JP5670685B2 - Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water - Google Patents

Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water Download PDF

Info

Publication number
JP5670685B2
JP5670685B2 JP2010210664A JP2010210664A JP5670685B2 JP 5670685 B2 JP5670685 B2 JP 5670685B2 JP 2010210664 A JP2010210664 A JP 2010210664A JP 2010210664 A JP2010210664 A JP 2010210664A JP 5670685 B2 JP5670685 B2 JP 5670685B2
Authority
JP
Japan
Prior art keywords
water
dechlorination
acid
activated carbon
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010210664A
Other languages
Japanese (ja)
Other versions
JP2012066161A (en
JP2012066161A5 (en
Inventor
則夫 槇田
則夫 槇田
靖行 吉川
靖行 吉川
舞奈 吉田
舞奈 吉田
祐司 塚本
祐司 塚本
小島 康成
康成 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2010210664A priority Critical patent/JP5670685B2/en
Publication of JP2012066161A publication Critical patent/JP2012066161A/en
Publication of JP2012066161A5 publication Critical patent/JP2012066161A5/ja
Application granted granted Critical
Publication of JP5670685B2 publication Critical patent/JP5670685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、清涼飲料水、茶、コーヒー、ビールなどの製造に用いる飲料用水を製造する工程において、脱塩素処理に用いられる活性炭の脱塩素能力を回復する方法、並びに、これを利用した飲料用水の製造方法に関する。   The present invention relates to a method for recovering the dechlorination ability of activated carbon used for dechlorination in a process for producing drinking water used in the production of soft drinks, tea, coffee, beer, and the like, and drinking water using the same. It relates to the manufacturing method.

清涼飲料水、茶、コーヒー、ビールなどの製造に用いる飲料用水の原料水として、従来は水道水や井戸水などが用いられてきたが、近年、製品品質の均一化及びミネラル成分の調整などを目的として、脱塩水が用いられることが多くなっている。
このような脱塩水を製造するための脱塩方法として、イオン交換樹脂法や逆浸透膜法などを挙げることができるが、イオン交換樹脂法は定期的な薬品再生を必要とするなど運転管理が煩雑であることから、逆浸透膜法が採用されることが増えている。
In the past, tap water and well water have been used as raw water for beverages used in the production of soft drinks, tea, coffee, beer, etc., but in recent years, the purpose is to make product quality uniform and adjust mineral components. As a result, demineralized water is often used.
Examples of the desalting method for producing such desalted water include an ion exchange resin method and a reverse osmosis membrane method. However, the ion exchange resin method requires regular chemical regeneration and operation management. Due to the complexity, the reverse osmosis membrane method is increasingly employed.

ところで、清涼飲料水、茶、コーヒー、ビールなどの飲料水製造現場では、脱塩処理された処理水を貯留しておく必要があるため、用水貯留工程の細菌繁殖を防止する目的で殺菌・消毒が行われる。   By the way, in drinking water production sites such as soft drinks, tea, coffee, and beer, it is necessary to store treated water that has been desalted. Is done.

塩素殺菌は、我が国の水道の安全性を支えてきた重要な技術であり、特に水系伝染病の撲滅には大きな成果を上げてきた。殺菌・消毒技術としてはオゾン、紫外線利用などの技術も利用され始めているが、塩素消毒は依然として、殺菌・消毒の主流を担う技術と言える。清涼飲料水、茶、コーヒー、ビールなどの飲料水製造業などにおいても、用水貯留工程の細菌繁殖を防止する目的で塩素剤が添加されることが多い。
しかし、残留塩素は独特の塩素臭を有し、また、製品の味を変質させる場合もあるため、飲料水製造業の用水利用の最終段階では残留塩素を除去する脱塩素処理が行われている。
Chlorine sterilization is an important technology that has supported the safety of waterworks in Japan, and has been particularly successful in eradicating waterborne infectious diseases. As sterilization / disinfection technology, technologies such as ozone and ultraviolet light are beginning to be used, but chlorine disinfection is still a technology that plays a main role in sterilization / disinfection. In drinking water manufacturing industries such as soft drinks, tea, coffee and beer, a chlorine agent is often added for the purpose of preventing bacterial growth in the water storage process.
However, since the residual chlorine has a unique chlorine odor and may alter the taste of the product, dechlorination treatment is performed to remove residual chlorine at the final stage of water use in the drinking water manufacturing industry. .

脱塩素処理の方法としては、亜硫酸ナトリウムや重亜硫酸ナトリウムなどの還元剤を添加する方法もあるが、還元剤の過剰添加などの問題があるため、活性炭による脱塩素処理を採用するのが一般的である。   As a dechlorination treatment method, there is a method of adding a reducing agent such as sodium sulfite or sodium bisulfite. However, since there is a problem such as excessive addition of a reducing agent, dechlorination treatment with activated carbon is generally adopted. It is.

活性炭によって脱塩素処理する技術に関しては、例えば特許文献1において、塩素イオンを含む飲料水を、直流電圧を印加した一対の白金電極間に通水することにより、残留塩素を含有したアルカリ水を得た後、活性炭を内蔵した塩素除去フィルタに通流して飲料水を得る装置の発明が開示されている。
また、特許文献2において、逆浸透膜処理の前処理として生物活性炭塔を配置し、該生物活性炭の流入水を水温10〜35℃、pH4〜8、残留塩素0.5〜5mg/リットルとすることを特徴とする技術が開示されている。
With regard to the technology for dechlorination with activated carbon, for example, in Patent Document 1, drinking water containing chlorine ions is passed between a pair of platinum electrodes to which a DC voltage is applied to obtain alkaline water containing residual chlorine. After that, an invention of an apparatus for obtaining drinking water by flowing through a chlorine removal filter containing activated carbon has been disclosed.
Moreover, in patent document 2, a biological activated carbon tower is arrange | positioned as a pre-processing of a reverse osmosis membrane process, and the inflow water of this biological activated carbon is made into water temperature 10-35 degreeC, pH 4-8, and residual chlorine 0.5-5 mg / liter. A technique characterized by this is disclosed.

特開2006−198555号公報JP 2006-198555 A 特開2002−336887号公報Japanese Patent Laid-Open No. 2002-336887

前述のように、清涼飲料水、茶、コーヒー、ビールなどの製造に用いる飲料用水の製造方法として、原料水を脱塩処理して得られた処理水に塩素剤を添加して消毒し、得られた消毒水を、活性炭を備えた脱塩素処理槽に通水することにより脱塩素処理して飲料用水を製造する方法が採用されているが、脱塩処理方法として逆浸透膜処理法を採用すると、活性炭の脱塩素能力が経時的に低下し、残留塩素濃度が高くなるという問題を生じることが次第に分かってきた。   As described above, as a method for producing drinking water used in the production of soft drinks, tea, coffee, beer, etc., a chlorine agent is added to the treated water obtained by desalinating the raw water to disinfect it. The sterilized water is passed through a dechlorination tank equipped with activated carbon to dechlorinate it to produce drinking water, but the reverse osmosis membrane treatment method is adopted as the desalination treatment method. As a result, it has been gradually found that the dechlorination ability of the activated carbon decreases with time and the residual chlorine concentration becomes high.

