JP2021007927A - Regeneration process of water softener, and manufacturing apparatus of desalted water - Google Patents
Regeneration process of water softener, and manufacturing apparatus of desalted water Download PDFInfo
- Publication number
- JP2021007927A JP2021007927A JP2019123774A JP2019123774A JP2021007927A JP 2021007927 A JP2021007927 A JP 2021007927A JP 2019123774 A JP2019123774 A JP 2019123774A JP 2019123774 A JP2019123774 A JP 2019123774A JP 2021007927 A JP2021007927 A JP 2021007927A
- Authority
- JP
- Japan
- Prior art keywords
- water
- softener
- water softener
- regeneration
- membrane device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
本発明は、軟水器の再生方法に係り、特に、軟水器の後段に逆浸透(RO)膜装置を配置した脱塩水造水システムにおいて、RO膜装置の濃縮排水(RO膜濃縮排水)を軟水器の再生に有効利用する軟水器の再生方法と、そのための脱塩水製造装置に関する。 The present invention relates to a method for regenerating a water softener, and in particular, in a desalination water production system in which a reverse osmosis (RO) membrane device is arranged after the water softener, the concentrated drainage (RO membrane concentrated drainage) of the RO membrane device is softened. The present invention relates to a method for regenerating a water softener that is effectively used for regenerating a vessel and a demineralized water production device for that purpose.
従来、脱塩水造水システムとして、河川水や工業用水等の原水を軟化器で処理した後、この軟化器で軟化処理された処理水をRO膜装置で処理する脱塩水造水システムが知られており(例えば、特許文献1)、この脱塩水造水システムを組み込んだ純水製造装置も実用化されている。RO膜装置の前段で原水をイオン交換樹脂(陽イオン交換樹脂)を充填した軟水器により処理してカルシウム、マグネシウム等の硬度成分をイオン交換樹脂により吸着除去することにより、後段のRO膜装置におけるスケール障害を防止することができる。軟水器における硬度成分の吸着除去は、具体的には、カルシウムイオン等をイオン交換樹脂のナトリウムイオンでイオン交換することにより行われる。 Conventionally, as a desalination water production system, a desalination water production system is known in which raw water such as river water or industrial water is treated with a softener and then the treated water softened by this softener is treated with an RO membrane device. (For example, Patent Document 1), a pure water production apparatus incorporating this desalination water production system has also been put into practical use. By treating raw water with an ion exchange resin (cation exchange resin) -filled water softener in the first stage of the RO membrane device and adsorbing and removing hardness components such as calcium and magnesium with the ion exchange resin, the RO membrane device in the latter stage It is possible to prevent scale failure. The adsorption and removal of the hardness component in the water softener is specifically carried out by ion-exchange of calcium ions and the like with sodium ions of an ion exchange resin.
原水の通水処理で硬度成分を吸着した軟水器中のイオン交換樹脂は定期的に或いは必要に応じて硬度成分を脱離させる再生を行う必要がある。軟水器の再生には通常、軟水器の原水、軟水器の処理水である軟水、又はRO膜装置の処理水(RO膜透過水)に食塩(塩化ナトリウム)を溶解させた食塩水が使用されている。 The ion exchange resin in the water softener that has adsorbed the hardness component by the water flow treatment of raw water needs to be regenerated by desorbing the hardness component on a regular basis or as necessary. For regeneration of the water softener, raw water of the water softener, soft water which is the treated water of the water softener, or a saline solution obtained by dissolving salt (sodium chloride) in the treated water of the RO membrane device (RO membrane permeated water) is usually used. ing.
軟水器の再生期間中にも連続的に脱塩水を得ることができるように、軟水器を2塔並列に設け、一方の軟水器に原水を通水して処理している期間中に、他方の軟水器を再生(再生及び待機)し、通水と再生を交互に切り換えるようにした脱塩水造水システムも提案されている。 Two water softeners are installed in parallel so that demineralized water can be continuously obtained even during the regeneration period of the water softener, and during the period when raw water is passed through one of the water softeners for treatment, the other. A desalination water production system has also been proposed in which the water softener is regenerated (regeneration and standby) so that water flow and regeneration can be switched alternately.
軟水器の再生用の食塩溶解水として軟水器の原水、軟水器の処理水、又はRO膜透過水を用いる従来法では、次のような問題がある。 The conventional method using raw water of a water softener, treated water of a water softener, or RO membrane permeated water as salt-dissolved water for regeneration of a water softener has the following problems.
