし原水6を用いてNaOH通薬を
行う。元弁を閉とし同一フローでNaOH押出しを30
分間以内行う。ついで弁16、19を開としドレンを行
いMB塔の水位を樹脂表層300〜500mmに下げ
る。ついで弁24を開として空気を導入し、弁12、1
6を開とし樹脂混合を行う。AC塔1はMB塔のNaO
H押出し終了後弁13、14を開とし原水6で逆洗兼洗
浄を15分間程度行う。次に洗浄を弁7、27を開とし
て行う。洗浄時、弁15も短時間開としてAC塔内を満
水とする。pH3.0以下に洗浄排水が下がったらMB
塔の満水洗浄を開始する。
The subsequent steps of the MB tower 3 are as follows. The main valve 17 of the NaOH measuring tank 28 is opened, and the valve 1
Open 8, 9, and 26 and carry out NaOH replenishment using raw water 6. The main valve is closed and the NaOH flow is 30
Do within minutes. Next, the valves 16 and 19 are opened and drained to lower the water level in the MB tower to the resin surface layer of 300 to 500 mm. Then, the valve 24 is opened to introduce air, and the valves 12, 1
Open 6 and mix the resin. AC tower 1 is MBO NaO
After the H extrusion is completed, the valves 13 and 14 are opened, and the raw water 6 is backwashed and washed for about 15 minutes. Next, cleaning is performed by opening the valves 7 and 27. During cleaning, the valve 15 is also opened for a short time to fill the inside of the AC tower. MB when cleaning drainage drops below pH 3.0
Start washing the tower with water.

【0025】弁7、8、9、25、16を開として満水
洗浄を行う。満水後弁16を閉として、設定処理水質に
達するまで洗浄を続ける。すなわち、酸廃液のみを通薬
する殺菌操作を説明したが、アルカリ廃液のみ或いは酸
廃液とアルカリ廃液を組合せて殺菌操作を行ってもさし
つかえない。好ましい組合せは酸廃液のみによる殺菌操
作と、その数回に1度の頻度でアルカリ廃液・酸廃液に
よる殺菌操作を適宜組合わせて行うのが良い。
The valves 7, 8, 9, 25 and 16 are opened to perform full water washing. After full water, the valve 16 is closed and washing is continued until the set treated water quality is reached. That is, the sterilization operation in which only the acid waste liquid is passed has been described, but the sterilization operation may be performed by using only the alkali waste liquid or a combination of the acid waste liquid and the alkali waste liquid. A preferred combination is to perform a sterilization operation using only the acid waste liquid and a sterilization operation using the alkali waste liquid / acid waste liquid once every several times.

【0026】実施例2下記条件のAC塔、MB塔、原
水、再生条件でAC塔の殺菌を行った。 原水負荷イオン量 トータルカチオン 115mg/l as CaCO3 トータルアニオン 135mg/l as CaCO3 処理水量 600リットル/c(60リットル/時×10時間) 再生剤量 HCl 200g/c (100%) NaOH 300g/c (100%) 樹脂 ダウエックスMSA−2 (アニオン樹脂:商標名) ダウエックスHCR−W2(カチオン樹脂:商標名) 活性炭塔 アクリルカラム80φ×1600Hmm AC5リットル 混床式イオン交換塔 180φ×1800Hmm 活性炭塔殺菌頻度: 酸廃液殺菌 1回/週 通常運転 6日/週 再生剤濃度/c MB塔 4%HCl : 4.4リットル/時間 4%NaOH: 6.0リットル/時間 (HClの廃液としてAC塔の流入濃度は2%HCl:8.8リットル/ 時間)
Example 2 The AC tower was sterilized under the following conditions: AC tower, MB tower, raw water, and regeneration conditions. Raw water load Ion amount Total cation 115 mg / l as CaCO 3 Total anion 135 mg / l as CaCO 3 treated water amount 600 liters / c (60 liters / hour × 10 hours) Regenerator amount HCl 200 g / c (100%) NaOH 300 g / c (100%) Resin Dowex MSA-2 (anion resin: trade name) Dowex HCR-W2 (cation resin: trade name) Activated carbon tower Acrylic column 80φ x 1600Hmm AC5 liter Mixed bed type ion exchange tower 180φ x 1800Hmm Activated carbon tower sterilization Frequency: Acid waste solution sterilization 1 time / week Normal operation 6 days / week Regenerator concentration / c MB tower 4% HCl: 4.4 liter / hour 4% NaOH: 6.0 liter / hour ( Inflow concentration is 2% HCl: 8.8 liters / hour)

【0027】活性炭塔はHCl押出終了後、15リット
ル/時間の流速で下向流のポンプ循環を45分間行っ
た。この時の循環液のpHは0.8であった。原水は水
道水に更に塩素を注入し、残留塩素を1〜2mg/リッ
トルとした。結果は次のとおりである。 1)微生物(一般細菌)数
After the completion of HCl extrusion, the activated carbon tower was subjected to a downward flow pump circulation at a flow rate of 15 liters / hour for 45 minutes. The pH of the circulating liquid at this time was 0.8. Raw water was obtained by further injecting chlorine into tap water to adjust residual chlorine to 1 to 2 mg / liter. The results are as follows. 1) Number of microorganisms (general bacteria)