そこで本発明の目的は、清涼飲料水、茶、コーヒー、ビールなどの製造に用いる飲料用水の製造工程において、脱塩処理方法として逆浸透膜処理法を採用した場合であっても、脱塩素処理に用いられる活性炭の脱塩素能力を効果的に回復させることができる、活性炭の脱塩素能力回復方法を提供することにある。   Therefore, the object of the present invention is to provide a dechlorination treatment even when a reverse osmosis membrane treatment method is employed as a desalination treatment method in the production process of drinking water used in the production of soft drinks, tea, coffee, beer and the like. It is an object of the present invention to provide a method for recovering the dechlorination ability of activated carbon, which can effectively recover the dechlorination ability of the activated carbon used in the process.

本発明は、逆浸透膜処理された処理水に塩素剤を添加し、その後、活性炭を備えた脱塩素処理槽に通水することにより脱塩素処理する工程を備えた飲料用水の製造工程において、酸を添加した酸添加水で前記脱塩素処理槽を洗浄することにより、活性炭の脱塩素能力を回復させることを特徴とする、飲料用水の製造工程における活性炭の脱塩素能力回復方法を提案するものである。   The present invention is a process for producing drinking water comprising a step of dechlorination by adding a chlorinating agent to treated water that has been subjected to reverse osmosis membrane treatment and then passing it through a dechlorination treatment tank equipped with activated carbon. A method for recovering the dechlorination capacity of activated carbon in a process for producing drinking water, wherein the dechlorination capacity of the activated carbon is recovered by washing the dechlorination tank with acid-added water to which an acid has been added. It is.

活性炭による脱塩素反応は、活性炭中の活性点による触媒反応と考えられ、その阻害要因としては、例えば酸化作用による活性点の減少や、活性点表面への鉄化合物、マンガン化合物、カルシウム化合物及び有機物などの付着及び酸化物の蓄積などによる活性炭表面の被覆或いは触媒被毒などが考えられる。本発明者らは、逆浸透膜処理した場合、鉄化合物、マンガン化合物、カルシウム化合物及び有機物などは全て除去されるため、逆浸透膜処理水に対する脱塩素反応阻害は、活性点表面へClOが吸着してCOが蓄積・安定化したり、活性点表面へ水酸イオン(OH)が吸着してCOHが蓄積・安定化したりすることにより、活性炭の活性点Cが減少して行くことが要因であると推定した。そして、活性炭の活性点表面に吸着する可能性のある酸化物やOHを除くことができれば、活性炭の活性点Cを回復することができると考え、酸を添加した酸添加水で前記脱塩素処理槽を洗浄することにより、酸化物やOHを除くようにしたところ、活性炭の脱塩素能力を回復させることができた。 The dechlorination reaction with activated carbon is considered to be a catalytic reaction due to active sites in the activated carbon, and the inhibition factors include, for example, reduction of active sites due to oxidation, iron compounds, manganese compounds, calcium compounds and organic substances on the active site surface. It is conceivable to coat the surface of the activated carbon or to poison the catalyst due to the accumulation of oxides, etc. When the reverse osmosis membrane treatment is performed, the present inventors remove all iron compounds, manganese compounds, calcium compounds, organic substances, and the like. Therefore, the dechlorination reaction inhibition with respect to the reverse osmosis membrane treated water is caused by ClO − on the active site surface. Adsorption causes C * O to accumulate and stabilize, and hydroxide ions (OH ) adsorb to the active site surface to accumulate and stabilize C * OH, thereby reducing the active site C * of activated carbon. It was estimated that going on was a factor. Then, it is considered that the active site C * of the activated carbon can be recovered if oxides or OH that may be adsorbed on the active site surface of the activated carbon can be removed, and the desorption is performed with acid-added water to which an acid has been added. By removing the oxides and OH by washing the chlorination tank, the dechlorination ability of the activated carbon could be recovered.

本発明によれば、清涼飲料水、茶、コーヒー、ビールなどの製造に用いる飲料用水を製造する飲料用水の製造工程において、脱塩処理方法として逆浸透膜処理法を採用したとしても、活性炭の脱塩素能力が経時的に低下しないようにすることができるから、塩素臭が気にならない美味しい飲料用水を安定して製造することができる。しかも、逆浸透膜処理法による用水処理において、溶性ケイ酸に起因する水回収率の低下を招くことなく、また、低い残留塩素濃度による用水貯留工程の消毒効果が得られ、かつ、活性炭の脱塩素能力の低下も来たさない飲料用水の製造方法及びその装置を提供することができる。   According to the present invention, even if a reverse osmosis membrane treatment method is adopted as a desalting treatment method in the production process of drinking water for producing drinking water used in the production of soft drinks, tea, coffee, beer, etc., Since the dechlorination ability can be prevented from decreasing with time, delicious drinking water that does not bother with the chlorine odor can be stably produced. In addition, in the water treatment by the reverse osmosis membrane treatment method, the water recovery rate due to the soluble silicic acid is not reduced, the disinfection effect of the water storage step due to the low residual chlorine concentration is obtained, and the activated carbon is removed. It is possible to provide a method and apparatus for producing drinking water that does not cause a decrease in chlorine capacity.

本発明の実施形態の一例(逆流洗浄)を示す工程図である。It is process drawing which shows an example (backflow washing | cleaning) of embodiment of this invention. 図1の変形例(逆流洗浄)を示した工程図である。It is process drawing which showed the modification (backwashing) of FIG. 本発明の実施形態の他例(順流洗浄)を示す工程図である。It is process drawing which shows the other example (forward flow cleaning) of embodiment of this invention. 図3の変形例(順流洗浄)を示した工程図である。It is process drawing which showed the modification (forward flow cleaning) of FIG.

次に、本発明の実施形態の一例として、本発明が提案する活性炭の脱塩素能力回復方法を利用した飲料用水の製造方法の好適な例について説明する。但し、本発明の範囲が、次に説明する実施形態に限定されるものではない。   Next, as an example of an embodiment of the present invention, a preferred example of a method for producing drinking water using the activated carbon dechlorination ability recovery method proposed by the present invention will be described. However, the scope of the present invention is not limited to the embodiment described below.

<本製法>
本発明の実施形態の一例に係る飲料用水の製造方法(以下「本製法」と称する)は、原料水を逆浸透膜処理する脱塩工程と、逆浸透膜処理された処理水に塩素剤を添加する消毒工程と、消毒工程で得られた消毒水を、活性炭を備えた脱塩素処理槽に通水することにより脱塩素処理する脱塩素工程とを備えた飲料用水の製造方法において、酸を添加した酸添加水で前記脱塩素処理槽を洗浄することにより、活性炭の脱塩素能力を回復させることを特徴とする飲料用水の製造方法である(図1〜4参照)。
但し、各工程の順番は適宜変更することが可能であるし、他の工程を追加することも可能である。例えば、消毒工程で得られた消毒水を所定時間貯留しておく貯留工程を、脱塩素工程の前に挿入することができる。
<Production method>
A method for producing drinking water according to an example of an embodiment of the present invention (hereinafter referred to as “the present production method”) includes a desalting step of treating raw water with a reverse osmosis membrane, and a chlorine agent in the treated water subjected to the reverse osmosis membrane treatment. In a method for producing drinking water comprising a disinfection step to be added and a dechlorination step in which the disinfecting water obtained in the disinfection step is passed through a dechlorination tank equipped with activated carbon. It is the manufacturing method of the drinking water characterized by recovering the dechlorination capability of activated carbon by wash | cleaning the said dechlorination processing tank with the added acid addition water (refer FIGS. 1-4).
However, the order of each process can be changed as appropriate, and other processes can be added. For example, a storage process in which the disinfecting water obtained in the disinfection process is stored for a predetermined time can be inserted before the dechlorination process.

脱塩工程)
本工程において、逆浸透膜処理は、供給水を高圧下で膜透過水と濃縮水に膜分離する処理操作であり、逆浸透膜処理の方法及び装置は、現在公知のものを適宜採用すればよい。
( Desalting step)
In this step, the reverse osmosis membrane treatment is a treatment operation in which the feed water is membrane-separated into membrane permeate and concentrated water under high pressure, and a currently known method and apparatus for reverse osmosis membrane treatment can be appropriately employed. Good.

脱塩処理方法として、逆浸透膜処理を採用した場合、処理水回収率を向上させる上で最大の阻害因子となるのが、濃縮水中における溶性ケイ酸の析出である。
そこで、溶性ケイ酸の溶解度を高めるために、脱塩工程に供給する水のpHを高くして水回収率を高くするのが好ましい。この際、脱塩工程に供給する水のpHを9.0以上にすれば、溶性ケイ酸の溶解度を高める効果を得ることができる一方、pHを一定以上に高くし過ぎても、水回収率の向上に繋がらない反面、後工程において塩素の消毒効果が低下するため塩素濃度を高くする必要が生じる。かかる観点から、脱塩工程に供給する水のpHを9.0〜10.5、中でも9.5〜10.5に調整するのが好ましい。
この際、pH調整に用いるアルカリ剤としては、水酸化ナトリウムや水酸化カリウムなどの水酸化物、重炭酸ナトリウムなどの炭酸塩などを挙げることができる。これらに限定するものではない。特に水酸化ナトリウムが好適である。
When reverse osmosis membrane treatment is adopted as the desalting treatment method, precipitation of soluble silicic acid in the concentrated water is the largest inhibitory factor in improving the treated water recovery rate.
Therefore, in order to increase the solubility of the soluble silicic acid, it is preferable to increase the water recovery rate by increasing the pH of the water supplied to the desalting step. At this time, if the pH of the water supplied to the desalting step is set to 9.0 or higher, the effect of increasing the solubility of the soluble silicic acid can be obtained. However, since the disinfection effect of chlorine is lowered in the subsequent process, it is necessary to increase the chlorine concentration. From this point of view, it is preferable to adjust the pH of water supplied to the desalting step to 9.0 to 10.5, particularly 9.5 to 10.5.
At this time, examples of the alkali agent used for pH adjustment include hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium bicarbonate, and the like. It is not limited to these. Sodium hydroxide is particularly preferred.

具体的には、図1〜4に示すように、アルカリ剤貯槽4、薬注ポンプ5、制御計6、pH計7から構成される装置によるアルカリ調整工程を、脱塩工程の前に配置し、溶性ケイ酸を含有する原水16にアルカリを添加してpHを9.0〜10.5に調整して溶性ケイ酸の溶解度を大きくした状態で、逆浸透膜処理装置1による脱塩工程に供給して溶解塩類を除去するようにすればよい。但し、このような具体的手段に限定するものではない。 Specifically, as shown in FIGS. 1 to 4, an alkali adjustment process using an apparatus composed of an alkaline agent storage tank 4, a chemical injection pump 5, a control meter 6, and a pH meter 7 is arranged before the desalting step. , in a state in which by adding an alkali to the raw water 16 containing soluble silicate to adjust the pH to 9.0 to 10.5 to increase the solubility of the soluble silicate, as desalting Engineering by reverse osmosis membrane treatment apparatus 1 The dissolved salt may be removed by supplying to the solution. However, it is not limited to such specific means.

また、一般に逆浸透膜は残留塩素などに対する耐酸化性が低いため、逆浸透膜処理の前処理段階で、亜硫酸ナトリウム、重亜硫酸ナトリウムなどの還元剤を添加したり、活性炭処理により残留塩素を除去したりするようにしてもよい。   Also, since reverse osmosis membranes generally have low oxidation resistance against residual chlorine, etc., reducing agents such as sodium sulfite and sodium bisulfite are added at the pretreatment stage of reverse osmosis membrane treatment, and residual chlorine is removed by activated carbon treatment. You may make it.

(消毒工程)
本工程では、逆浸透膜処理された処理水に塩素剤を添加し、水中塩素濃度を0.1〜10.0mg/リットルに調整するのが好ましい。
水中塩素濃度、すなわち残留塩素量が0.1mg/リットル以上であれば、後工程における用水貯留槽や配管などの用水貯留工程において菌繁殖を防止することができる。他方、残留塩素量が10.0mg/リットルよりも多くても、菌繁殖防止効果の向上には繋がらず、後段の脱塩素処理工程の活性炭等の処理寿命を低下させることになる。
このような観点から、塩素剤の添加量としては、水中塩素濃度を0.1〜10.0mg/リットルに調整する量であるのが好ましく、中でも1.0mg/リットル以上、或いは5.0mg/リットル以下、その中でも特に3.0mg/リットル以下であるのがさらに好ましい。
(Disinfection process)
In this step, it is preferable to add a chlorine agent to the treated water treated with the reverse osmosis membrane and adjust the chlorine concentration in water to 0.1 to 10.0 mg / liter.
If the chlorine concentration in water, that is, the amount of residual chlorine is 0.1 mg / liter or more, bacterial growth can be prevented in a water storage step such as a water storage tank or piping in a subsequent process. On the other hand, even if the amount of residual chlorine is more than 10.0 mg / liter, it does not lead to an improvement in the effect of preventing the growth of bacteria, and the treatment life of activated carbon or the like in the subsequent dechlorination treatment step is reduced.
From this point of view, the addition amount of the chlorinating agent is preferably an amount for adjusting the chlorine concentration in water to 0.1 to 10.0 mg / liter, among which 1.0 mg / liter or more, or 5.0 mg / liter. More preferably, it is not more than 1 liter, and particularly preferably not more than 3.0 mg / liter.

使用する塩素剤としては、例えば次亜塩素酸塩、塩素ガスなど特に限定するものではないが、次亜塩素酸ナトリウムが好適である。   The chlorine agent to be used is not particularly limited, for example, hypochlorite, chlorine gas, etc., but sodium hypochlorite is preferable.

具体的には、図1〜4に示すように、塩素剤貯槽8、薬注ポンプ9、制御計10、残留塩素計11から構成される装置による消毒工程を、脱塩工程の次に配し、塩素剤を添加して、用水貯留槽2及び配管などの装置による用水貯留工程における菌繁殖を防止するようにするのが好ましい。但し、このような具体的手段に限定するものではない。 Specifically, as shown in FIGS. 1 to 4, a disinfection process using a device composed of a chlorine storage tank 8, a chemical injection pump 9, a control meter 10, and a residual chlorine meter 11 is arranged next to the desalting step. It is preferable to add a chlorinating agent so as to prevent bacterial growth in the water storage step using the water storage tank 2 and piping. However, it is not limited to such specific means.

(貯留工程)
消毒工程で得られた消毒水は、すぐに飲料製造用に使用することは稀であり、貯留槽などで適宜時間貯留した後、使用するのが通常である。
よって、本製法においても、消毒工程で得られた消毒水を一旦貯留した後(貯留工程)、脱塩素工程に供するようにしてもよい。
貯留する場合の温度は30℃以下、特に15〜25℃であるのが好ましく、貯留時間は30分〜24時間が好ましく、特に1時間以上或いは2時間以下であるのが好ましい。
(Storage process)
The disinfecting water obtained in the disinfecting process is rarely used immediately for beverage production, and is usually used after being stored for an appropriate time in a storage tank or the like.
Therefore, also in this manufacturing method, you may make it use for a dechlorination process, after once having stored the disinfecting water obtained at the disinfection process (storage process).
The temperature for storage is preferably 30 ° C. or less, particularly 15 to 25 ° C., and the storage time is preferably 30 minutes to 24 hours, particularly preferably 1 hour or more or 2 hours or less.

(脱塩素工程)
脱塩素工程では、塩素を含有した消毒水を、活性炭を備えた脱塩素処理槽に通すことにより、塩素濃度を低下させることができ、具体的には、残留塩素濃度を0.05mg/リットル以下、好ましくは0.01mg/リットル以下、特に好ましくは0.005mg/リットル以下まで低下させることができる。
(Dechlorination process)
In the dechlorination step, chlorine concentration can be lowered by passing disinfecting water containing chlorine through a dechlorination treatment tank equipped with activated carbon. Specifically, the residual chlorine concentration is 0.05 mg / liter or less. , Preferably 0.01 mg / liter or less, particularly preferably 0.005 mg / liter or less.

脱塩素処理に用いる装置は、活性炭を充填してなる層を備えた装置であれば任意の構成のものを採用することが可能である。例えば、粒状活性炭、活性炭素繊維及び活性炭成形体などを充填した活性炭層を備えたものや、それらを充填したカートリッジフィルターを備えた構成のものでも、他の構成のものであってもよい。   The apparatus used for the dechlorination treatment can be of any configuration as long as it is an apparatus having a layer filled with activated carbon. For example, a configuration including an activated carbon layer filled with granular activated carbon, activated carbon fiber, and an activated carbon molded body, a configuration including a cartridge filter filled with them, or another configuration may be used.

後述するように、本製法で使用する脱塩素処理槽は、通水pHにおける残留塩素半減層厚を20cm以下に維持することが望ましく、仮に脱塩素能力がこれよりも低下した場合には、通水pHにおける残留塩素半減層厚が20cm以下になるように、後述する酸添加水によって脱塩素処理槽を洗浄して脱塩素能力を回復させることが望ましい。   As will be described later, the dechlorination treatment tank used in this production method desirably maintains the residual chlorine half-layer thickness at 20 cm or less at a water flow pH. It is desirable to recover the dechlorination ability by washing the dechlorination tank with acid-added water described later so that the residual chlorine half-layer thickness at water pH is 20 cm or less.

(洗浄処理)
本製法においては、酸を添加して調製した酸添加水を用いて、脱塩素処理槽を洗浄することにより、活性炭の脱塩素能力を回復させることが重要である。
(Cleaning process)
In this production method, it is important to recover the dechlorination ability of the activated carbon by washing the dechlorination tank using acid-added water prepared by adding acid.

この際、添加する酸としては、硫酸、塩酸、及び炭酸などを挙げることができる。中でも、炭酸は、塩類濃度を増加させない点から特に好ましい。
炭酸を添加する際は、炭酸ガスを吹き込んだ炭酸水を添加するようにしてもよいし、また、炭酸ガスを直接吹き込んでもよい。
In this case, examples of the acid to be added include sulfuric acid, hydrochloric acid, and carbonic acid. Among these, carbonic acid is particularly preferable from the viewpoint of not increasing the salt concentration.
When carbonic acid is added, carbonated water in which carbon dioxide gas is blown may be added, or carbon dioxide gas may be blown directly.

酸の添加量としては、添加後の水のpHが9未満となるように調整するのが好ましい。中でもpH5.8以上、或いは8.6以下、その中で特にpH7.0以上、或いは8.6以下に調整するのが好ましい。   The amount of acid added is preferably adjusted so that the pH of the water after the addition is less than 9. Among these, it is preferable to adjust the pH to 5.8 or more, or 8.6 or less, and particularly preferably to pH 7.0 or more, or 8.6 or less.

洗浄方法としては、逆流洗浄、順流洗浄のいずれを採用してもよいが、微粉炭除去の観点からすると、逆流洗浄を採用するのが好ましい。
脱塩素処理槽を洗浄する際、酸添加水の通水量は、洗浄時の活性炭層膨張率などに応じて適宜調整すればよいが、目安としては、線速度LV(Linear Velocity:通水断面積当りの通水量[m/m/hour])30〜60m/hourで通水して洗浄を行うようにすればよい。
As the cleaning method, either back-flow cleaning or forward-flow cleaning may be employed, but from the viewpoint of removing pulverized coal, it is preferable to employ back-flow cleaning.
When the dechlorination tank is washed, the amount of acid-added water can be adjusted as appropriate according to the activated carbon layer expansion rate at the time of washing. As a guideline, the linear velocity LV (Linear Velocity) The amount of water flow per unit [m 3 / m 2 / hour]) may be washed by passing water at 30 to 60 m / hour.

逆流洗浄の具体例としては、図1及び図2に示すように、通常状態、すなわち洗浄を行わない状態においては、切換バルブ21及び切換バルブ19を開、切換バルブ22及び切換バルブ20を閉として、脱塩素処理装置3による脱塩素処理工程に通水し、脱塩素処理を行うようにする。
そして、脱塩素処理装置3を洗浄する際には、切換バルブ21および切換バルブ19を閉とし、切換バルブ22及び切換バルブ20を開として、切換バルブ22と脱塩素処理装置3の間に設けた酸調整設備、すなわち酸剤貯槽12、薬注ポンプ13、制御計14及びpH計15から構成される酸調整設備又は炭酸ガス貯槽23、電磁流量計24、制御計14及びpH計15から構成される酸調整設備によって酸添加水を調製し、脱塩素処理装置3の逆流洗浄を行い、脱塩素処理装置充填剤の活性点の再生を行うようにすればよい。
但し、このような具体的手段に限定するものではない。
As a specific example of backflow cleaning, as shown in FIGS. 1 and 2, in a normal state, that is, in a state where cleaning is not performed, the switching valve 21 and the switching valve 19 are opened, and the switching valve 22 and the switching valve 20 are closed. Then, water is passed through the dechlorination process by the dechlorination apparatus 3 to perform the dechlorination process.
When the dechlorination apparatus 3 is cleaned, the switching valve 21 and the switching valve 19 are closed, the switching valve 22 and the switching valve 20 are opened, and the dechlorination apparatus 3 is provided between the switching valve 22 and the dechlorination apparatus 3. An acid adjustment facility, that is, an acid agent storage tank 12, a chemical injection pump 13, a controller 14 and a pH meter 15, an acid adjustment facility or a carbon dioxide gas storage tank 23, an electromagnetic flow meter 24, a controller 14 and a pH meter 15. The acid-added water is prepared by the acid adjusting equipment , the backwashing of the dechlorination apparatus 3 is performed, and the active point of the dechlorination apparatus filler is regenerated.
However, it is not limited to such specific means.

他方、順流洗浄の具体例としては、図3及び図4に示すように、通常状態、すなわち洗浄を行わない状態においては、切換バルブ19を開、切換バルブ20を閉として、脱塩素処理装置3による脱塩素処理工程に通水し、脱塩素処理を行うようにする。
そして、脱塩素処理装置3を洗浄する際には、切換バルブ19を閉、切換バルブ20を開として、用水貯留槽2と脱塩素処理装置3の間に設けた酸調整設備、すなわち酸剤貯槽12、薬注ポンプ13、制御計14及びpH計15から構成される酸調整設備又は炭酸ガス貯槽23、電磁流量計24、制御計14及びpH計15から構成される酸調整設備によってpH8.6以下とした酸添加水を調製し、脱塩素処理装置3の順流洗浄を行い、脱塩素処理装置充填剤の活性点の再生を行うようにすればよい。
但し、このような具体的手段に限定するものではない。
On the other hand, as a specific example of the forward flow cleaning, as shown in FIGS. 3 and 4, in the normal state, that is, in the state where cleaning is not performed, the switching valve 19 is opened and the switching valve 20 is closed, so that the dechlorination apparatus 3 Water is passed through the dechlorination process by, so that dechlorination is performed.
When the dechlorination apparatus 3 is washed, the switching valve 19 is closed and the switching valve 20 is opened, so that an acid adjustment facility provided between the water storage tank 2 and the dechlorination apparatus 3, that is, an acid agent storage tank. 12, pH 8.6 by an acid adjustment facility or a carbon dioxide gas storage tank 23, an electromagnetic flow meter 24, a control meter 14, and a pH meter 15 composed of a chemical injection pump 13, a control meter 14 and a pH meter 15. The following acid-added water is prepared, and the dechlorination apparatus 3 is washed in the forward direction to regenerate the active sites of the dechlorination apparatus filler.
However, it is not limited to such specific means.

洗浄処理する頻度としては、少なくとも一週間に1回、好ましくは少なくとも一日1回の頻度で上記洗浄を実施するのが好ましい。
また、一回の洗浄時間としては、10分〜8時間、特に20分〜1時間連続して逆流洗浄若しくは順流洗浄するのが好ましい。
The frequency of the cleaning treatment is preferably performed at least once a week, preferably at least once a day.
Moreover, as a washing | cleaning time of 1 time, it is preferable to carry out backwashing or forward-flow washing | cleaning continuously 10 minutes-8 hours, especially 20 minutes-1 hour.

<本発明の評価>
活性炭の脱塩素能力の指標として、塩素半減層厚(ドイツ国家規格DIN19603(1963年))が知られている。この指標は、流入水の残留塩素濃度を半分の濃度にするために要する活性炭層厚のセンチメートル数で定義される(下記式(v)参照)。
<Evaluation of the present invention>
As an index of the dechlorination ability of activated carbon, the chlorine half-layer thickness (German national standard DIN 19603 (1963)) is known. This index is defined as the number of centimeters of the activated carbon layer thickness required to reduce the residual chlorine concentration of the influent water by half (see the following formula (v)).

Gg=0.301×t÷log(u/ν)・・・(v)
Gg:粒状活性炭の残留塩素半減層厚(cm)
t:活性炭層厚(cm)
u:原水の残留塩素濃度(mg/リットル)
ν:通水29分後の処理水の残留塩素濃度(mg/リットル)
(試験条件):pH:7.0、u:2.5mg/リットル、通水LV:36m/hour
Gg = 0.301 × t ÷ log (u / ν) (v)
Gg: Residual chlorine half layer thickness of granular activated carbon (cm)
t: Activated carbon layer thickness (cm)
u: Residual chlorine concentration in raw water (mg / liter)
v: Residual chlorine concentration in treated water after 29 minutes of water flow (mg / liter)
(Test conditions): pH: 7.0, u: 2.5 mg / liter, water flow LV: 36 m / hour

発明者らの試算では、脱塩素反応の理論式から算出すると、脱塩素処理装置の活性炭充填層厚を1000mm、通水LVを20m/hour、処理水残留塩素を0.05mg/リットル未満とすると、流入水残留塩素濃度10mg/リットルの場合、必要となる活性炭の塩素半減層厚は20cmとなるため、本発明では、活性炭を備えた脱塩素処理槽の通水pHにおける残留塩素半減層厚を20cm以下に回復させることができれば、本発明のような飲料用水の製造方法においては、十分な脱塩素能力を発揮していると評価することとした。   In the calculation by the inventors, when calculated from the theoretical formula of the dechlorination reaction, the activated carbon packed layer thickness of the dechlorination treatment apparatus is 1000 mm, the water flow LV is 20 m / hour, and the residual chlorine in the treated water is less than 0.05 mg / liter. When the inflow water residual chlorine concentration is 10 mg / liter, the required half-layer thickness of the activated carbon is 20 cm. Therefore, in the present invention, the residual chlorine half-layer thickness at the water flow pH of the dechlorination tank equipped with the activated carbon is set. If it was possible to recover to 20 cm or less, it was determined that the method for producing drinking water as in the present invention exhibited a sufficient dechlorination ability.

なお、ドイツ国家規格DIN19603の試験方法はpH7.0によるものであるが、実際の脱塩素処理においては、実際の通水pHにおける塩素半減層厚で評価する必要がある。そこで、本発明では、塩素半減層厚は全てそれぞれの通水pHにおける塩素半減層厚を評価することにした。   In addition, although the test method of German national standard DIN19603 is based on pH 7.0, in actual dechlorination processing, it is necessary to evaluate by the chlorine half layer thickness in actual water flow pH. Therefore, in the present invention, the chlorine half-layer thicknesses are all evaluated as the chlorine half-layer thicknesses at the respective water flow pHs.

<用語の説明>
本発明において、「X〜Y」(X,Yは任意の数字)と表現した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含する。
また、本発明において、「X以上」(Xは任意の数字)と表現した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現した場合、特にことわらない限り「好ましくはYより小さい」の意を包含する。
<Explanation of terms>
In the present invention, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” and “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It means “smaller”.
Further, in the present invention, when expressed as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and “Y or less” (Y is an arbitrary number). ) Includes the meaning of “preferably smaller than Y” unless otherwise specified.

以下、実施例および比較例によって本発明を更に詳細に説明するが、本発明は下記の実施例によって制限を受けるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by the following Example.

(比較例1)
千葉県袖ケ浦市の水道水に水酸化ナトリウムを添加してpH値を9.5〜10.5に調整した。この水を、日東電工製NTR−759HR逆浸透膜エレメントを使用した逆浸透膜処理装置を用いて脱塩し、得られた処理水に、遊離残留塩素を2.0〜2.5mg/リットルとなるように次亜塩素酸ナトリウム溶液を添加し、22〜25℃にて滞留時間2時間の用水貯留槽に貯留した。その後、荏原エンジニアリングサービス(株)製の粒状活性炭エバダイヤLG−10SC(塩素半減層厚(DIN19603準拠):2.5cm、活性炭の平均径:1.0mm、均等係数:1.5)を充填した脱塩素処理装置に、線速度LV(Linear Velocity:通水断面積当りの通水量[m/m/hour])20m/hour、空塔速度SV(Space Velocity : 充填容積当りの通水量[m/m/hour])20hour−1で通水して脱塩素処理を行い、飲料用水を得た。なお、脱塩素処理装置は週1回の頻度で通水原水による逆流洗浄を実施した。
通水開始6カ月後の脱塩素処理水の残留塩素は0.15mg/リットルであり、充填活性炭のpH10.5における塩素半減層厚は55.8cmであった。
(Comparative Example 1)
Sodium hydroxide was added to tap water in Sodegaura City, Chiba Prefecture to adjust the pH value to 9.5 to 10.5. This water was desalted using a reverse osmosis membrane treatment device using NTR-759HR reverse osmosis membrane element manufactured by Nitto Denko, and free residual chlorine was 2.0 to 2.5 mg / liter in the obtained treated water. Then, a sodium hypochlorite solution was added and stored in a water storage tank having a residence time of 2 hours at 22 to 25 ° C. After that, the activated carbon Evadia LG-10SC made by Ebara Engineering Service Co., Ltd. (chlorine half-layer thickness (based on DIN 19603): 2.5 cm, average diameter of activated carbon: 1.0 mm, uniformity coefficient: 1.5) was removed. Chlorine treatment equipment, linear velocity LV (Linear Velocity: flow rate per cross-sectional area [m 3 / m 2 / hour]) 20 m / hour, superficial velocity SV (Space Velocity: flow rate per packed volume [m 3 / m 3 / hour]) Water was passed at 20 hours −1 for dechlorination to obtain drinking water. In addition, the dechlorination apparatus performed the back-flow washing | cleaning with raw water flow once a week.
The residual chlorine in the dechlorinated water 6 months after the start of water flow was 0.15 mg / liter, and the chlorine half layer thickness of the filled activated carbon at pH 10.5 was 55.8 cm.

(実施例1)
図2に示すように、通水原水に炭酸ガスを添加してpH6.5に調整した酸添加水を用いて、週1回の頻度で30分、脱塩素処理装置の逆流洗浄を行った。それ以外は、比較例1と同様に飲料用水を得た。
通水開始6カ月後の脱塩素処理水の残留塩素は0.05mg/リットル未満であり、充填活性炭のpH10.5における塩素半減層厚は18.8cmであった。
Example 1
As shown in FIG. 2, the dechlorination apparatus was back-washed for 30 minutes at a frequency of once a week using acid-added water adjusted to pH 6.5 by adding carbon dioxide to the raw water. Except that, drinking water was obtained in the same manner as in Comparative Example 1.
The residual chlorine in the dechlorinated water 6 months after the start of water passage was less than 0.05 mg / liter, and the chlorine half layer thickness of the filled activated carbon at pH 10.5 was 18.8 cm.

(実施例2)
図3に示すように、通水原水に硫酸を添加してpH6.5に調整した酸添加水を用いて、週1回の頻度で1時間、脱塩素処理装置の順流洗浄を行った。それ以外は、比較例1と同様に飲料用水を得た。
通水開始6カ月後の脱塩素処理水の残留塩素は0.05mg/リットル未満であり、充填活性炭のpH10.5における塩素半減層厚は19.4cmであった。
(Example 2)
As shown in FIG. 3, the dechlorination apparatus was washed forward with an acid-added water adjusted to pH 6.5 by adding sulfuric acid to the raw water flow for 1 hour at a frequency of once a week. Except that, drinking water was obtained in the same manner as in Comparative Example 1.
The residual chlorine in the dechlorinated water 6 months after the start of water flow was less than 0.05 mg / liter, and the chlorine half layer thickness of the filled activated carbon at pH 10.5 was 19.4 cm.

(実施例3)
図1に示すように、通水原水に塩酸を添加してpH6.5に調整した酸添加水を用いて、1日1回の頻度で20分、脱塩素処理装置の逆流洗浄を行った。それ以外は、比較例1と同様に飲料用水を得た。
通水開始6カ月後の脱塩素処理水の残留塩素は0.05mg/リットル未満であり、充填活性炭のpH10.5における塩素半減層厚は15.8cmであった。
Example 3
As shown in FIG. 1, backwashing of the dechlorination apparatus was performed once a day for 20 minutes using acid-added water adjusted to pH 6.5 by adding hydrochloric acid to raw water flow. Except that, drinking water was obtained in the same manner as in Comparative Example 1.
The residual chlorine in dechlorinated water 6 months after the start of water flow was less than 0.05 mg / liter, and the chlorine half-layer thickness of the filled activated carbon at pH 10.5 was 15.8 cm.

(比較例2)
千葉県袖ケ浦市の水道水に水酸化ナトリウムを添加してpH値を10.0〜10.5に調整した。この水を、逆浸透膜処理装置(荏原エンジニアリングサービス株式会社製)で脱塩して得られた処理水に、遊離残留塩素を2.0〜2.5mg/リットルとなるように次亜塩素酸ナトリウム溶液を添加し、22〜25℃にて滞留時間2時間の用水貯留槽に貯留後、市販の活性炭素繊維を充填したカートリッジフィルター式の脱塩素処理装置に、線速度LV(Linear Velocity:通水断面積当りの通水量[m/m/hour])100m/hourで通水して脱塩素処理を行い、飲料用水を得た。なお、脱塩素処理装置は週1回の頻度で通水原水による逆流洗浄を実施した。
通水開始2カ月後の脱塩素処理水の残留塩素は0.4mg/リットルであった。
(Comparative Example 2)
Sodium hydroxide was added to tap water in Sodegaura City, Chiba Prefecture to adjust the pH value to 10.0-10.5. Hypochlorous acid so that free residual chlorine becomes 2.0 to 2.5 mg / liter in treated water obtained by desalting this water with a reverse osmosis membrane treatment apparatus (manufactured by Ebara Engineering Service Co., Ltd.). After adding a sodium solution and storing in a water storage tank having a residence time of 2 hours at 22 to 25 ° C., a linear velocity LV (Linear Velocity) is passed through a cartridge filter type dechlorination treatment apparatus filled with commercially available activated carbon fibers. Water flow per cross-sectional area [m 3 / m 2 / hour]) Water was passed at 100 m / hour for dechlorination to obtain drinking water. In addition, the dechlorination apparatus performed the back-flow washing | cleaning with raw water flow once a week.
The residual chlorine in the dechlorinated water 2 months after the start of water passage was 0.4 mg / liter.

(実施例4)
図2に示すように、通水原水に炭酸ガスを添加してpH6.5に調整した酸添加水を用いて、週1回の頻度で30分、脱塩素処理装置の逆流洗浄を行った。それ以外は、比較例2と同様に飲料用水を得た。
通水開始2カ月後の脱塩素処理水の残留塩素は0.05mg/リットル未満であった。
Example 4
As shown in FIG. 2, the dechlorination apparatus was back-washed for 30 minutes at a frequency of once a week using acid-added water adjusted to pH 6.5 by adding carbon dioxide to the raw water. Otherwise, drinking water was obtained in the same manner as in Comparative Example 2.
The residual chlorine in the dechlorinated water 2 months after the start of water flow was less than 0.05 mg / liter.

(実施例5)
図3に示すように、通水原水に硫酸を添加してpH6.5に調整した酸添加水を用いて、週1回の頻度で1時間、脱塩素処理装置の順流洗浄を行った。それ以外は、比較例2と同様に飲料用水を得た。
通水開始2カ月後の脱塩素処理水の残留塩素は0.05mg/リットル未満であった。
(Example 5)
As shown in FIG. 3, the dechlorination apparatus was washed forward with an acid-added water adjusted to pH 6.5 by adding sulfuric acid to the raw water flow for 1 hour at a frequency of once a week. Otherwise, drinking water was obtained in the same manner as in Comparative Example 2.
The residual chlorine in the dechlorinated water 2 months after the start of water flow was less than 0.05 mg / liter.

(実施例6)
図1に示すように、通水原水に塩酸を添加してpH6.5に調整した酸添加水を用いて、1日1回の頻度で20分、脱塩素処理装置の逆流洗浄を行った。それ以外は、比較例2と同様に飲料用水を得た。
通水開始2カ月後の脱塩素処理水の残留塩素は0.05mg/リットル未満であった。
(Example 6)
As shown in FIG. 1, backwashing of the dechlorination apparatus was performed once a day for 20 minutes using acid-added water adjusted to pH 6.5 by adding hydrochloric acid to raw water flow. Otherwise, drinking water was obtained in the same manner as in Comparative Example 2.
The residual chlorine in the dechlorinated water 2 months after the start of water flow was less than 0.05 mg / liter.

Figure 0005670685
Figure 0005670685

(考察)
比較例1と、これと同じフローにおいて、酸添加水で逆浸透膜処理装置を洗浄処理した実施例1〜3とを比較すると、酸添加水で逆浸透膜処理装置を洗浄することによって、逆浸透膜処理装置の処理槽の塩素半減層厚を顕著に減少させることができ、20cm以下にまで脱塩素能力を回復させることができた。比較例2と実施例4〜6を比較しても同様であった。
(Discussion)
Comparing Comparative Example 1 with Examples 1 to 3 in which the reverse osmosis membrane treatment apparatus was washed with acid-added water in the same flow, the reverse osmosis membrane treatment apparatus was washed with acid-added water. The chlorine half-layer thickness of the treatment tank of the osmotic membrane treatment apparatus could be remarkably reduced, and the dechlorination ability could be recovered to 20 cm or less. It was the same even if the comparative example 2 and Examples 4-6 were compared.

添加する酸は、炭酸ガス、硫酸及び塩酸のいずれであっても効果が認められたが、残留塩類濃度を増加させない点からすると、炭酸ガスが最も好ましいと考えることができる。
また、上記以外の試験結果を踏まえると、逆浸透膜処理装置の洗浄処理は、少なくとも1週間に一回の頻度で1回につき10分実施すれば、最低限の効果を得ることができるものと考えることができる。
The effect of adding any of carbon dioxide, sulfuric acid, and hydrochloric acid was recognized as the acid to be added, but carbon dioxide can be considered most preferable from the viewpoint of not increasing the residual salt concentration.
In addition, based on the test results other than the above, it is possible to obtain the minimum effect if the cleaning treatment of the reverse osmosis membrane treatment apparatus is performed at least once a week for 10 minutes. Can think.

1: 逆浸透膜処理装置 2: 用水貯留槽 3: 脱塩素処理装置
4: アルカリ剤貯槽 5: 薬注ポンプ 6: 制御計
7: pH計 8: 塩素剤貯槽 9: 薬注ポンプ
10: 制御計 11: 残留塩素計 12: 酸剤貯槽
13: 薬注ポンプ 14: 制御計 15: pH計
16: 原水 17: 脱塩素水 18: 洗浄排水
19、20、21、22: 切換バルブ 23: 炭酸ガス貯槽 24: 電磁流量計
1: Reverse osmosis membrane treatment device 2: Water storage tank 3: Dechlorination treatment device 4: Alkaline agent storage tank 5: Chemical injection pump 6: Control meter 7: pH meter 8: Chlorine agent storage tank 9: Chemical injection pump
10: Controller 11: Residual chlorine meter 12: Acid storage tank
13: Chemical injection pump 14: Control meter 15: pH meter
16: Raw water 17: Dechlorinated water 18: Wash drainage
19, 20, 21, 22: Switching valve 23: Carbon dioxide tank 24: Electromagnetic flow meter

Claims (10)

逆浸透膜処理された処理水に塩素剤を添加し、その後、活性炭を備えた脱塩素処理槽に通水することにより脱塩素処理する工程を備えた飲料用水の製造工程において、酸を添加した酸添加水で前記脱塩素処理槽を洗浄することにより、活性炭の脱塩素能力を回復させることを特徴とする、飲料用水の製造工程における活性炭の脱塩素能力回復方法。   In the manufacturing process of drinking water with a step of dechlorination by adding a chlorinating agent to the treated water treated with reverse osmosis membrane and then passing it through a dechlorination tank equipped with activated carbon, acid was added. A method for recovering the dechlorination capacity of activated carbon in a process for producing drinking water, wherein the dechlorination capacity of the activated carbon is recovered by washing the dechlorination tank with acid-added water. 酸を添加した酸添加水で脱塩素処理槽を洗浄する処理を、少なくとも1週間に1回以上の頻度で実施することを特徴とする請求項1に記載の活性炭の脱塩素能力回復方法。   2. The method for recovering the dechlorination ability of activated carbon according to claim 1, wherein the treatment for washing the dechlorination tank with acid-added water to which an acid has been added is performed at least once a week. 添加する酸は、硫酸、塩酸又は炭酸であることを特徴とする請求項1又は2に記載の活性炭の脱塩素能力回復方法。   The method for recovering the dechlorination ability of activated carbon according to claim 1 or 2, wherein the acid to be added is sulfuric acid, hydrochloric acid or carbonic acid. 原水を逆浸透膜処理する脱塩工程と、逆浸透膜処理された処理水に塩素剤を添加する消毒工程と、消毒工程で得られた消毒水を、活性炭を備えた脱塩素処理槽に通水することにより脱塩素処理する脱塩素工程とを備えた飲料用水の製造方法であって、
酸を添加した酸添加水で前記脱塩素処理槽を洗浄することにより、活性炭の脱塩素能力を回復させることを特徴とする飲料用水の製造方法。
Desalination process for treating raw water with reverse osmosis membrane, disinfection process for adding chlorine agent to treated water treated with reverse osmosis membrane, and disinfecting water obtained in the disinfection process is passed through a dechlorination tank equipped with activated carbon. A method for producing drinking water comprising a dechlorination step of dechlorinating by hydrating,
A method for producing drinking water, wherein the dechlorination ability of activated carbon is recovered by washing the dechlorination tank with acid-added water to which an acid has been added.
酸を添加した酸添加水で脱塩素処理槽を洗浄する処理を、少なくとも1週間に1回以上の頻度で実施することを特徴とする請求項4に記載の飲料用水の製造方法。   The method for producing drinking water according to claim 4, wherein the treatment for washing the dechlorination tank with acid-added water to which an acid has been added is performed at least once a week. 添加する酸は、硫酸、塩酸又は炭酸であることを特徴とする請求項4又は5に記載の飲料用水の製造方法。   The method for producing drinking water according to claim 4 or 5, wherein the acid to be added is sulfuric acid, hydrochloric acid or carbonic acid. 原水を逆浸透膜処理する脱塩手段と、逆浸透膜処理された処理水に塩素剤を添加する消毒手段と、消毒手段で得られた消毒水を、活性炭を備えた脱塩素処理槽に通水することにより脱塩素処理する脱塩素手段と、酸添加水で前記脱塩素処理槽を洗浄することにより、活性炭の脱塩素能力を回復させる手段と、を備えた飲料用水の製造装置。   Demineralization means for treating raw water with a reverse osmosis membrane, disinfection means for adding a chlorine agent to treated water treated with a reverse osmosis membrane, and disinfecting water obtained by the disinfection means passed through a dechlorination treatment tank equipped with activated carbon. An apparatus for producing drinking water, comprising: dechlorination means for dechlorination treatment by water; and means for recovering the dechlorination ability of activated carbon by washing the dechlorination tank with acid-added water. 前記処理水は、pHを9.0以上に調整した原水を逆浸透膜処理されたものである請求項1〜3のいずれかに記載の活性炭の脱塩素能力回復方法。The method for recovering the dechlorination ability of activated carbon according to any one of claims 1 to 3, wherein the treated water is obtained by subjecting raw water having a pH adjusted to 9.0 or more to reverse osmosis membrane treatment. 原水は、pHを9.0以上に調整されたものである請求項4〜6のいずれかに記載の飲料用水の製造方法。Raw water has pH adjusted to 9.0 or more, The manufacturing method of the water for drinks in any one of Claims 4-6. 原水は、pHを9.0以上に調整されたものである請求項7に記載の飲料用水の製造装置。The apparatus for producing drinking water according to claim 7, wherein the raw water has a pH adjusted to 9.0 or more.
JP2010210664A 2010-09-21 2010-09-21 Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water Active JP5670685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210664A JP5670685B2 (en) 2010-09-21 2010-09-21 Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210664A JP5670685B2 (en) 2010-09-21 2010-09-21 Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water

Publications (3)

Publication Number Publication Date
JP2012066161A JP2012066161A (en) 2012-04-05
JP2012066161A5 JP2012066161A5 (en) 2013-11-07
JP5670685B2 true JP5670685B2 (en) 2015-02-18

Family

ID=46164073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210664A Active JP5670685B2 (en) 2010-09-21 2010-09-21 Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water

Country Status (1)

Country Link
JP (1) JP5670685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103083A1 (en) * 2012-12-27 2014-07-03 株式会社レドックス Electrolyzed water conforming to standards for water used in soft-drink manufacturing, and method for manufacturing said electrolyzed water
JP2019130506A (en) * 2018-02-01 2019-08-08 アクアデザインシステム株式会社 Chlorine injection device for water purifier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242687A (en) * 1985-04-19 1986-10-28 Mitsubishi Rayon Co Ltd Purified water generator
JPH0712471B2 (en) * 1990-01-29 1995-02-15 荏原インフイルコ株式会社 How to sterilize and decontaminate activated carbon
JPH07121388B2 (en) * 1991-06-26 1995-12-25 株式会社荏原製作所 Sterilization and neutralization method of activated carbon with acid and alkali
JP2546750B2 (en) * 1991-06-28 1996-10-23 株式会社荏原製作所 How to sterilize activated carbon
JPH10202249A (en) * 1997-01-16 1998-08-04 Kurita Water Ind Ltd Deionizing method
JPH11262766A (en) * 1998-03-19 1999-09-28 Daisen Membrane Systems Kk Reverse osmosis membrane type water purifier

Also Published As

Publication number Publication date
JP2012066161A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US10407332B2 (en) Biological wastewater treatment system containing a salt-rejecting membrane filter and recycle conduit
JP3321179B2 (en) Method and apparatus for high efficiency reverse infiltration treatment
US6071413A (en) Process for removing organic and inorganic contaminants from phenolic stripped sour water employing reverse omosis
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP5000856B2 (en) Rincer drainage recovery device and Rincer drainage recovery system
US20100193436A1 (en) Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
JP4917581B2 (en) Pure water production method
WO2001012303A1 (en) Method for producing high purity water using triple pass reverse osmosis (tpro)
JP2005087887A (en) Membrane washing method
JP5998929B2 (en) Membrane separation method
KR100938344B1 (en) Apparatus for seawater desalting using filtration membrane and reverse osmotic membrane
JPH09290275A (en) Device for removing boron in water and method thereof
JP5670685B2 (en) Recovery method of dechlorination ability of activated carbon in the manufacturing process of drinking water
JP2011050843A (en) Method of and system for desalinating water to be treated
Wittmann et al. Water treatment
JP2008086945A (en) Method for recovering performance of permselective membrane
WO2020195217A1 (en) Method and device for treating water containing calcium and organic matter
JP2001029752A (en) Manufacture of high-purity water and device therefor
JP5670684B2 (en) Method for maintaining the recovery of dechlorination ability of activated carbon in the manufacturing process
JP2021007927A (en) Regeneration process of water softener, and manufacturing apparatus of desalted water
CN109071288B (en) Method for oxidizing hydrocarbons and the like in brine solution
JP2012066161A5 (en)
JP2006122787A (en) Seawater desalting method
JPH09891A (en) Method for treating raw water using membrane module
JPH10296060A (en) Prevention method for contamination of separation membrane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5670685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250