即ち、軟水器とRO膜装置を備える脱塩水造水システムにおける原水の給水量(給水ポンプ能力)は軟水器への通水量、又は後段のRO膜装置への給水量(軟水器とRO膜装置の間に設置された軟水タンクの容量)などを考慮して設計されるが、例えば、軟水器を2塔並列に設置して一方の軟水器に原水を通水し、他方の軟水器を原水を用いた食塩水を通水して再生する場合、一時的に2塔分の原水が必要となるため、それに見合う給水ポンプ能力が必要となる。通常、再生時には、原水通水時と同等の圧力と流量で再生水を通水するため、給水ポンプには原水通水のために必要な能力の2倍が必要となる。
また、食塩溶解水に軟水を用いる場合は、一時的にRO膜装置への給水量が確保できなくなる恐れがあるため、この場合にもRO膜装置への給水量確保のために軟水器の給水ポンプ能力又は軟水タンク容量を増強する必要がある。
That is, the amount of raw water supplied (water supply pump capacity) in a desalted water production system equipped with a water softener and an RO membrane device is the amount of water flowing through the water softener or the amount of water supplied to the subsequent RO membrane device (water softener and RO membrane device). It is designed in consideration of the capacity of the soft water tank installed between the two, but for example, two water softeners are installed in parallel to allow raw water to pass through one water softener and the other water softener is raw water. When regenerating by passing salt water using the above, two towers of raw water are temporarily required, so a water supply pump capacity commensurate with that is required. Normally, at the time of regeneration, the reclaimed water is passed at the same pressure and flow rate as at the time of passing the raw water, so that the water supply pump needs twice the capacity required for passing the raw water.
In addition, when soft water is used as the salt-dissolved water, the amount of water supplied to the RO membrane device may not be secured temporarily. Therefore, in this case as well, the water supply of the water softener is used to secure the amount of water supplied to the RO membrane device. It is necessary to increase the pump capacity or the capacity of the soft water tank.
このように、軟水器の再生用水として軟水器の原水や処理水(軟水)又はRO膜透過水を用いる場合、その分を見越して脱塩水造水システムの給水能力やタンク容量に余力を持たせる必要があり、初期コストが嵩む。また、原水水質の変動で硬度成分濃度が上昇して軟水器の再生頻度が高くなった場合は、再生用水を多く必要とすることになり、再生時には脱塩水造水システムの運転調整が必要となる。 In this way, when raw water, treated water (soft water), or RO membrane permeated water from the water softener is used as the water for regeneration of the water softener, the water supply capacity and tank capacity of the desalination water production system should be increased in anticipation of that amount. It is necessary and the initial cost is high. In addition, if the concentration of hardness components increases due to fluctuations in raw water quality and the frequency of water softener regeneration increases, a large amount of water for regeneration will be required, and it will be necessary to adjust the operation of the desalination water production system during regeneration. Become.
本発明は上記従来技術の問題点を解決し、軟水器の後段にRO膜装置を設けた脱塩水造水システムにおいて、装置能力の増強や運転調整を必要とすることなく、軟水器の再生を行える軟水器の再生方法と脱塩水製造装置を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, and in a desalination water production system in which an RO membrane device is provided after the water softener, the water softener can be regenerated without requiring the enhancement of the device capacity or the operation adjustment. It is an object of the present invention to provide a method for regenerating a water softener and an apparatus for producing demineralized water.
本発明者は上記課題を解決すべく検討を重ねた結果、軟水器の後段にRO膜装置を設けた脱塩水造水システムにおいて、軟水器の再生にRO膜濃縮排水を用いることにより、脱塩水造水システムの装置能力の増強や運転調整を必要とすることなく、軟水器の再生を行うことができると共に、RO膜濃縮排水の有効利用で水コストを削減することもできることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above problems, the present inventor has used RO membrane concentrated drainage to regenerate the water softener in a desalted water production system in which an RO membrane device is provided after the water softener. It was found that the water softener can be regenerated without the need to increase the equipment capacity of the water production system or adjust the operation, and the water cost can be reduced by effectively using the RO membrane concentrated wastewater.
That is, the gist of the present invention is as follows.
[1] 軟水器の後段に逆浸透膜装置を設けた脱塩水造水システムにおいて、該軟水器の再生用水として該逆浸透膜装置の濃縮排水を使用することを特徴とする軟水器の再生方法。 [1] A method for regenerating a water softener, which comprises using concentrated wastewater of the reverse osmosis membrane device as water for regeneration of the water softener in a desalted water production system in which a reverse osmosis membrane device is provided after the water softener. ..
[2] 軟水器の後段に逆浸透膜装置を設けた脱塩水造水システムにおいて、該軟水器の再生に用いる食塩の溶解水として該逆浸透膜装置の濃縮排水を使用することを特徴とする軟水器の再生方法。 [2] In a desalted water production system provided with a reverse osmosis membrane device after the water softener, the concentrated drainage of the reverse osmosis membrane device is used as the dissolved water of salt used for regeneration of the water softener. How to regenerate a water softener.
[3] 軟水器の後段に逆浸透膜装置を設けた脱塩水造水システムにおいて、該逆浸透膜装置の濃縮排水を該脱塩水造水システムとは別の水処理システムの軟水器の再生用水に使用することを特徴とする軟水器の再生方法。 [3] In a desalted water production system in which a reverse osmosis membrane device is provided after the water softener, the concentrated drainage of the reverse osmosis membrane device is used as water for regeneration in a water softener of a water treatment system different from the desalted water production system. A method of regenerating a water softener, which is characterized by being used in a water softener.
[4] 前記水処理システムはボイラ給水用の水処理システムである[3]に記載の軟水器の再生方法。 [4] The method for regenerating a water softener according to [3], wherein the water treatment system is a water treatment system for boiler water supply.
[5] 軟水器と、該軟水器の処理水を処理する逆浸透膜装置と、該軟水器の再生時に、該逆浸透膜装置の濃縮排水を該軟水器に通水する濃縮排水返送手段とを備える脱塩水製造装置。 [5] A water softener, a reverse osmosis membrane device for treating the treated water of the water softener, and a concentrated wastewater return means for passing the concentrated wastewater of the reverse osmosis membrane device to the water softener when the water softener is regenerated. Demineralized water production equipment equipped with.
[6] 前記軟水器として、2塔の軟水器が並列に設けられており、一方の軟水器で原水の処理を行っている間に他方の軟水器で再生を行うよう原水と再生水の流路を切り替える流路切替手段を有し、該流路切替手段により、前記濃縮排水返送手段を経て該再生を行う軟水器に前記濃縮排水を通水するよう構成されていることを特徴とする[5]に記載の脱塩水製造装置。 [6] As the water softener, two towers of water softeners are provided in parallel, and the flow path of the raw water and the reclaimed water so that the raw water is reclaimed by the other water softener while the raw water is being treated by the one water softener. It is characterized in that it has a flow path switching means for switching between the above, and the flow path switching means is configured to allow the concentrated drainage to pass through the water softener for regeneration via the concentrated drainage return means [5]. ] The demineralized water production apparatus described in.
本発明によれば、軟水器の後段に設けられたRO膜装置の濃縮排水を軟水器の再生に有効利用することにより、脱塩水造水システムの装置能力の増強や運転調整を必要とすることなく、軟水器の再生を行うことができると共に、RO膜濃縮排水の有効利用で水コストの削減を図ることも可能となる。 According to the present invention, it is necessary to enhance the device capacity of the desalted water production system and adjust the operation by effectively utilizing the concentrated wastewater of the RO membrane device provided at the subsequent stage of the water softener for the regeneration of the water softener. In addition to being able to regenerate the water softener, it is also possible to reduce water costs by effectively using RO membrane concentrated wastewater.
以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.
本発明の軟水器の再生方法は、軟水器の後段にRO膜装置を設けた脱塩水造水システムにおいて、軟水器の再生用水としてRO膜装置の濃縮排水を使用することを特徴とする。 The method for regenerating a water softener of the present invention is characterized in that, in a desalted water production system in which an RO membrane device is provided after the water softener, concentrated wastewater of the RO membrane device is used as water for regeneration of the water softener.
RO膜装置の濃縮排水は、RO膜装置で原水中の塩類等が濃縮されたものであるが、RO膜装置の前段において軟水器で処理されたことにより硬度成分を殆ど含まず、軟水器におけるイオン交換でナトリウムイオンが濃縮されたものであるので軟水器の再生用水として適している。
このRO膜濃縮排水は、当該脱塩水造水システム内の軟水器、即ち、当該RO膜装置の前段の軟水器のみならず、他の水処理システム、例えばボイラ給水用の水処理システムにおける軟水器の再生用水として用いることもできる。
The concentrated effluent of the RO membrane device is one in which salts and the like in the raw water are concentrated by the RO membrane device, but since it was treated with a water softener in the previous stage of the RO membrane device, it contains almost no hardness component and is used in the water softener. Since sodium ions are concentrated by ion exchange, it is suitable as water for regeneration in water softeners.