【表4】 その他カビ酵母類検出せず[Table 4] Other mold yeasts not detected

【0028】2)残留塩素2) Residual chlorine

【表5】 [Table 5]

【0029】3)長期運転 1週間に1回の酸廃液殺菌をくり返した。2〜3ケ月後
の酸殺菌後の経過をみると、AC塔出口水質の一般細菌
数は下記の様に上昇した。以後6ケ月目まで継続する
と、しだいにその数は上昇し、最大(7日目の値)でA
C塔出口の一般細菌数は2.2×103 コ/mlになっ
た。
3) Long-term operation The acid waste solution sterilization was repeated once a week. Looking at the progress after acid sterilization after 2-3 months, the number of general bacteria in the water quality at the outlet of the AC tower increased as follows. After that, if it continues for the 6th month, the number will gradually increase, and the maximum (value on the 7th day) will be A.
The number of general bacteria at the outlet of the C tower was 2.2 × 10 3 cells / ml.

【表6】 [Table 6]

【0030】実施例3 実施例2と同じ条件で1週間に1回の酸廃液殺菌とその
4回に1回毎にアルカリ廃液(2%NaOH)、ついで
酸廃液殺菌を行った。結果は実施例2で見られた長期運
転後の一般細菌の上昇は全くなく、6ケ月目においても
下記の値が得られた。因みに6ケ月目は梅雨期の6月
で、水温22℃と細菌類の増殖し易い状況下であった。
Example 3 Under the same conditions as in Example 2, acid waste liquid sterilization was performed once a week, and alkali waste liquid (2% NaOH) was sterilized once every four times and then acid waste liquid sterilization. As a result, there was no increase in general bacteria observed in Example 2 after long-term operation, and the following values were obtained even after 6 months. By the way, the 6th month was June of the rainy season, and the water temperature was 22 ° C, which was in a condition where bacteria could easily grow.

【表7】 [Table 7]

【0031】[0031]

【発明の効果】本発明によれば、次のような効果を奏す
る。 (1)後段のイオン交換塔の再生廃液をそのまま用いて
いるため、殺菌用のコストが必要ない。 (2)殺菌処理を酸廃液で行うことにより、熱水殺菌等
に比較し、殺菌効果が長時間持続する。 (3)酸廃液とアルカリ廃液による処理を組合せて行う
ことにより、活性炭表面のFe、Mn、スライム等が解
消し、残留Cl2 除去能力が回復し、長時間連続使用が
可能となった。 (4)活性炭中に残留する酸・アルカリは、少量である
ので後段のイオン交換樹脂で除去でき、運用上何らさし
つかえない。
The present invention has the following effects. (1) The cost of sterilization is not necessary because the recycled waste liquid from the ion exchange tower in the latter stage is used as it is. (2) By performing the sterilization treatment with the acid waste liquid, the sterilization effect lasts for a long time as compared with hot water sterilization and the like. (3) By combining the treatment with the acid waste liquid and the alkali waste liquid, Fe, Mn, slime, etc. on the surface of the activated carbon were eliminated, the residual Cl 2 removal ability was recovered, and continuous use for a long time became possible. (4) Acids and alkalis remaining in the activated carbon can be removed by the ion-exchange resin in the latter stage because it is a small amount, and there is no problem in operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の殺菌方法を示す処理フロー工程図であ
る。
FIG. 1 is a process flow process chart showing a sterilization method of the present invention.

【図2】洗浄時間とpHの回復状態を示すグラフであ
る。
FIG. 2 is a graph showing a cleaning time and a pH recovery state.

【図3】従来の純水製造方法の工程図である。FIG. 3 is a process diagram of a conventional pure water production method.

【図4】従来の他の純水製造方法の工程図である。FIG. 4 is a process diagram of another conventional method for producing pure water.

【図5】本発明を適用する純水製造方法の工程図であ
る。
FIG. 5 is a process diagram of a pure water producing method to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1:活性炭塔、2:活性炭、3:混床式イオン交換塔、
4:カチオン樹脂、5:アニオン樹脂、6:原水、2
0:処理水、22:HCl計量槽、28:NaOH計量
槽、C1 、C2 、C3 :集水装置、31:受水槽、3
2:ポンプ、33:活性炭槽、34:混床式イオン交換
塔、35:処理水貯槽、36:メンブランフィルタ、3
7:紫外線殺菌、38:Cl2 殺菌剤
1: Activated carbon tower, 2: Activated carbon, 3: Mixed bed type ion exchange tower,
4: cation resin, 5: anion resin, 6: raw water, 2
0: treated water, 22: HCl measuring tank, 28: NaOH measuring tank, C 1 , C 2 , C 3 : water collecting device, 31: water receiving tank, 3
2: Pump, 33: Activated carbon tank, 34: Mixed bed type ion exchange tower, 35: Treated water storage tank, 36: Membrane filter, 3
7: UV sterilization, 38: Cl 2 bactericide