This RO membrane concentrated effluent is not only a water softener in the desalted water production system, that is, a water softener in the previous stage of the RO membrane device, but also a water softener in another water treatment system, for example, a water treatment system for boiler water supply. It can also be used as water for regeneration.
通常、RO膜濃縮排水は系外へ排出されて排水処理されるため、このようにRO膜濃縮排水を軟水器の再生用水として有効利用することにより、再生のための水コストの削減のみならず、排水処理の負荷を低減することもできる。 Normally, RO membrane concentrated wastewater is discharged to the outside of the system and treated as wastewater. Therefore, by effectively using RO membrane concentrated wastewater as water for regeneration in a water softener, not only the water cost for regeneration can be reduced. , The load of wastewater treatment can also be reduced.
特に、軟水器を2塔並列に設置して、一方の軟水器で原水を通水処理し、他方の軟水器で再生(再生及び待機)を行う場合において、再生用水として原水、軟水器の処理水又はRO膜透過水を用いると、前述の通り、脱塩水造水システムの給水能力の増強やタンク容量の増大、更には運転調整が必要となるが、本発明を採用してRO膜濃縮排水を再生用水として用いることにより、このような設備投資や運転調整を不要とすることができる。 In particular, when two water softeners are installed in parallel, one water softener is used to pass raw water, and the other water softener is used for regeneration (regeneration and standby), the raw water and water softener are treated as recycled water. When water or RO membrane permeated water is used, as described above, it is necessary to enhance the water supply capacity of the desalted water production system, increase the tank capacity, and further adjust the operation. However, by adopting the present invention, RO membrane concentrated drainage is required. By using the water for regeneration, such capital investment and operation adjustment can be eliminated.
本発明の軟水器の再生方法は、軟水器の後段にRO膜装置を設けた脱塩水造水システムにおいて、RO膜装置の濃縮排水を用いた再生用水を原水の代わりに軟水器に供給できる切り替え弁と、この再生用水を軟水器に原水相当の圧力と流量で供給する手段、軟水器の再生のための再生用水の調製に必要なRO膜濃縮排水量を貯留できる濃縮排水槽を設け、更には軟水器の通水工程では原水を供給し、再生工程ではRO膜濃縮排水を用いた再生用水を供給する自動制御システムを組み込むことにより、容易に実施することができる。 The method for regenerating a water softener of the present invention is a switching method in which a demineralized water production system in which an RO membrane device is provided after the water softener can supply water for regeneration using concentrated drainage of the RO membrane device to the water softener instead of raw water. A valve, a means for supplying this regeneration water to the water softener at a pressure and flow rate equivalent to that of raw water, a concentrated drainage tank capable of storing the RO membrane concentrated drainage amount required for preparing the regeneration water for the regeneration of the water softener, and further. It can be easily carried out by incorporating an automatic control system that supplies raw water in the water flow process of the water softener and supplies water for regeneration using RO membrane concentrated wastewater in the regeneration process.
一般的には軟水器の再生には高濃度の食塩水(塩化ナトリウム水溶液)が必要とされるため、RO膜濃縮排水の少なくとも一部を再生用の食塩水を調製するための塩溶解水として用い、RO膜濃縮排水を用いて調製した食塩水とRO膜濃縮排水の残部(RO膜濃縮排水の一部を食塩溶解水とした場合)との混合水を再生用水とすることが好ましい。この場合、高圧のRO膜濃縮排水が食塩水通水のための圧力水として機能する。 Generally, high-concentration saline solution (sodium chloride aqueous solution) is required for regeneration of the water softener, so at least a part of the RO membrane concentrated wastewater is used as salt-dissolved water for preparing saline solution for regeneration. It is preferable that the mixed water of the saline solution prepared by using the RO membrane concentrated drainage and the rest of the RO membrane concentrated drainage (when a part of the RO membrane concentrated drainage is a saline solution) is used as the regeneration water. In this case, the high-pressure RO membrane concentrated drainage functions as pressure water for passing the saline solution.
以下に、図1を参照して、本発明をより詳細に説明する。
図1は本発明の軟水器の再生方法を採用した脱塩水製造装置の実施の形態の一例を示す系統図である。
Hereinafter, the present invention will be described in more detail with reference to FIG.
FIG. 1 is a system diagram showing an example of an embodiment of a desalinated water production apparatus adopting the method for regenerating a water softener of the present invention.
図1の脱塩水製造装置は、原水をRO膜装置4で、脱塩水と濃縮排水に膜分離する際、RO膜装置4に供給する水にカルシウム等の硬度成分が多いと、これがRO膜装置4で濃縮排水されてカルシウムスケールが発生してRO膜が閉塞するため、軟水器2A,2Bでカルシウムをナトリウムにイオン交換し、RO膜装置4でのカルシウムスケールを防止するように構成されている。
In the demineralized water production apparatus of FIG. 1, when raw water is separated into demineralized water and concentrated effluent by the RO membrane apparatus 4, if the water supplied to the RO membrane apparatus 4 contains a large amount of hardness components such as calcium, this is the RO membrane apparatus. Since the RO membrane is blocked by the concentrated drainage in No. 4 and the calcium scale is generated, the
原水1が市水などの場合には、塩素を含み軟水器中のイオン交換樹脂やRO膜を劣化させるため、軟水器2A,2Bの前段で活性炭濾過器1で塩素を除去してから、軟水器2A,2Bに供給する。軟水器2A,2Bで処理された水は軟水槽3を経由してRO膜装置4に供給される。
When the raw water 1 is city water or the like, it contains chlorine and deteriorates the ion exchange resin and RO membrane in the water softener. Therefore, after removing chlorine with the activated carbon filter 1 in the previous stage of the
軟水器2A,2Bを2塔並列に設けているのは、軟水槽3の軟水を常時減らさないためであり、軟水器2A,2Bのいずれか一方に原水を通水して処理し、他方で再生(再生及び待機)処理とする。
The reason why the two
RO膜装置4で分離されたRO膜濃縮排水の一部は塩溶解水として塩水タンク6に送給され、残部は濃縮排水槽5に貯留される。濃縮排水槽5の容量を超えた分はオーバーフロー排水として系外へ排出される。
A part of the RO membrane concentrated drainage separated by the RO membrane device 4 is sent to the
再生に用いる食塩水は、配管25からの塩化ナトリウム(濃厚食塩水)と、配管19Bから塩溶解水として送給されるRO膜濃縮排水が塩水タンク6で混合されることで調製される。塩水タンク6で調製された食塩水は、逆止弁V3を備える配管27より、濃縮排水槽5からのRO膜濃縮排水の取出配管21に設けられたエゼクター7より注入される。塩水タンク6で調製する食塩水のNaCl濃度は20〜26重量%(飽和濃度)程度で、このような食塩水をエゼクターでRO膜濃縮排水に注入してNaCl濃度5〜10重量%程度の再生用水として軟水器2A,2Bに送給することが好ましい。
The saline solution used for regeneration is prepared by mixing sodium chloride (concentrated saline solution) from the
濃縮排水槽5の有効容量は、塩溶解水を注入して軟水器2A,2Bの再生用水として使用する容量であり、運用に応じて1回分または複数回分とする。なお、濃縮排水槽5内の濃縮排水を軟水器2A,2B以外の他の水処理システムの軟水器、例えばボイラ給水用の水処理システムの軟水器の再生にも用いる場合は、その必要量に見合う容量とする。
The effective capacity of the concentrated drainage tank 5 is the capacity for injecting salt-dissolved water and using it as water for regeneration of the
この脱塩水製造装置の運転方法を以下に説明する。
まず、原水バルブV1Aを開、原水バルブV1Bを閉、給水ポンプP1を作用させて、原水を配管11、活性炭濾過器1、配管12、13A、14Aを経て軟水器2Aに導入して軟化処理し、得られた軟水を配管15A、16、軟水槽3、配管17を経てRO膜装置4に導入してRO膜処理し、RO膜透過水である脱塩水を配管18より処理水として取り出す。RO膜濃縮排水の一部は、配管19,19Bを経て塩水タンク6に送給し、残部は配管19Aより濃縮排水槽5に送給する。
The operation method of this demineralized water production apparatus will be described below.
First, the raw water valve V 1A is opened, the raw water valve V 1B is closed, the water supply pump P 1 is operated, and the raw water is introduced into the
軟水器2Aによる処理を所定時間継続した後は、原水バルブV1Aを閉、原水バルブV1Bを開として原水の送給先を軟水器2Bに切り換え、原水を配管11、活性炭濾過器1、配管12、13B,14Bを経て軟水器2Bに導入して軟化処理し、得られた軟水を配管15B、16、軟水槽3、配管17を経てRO膜装置4に導入してRO膜処理し、RO膜透過水である脱塩水を配管18より処理水として取り出す。RO膜濃縮排水の一部は配管19,19Bより塩水タンク6に送給し、残部は配管19Aより濃縮排水槽5に送給する。
After the treatment by the
原水バルブV1A,V1Bの切り換えと同時に、再生ポンプP2を作動させると共に、再生バルブV2Aを開として(再生バルブV2Bが開であった場合は、再生バルブV2Bを閉)、濃縮排水槽5内のRO膜濃縮排水を配管21、22A,14Aを経て軟水器2Aに送給して軟水器2Aの再生を行う。RO膜濃縮排水の送給配管21には、エゼクター7から塩水タンク6で調製された食塩水が注入され、RO膜濃縮排水と食塩水との混合水で軟水2Aの再生が行われる。
このように、軟水器2Bに原水を通水している期間中に軟水器2Aの再生を行う。再生排水は配管23A、24を経て系外へ排出する。
所定時間RO膜濃縮排水と食塩水の混合水を通水して軟水器2Aの再生が終了したら、再生ポンプP2を停止すると共に再生バルブV2Aを閉として、次の原水の通水まで待機する。
At the same time as switching the raw water valves V 1A and V 1B , the regeneration pump P 2 is operated and the regeneration valve V 2A is opened (if the regeneration valve V 2B is open, the regeneration valve V 2B is closed) to concentrate. The RO membrane concentrated drainage in the drainage tank 5 is sent to the
In this way, the
After regeneration of the
軟水器2Bによる処理を所定時間継続した後は、原水バルブV1Bを閉、原水バルブV1Aを開として原水の送給先を軟水器2Aに切り換え、前述の通り、原水を軟水器2A、軟水槽3、RO膜装置4の順に通水すると共に、再生ポンプP2を作動させ、再生バルブV2Bを開として(再生バルブV2Aが開であった場合は、再生バルブV2Aを閉)、濃縮排水槽5内のRO膜濃縮排水と塩水タンク6からの食塩水との混合水を配管21、22B,14Bを経て軟水器2Bに送給して軟水器2Bの再生を行う。即ち、軟水器2Aに原水を通水している期間中に軟水器2Bの再生を行う。再生排水は配管23B、24を経て系外へ排出する。
所定時間RO膜濃縮排水と食塩水の混合水を通水して軟水器2Bの再生が終了したら、再生ポンプP2を停止すると共に再生バルブV2Bを閉として、次の原水の通水まで待機する。
After the treatment by the
After regeneration of the
このように軟水器2A,2Bの通水と再生を切り換えることで、連続的に脱塩水を製造することができる。
By switching between water flow and regeneration of the
以上のバルブ切り換えやポンプの作動は、自動制御システムにより自動制御にて行うことができる。 The above valve switching and pump operation can be performed by automatic control by the automatic control system.
図1は本発明の脱塩水製造装置の実施の形態の一例を示すものであって、何ら本発明の脱塩水製造装置は図1のものに限定されるものではない。
例えば、軟水器の再生時間に制約がない場合、濃縮排水槽5を省略し、圧力水であるRO膜濃縮排水と食塩水の混合水を直接再生用バルブV2A,V2B側へ送給してもよい。
また原水が塩素を含まない場合は、活性炭濾過器1を省略することができ、また、RO膜装置4の後段にはイオン交換純水装置や電気再生式純水装置などを設けてもよい。
FIG. 1 shows an example of an embodiment of the desalinated water production apparatus of the present invention, and the desalted water producing apparatus of the present invention is not limited to that of FIG.
For example, if there is no restriction on the regeneration time of the water softener, the concentrated drainage tank 5 is omitted, and the mixed water of the RO membrane concentrated drainage and the saline solution, which is the pressure water, is directly supplied to the regeneration valves V 2A and V 2B. You may.
When the raw water does not contain chlorine, the activated carbon filter 1 can be omitted, and an ion exchange pure water device, an electroregenerative pure water device, or the like may be provided after the RO membrane device 4.
以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[実施例1]
図1に示す脱塩水製造装置により、市水を原水として脱塩水の製造とRO膜濃縮排水を用いた軟水器の再生を行った。
軟水器、RO膜装置としては下記仕様のものを用いた。
[Example 1]
The demineralized water production apparatus shown in FIG. 1 was used to produce demineralized water using city water as raw water and to regenerate a water softener using RO membrane concentrated wastewater.
As the water softener and RO membrane device, those having the following specifications were used.
<軟水器>
栗田工業(株)製「KS−SA−20D」 2塔
<RO膜装置>
栗田工業(株)製「KN−400R」
<Water softener>
"KS-SA-20D" manufactured by Kurita Water Industries, Ltd. 2 towers <RO membrane device>
"KN-400R" manufactured by Kurita Water Industries, Ltd.
軟水器は原水の通水24時間毎に、RO膜濃縮排水と食塩水(NaCl濃度20〜26重量%)の混合水(NaCl濃度5〜10重量%)の通水による再生を2時間行うように2塔の軟水器の流路切り替えを行い、連続通水で脱塩水を製造した。
原水(市水)、軟水器の処理水(軟水)、及びRO膜濃縮排水、RO膜透過水の水質は以下の通りである。
The water softener should regenerate the mixed water (NaCl concentration 5-10% by weight) of RO membrane concentrated drainage and saline (NaCl concentration 20-26% by weight) every 24 hours of raw water flow for 2 hours. The flow path of the two water softeners was switched, and demineralized water was produced by continuous water flow.
The water quality of raw water (city water), treated water of water softener (soft water), RO membrane concentrated wastewater, and RO membrane permeated water is as follows.
<原水>
電導率:175μS/m
pH:7.8
Ca:20mg/L
Mg:4mg/L
M−アルカリ度:49mgCaCO3/L
<軟水>
電導率:166μS/m
pH:7.9
Ca:<1.0mg/L
Mg:<1.0mg/L
M−アルカリ度:48mgCaCO3/L
<RO膜濃縮排水>
電導率:498μS/m
pH:8.1
Ca:1.0mg/L
Mg:<1.0mg/L
M−アルカリ度:145mgCaCO3/L
<RO膜透過水>
電導率:3μS/m
<Raw water>
Conductivity: 175 μS / m
pH: 7.8
Ca: 20 mg / L
Mg: 4 mg / L
M-Alkaline: 49 mg CaCO 3 / L
<Soft water>
Conductivity: 166 μS / m
pH: 7.9
Ca: <1.0 mg / L
Mg: <1.0 mg / L
M-Alkaliity: 48 mg CaCO 3 / L
<RO membrane concentrated wastewater>
Conductivity: 498 μS / m
pH: 8.1
Ca: 1.0 mg / L
Mg: <1.0 mg / L
M-Alkaliity: 145 mg CaCO 3 / L
<RO membrane permeated water>
Conductivity: 3 μS / m
その結果、30日間の連続運転でも、軟水器やRO膜濃縮排水、透過水の水質に変化はなく、軟水器をRO膜濃縮排水を用いて十分に再生することができることが確認された。 As a result, it was confirmed that the water softener, the RO membrane concentrated drainage, and the permeated water quality did not change even after continuous operation for 30 days, and the water softener could be sufficiently regenerated using the RO membrane concentrated drainage.
1 活性炭濾過器
2A,2B 軟水器
3 軟水槽
4 RO膜装置
5 濃縮排水槽
6 塩水タンク
1
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019123774A JP2021007927A (en) | 2019-07-02 | 2019-07-02 | Regeneration process of water softener, and manufacturing apparatus of desalted water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019123774A JP2021007927A (en) | 2019-07-02 | 2019-07-02 | Regeneration process of water softener, and manufacturing apparatus of desalted water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021007927A true JP2021007927A (en) | 2021-01-28 |
Family
ID=74199047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019123774A Pending JP2021007927A (en) | 2019-07-02 | 2019-07-02 | Regeneration process of water softener, and manufacturing apparatus of desalted water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021007927A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023053678A1 (en) * | 2021-09-30 | 2023-04-06 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production system and ultrapure water production method |
WO2023145312A1 (en) * | 2022-01-28 | 2023-08-03 | パナソニックIpマネジメント株式会社 | Water softening device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534777A (en) * | 1976-07-02 | 1978-01-17 | Kurita Water Ind Ltd | Desalting apparatus |
JPS5340686A (en) * | 1976-09-27 | 1978-04-13 | Nippon Rensui Kk | Method of regenerating ion exchange resins |
WO2002000551A2 (en) * | 2000-06-29 | 2002-01-03 | Israel Garden | A process and apparatus for brine purification |
US20100282675A1 (en) * | 2009-05-08 | 2010-11-11 | Lehigh University | System and method for reversible cation-exchange desalination |
US20110315631A1 (en) * | 2010-05-26 | 2011-12-29 | Al-Samadi Riad A | Multi-use high water recovery process |
JP2013212504A (en) * | 2012-03-30 | 2013-10-17 | Spirax-Sarco Ltd | Steam plant and operation method therefor |
JP2013215679A (en) * | 2012-04-09 | 2013-10-24 | Nomura Micro Sci Co Ltd | Ultrapure water production apparatus |
JP2017074550A (en) * | 2015-10-14 | 2017-04-20 | 栗田工業株式会社 | Water treatment apparatus for boiler feed water and boiler operation method |
JP2017205703A (en) * | 2016-05-18 | 2017-11-24 | オルガノ株式会社 | Water treatment method and equipment, and method for regenerating ion exchange resin |
-
2019
- 2019-07-02 JP JP2019123774A patent/JP2021007927A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS534777A (en) * | 1976-07-02 | 1978-01-17 | Kurita Water Ind Ltd | Desalting apparatus |
JPS5340686A (en) * | 1976-09-27 | 1978-04-13 | Nippon Rensui Kk | Method of regenerating ion exchange resins |
WO2002000551A2 (en) * | 2000-06-29 | 2002-01-03 | Israel Garden | A process and apparatus for brine purification |
US20100282675A1 (en) * | 2009-05-08 | 2010-11-11 | Lehigh University | System and method for reversible cation-exchange desalination |
US20110315631A1 (en) * | 2010-05-26 | 2011-12-29 | Al-Samadi Riad A | Multi-use high water recovery process |
JP2013212504A (en) * | 2012-03-30 | 2013-10-17 | Spirax-Sarco Ltd | Steam plant and operation method therefor |
JP2013215679A (en) * | 2012-04-09 | 2013-10-24 | Nomura Micro Sci Co Ltd | Ultrapure water production apparatus |
JP2017074550A (en) * | 2015-10-14 | 2017-04-20 | 栗田工業株式会社 | Water treatment apparatus for boiler feed water and boiler operation method |
JP2017205703A (en) * | 2016-05-18 | 2017-11-24 | オルガノ株式会社 | Water treatment method and equipment, and method for regenerating ion exchange resin |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023053678A1 (en) * | 2021-09-30 | 2023-04-06 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production system and ultrapure water production method |
JP2023051430A (en) * | 2021-09-30 | 2023-04-11 | 野村マイクロ・サイエンス株式会社 | Ultrapure water production system and ultrapure water production method |
WO2023145312A1 (en) * | 2022-01-28 | 2023-08-03 | パナソニックIpマネジメント株式会社 | Water softening device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8679347B2 (en) | Multi-use high water recovery process | |
US9199866B2 (en) | High recovery drinking water process | |
JP5873771B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP3321179B2 (en) | Method and apparatus for high efficiency reverse infiltration treatment | |
US8815096B2 (en) | Sulfate removal from water sources | |
TWI616404B (en) | Method and device for processing boron-containing water | |
EP3375759B1 (en) | Method for purifying water as well as plant suitable for said method | |
US8119008B2 (en) | Fluid purification methods and devices | |
KR101530571B1 (en) | A desalination of cooling tower make-up water and effluent recycling system | |
US20100288700A1 (en) | Post treatment of desalinated and soft water for balanced water composition supply | |
CN104355450A (en) | High-salinity wastewater grading recycling process | |
JP2021007927A (en) | Regeneration process of water softener, and manufacturing apparatus of desalted water | |
JP2004000919A (en) | Apparatus for producing desalted water | |
KR101279695B1 (en) | A process and an apparatus for treating waters containing a biologically treated water | |
JP5729062B2 (en) | Water treatment method and water treatment system | |
JP5333486B2 (en) | Water treatment method and water treatment system | |
JPS6336890A (en) | Apparatus for producing high-purity water | |
JP4110604B2 (en) | Fluorine-containing water treatment method | |
JP3278918B2 (en) | Desalting method | |
JP2019118891A (en) | Pure water producing apparatus and pure water producing method | |
JPS586297A (en) | Treatment of raw water of high content of silica | |
JP5640825B2 (en) | Water treatment method and water treatment system | |
JP7237714B2 (en) | water treatment equipment | |
CN216472645U (en) | Soaking type full-automatic regeneration soft water preparation system | |
RU62923U1 (en) | WATER TREATMENT PLANT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221129 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230530 |