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 503 C02F 9/00 503B (72)発明者 宮 茂夫 東京都港区港南1丁目6番27号 荏原イ ンフィルコ株式会社内 (56)参考文献 特開 昭51−28354(JP,A) 特開 昭50−8368(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C02F 9/00 503 C02F 9/00 503B (72) Inventor Shigeo Miya 1-6, Konan, Minato-ku, Tokyo No. 27 within EBARA Infilco Co., Ltd. (56) Reference JP-A-51-28354 (JP, A) JP-A-50-8368 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性炭塔を通した後、カチオン樹脂とア
ニオン樹脂を有する混床式イオン交換塔又は多床式イオ
ン交換塔を通して純水を得るに際し、カチオン樹脂及び
アニオン樹脂の再生に使用した酸廃液及び/又はアルカ
リ廃液を、前記活性炭塔に通薬して活性炭中の微生物を
殺菌することを特徴とする活性炭の殺菌方法。
1. An acid used for regeneration of a cation resin and an anion resin when pure water is obtained through a mixed bed type ion exchange column or a multi-bed type ion exchange column having a cation resin and an anion resin after passing through an activated carbon column. A method for sterilizing activated carbon, comprising passing waste liquid and / or alkaline waste liquid through the activated carbon tower to sterilize microorganisms in the activated carbon.
【請求項2】 前記の活性炭塔への廃液の通薬は、イオ
ン交換樹脂の再生に使用した酸廃液のみで行う方法と、
同アルカリ廃液を通薬し、ついで酸廃液を通薬して行う
方法とを、適宜組合わせて行うことを特徴とする請求項
1記載の活性炭の殺菌方法。
2. A method of passing the waste liquid to the activated carbon tower using only the acid waste liquid used for the regeneration of the ion exchange resin,
2. The method for sterilizing activated carbon according to claim 1, wherein the method of passing the same alkaline waste liquid and then the acid waste liquid is appropriately combined.
JP3184024A 1991-06-28 1991-06-28 How to sterilize activated carbon Expired - Fee Related JP2546750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184024A JP2546750B2 (en) 1991-06-28 1991-06-28 How to sterilize activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184024A JP2546750B2 (en) 1991-06-28 1991-06-28 How to sterilize activated carbon

Publications (2)

Publication Number Publication Date
JPH0592183A JPH0592183A (en) 1993-04-16
JP2546750B2 true JP2546750B2 (en) 1996-10-23

Family

ID=16146015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184024A Expired - Fee Related JP2546750B2 (en) 1991-06-28 1991-06-28 How to sterilize activated carbon

Country Status (1)

Country Link
JP (1) JP2546750B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055662B2 (en) * 2001-05-11 2012-10-24 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
JP4627028B2 (en) * 2005-10-04 2011-02-09 オルガノ株式会社 Bacteria propagation prevention method of waste water treatment equipment
JP5670685B2 (en) * 2010-09-21 2015-02-18 水ing株式会社 Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water
JP5670684B2 (en) * 2010-09-21 2015-02-18 水ing株式会社 Method for maintaining the recovery of dechlorination ability of activated carbon in the manufacturing process
CN105016348A (en) * 2015-07-16 2015-11-04 安徽东阳矿业科技有限公司 Acidiferous quartz mortar treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425513B2 (en) * 1973-05-24 1979-08-28
JPS5128354A (en) * 1974-09-02 1976-03-10 Ebara Infilco JUKINZOKUGANJUHAISUI NO SHORIHOHO

Also Published As

Publication number Publication date
JPH0592183A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
JP5000856B2 (en) Rincer drainage recovery device and Rincer drainage recovery system
US5147605A (en) Method for the sterilization of ultrapure water line
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP2546750B2 (en) How to sterilize activated carbon
JP3200314B2 (en) Organic wastewater treatment equipment
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JP3446599B2 (en) Production method of vegetable juice
JPH07121388B2 (en) Sterilization and neutralization method of activated carbon with acid and alkali
JP2002336887A (en) Extrapure water making device and extrapure water making method
GB2197860A (en) Apparatus for and the method of water purification
JPH0994568A (en) Active carbon treatment apparatus
JP3613376B2 (en) Pure water production apparatus and pure water production method
JPH0632821B2 (en) Method for suppressing the growth of microorganisms in pure water
JPS6331592A (en) Method for making ultrapure water
JPS63141694A (en) Production of ultra-pure water
JPH0630792B2 (en) Treatment method of water supply treatment device
JPH05138167A (en) Ultra pure water supplying equipment
JPH06285368A (en) Regenerating method of zeolite for removing ammonia
JP4023834B2 (en) Storage method and operation preparation method of ion exchange resin in hotbed desalination equipment
JPH0372900A (en) Method for purifying sucrose solution and treating equipment therefor
Höll et al. Municipal drinking water treatment by the CARIX ion exchange process
JPH0771668B2 (en) Method for removing trace organic substances in ultrapure water
JPH06142646A (en) Method for washing activated charcoal
JPH03293087A (en) Production of ultra-pure water
JP2005296748A (en) Condensate demineralizer and its regeneration method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees