WO2023053678A1 - Ultrapure water production system and ultrapure water production method - Google Patents

Ultrapure water production system and ultrapure water production method Download PDF

Info

Publication number
WO2023053678A1
WO2023053678A1 PCT/JP2022/028123 JP2022028123W WO2023053678A1 WO 2023053678 A1 WO2023053678 A1 WO 2023053678A1 JP 2022028123 W JP2022028123 W JP 2022028123W WO 2023053678 A1 WO2023053678 A1 WO 2023053678A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
reverse osmosis
osmosis membrane
control agent
Prior art date
Application number
PCT/JP2022/028123
Other languages
French (fr)
Japanese (ja)
Inventor
英昭 芝尾
貴次 鬼頭
規彦 鈴木
修平 鳥村
Original Assignee
野村マイクロ・サイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村マイクロ・サイエンス株式会社 filed Critical 野村マイクロ・サイエンス株式会社
Publication of WO2023053678A1 publication Critical patent/WO2023053678A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present disclosure relates to an ultrapure water production system and an ultrapure water production method.
  • the slime control agent and scale inhibitor are injected into the storage tank by a chemical injection pump.
  • the pretreated water in the storage tank flows through piping to the reverse osmosis membrane separation device by a high-pressure pump.
  • the ultrapure water production system consists of a pretreatment system, a primary pure water system, and a secondary pure water system.
  • the primary pure water system for example, there are a water pit to store the water treated in the pretreatment system, a supply pump to discharge the water stored in the pit, and a filter to remove suspended solids from the water to be treated.
  • the filtration device provided, the high-pressure pump, and the reverse osmosis membrane device provided with the reverse osmosis membrane are arranged in order from the upstream side in the flow direction of the water to be treated.
  • the primary pure water system is equipped with an ultraviolet irradiation device, an ion exchange device, an electrodeionization device (EDI), a membrane deaeration device, a deaeration device (DG), etc., as required.
  • an ultraviolet irradiation device an ion exchange device, an electrodeionization device (EDI), a membrane deaeration device, a deaeration device (DG), etc., as required.
  • EDI electrodeionization device
  • DG deaeration device
  • a slime control agent that suppresses the adhesion of slime to the reverse osmosis membrane and a scale inhibitor that suppresses the adhesion of scale to the reverse osmosis membrane are supplied by discharging the water stored in the pit.
  • the water was injected into the upstream side of the pump or the upstream side of the high-pressure pump that supplies the water to be treated to the reverse osmosis membrane device.
  • slime control agents and scale inhibitors need to be uniformly mixed with the water to be treated in order to fully demonstrate their performance. For this reason, for example, a slime control agent and a scale inhibitor may be injected upstream with respect to the pump. Furthermore, in some cases, a device such as an in-line mixer that promotes mixing of the agents is installed on the downstream side of the injection positions of the slime control agent and the scale inhibitor.
  • the injection positions of the slime control agent and the scale inhibitor are often almost the same.
  • the piping of the supply system can be shortened.
  • the supply system piping is shortened, troubles in the piping system are reduced, and operation management and maintenance are facilitated.
  • the filter of the filtration device tends to become clogged when two types of chemicals are injected just before the water pit (storage tank) to be treated or the supply pump. This is presumably because the anti-scaling agent serves as a nutrient for the bacteria, and the bacteria grow and adhere to the filter. In addition, it is considered that the bacteria grow and adhere to the filter, causing clogging of the filter during long-term continuous operation, resulting in a decrease in the amount of water permeated through the filter.
  • the problem of the present disclosure is to suppress the decrease in the amount of water permeated through the filter during long-term continuous operation compared to the case where the slime control agent and scale inhibitor are injected upstream of the filtration device.
  • the inventors found that the injection position of the scale inhibitor and slime control agent significantly affects clogging of the filter of the filtration device. By optimizing the injection position, clogging of the filter can be substantially suppressed, and the invention has been completed.
  • the ultrapure water production system of the first aspect includes a filtration device provided with a filter through which water to be treated flowing in a main flow path passes, and a reverse osmosis membrane disposed downstream of the filtration device in the flow direction of the water to be treated.
  • a reverse osmosis membrane device provided with, a first injection part for injecting a slime control agent upstream of the filtration device in the flow direction of the water to be treated, and a downstream side of the filtration device in the flow direction of the water to be treated and a second injection part for injecting a scale inhibitor upstream of the reverse osmosis membrane device.
  • the first injection section injects the slime control agent upstream of the filtration device in the flow direction of the water to be treated.
  • the second injection unit injects the anti-scaling agent downstream of the filtration device and upstream of the reverse osmosis membrane device in the flow direction of the water to be treated.
  • the anti-scaling agent serves as a nutrient for the bacteria, and there is no risk of the bacteria growing and adhering to the filter.
  • a second aspect of the ultrapure water production system is the ultrapure water production system according to the first aspect, comprising an activated carbon device arranged upstream of the filtering device in the flow direction of the water to be treated,
  • the injection part is characterized by injecting the slime control agent upstream of the filtering device and downstream of the activated carbon device in the flow direction of the water to be treated.
  • the first injection section injects the slime control agent upstream of the filtration device and downstream of the activated carbon device in the flow direction of the water to be treated.
  • the slime control agent is not adsorbed to the activated carbon by the adsorption treatment of the activated carbon device. Therefore, a small amount of the chemical suppresses bacteria from multiplying and adhering to the filter.
  • a small amount of the agent can suppress bacteria from multiplying and adhering to the filter.
  • a third aspect of the ultrapure water production system is the ultrapure water production system according to the first or second aspect, wherein the first injection part and the second injection part suck out the chemical in the tank by their respective ejectors.
  • driving water is injected into each ejector of the first injection section and the second injection section from a branch flow path branching from the downstream side of the reverse osmosis membrane device in the flow direction of the water to be treated.
  • the ejector of the first injection part is arranged in a first unique channel having one end connected to the branch channel and the other end connected to the upstream side of the filtering device
  • the ejector of the second injection part has a second unique flow path, one end of which is connected to the branch flow path, and the other end of which is connected to the downstream side of the filtering device and the upstream side of the reverse osmosis membrane device. It is characterized in that it is arranged in
  • a common pump causes the water to be treated to flow through the branch flow paths and further through the first inherent flow path and the second inherent flow path.
  • the slum control agent flows out of the tank of the first injection section, flows into the ejector, and joins the first inherent flow path.
  • the combined slime control agent flows through the first unique channel and is injected into the upstream side of the filtration device.
  • the anti-scaling agent flows out from the tank of the second injection part, flows into the ejector, and joins the second unique flow path.
  • the combined anti-scaling agent flows through the second unique flow path and is injected downstream of the filtration device and upstream of the reverse osmosis membrane device.
  • the number of pumps can be reduced compared to the case of having both a pump for sucking the medicine from the tank of the first injection part and a pump for sucking the medicine from the tank of the second injection part.
  • a fourth aspect of the ultrapure water production system is the ultrapure water production system according to any one aspect of the first to third aspects, wherein the first injection section controls slime for the water to be treated flowing through the main flow path.
  • the slime control agent is injected so that the concentration of the agent is 1 ppm or more and 100 ppm or less.
  • the slime control agent with a concentration of 1 ppm or more and 100 ppm or less is injected into the water to be treated flowing through the main flow path. This effectively suppresses bacteria from multiplying and adhering to the filter, thereby suppressing a decrease in the amount of water permeated through the filter during long-term continuous operation.
  • An ultrapure water production system is the ultrapure water production system according to any one aspect of the first to fourth aspects, wherein the second injection section prevents the water to be treated flowing through the main flow path from scaling.
  • the anti-scaling agent is injected so that the concentration of the agent is 1 ppm or more and 100 ppm or less.
  • the anti-scaling agent with a concentration of 1 ppm or more and 100 ppm or less is injected into the water to be treated flowing through the main flow path.
  • adhesion of scale to the reverse osmosis membrane is effectively suppressed, and a decrease in the amount of water permeated through the reverse osmosis membrane can be suppressed in long-term continuous operation.
  • the water to be treated flowing through the main flow channel is filtered to remove suspended solids
  • the water to be treated generated by the filtration is treated with a reverse osmosis membrane to remove salts
  • the A slime control agent is injected upstream of the filtration process in the flow direction of the treated water, and scale prevention is performed downstream of the filtration process and upstream of the reverse osmosis membrane process in the flow direction of the water to be treated. It is characterized by injecting a drug.
  • the slime control agent is injected upstream of the filtration process in the flow direction of the water to be treated. This suppresses the growth and adhesion of bacteria to the filter provided in the filtering device, thereby suppressing the adhesion of slime to the filter.
  • the scale inhibitor is injected downstream of the filtration process and upstream of the reverse osmosis membrane process.
  • the anti-scaling agent does not permeate the filter of the filtration device.
  • the anti-scaling agent serves as a nutrient for bacteria, and there is no fear that the bacteria will multiply and adhere to the filter.
  • a seventh aspect of the ultrapure water production method is the ultrapure water production method according to the sixth aspect, wherein natural organic matter is removed by adsorption treatment on the water to be treated on the upstream side of the filtration treatment in the flow direction of the water to be treated. and the slime control agent is injected downstream of the adsorption treatment in the flow direction of the water to be treated.
  • the slime control agent is injected downstream of the adsorption treatment in the flow direction of the water to be treated.
  • the slime control agent is not adsorbed to the activated carbon by the adsorption treatment of the activated carbon device. Therefore, a small amount of the chemical suppresses bacteria from multiplying and adhering to the filter.
  • a small amount of the agent can suppress bacteria from growing and adhering to the filter.
  • the ultrapure water production method of the eighth aspect is the ultrapure water production method according to the sixth or seventh aspect, wherein the concentration of the slime control agent in the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm or less. , characterized by injecting a slime control agent.
  • the concentration of the slime control agent in the water to be treated flowing through the main flow path is 1 ppm or more and 100 ppm or less. This effectively suppresses bacteria from multiplying and adhering to the filter, and can suppress a decrease in the amount of water permeated through the filter during long-term continuous operation.
  • a ninth aspect of the ultrapure water production method is the ultrapure water production method according to any one of the sixth to eighth aspects, wherein the concentration of the scale inhibitor in the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm. It is characterized by injecting a scale inhibitor as follows.
  • the concentration of the scale inhibitor in the water to be treated flowing through the main flow path is 1 ppm or more and 100 ppm or less.
  • the present disclosure compared to the case of injecting the slime control agent and scale inhibitor into the upstream side of the filtration device, it is possible to suppress the decrease in the amount of water permeated through the filter during long-term continuous operation.
  • FIG. 1 is a schematic configuration diagram showing an ultrapure water production system according to this embodiment; FIG. It is drawing which showed the evaluation graph about the Example which concerns on this embodiment, and the comparative example with respect to an Example.
  • This ultrapure water production system 10 includes a primary pure water device 12 and a secondary pure water device 112 .
  • the primary pure water device 12 includes a water pit 14 in which water to be treated is stored, a first pump 18, a flow meter (FIQ) 20, a heat exchanger (HEX) 22, an activated carbon device (AC) 24 , ultraviolet oxidizer (UV) 26 and filtration device 30 . Further, the primary pure water device 12 includes a second pump 34, a first reverse osmosis membrane device (RO) 38, a deionized water pit 40, an electrodeionization device (EDI) 42, an ion exchange resin device (MB) 44, and a pure water tank 46 .
  • RO reverse osmosis membrane device
  • EDI electrodeionization device
  • MB ion exchange resin device
  • the first reverse osmosis membrane device 38 is an example of a reverse osmosis membrane device.
  • the primary pure water device 12 includes a second reverse osmosis membrane device (RO) 48 arranged in a branch channel 102 branching from the first reverse osmosis membrane device 38, and a drug injection system for injecting a drug into the main channel 100. 60.
  • RO reverse osmosis membrane device
  • the to-be-treated water pit 14 stores to-be-treated water (liquid up to ultrapure water).
  • the water to be treated is raw water, and examples of the water to be treated include industrial water, tap water, groundwater, and river water.
  • the first pump 18 causes the water to be treated stored in the water to be treated pit 14 to flow downstream in the direction of flow of the water to be treated (hereinafter sometimes referred to as "water flow direction") along the main flow path 100. .
  • the flow meter 20 measures the flow rate of the water to be treated flowing through the main flow path 100 .
  • the heat exchanger 22 adjusts the temperature of the water to be treated by heat exchange.
  • the activated carbon device 24 removes natural organic matter, residual chlorine, trihalomethane, etc. from the water to be treated by adsorption treatment.
  • the ultraviolet oxidation device 26 sterilizes the water by irradiating it with ultraviolet rays to decompose viable germs, bacteria, and the like contained in the water to be treated.
  • the filtering device 30 is provided with a filter (pre-filter) through which the water to be treated passes. Then, the filtering device 30 removes suspended matter such as residual chlorine, free chlorine, or fine particles by filtering.
  • the filtering device 30 removes suspended matter such as residual chlorine, free chlorine, or fine particles by filtering.
  • microorganisms such as bacteria and algae that do not pass through the filter are removed by the filter.
  • the UV oxidation device 26 located upstream of the filter device 30 will not cause any problems because the growth of bacteria and algae will be suppressed.
  • slime (contaminants) may be formed by some bacteria and algae (microorganisms) whose growth is not controlled.
  • a microfilter for turbidity removal can be used as the prefilter.
  • Either depth type or surface filtration type filters can be used. Filtration accuracy is preferably 0.5 to 50 ⁇ m, preferably 1 to 10 ⁇ m.
  • a cartridge type, a non-woven fabric type, a spool type, a pleated type, a bag type, etc. can be used.
  • materials organic polymer materials such as polyethylene and polypropylene, and metal materials such as stainless steel can be used.
  • Micro-Wind thread-wound filter cartridge NW series (manufactured by Sumitomo 3M), Micro-Klean (TM) thread-wound filter cartridge, D series (manufactured by Sumitomo 3M), thread-wound filter cartridge, WF series (manufactured by BJY Corporation), bag-type filters, and BF series (manufactured by BJY Corporation) are exemplified.
  • Filters with added adsorption performance such as activated carbon filters and ion exchange filters are not preferable because they may adsorb slime control agents and scale inhibitors.
  • the second pump 34 is a high-pressure pump, and flows the water to be treated from which impurities have been removed by the filtration device 30 to the first reverse osmosis membrane device 38 .
  • the first reverse osmosis membrane device 38 is provided with a reverse osmosis membrane through which the water to be treated permeates. and separate the water to be treated. As the water to be treated passes through the reverse osmosis membrane in this way, there is a risk that scale such as silica and calcium that has not passed through the reverse osmosis membrane will adhere to the reverse osmosis membrane. In addition, slime (contaminants) formed by microorganisms such as bacteria and algae that have not permeated the reverse osmosis membrane may adhere to the reverse osmosis membrane. In addition, the scale is a precipitated and hardened substance such as calcium or silica dissolved in a liquid.
  • the deionized water pit 40 temporarily stores permeated water that has passed through the reverse osmosis membrane of the first reverse osmosis membrane device 38 .
  • the electrodeionization device 42 performs deionization while electrically regenerating the water to be treated (permeated water).
  • the ion exchange resin device 44 is a mixed bed type ion exchange device of anion resin and cation resin, and removes inorganic ions from the water to be treated.
  • the pure water tank 46 stores primary pure water produced by the primary pure water device 12 .
  • the second reverse osmosis membrane device 48 is arranged in the middle of a branch channel 102 branching from the first reverse osmosis membrane device 38.
  • the branch channel 102 is a channel through which the concentrated water separated by the first reverse osmosis membrane device 38 flows, one end of which is connected to the first reverse osmosis membrane device 38 and the other end of which is connected to the water pit 14 to be treated. ing.
  • the second reverse osmosis membrane device 48 is provided with a reverse osmosis membrane through which the concentrated water permeates. It is separated into treated water from which ions and salts have been removed and waste water (oxidized water). Drainage is stored in the drainage pit 52 and treated water is returned to the treated water pit 14 .
  • the reverse osmosis membrane of the second reverse osmosis membrane device 48 contains silica, calcium, etc. that did not permeate the reverse osmosis membrane. scale may adhere. Furthermore, the reverse osmosis membrane of the second reverse osmosis membrane device 48 may be contaminated with slime (contaminants) formed by microorganisms such as bacteria and algae that have not permeated the reverse osmosis membrane.
  • the drug injection system 60 includes a third pump 50, a first injection section 62, and a second injection section 82, as shown in FIG.
  • a third pump 50 is arranged in a branched channel 104 a having one end connected to the deionized water pit 40 .
  • the third pump 50 is an example of a pump.
  • the first injection part 62 has one end connected to the other end of the branch channel 104a and the other end connected to the channel 100a in the main channel 100 between the ultraviolet oxidation device 26 and the filter device 30.
  • a first ejector 64 is arranged in the unique channel 104b.
  • the first injection part 62 includes a first tank 70 in which a liquid slime control agent is stored, a first flow meter (FIQ) 66 and a first flow control valve (FCV) 68 .
  • FIQ first flow meter
  • FCV first flow control valve
  • first flow meter 66 and the first flow control valve 68 are arranged in the first injection flow path 106 connecting the first tank 70 to the suction port 64 a of the first ejector 64 .
  • first flow meter 66 and the first flow control valve 68 are arranged in this order from the first tank 70 toward the suction port 64 a of the first ejector 64 .
  • the slime control agents stored in the first tank 70 are mainly classified into hydrazine-based, organic nitrogen-based, aromatic-based, and silver ion-based agents.
  • slime control agents include 2,2-dibromo-3-nitropropionate, 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT), 2-methyl-4- isothiazolin-3-one (MIT), 4,5-dichloro-1,2-dithiolan-3-one, 2-bromo-2-nitropropane-1,3-diol, benzisothiazolin-3-one, glutaraldehyde , silver compounds such as silver nitrate and silver sulfate, copper compounds such as copper sulfate and copper nitrate, and nickel compounds such as nickel chloride and nickel sulfate.
  • the first flow control valve 68 is controlled based on the measurement data of the first flow meter 66 and the measurement data of the flow meter 20.
  • the slime control agent flows through the first injection channel 106 and passes through the first ejector 64 to the first It merges with the unique channel 104b.
  • the slime control agent that joins the first unique channel 104b and flows is injected into the channel 100a in the portion between the ultraviolet oxidation device 26 and the filtering device 30.
  • the first injection part 62 injects the slime control agent into the channel 100 a between the ultraviolet oxidation device 26 and the filtering device 30 . If the ultraviolet oxidation device 26 is not installed, the first injection section 62 injects the slime control agent into the flow path 100a between the activated carbon device 24 and the filter device 30 .
  • the slime control agent is contained in the water to be treated flowing through the channel 100a.
  • the slime control agent contained in the water to be treated flows through the main flow path 100 and permeates the filter of the filtration device 30 to reach the first reverse osmosis membrane device 38 .
  • the slime control agent that reaches the first reverse osmosis membrane device 38 is contained in the concentrated water without passing through the reverse osmosis membrane of the first reverse osmosis membrane device 38 and flows through the branch channel 102 .
  • the concentration of the slime control agent contained in the concentrated water without passing through the reverse osmosis membrane of the first reverse osmosis membrane device 38 is the concentration of the slime control agent in the state before reaching the first reverse osmosis membrane device 38. higher compared to
  • the concentrated water containing the highly concentrated slime control agent flows through the branch channel 102 and reaches the second reverse osmosis membrane device 48 .
  • the slime control agent that reaches the second reverse osmosis membrane device 48 is included in the wastewater without permeating the reverse osmosis membrane of the second reverse osmosis membrane device 48 and is discharged to the wastewater pit 52 .
  • the second injection part 82 has one end connected to the other end of the branch channel 104a and the other end connected to the channel 100b in the main channel 100 between the filtering device 30 and the second pump 34.
  • a second ejector 84 is arranged in the second unique channel 104c.
  • the second injection part 82 includes a second tank 90 in which a liquid scale inhibitor is stored, a second flow meter (FIQ) 86 and a second flow control valve (FCV) 88 .
  • FIQ second flow meter
  • FCV second flow control valve
  • the second flow meter 86 and the second flow control valve 88 are arranged in the second injection flow path 108 connecting the second tank 90 to the suction port 84 a of the second ejector 84 .
  • the second flow meter 86 and the second flow control valve 88 are arranged in this order from the second tank 90 toward the suction port 84 a of the second ejector 84 .
  • scale inhibitors are mainly classified into phosphonic acid-based, polycarboxylic acid-based, and acrylic acid-based.
  • the scale inhibitors include the "Orpersion” series manufactured by Organo Corporation, the “Flocon (registered trademark)” series manufactured by BWA Water Additives, the “PermaTreat (registered trademark)” series manufactured by Nalco, “Hypersperse (registered trademark)” series manufactured by General Electric Company, “Kuriverter (registered trademark)” series manufactured by Kurita Water Industries Ltd., and the like.
  • the second flow control valve 88 is controlled based on the measurement data of the second flow meter 86 and the measurement data of the flow meter 20.
  • the anti-scaling agent flows through the second injection passage 108 and passes through the second ejector 84 so that the concentration of the anti-scaling agent in the water to be treated flowing through the main passage 100 is 1 ppm or more and 100 ppm or less. It merges with the unique channel 104c.
  • the anti-scaling agent that joins the second unique flow path 104 c is injected into the flow path 100 b in the portion between the filtering device 30 and the second pump 34 .
  • the second injection section 82 injects the anti-scaling agent into the flow path 100b in the portion between the filtering device 30 and the second pump 34 .
  • the scale inhibitor is contained in the water to be treated flowing through the flow path 100b.
  • the scale inhibitor contained in the water to be treated flows through the main flow path 100 and reaches the first reverse osmosis membrane device 38 .
  • the anti-scaling agent that reaches the first reverse osmosis membrane device 38 is contained in the concentrated water without permeating the reverse osmosis membrane of the first reverse osmosis membrane device 38 and flows through the branch channel 102 .
  • the concentration of the scale inhibitor contained in the concentrated water without passing through the reverse osmosis membrane of the first reverse osmosis membrane device 38 is the concentration of the scale inhibitor in the state before reaching the first reverse osmosis membrane device 38. higher compared to
  • the concentrated water containing the highly concentrated scale inhibitor flows through the branch channel 102 and reaches the second reverse osmosis membrane device 48 .
  • the anti-scaling agent that has reached the second reverse osmosis membrane device 48 is contained in the wastewater without permeating the reverse osmosis membrane of the second reverse osmosis membrane device 48 and is discharged to the wastewater pit 52 .
  • the secondary pure water device 112 is arranged downstream of the pure water tank 46 in the direction of water flow, as shown in FIG.
  • the secondary pure water device 112 further removes impurities from the primary pure water.
  • the ultrapure water obtained by the secondary pure water device 112 is sent to the point of use 120 where it is used. Of the ultrapure water sent to the point of use 120, the ultrapure water that has not been used is directly returned to the pure water tank 46 and stored in the pure water tank 46 together with the primary pure water.
  • Example 1 Comparative Example 1, Comparative Example 2
  • Example 1 Comparative Example 1
  • Comparative Example 2 Comparative Example 2
  • Comparative Example 1 In Comparative Example 1, a scale inhibitor and a slime control agent are injected downstream of the filtering device 30 in the direction of water flow. Specifically, a scale inhibitor and a slime control agent are injected into the channel 100b shown in FIG.
  • Comparative Example 2 In Comparative Example 2, a scale inhibitor and a slime control agent are injected upstream of the filtering device 30 in the direction of water flow. Specifically, a scale inhibitor and a slime control agent are injected into the channel 100a shown in FIG.
  • Comparative Example 3 In Comparative Example 3, the scale inhibitor is injected upstream of the filtering device 30 in the water flow direction, and the slime control agent is injected downstream of the filtering device 30 . Specifically, a scale inhibitor is injected into the flow path 100a shown in FIG. 1, and a slime control agent is injected into the flow path 100b.
  • Example 1 the slime control agent is injected upstream of the filtering device 30 in the direction of water flow, and the anti-scaling agent is injected downstream of the filtering device 30 . Specifically, the slime control agent is injected into the channel 100a shown in FIG. 1, and the scale inhibitor is injected into the channel 100b.
  • FIG. 2 graphically shows the evaluation results of Comparative Example 1 and Example 1. As shown in FIG. The vertical axis of the graph is the difference between the water pressure on the upstream side and the water pressure on the downstream side of the filtration device 30 (water flow differential pressure), and the horizontal axis is the time for the water to be treated to permeate the filtration device 30 (general water time).
  • Comparative Example 1 As shown in the graph of FIG. 2, the change in the water flow differential pressure increases after about seven days of continuous operation. This is the level at which functional problems arise, resulting in shutdown or replacement of the filter.
  • Comparative Example 2 similar to Comparative Example 1, the change in the water flow differential pressure increases after approximately seven days of continuous operation. This is the level at which functional problems arise, resulting in shutdown or replacement of the filter.
  • Comparative Example 3 similar to Comparative Example 1, the change in the water flow differential pressure increases after approximately seven days of continuous operation. This is the level at which functional problems arise, resulting in shutdown or replacement of the filter.
  • Example 1 As shown in the graph of FIG. 2, the change in the water flow differential pressure is small after 50 days of continuous operation. That is, as compared with Comparative Examples 1, 2 and 3, the decrease in the amount of water permeated through the filter is suppressed in long-term continuous operation. This is not a level at which functional problems occur, and operation can be continued.
  • the first injection unit 62 injects the slime control agent into the channel 100a between the ultraviolet oxidation device 26 and the filtering device 30. As shown in FIG. The slime control agent contained in the water to be treated flows through the main flow path 100 and permeates the filter of the filtering device 30 . This suppresses the growth of bacteria adhering to the filter.
  • the injected slime control agent reaches the filter without being uniformly mixed, so that a higher effect of suppressing slime generation can be obtained. It is presumed that the filter media in contact with the slime control agent of high concentration is highly effective in suppressing the generation of slime. In addition, since the high-concentration slime control agent comes into contact with the filter media in sequence, the generation of slime can finally be suppressed in the entire filter.
  • a device such as an in-line mixer or a pump that promotes mixing of the drug between the downstream side of the injection position of the drug and the filtering device 30 .
  • the second injection part 82 injects the scale inhibitor into the channel 100b between the filtering device 30 and the second pump 34 .
  • the anti-scaling agent does not permeate the filter of the filtration device.
  • the anti-scaling agent serves as a nutrient for bacteria, and there is no fear that the bacteria will multiply and adhere to the filter.
  • the ultrapure water production system 10 and the ultrapure water production method compared to the case where the slime control agent and the scale inhibitor are injected upstream of the filtration device 30, the amount of water permeated through the filter during long-term continuous operation can be suppressed.
  • the first injection part 62 injects the slime control agent into the channel 100a on the downstream side of the activated carbon device 24 in the water flow direction. Therefore, the slime control agent does not pass through the activated carbon device 24 . That is, the adsorption treatment of the activated carbon device 24 does not cause the slime control agent to be adsorbed to the activated carbon. Therefore, a small amount of the chemical suppresses the growth of bacteria on the filter.
  • the ultraviolet oxidation device 26 when the ultraviolet oxidation device 26 is installed, it is preferable to inject the slime control agent downstream of the ultraviolet oxidation device 26 in order to avoid ultraviolet decomposition of the slime control agent in the ultraviolet oxidation device 26 . . It should be noted that when the method of the present disclosure is used, the growth of bacteria on the filter is suppressed by the slime control agent, so the ultraviolet oxidation device 26 does not have to be installed.
  • the ultrapure water production system 10 and the ultrapure water production method compared with the case where the slime control agent is injected upstream of the activated carbon device 24 in the flow direction of the water to be treated, a small amount of the agent It can remarkably suppress bacteria from growing and adhering to the filter.
  • the third pump 50 is arranged in a branched flow path 104 a having one end connected to the deionized water pit 40 . Furthermore, the third pump 50 causes part of the water to be treated stored in the deionized water pit 40 to flow through the first unique channel 104b and the second unique channel 104c. Then, the slime control agent flows through the first injection channel 106, passes through the first ejector 64, and joins the first unique channel 104b. Also, the anti-scaling agent flows through the second injection channel 108, passes through the second ejector 84, and joins the second unique channel 104c.
  • the common third pump 50 causes the water to be treated to flow through the first unique channel 104b and the second unique channel 104c.
  • the slime control agent contained in the water to be treated flows through the main flow path 100 and permeates the filter of the filtration device 30 to reach the first reverse osmosis membrane device 38 . Furthermore, the scale inhibitor contained in the water to be treated flows through the main flow path 100 and reaches the first reverse osmosis membrane device 38 .
  • adhesion of slime to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 is suppressed. Furthermore, adhesion of scale to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 is suppressed. As a result, in long-term continuous operation, it is possible to suppress a decrease in the amount of water permeated through the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 .
  • the concentrated water containing the highly concentrated slime control agent reaches the second reverse osmosis membrane device 48 . Further, the concentrated water containing the highly concentrated scale inhibitor reaches the second reverse osmosis membrane device 48 .
  • adhesion of slime to the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 is suppressed. Furthermore, adhesion of scale to the reverse osmosis membrane provided in the second reverse osmosis membrane device 38 is suppressed. Thereby, in long-term continuous operation, it is possible to suppress a decrease in the amount of water permeated through the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 .
  • the first injection unit 62 injects the slime control agent so that the concentration of the slime control agent in the water to be treated flowing through the main flow path 100 is 1 ppm or more and 100 ppm or less. For this reason, slime adheres to the filter provided in the filtration device 30, slime adheres to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38, and the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 Adhesion of slime to can be effectively suppressed. In order to fully exhibit the effect of the present disclosure, the concentration of the slime control agent is more preferably 2-20 ppm. 4 to 10 ppm is more preferred.
  • the second injection unit 82 injects the anti-scaling agent so that the concentration of the anti-scaling agent in the water to be treated flowing through the main flow path 100 is 1 ppm or more and 100 ppm or less. Therefore, the adhesion of scale to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 and the adhesion of scale to the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 can be effectively suppressed. can.
  • the concentration of the scale inhibitor is more preferably 2 to 20 ppm. 4 to 10 ppm is more preferred.
  • the slime control agent is injected into the channel 100a on the downstream side of the activated carbon device 24, but the slime control agent may be injected on the upstream side of the activated carbon device 24. In this case, the effect achieved by injecting the slime control agent into the channel 100a on the downstream side of the activated carbon device 24 is not exhibited.
  • the third pump 50 is arranged in the branch channel 104a with one end connected to the deionized water pit 40 . Also, the first unique channel 104b and the second unique channel 104c are connected to the branch channel 104a. However, if the first intrinsic flow path is connected to the deionized water pit 40 and the second intrinsic flow path is connected to the deionized water pit 40, the first intrinsic flow path and the second intrinsic flow path You may arrange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This ultrapure water production system comprises: a filtration device provided with a filter through which passes water being treated flowing in a main flow path; a reverse osmosis membrane device provided with a reverse osmosis membrane, the reverse osmosis membrane device being positioned downstream from the filtration device in the flow direction of the water being treated; a first injection part for injecting a slime control agent into the main flow path at a portion upstream from the filtration device in the flow direction of the water being treated; and a second injection part for injecting a scale prevention agent into the main flow path at a portion downstream from the filtration device and upstream from the reverse osmosis membrane device in the flow direction of the water being treated.

Description

超純水製造システム、超純水製造方法Ultrapure water production system, ultrapure water production method
 本開示は、超純水製造システム、及び超純水製造方法に関する。 The present disclosure relates to an ultrapure water production system and an ultrapure water production method.
 特開2021-126624号公報に記載の超純水製造システムでは、スライムコントロール剤及びスケール防止剤は、薬注ポンプによって貯留タンク内に注入される。貯留タンクの前処理水は、配管を経て高圧ポンプにより逆浸透膜分離装置に流れる。 In the ultrapure water production system described in JP-A-2021-126624, the slime control agent and scale inhibitor are injected into the storage tank by a chemical injection pump. The pretreated water in the storage tank flows through piping to the reverse osmosis membrane separation device by a high-pressure pump.
 超純水製造システムは、前処理システム、1次純水システム、及び2次純水システムで構成されている。1次純水システムでは、例えば、前処理システムで処理された被処理水が貯留される被処理水ピット、ピットの貯留水を吐出する供給ポンプ、被処理水から懸濁物質を除去するフィルターが設けられたろ過装置、高圧ポンプ、及び逆浸透膜が設けられた逆浸透膜装置が、被処理水の流れ方向の上流側から順に並んでいる。 The ultrapure water production system consists of a pretreatment system, a primary pure water system, and a secondary pure water system. In the primary pure water system, for example, there are a water pit to store the water treated in the pretreatment system, a supply pump to discharge the water stored in the pit, and a filter to remove suspended solids from the water to be treated. The filtration device provided, the high-pressure pump, and the reverse osmosis membrane device provided with the reverse osmosis membrane are arranged in order from the upstream side in the flow direction of the water to be treated.
また、1次純水システムは、必要に応じて、紫外線照射装置、イオン交換装置、電気脱イオン装置(EDI)、膜脱気装置、及び脱気装置(DG)等を備える。 In addition, the primary pure water system is equipped with an ultraviolet irradiation device, an ion exchange device, an electrodeionization device (EDI), a membrane deaeration device, a deaeration device (DG), etc., as required.
 従来の超純水製造システムでは、逆浸透膜にスライムが付着するのを抑制するスライムコントロール剤、及び逆浸透膜にスケールが付着するのを抑制するスケール防止剤をピットの貯留水を吐出する供給ポンプの上流側、又は逆浸透膜装置に被処理水を供給する高圧ポンプの上流側に注入していた。 In the conventional ultrapure water production system, a slime control agent that suppresses the adhesion of slime to the reverse osmosis membrane and a scale inhibitor that suppresses the adhesion of scale to the reverse osmosis membrane are supplied by discharging the water stored in the pit. The water was injected into the upstream side of the pump or the upstream side of the high-pressure pump that supplies the water to be treated to the reverse osmosis membrane device.
 一般的に、スライムコントロール剤、及びスケール防止剤は、その性能を十分発揮させるために、被処理水に対して均一に混合させる必要があると考えられている。このため、例えば、ポンプに対して上流側にスライムコントロール剤、及びスケール防止剤を注入する場合がある。さらに、スライムコントロール剤、及びスケール防止剤の注入位置に対して下流側にインラインミキサー等の薬剤の混合を促進する装置を設置する場合がある。 In general, it is believed that slime control agents and scale inhibitors need to be uniformly mixed with the water to be treated in order to fully demonstrate their performance. For this reason, for example, a slime control agent and a scale inhibitor may be injected upstream with respect to the pump. Furthermore, in some cases, a device such as an in-line mixer that promotes mixing of the agents is installed on the downstream side of the injection positions of the slime control agent and the scale inhibitor.
 また、一般的に、スライムコントロール剤、及びスケール防止剤の注入位置ついては、ほぼ同じ場所にする場合が多い。これは、スライムコントロール剤、及びスケール防止剤の供給系を同じ場所に設置することで、供給系の配管が短くなる。さらに、供給系の配管が短くなることで、配管系でのトラブルが減り、さらに、運転管理やメンテナンスが容易となる。 Also, in general, the injection positions of the slime control agent and the scale inhibitor are often almost the same. By installing the supply system of the slime control agent and the scale inhibitor at the same place, the piping of the supply system can be shortened. Furthermore, since the supply system piping is shortened, troubles in the piping system are reduced, and operation management and maintenance are facilitated.
 このように逆浸透膜に対して前述した2種類の薬剤を注入する構成において、逆浸透膜装置の上流側にろ過装置を設けると、ろ過装置のフィルターがスライム(汚濁物)で詰まってしまうことがしばしば生じた。このフィルターの詰まりを抑制しなければならない、という課題があった。 In such a configuration in which the two types of chemicals described above are injected into the reverse osmosis membrane, if a filtration device is provided upstream of the reverse osmosis membrane device, the filter of the filtration device may be clogged with slime (contaminants). often occurred. There was a problem that clogging of this filter had to be suppressed.
 また、被処理水ピット(貯留タンク)、又は供給ポンプの直前に2種類の薬剤を注入すると、ろ過装置のフィルターが詰まりやすいという傾向も明らかとなってきた。これは、スケール防止剤が、菌の養分となり、菌が増殖してフィルターに付着するためと思われる。そして、菌が増殖してフィルターに付着することにより、長期連続運転において、フィルターの詰まりが生じることで、フィルターの透過水量が低下してしまうと考えられる。 In addition, it has become clear that the filter of the filtration device tends to become clogged when two types of chemicals are injected just before the water pit (storage tank) to be treated or the supply pump. This is presumably because the anti-scaling agent serves as a nutrient for the bacteria, and the bacteria grow and adhere to the filter. In addition, it is considered that the bacteria grow and adhere to the filter, causing clogging of the filter during long-term continuous operation, resulting in a decrease in the amount of water permeated through the filter.
 本開示の課題は、ろ過装置の上流側にスライムコントロール剤及びスケール防止剤を注入する場合と比して、長期連続運転において、フィルターの透過水量の低下を抑制することである。 The problem of the present disclosure is to suppress the decrease in the amount of water permeated through the filter during long-term continuous operation compared to the case where the slime control agent and scale inhibitor are injected upstream of the filtration device.
 本発明者らは、誠意検討を行った結果、スケール防止剤、及びスライムコントロール剤の注入位置がろ過装置のフィルターの詰まりに著しく影響することを見出した。そして、最適な注入位置にすることで、フィルターの詰まりをほぼ抑制できることに至り、発明を完成させたものである。 As a result of a sincere study, the inventors found that the injection position of the scale inhibitor and slime control agent significantly affects clogging of the filter of the filtration device. By optimizing the injection position, clogging of the filter can be substantially suppressed, and the invention has been completed.
 第1態様の超純水製造システムは、主流路を流れる被処理水が透過するフィルターが設けられたろ過装置と、被処理水の流れ方向において前記ろ過装置の下流側に配置され、逆浸透膜が設けられた逆浸透膜装置と、被処理水の流れ方向において前記ろ過装置の上流側にスライムコントロール剤を注入する第一注入部と、被処理水の流れ方向において前記ろ過装置の下流側で、かつ、前記逆浸透膜装置の上流側にスケール防止剤を注入する第二注入部と、を備えることを特徴とする。 The ultrapure water production system of the first aspect includes a filtration device provided with a filter through which water to be treated flowing in a main flow path passes, and a reverse osmosis membrane disposed downstream of the filtration device in the flow direction of the water to be treated. a reverse osmosis membrane device provided with, a first injection part for injecting a slime control agent upstream of the filtration device in the flow direction of the water to be treated, and a downstream side of the filtration device in the flow direction of the water to be treated and a second injection part for injecting a scale inhibitor upstream of the reverse osmosis membrane device.
 第1態様では、第一注入部は、被処理水の流れ方向においてろ過装置の上流側にスライムコントロール剤を注入する。これにより、菌が増殖してろ過装置に設けられたフィルターに付着するのが抑制されることで、フィルターに対するスライムの付着が抑制される。 In the first aspect, the first injection section injects the slime control agent upstream of the filtration device in the flow direction of the water to be treated. As a result, it is possible to suppress the adhesion of slime to the filter by suppressing the growth of bacteria and the attachment of the bacteria to the filter provided in the filtering device.
 また、第二注入部は、被処理水の流れ方向においてろ過装置の下流側で、かつ、逆浸透膜装置の上流側にスケール防止剤を注入する。これにより、スケール防止剤が、菌の養分となり、菌が増殖してフィルターに付着する恐れがない。 In addition, the second injection unit injects the anti-scaling agent downstream of the filtration device and upstream of the reverse osmosis membrane device in the flow direction of the water to be treated. As a result, the anti-scaling agent serves as a nutrient for the bacteria, and there is no risk of the bacteria growing and adhering to the filter.
 以上より、ろ過装置の上流側にスライムコントロール剤及びスケール防止剤を注入する場合と比して、長期連続運転において、フィルターの透過水量の低下を抑制することができる。 From the above, compared to the case where the slime control agent and scale inhibitor are injected upstream of the filtration device, it is possible to suppress the decrease in the amount of water permeated through the filter during long-term continuous operation.
 第2態様の超純水製造システムは、第1態様に記載の超純水製造システムにおいて、被処理水の流れ方向において前記ろ過装置の上流側に配置された活性炭装置を、備え、前記第一注入部は、被処理水の流れ方向において前記ろ過装置の上流側で、かつ、前記活性炭装置の下流側にスライムコントロール剤を注入することを特徴とする。 A second aspect of the ultrapure water production system is the ultrapure water production system according to the first aspect, comprising an activated carbon device arranged upstream of the filtering device in the flow direction of the water to be treated, The injection part is characterized by injecting the slime control agent upstream of the filtering device and downstream of the activated carbon device in the flow direction of the water to be treated.
 第2態様では、第一注入部は、被処理水の流れ方向においてろ過装置の上流側で、かつ、活性炭装置の下流側にスライムコントロール剤を注入する。これにより、活性炭装置の吸着処理によって、スライムコントロール剤が活性炭に吸着されることがない。このため、少量の薬剤によって、菌が増殖してフィルターに付着するのが抑制される。 In the second aspect, the first injection section injects the slime control agent upstream of the filtration device and downstream of the activated carbon device in the flow direction of the water to be treated. As a result, the slime control agent is not adsorbed to the activated carbon by the adsorption treatment of the activated carbon device. Therefore, a small amount of the chemical suppresses bacteria from multiplying and adhering to the filter.
 以上より、被処理水の流れ方向において、活性炭装置の上流側にスライムコントロール剤を注入する場合と比して、少量の薬剤によって、菌が増殖してフィルターに付着するのを抑制することができる。 As described above, compared with the case where the slime control agent is injected upstream of the activated carbon device in the flow direction of the water to be treated, a small amount of the agent can suppress bacteria from multiplying and adhering to the filter. .
 第3態様の超純水製造システムは、第1又は第2態様に記載の超純水製造システムにおいて、前記第一注入部及び第二注入部は、それぞれのエジェクタによりタンク中の薬剤を吸い出して前記主流路の注入する構成であり、被処理水の流れ方向において前記逆浸透膜装置の下流側から分岐する分岐流路から前記第一注入部及び第二注入部のそれぞれのエジェクタに駆動水を供給する共通のポンプを備え、前記第一注入部のエジェクタは、一端が前記分岐流路に接続されると共に他端が前記ろ過装置の上流側に接続される第一固有流路に配置され、前記第二注入部のエジェクタは、一端が前記分岐流路に接続されると共に他端が前記ろ過装置の下流側で、かつ、前記逆浸透膜装置の上流側に接続される第二固有流路に配置されていることを特徴とする。 A third aspect of the ultrapure water production system is the ultrapure water production system according to the first or second aspect, wherein the first injection part and the second injection part suck out the chemical in the tank by their respective ejectors. In the main flow path, driving water is injected into each ejector of the first injection section and the second injection section from a branch flow path branching from the downstream side of the reverse osmosis membrane device in the flow direction of the water to be treated. The ejector of the first injection part is arranged in a first unique channel having one end connected to the branch channel and the other end connected to the upstream side of the filtering device, The ejector of the second injection part has a second unique flow path, one end of which is connected to the branch flow path, and the other end of which is connected to the downstream side of the filtering device and the upstream side of the reverse osmosis membrane device. It is characterized in that it is arranged in
 第3態様では、共通のポンプによって、被処理水が、分岐流路を流れ、さらに、第一固有流路及び第二固有流路を流れる。スラムコントロール剤は、第一注入部のタンクのから流出してエジェクタに流れ、第一固有流路に合流する。合流したスライムコントロール剤は、第一固有流路を流れ、ろ過装置の上流側に注入される。 In the third aspect, a common pump causes the water to be treated to flow through the branch flow paths and further through the first inherent flow path and the second inherent flow path. The slum control agent flows out of the tank of the first injection section, flows into the ejector, and joins the first inherent flow path. The combined slime control agent flows through the first unique channel and is injected into the upstream side of the filtration device.
 一方、スケール防止剤は、第二注入部のタンクから流出してエジェクタに流れ、第二固有流路に合流する。合流したスケール防止剤は、第二固有流路を流れ、ろ過装置の下流側で、かつ、逆浸透膜装置の上流側に注入される。 On the other hand, the anti-scaling agent flows out from the tank of the second injection part, flows into the ejector, and joins the second unique flow path. The combined anti-scaling agent flows through the second unique flow path and is injected downstream of the filtration device and upstream of the reverse osmosis membrane device.
 以上より、第一注入部のタンクのから薬剤を吸い出すポンプ、及び第二注入部のタンクから薬剤を吸い出すポンプの両方を有する場合と比して、ポンプの数を少なくすることができる。 As described above, the number of pumps can be reduced compared to the case of having both a pump for sucking the medicine from the tank of the first injection part and a pump for sucking the medicine from the tank of the second injection part.
 第4態様の超純水製造システムは、第1~第3態様の何れか1態様に記載の超純水製造システムにおいて、前記第一注入部は、前記主流路を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下となるように、スライムコントロール剤を注入することを特徴とする。 A fourth aspect of the ultrapure water production system is the ultrapure water production system according to any one aspect of the first to third aspects, wherein the first injection section controls slime for the water to be treated flowing through the main flow path. The slime control agent is injected so that the concentration of the agent is 1 ppm or more and 100 ppm or less.
 第4態様では、主流路を流れる被処理水に対して1ppm以上100ppm以下の濃度のスライムコントロール剤が注入される。これにより、菌が増殖してフィルターに付着するのが効果的に抑制されることで、長期連続運転において、フィルターの透過水量の低下を抑制することができる。 In the fourth aspect, the slime control agent with a concentration of 1 ppm or more and 100 ppm or less is injected into the water to be treated flowing through the main flow path. This effectively suppresses bacteria from multiplying and adhering to the filter, thereby suppressing a decrease in the amount of water permeated through the filter during long-term continuous operation.
 第5態様の超純水製造システムは、第1~第4態様の何れか1態様に記載の超純水製造システムにおいて、前記第二注入部は、前記主流路を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下となるように、スケール防止剤を注入することを特徴とする。 An ultrapure water production system according to a fifth aspect is the ultrapure water production system according to any one aspect of the first to fourth aspects, wherein the second injection section prevents the water to be treated flowing through the main flow path from scaling. The anti-scaling agent is injected so that the concentration of the agent is 1 ppm or more and 100 ppm or less.
 第5態様では、主流路を流れる被処理水に対して1ppm以上100ppm以下の濃度のスケール防止剤が注入される。これにより、逆浸透膜に対するスケールの付着が効果的に抑制されることで、長期連続運転において、逆浸透膜の透過水量の低下を抑制することができる。 In the fifth aspect, the anti-scaling agent with a concentration of 1 ppm or more and 100 ppm or less is injected into the water to be treated flowing through the main flow path. As a result, adhesion of scale to the reverse osmosis membrane is effectively suppressed, and a decrease in the amount of water permeated through the reverse osmosis membrane can be suppressed in long-term continuous operation.
 第6態様の超純水製造方法は、主流路を流れる被処理水に対するろ過処理によって懸濁物質を除去し、前記ろ過処理で生じた被処理水に対する逆浸透膜処理によって塩類を除去し、被処理水の流れ方向において、前記ろ過処理の上流側にスライムコントロール剤を注入し、被処理水の流れ方向において、前記ろ過処理の下流側で、かつ、前記逆浸透膜処理の上流側にスケール防止剤を注入することを特徴とする。 In the ultrapure water production method of the sixth aspect, the water to be treated flowing through the main flow channel is filtered to remove suspended solids, the water to be treated generated by the filtration is treated with a reverse osmosis membrane to remove salts, and the A slime control agent is injected upstream of the filtration process in the flow direction of the treated water, and scale prevention is performed downstream of the filtration process and upstream of the reverse osmosis membrane process in the flow direction of the water to be treated. It is characterized by injecting a drug.
 第6態様では、被処理水の流れ方向において、ろ過処理の上流側にスライムコントロール剤を注入する。これにより、ろ過装置に設けられたフィルターに菌が増殖して付着するのが抑制されることで、フィルターに対するスライムの付着が抑制される。 In the sixth aspect, the slime control agent is injected upstream of the filtration process in the flow direction of the water to be treated. This suppresses the growth and adhesion of bacteria to the filter provided in the filtering device, thereby suppressing the adhesion of slime to the filter.
 また、被処理水の流れ方向において、ろ過処理の下流側で、かつ、逆浸透膜処理の上流
側にスケール防止剤を注入する。これにより、スケール防止剤が、ろ過装置のフィルターを透過することがない。つまり、スケール防止剤が、菌の養分となり、菌が増殖してフィルターに付着する恐れがない。
Moreover, in the flow direction of the water to be treated, the scale inhibitor is injected downstream of the filtration process and upstream of the reverse osmosis membrane process. As a result, the anti-scaling agent does not permeate the filter of the filtration device. In other words, the anti-scaling agent serves as a nutrient for bacteria, and there is no fear that the bacteria will multiply and adhere to the filter.
 以上より、ろ過処理の上流側にスライムコントロール剤及びスケール防止剤を注入する場合と比して、長期連続運転において、フィルターの透過水量の低下を抑制することができる。 From the above, compared to the case where the slime control agent and scale inhibitor are injected on the upstream side of the filtration process, it is possible to suppress the decrease in the permeation amount of the filter during long-term continuous operation.
 第7態様の超純水製造方法は、第6態様に記載の超純水製造方法において、被処理水の流れ方向において前記ろ過処理の上流側で、被処理水に対する吸着処理によって天然有機物を除去し、被処理水の流れ方向において、前記吸着処理の下流側にスライムコントロール剤を注入することを特徴とする。 A seventh aspect of the ultrapure water production method is the ultrapure water production method according to the sixth aspect, wherein natural organic matter is removed by adsorption treatment on the water to be treated on the upstream side of the filtration treatment in the flow direction of the water to be treated. and the slime control agent is injected downstream of the adsorption treatment in the flow direction of the water to be treated.
 第7態様では、被処理水の流れ方向において、吸着処理の下流側にスライムコントロール剤を注入する。これにより、活性炭装置の吸着処理によって、スライムコントロール剤が活性炭に吸着されることがない。このため、少量の薬剤によって、菌が増殖してフィルターに付着するのが抑制される。 In the seventh aspect, the slime control agent is injected downstream of the adsorption treatment in the flow direction of the water to be treated. As a result, the slime control agent is not adsorbed to the activated carbon by the adsorption treatment of the activated carbon device. Therefore, a small amount of the chemical suppresses bacteria from multiplying and adhering to the filter.
 以上より、被処理水の流れ方向において、吸着処理の上流側にスライムコントロール剤を注入する場合と比して、少量の薬剤によって、菌が増殖してフィルターに付着するのを抑制することができる。 As described above, compared with the case where the slime control agent is injected upstream of the adsorption treatment in the flow direction of the water to be treated, a small amount of the agent can suppress bacteria from growing and adhering to the filter. .
 第8態様の超純水製造方法は、第6又は第7態様に記載の超純水製造方法において、前記主流路を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下となるように、スライムコントロール剤を注入することを特徴とする。 The ultrapure water production method of the eighth aspect is the ultrapure water production method according to the sixth or seventh aspect, wherein the concentration of the slime control agent in the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm or less. , characterized by injecting a slime control agent.
 第8態様では、主流路を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下である。これにより、菌が増殖してフィルターに付着するのが効果的に抑制され、長期連続運転において、フィルターの透過水量の低下を抑制することができる。 In the eighth aspect, the concentration of the slime control agent in the water to be treated flowing through the main flow path is 1 ppm or more and 100 ppm or less. This effectively suppresses bacteria from multiplying and adhering to the filter, and can suppress a decrease in the amount of water permeated through the filter during long-term continuous operation.
 第9態様の超純水製造方法は、第6~第8態様の何れか1態様に記載の超純水製造方法において、前記主流路を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下となるように、スケール防止剤を注入することを特徴とする。 A ninth aspect of the ultrapure water production method is the ultrapure water production method according to any one of the sixth to eighth aspects, wherein the concentration of the scale inhibitor in the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm. It is characterized by injecting a scale inhibitor as follows.
 第9態様では、主流路を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下である。これにより、逆浸透膜に対するスケールの付着が効果的に抑制され、長期連続運転において、逆浸透膜の透過水量の低下を抑制することができる。 In the ninth aspect, the concentration of the scale inhibitor in the water to be treated flowing through the main flow path is 1 ppm or more and 100 ppm or less. As a result, adhesion of scale to the reverse osmosis membrane is effectively suppressed, and a decrease in the amount of water permeated through the reverse osmosis membrane can be suppressed in long-term continuous operation.
 本開示では、ろ過装置の上流側にスライムコントロール剤及びスケール防止剤を注入する場合と比して、長期連続運転において、フィルターの透過水量の低下を抑制することができる。 In the present disclosure, compared to the case of injecting the slime control agent and scale inhibitor into the upstream side of the filtration device, it is possible to suppress the decrease in the amount of water permeated through the filter during long-term continuous operation.
本実施形態に係る超純水製造システムを示した概略構成図である。1 is a schematic configuration diagram showing an ultrapure water production system according to this embodiment; FIG. 本実施形態に係る実施例、及び実施例に対する比較例についての評価グラフを示した図面である。It is drawing which showed the evaluation graph about the Example which concerns on this embodiment, and the comparative example with respect to an Example.
 以下、本実施形態に係る超純水製造システム10、及び超純水製造方法について、図1、図2に従って説明する。この超純水製造システム10は、一次純水装置12と二次純水装置112とを備えている。 An ultrapure water production system 10 and an ultrapure water production method according to this embodiment will be described below with reference to FIGS. This ultrapure water production system 10 includes a primary pure water device 12 and a secondary pure water device 112 .
 (一次純水装置12)
 一次純水装置12は、図1に示されるように、被処理水が貯留される被処理水ピット14、第一ポンプ18、流量計(FIQ)20、熱交換器(HEX)22、活性炭装置(AC)24、紫外線酸化装置(UV)26、及びろ過装置30を備えている。さらに、一次純水装置12は、第二ポンプ34、第一逆浸透膜装置(RO)38、脱イオン水ピット40、電気式脱イオン装置(EDI)42、イオン交換樹脂装置(MB)44、及び純水タンク46を備えている。
(Primary pure water device 12)
As shown in FIG. 1, the primary pure water device 12 includes a water pit 14 in which water to be treated is stored, a first pump 18, a flow meter (FIQ) 20, a heat exchanger (HEX) 22, an activated carbon device (AC) 24 , ultraviolet oxidizer (UV) 26 and filtration device 30 . Further, the primary pure water device 12 includes a second pump 34, a first reverse osmosis membrane device (RO) 38, a deionized water pit 40, an electrodeionization device (EDI) 42, an ion exchange resin device (MB) 44, and a pure water tank 46 .
 そして、被処理水が流れる流れ方向の上流側から順に、被処理水が流れる主流路100に沿って被処理水ピット14、第一ポンプ18、流量計20、熱交換器22、活性炭装置24、紫外線酸化装置26、ろ過装置30、第二ポンプ34、第一逆浸透膜装置38、脱イオン水ピット40、電気式脱イオン装置42、イオン交換樹脂装置44、及び純水タンク46が並んでいる。第一逆浸透膜装置38は、逆浸透膜装置の一例である。 Then, along the main flow path 100 in which the water to be treated flows, the water to be treated pit 14, the first pump 18, the flow meter 20, the heat exchanger 22, the activated carbon device 24, An ultraviolet oxidation device 26, a filtration device 30, a second pump 34, a first reverse osmosis membrane device 38, a deionized water pit 40, an electrodeionization device 42, an ion exchange resin device 44, and a pure water tank 46 are lined up. . The first reverse osmosis membrane device 38 is an example of a reverse osmosis membrane device.
 また、一次純水装置12は、第一逆浸透膜装置38から分岐する分岐流路102に配置された第二逆浸透膜装置(RO)48、及び主流路100に薬剤を注入する薬剤注入システム60を備えている。 In addition, the primary pure water device 12 includes a second reverse osmosis membrane device (RO) 48 arranged in a branch channel 102 branching from the first reverse osmosis membrane device 38, and a drug injection system for injecting a drug into the main channel 100. 60.
 以下各装置について説明する。
 被処理水ピット14は、被処理水(超純水までの液)を貯留する。被処理水は、原水であって、被処理水としては、工業用水、水道水、地下水、河川水などが挙げられる。第一ポンプ18は、被処理水ピット14に貯留された被処理水を、主流路100に沿って、被処理水の流れ方向(以下「水流れ方向」という場合がある)の下流側へ流す。
Each device will be described below.
The to-be-treated water pit 14 stores to-be-treated water (liquid up to ultrapure water). The water to be treated is raw water, and examples of the water to be treated include industrial water, tap water, groundwater, and river water. The first pump 18 causes the water to be treated stored in the water to be treated pit 14 to flow downstream in the direction of flow of the water to be treated (hereinafter sometimes referred to as "water flow direction") along the main flow path 100. .
 流量計20は、主流路100を流れる被処理水の流量を計測する。熱交換器22は、被処理水の温度を熱交換によって調整する。活性炭装置24は、吸着処理によって、被処理水から、天然有機物、残留塩素、及びトリハロメタン等を除去する。紫外線酸化装置26は、紫外線照射により、被処理水に含まれる生菌、バクテリアなどを分解して殺菌処理する。 The flow meter 20 measures the flow rate of the water to be treated flowing through the main flow path 100 . The heat exchanger 22 adjusts the temperature of the water to be treated by heat exchange. The activated carbon device 24 removes natural organic matter, residual chlorine, trihalomethane, etc. from the water to be treated by adsorption treatment. The ultraviolet oxidation device 26 sterilizes the water by irradiating it with ultraviolet rays to decompose viable germs, bacteria, and the like contained in the water to be treated.
 ろ過装置30には、被処理水が透過するフィルター(プレフィルター)が設けられている。そして、ろ過装置30は、ろ過処理によって、残留塩素、遊離塩素、又は微粒子等の懸濁物質を除去する。ここで、被処理水がフィルターを透過することで、フィルターを透過しない細菌や藻類などの微生物がフィルターによって除去される。通常、ろ過装置30の上流側に配置された紫外線酸化装置26によって、細菌や藻類の増殖が抑制されるため問題を起こすことはない。しかし、条件によっては、増殖が抑制されていない一部の細菌や藻類(微生物)によってスライム(汚濁物)が形成される恐れがある。 The filtering device 30 is provided with a filter (pre-filter) through which the water to be treated passes. Then, the filtering device 30 removes suspended matter such as residual chlorine, free chlorine, or fine particles by filtering. Here, as the water to be treated passes through the filter, microorganisms such as bacteria and algae that do not pass through the filter are removed by the filter. Generally, the UV oxidation device 26 located upstream of the filter device 30 will not cause any problems because the growth of bacteria and algae will be suppressed. However, under certain conditions, slime (contaminants) may be formed by some bacteria and algae (microorganisms) whose growth is not controlled.
 なお、プレフィルターとしては、除濁用のマイクロフィルターを使用することができる。デプスタイプ、又は表層ろ過タイプのいずれのフィルターも使用可能である。ろ過精度としては、0.5~50μm、好ましくは、1~10μmが好ましい。形状については、カートリッジ式、不織布式、糸巻式、プリーツ式、バグタイプ等が使用可能である。素材としては、ポリエチレン、ポリプロピレン等の有機ポリマーの素材やステンレス等の金属素材が使用可能である。具体的には、Micro-Wind 糸巻き式フィルターカートリッジ、NWシリーズ(住友スリーエム株式会社製)、Micro-Klean(TM) 糸巻きフィルターカートリッジ、Dシリーズ(住友スリーエム株式会社製)、糸巻き式フィルターカートリッジ、WFシリーズ(BJY コーポレーション社製)、バグ式フィルター、BFシリーズ(BJY コーポレーション社製)が例示される。活性炭フィルターやイオン交換フィルター等の吸着性能を付加させたフィルターは、スライムコントロール剤やスケール防止剤を吸着させる恐れがあるので好ましくない。 A microfilter for turbidity removal can be used as the prefilter. Either depth type or surface filtration type filters can be used. Filtration accuracy is preferably 0.5 to 50 μm, preferably 1 to 10 μm. As for the shape, a cartridge type, a non-woven fabric type, a spool type, a pleated type, a bag type, etc. can be used. As materials, organic polymer materials such as polyethylene and polypropylene, and metal materials such as stainless steel can be used. Specifically, Micro-Wind thread-wound filter cartridge, NW series (manufactured by Sumitomo 3M), Micro-Klean (TM) thread-wound filter cartridge, D series (manufactured by Sumitomo 3M), thread-wound filter cartridge, WF series (manufactured by BJY Corporation), bag-type filters, and BF series (manufactured by BJY Corporation) are exemplified. Filters with added adsorption performance such as activated carbon filters and ion exchange filters are not preferable because they may adsorb slime control agents and scale inhibitors.
 第二ポンプ34は、高圧ポンプであって、ろ過装置30によって不純物が除去された被処理水を、第一逆浸透膜装置38へ流す。 The second pump 34 is a high-pressure pump, and flows the water to be treated from which impurities have been removed by the filtration device 30 to the first reverse osmosis membrane device 38 .
 第一逆浸透膜装置38には、被処理水が透過する逆浸透膜が設けられ、第一逆浸透膜装置38は、逆浸透膜処理によって、イオン、塩類を除去した透過水と、濃縮水とに被処理水を分離する。このように、被処理水が逆浸透膜を透過することで、逆浸透膜には、逆浸透膜を透過しなかったシリカ、カルシウム等のスケールが付着する恐れがある。また、逆浸透膜には、逆浸透膜を透過しなかった細菌や藻類など微生物により形成されたスライム(汚濁物)が付着する恐れがある。なお、スケールとは、液中に溶け込んでいるカルシウムやシリカなどが析出して固まったものである。 The first reverse osmosis membrane device 38 is provided with a reverse osmosis membrane through which the water to be treated permeates. and separate the water to be treated. As the water to be treated passes through the reverse osmosis membrane in this way, there is a risk that scale such as silica and calcium that has not passed through the reverse osmosis membrane will adhere to the reverse osmosis membrane. In addition, slime (contaminants) formed by microorganisms such as bacteria and algae that have not permeated the reverse osmosis membrane may adhere to the reverse osmosis membrane. In addition, the scale is a precipitated and hardened substance such as calcium or silica dissolved in a liquid.
 脱イオン水ピット40は、第一逆浸透膜装置38の逆浸透膜を透過した透過水を一時的に貯留する。電気式脱イオン装置42は、被処理水(透過水)を電気的に再生しながら、脱イオン処理を行う。イオン交換樹脂装置44は、アニオン樹脂とカチオン樹脂の混床式のイオン交換装置であり、被処理水から無機イオンを除去する。純水タンク46は、一次純水装置12によって製造された一次純水を貯留する。 The deionized water pit 40 temporarily stores permeated water that has passed through the reverse osmosis membrane of the first reverse osmosis membrane device 38 . The electrodeionization device 42 performs deionization while electrically regenerating the water to be treated (permeated water). The ion exchange resin device 44 is a mixed bed type ion exchange device of anion resin and cation resin, and removes inorganic ions from the water to be treated. The pure water tank 46 stores primary pure water produced by the primary pure water device 12 .
 〔第二逆浸透膜装置48〕
 第二逆浸透膜装置48は、図1に示されるように、第一逆浸透膜装置38から分岐する分岐流路102の途中に配置されている。分岐流路102は、第一逆浸透膜装置38によって分離した濃縮水が流れる流路であって、一端が第一逆浸透膜装置38に接続され、他端が被処理水ピット14に接続されている。
[Second reverse osmosis membrane device 48]
The second reverse osmosis membrane device 48, as shown in FIG. 1, is arranged in the middle of a branch channel 102 branching from the first reverse osmosis membrane device 38. As shown in FIG. The branch channel 102 is a channel through which the concentrated water separated by the first reverse osmosis membrane device 38 flows, one end of which is connected to the first reverse osmosis membrane device 38 and the other end of which is connected to the water pit 14 to be treated. ing.
 第二逆浸透膜装置48には、濃縮水が透過する逆浸透膜が設けられ、第二逆浸透膜装置48は、逆浸透膜処理によって、第一逆浸透膜装置38によって分離した濃縮水からイオン、塩類を除去した処理水と、排水(酸化水)とに分離する。排水は、排水ピット52に貯留され、処理水は、被処理水ピット14に戻される。 The second reverse osmosis membrane device 48 is provided with a reverse osmosis membrane through which the concentrated water permeates. It is separated into treated water from which ions and salts have been removed and waste water (oxidized water). Drainage is stored in the drainage pit 52 and treated water is returned to the treated water pit 14 .
 このように、濃縮水が第二逆浸透膜装置48の逆浸透膜を透過することで、第二逆浸透膜装置48の逆浸透膜には、逆浸透膜を透過しなかったシリカ、カルシウム等のスケールが付着する恐れがある。さらに、第二逆浸透膜装置48の逆浸透膜には、逆浸透膜を透過しなかった細菌や藻類など微生物により形成されたスライム(汚濁物)が付着する恐れがある。 As the concentrated water permeates the reverse osmosis membrane of the second reverse osmosis membrane device 48 in this way, the reverse osmosis membrane of the second reverse osmosis membrane device 48 contains silica, calcium, etc. that did not permeate the reverse osmosis membrane. scale may adhere. Furthermore, the reverse osmosis membrane of the second reverse osmosis membrane device 48 may be contaminated with slime (contaminants) formed by microorganisms such as bacteria and algae that have not permeated the reverse osmosis membrane.
 〔薬剤注入システム60〕
 薬剤注入システム60は、図1に示されるように、第三ポンプ50、第一注入部62、及び第二注入部82を備えている。第三ポンプ50は、一端が脱イオン水ピット40に接続された分岐流路104aに配置されている。第三ポンプ50は、ポンプの一例である。
[Drug injection system 60]
The drug injection system 60 includes a third pump 50, a first injection section 62, and a second injection section 82, as shown in FIG. A third pump 50 is arranged in a branched channel 104 a having one end connected to the deionized water pit 40 . The third pump 50 is an example of a pump.
 <第一注入部62>
 第一注入部62は、一端が分岐流路104aの他端に接続され、他端が主流路100において紫外線酸化装置26とろ過装置30との間の部分の流路100aに接続される第一固有流路104bに配置された第一エジェクタ64を備えている。さらに、第一注入部62は、液状のスライムコントール剤が貯留される第一タンク70、第一流量計(FIQ)66、及び第一流量調整弁(FCV)68を備えている。
<First injection part 62>
The first injection part 62 has one end connected to the other end of the branch channel 104a and the other end connected to the channel 100a in the main channel 100 between the ultraviolet oxidation device 26 and the filter device 30. A first ejector 64 is arranged in the unique channel 104b. Furthermore, the first injection part 62 includes a first tank 70 in which a liquid slime control agent is stored, a first flow meter (FIQ) 66 and a first flow control valve (FCV) 68 .
 また、第一流量計66、及び第一流量調整弁68は、第一タンク70から第一エジェクタ64の吸入口64aまでを繋ぐ第一注入流路106に配置されている。具体的には、第一タンク70から第一エジェクタ64の吸入口64aへ向かって、第一流量計66、及び第一流量調整弁68は、この順に配置されている。 Also, the first flow meter 66 and the first flow control valve 68 are arranged in the first injection flow path 106 connecting the first tank 70 to the suction port 64 a of the first ejector 64 . Specifically, the first flow meter 66 and the first flow control valve 68 are arranged in this order from the first tank 70 toward the suction port 64 a of the first ejector 64 .
 なお、第一タンク70に貯留されるスライムコントロール剤は、主に、ヒドラジン系、有機窒素系、芳香族系、銀イオン系に大別される。具体的には、スライムコントロール剤としては、2,2-ジブロモ-3-ニトロプロピオンアシド、5-クロロ-2-メチル-4-イソチアゾリン-3-オン(Cl-MIT)、2-メチル-4-イソチアゾリン-3-オン(MIT),4,5-ジクロロ-1,2-ジチオラン-3-オン、2-ブロモ-2-ニトロプロパン-1,3-ジオール、ベンゾイソチアゾリン-3-オン、グルタールアルデヒド、硝酸銀、硫酸銀等の銀化合物、硫酸銅、硝酸銅等の銅化合物、塩化ニッケル、硫酸ニッケル等のニッケル化合物などが挙げられる。 The slime control agents stored in the first tank 70 are mainly classified into hydrazine-based, organic nitrogen-based, aromatic-based, and silver ion-based agents. Specifically, slime control agents include 2,2-dibromo-3-nitropropionate, 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT), 2-methyl-4- isothiazolin-3-one (MIT), 4,5-dichloro-1,2-dithiolan-3-one, 2-bromo-2-nitropropane-1,3-diol, benzisothiazolin-3-one, glutaraldehyde , silver compounds such as silver nitrate and silver sulfate, copper compounds such as copper sulfate and copper nitrate, and nickel compounds such as nickel chloride and nickel sulfate.
 この構成において、第一流量計66の計測データ及び流量計20の計測データに基づいて第一流量調整弁68を制御する。これにより、主流路100を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下となるように、スライムコントロール剤が、第一注入流路106を流れて第一エジェクタ64を通って第一固有流路104bに合流する。さらに、第一固有流路104bに合流して流れるスライムコントール剤は、紫外線酸化装置26とろ過装置30との間の部分の流路100aに注入される。換言すれば、第一注入部62は、紫外線酸化装置26とろ過装置30との間の部分の流路100aにスライムコントール剤を注入する。なお、紫外線酸化装置26が設置されない場合には、第一注入部62は、活性炭装置24とろ過装置30との間の部分の流路100aにスライムコントール剤を注入する。 In this configuration, the first flow control valve 68 is controlled based on the measurement data of the first flow meter 66 and the measurement data of the flow meter 20. As a result, the slime control agent flows through the first injection channel 106 and passes through the first ejector 64 to the first It merges with the unique channel 104b. Furthermore, the slime control agent that joins the first unique channel 104b and flows is injected into the channel 100a in the portion between the ultraviolet oxidation device 26 and the filtering device 30. As shown in FIG. In other words, the first injection part 62 injects the slime control agent into the channel 100 a between the ultraviolet oxidation device 26 and the filtering device 30 . If the ultraviolet oxidation device 26 is not installed, the first injection section 62 injects the slime control agent into the flow path 100a between the activated carbon device 24 and the filter device 30 .
 そして、スライムコントロール剤は、流路100aを流れる被処理水に含有される。被処理水に含有されたスライムコントール剤は、主流路100を流れてろ過装置30のフィルターを透過し、第一逆浸透膜装置38に到達する。第一逆浸透膜装置38に到達したスライムコントール剤は、第一逆浸透膜装置38の逆浸透膜を透過することなく濃縮水に含有し、分岐流路102を流れる。ここで、第一逆浸透膜装置38の逆浸透膜を透過することなく濃縮水に含有するスライムコントール剤の濃度は、第一逆浸透膜装置38に到達する前の状態のスライムコントール剤の濃度と比して高くなる。 The slime control agent is contained in the water to be treated flowing through the channel 100a. The slime control agent contained in the water to be treated flows through the main flow path 100 and permeates the filter of the filtration device 30 to reach the first reverse osmosis membrane device 38 . The slime control agent that reaches the first reverse osmosis membrane device 38 is contained in the concentrated water without passing through the reverse osmosis membrane of the first reverse osmosis membrane device 38 and flows through the branch channel 102 . Here, the concentration of the slime control agent contained in the concentrated water without passing through the reverse osmosis membrane of the first reverse osmosis membrane device 38 is the concentration of the slime control agent in the state before reaching the first reverse osmosis membrane device 38. higher compared to
 さらに、高濃度となったスライムコントール剤を含有する濃縮水は、分岐流路102を流れて第二逆浸透膜装置48に到達する。第二逆浸透膜装置48に到達したスライムコントール剤は、第二逆浸透膜装置48の逆浸透膜を透過することなく排水に含有し、排水ピット52に排出される。 Furthermore, the concentrated water containing the highly concentrated slime control agent flows through the branch channel 102 and reaches the second reverse osmosis membrane device 48 . The slime control agent that reaches the second reverse osmosis membrane device 48 is included in the wastewater without permeating the reverse osmosis membrane of the second reverse osmosis membrane device 48 and is discharged to the wastewater pit 52 .
 <第二注入部82>
 第二注入部82は、一端が分岐流路104aの他端に接続され、他端が主流路100においてろ過装置30と第二ポンプ34との間の部分の流路100bに接続されている第二固有流路104cに配置された第二エジェクタ84を備えている。さらに、第二注入部82は、液状のスケール防止剤が貯留される第二タンク90、第二流量計(FIQ)86、及び第二流量調整弁(FCV)88を備えている。
<Second injection part 82>
The second injection part 82 has one end connected to the other end of the branch channel 104a and the other end connected to the channel 100b in the main channel 100 between the filtering device 30 and the second pump 34. A second ejector 84 is arranged in the second unique channel 104c. Furthermore, the second injection part 82 includes a second tank 90 in which a liquid scale inhibitor is stored, a second flow meter (FIQ) 86 and a second flow control valve (FCV) 88 .
 また、第二流量計86、及び第二流量調整弁88は、第二タンク90から第二エジェクタ84の吸入口84aまでを繋ぐ第二注入流路108に配置されている。具体的には、第二タンク90から第二エジェクタ84の吸入口84aへ向かって、第二流量計86、及び第二流量調整弁88は、この順に配置されている。 Also, the second flow meter 86 and the second flow control valve 88 are arranged in the second injection flow path 108 connecting the second tank 90 to the suction port 84 a of the second ejector 84 . Specifically, the second flow meter 86 and the second flow control valve 88 are arranged in this order from the second tank 90 toward the suction port 84 a of the second ejector 84 .
 なお、スケール防止剤は、主に、ホスホン酸系、ポリカルボン酸系、アクリル酸系に大別される。具体的には、スケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター( 登録商標) 」シリーズなどが挙げられる。 In addition, scale inhibitors are mainly classified into phosphonic acid-based, polycarboxylic acid-based, and acrylic acid-based. Specifically, the scale inhibitors include the "Orpersion" series manufactured by Organo Corporation, the "Flocon (registered trademark)" series manufactured by BWA Water Additives, the "PermaTreat (registered trademark)" series manufactured by Nalco, "Hypersperse (registered trademark)" series manufactured by General Electric Company, "Kuriverter (registered trademark)" series manufactured by Kurita Water Industries Ltd., and the like.
 この構成において、第二流量計86の計測データ及び流量計20の計測データに基づいて第二流量調整弁88を制御する。これにより、主流路100を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下となるように、スケール防止剤が、第二注入流路108を流れて第二エジェクタ84を通って第二固有流路104cに合流する。さらに、第二固有流路104cに合流して流れるスケール防止剤は、ろ過装置30と第二ポンプ34と間の部分の流路100bに注入される。換言すれば、第二注入部82は、ろ過装置30と第二ポンプ34と間の部分の流路100bにスケール防止剤を注入する。 In this configuration, the second flow control valve 88 is controlled based on the measurement data of the second flow meter 86 and the measurement data of the flow meter 20. As a result, the anti-scaling agent flows through the second injection passage 108 and passes through the second ejector 84 so that the concentration of the anti-scaling agent in the water to be treated flowing through the main passage 100 is 1 ppm or more and 100 ppm or less. It merges with the unique channel 104c. Furthermore, the anti-scaling agent that joins the second unique flow path 104 c is injected into the flow path 100 b in the portion between the filtering device 30 and the second pump 34 . In other words, the second injection section 82 injects the anti-scaling agent into the flow path 100b in the portion between the filtering device 30 and the second pump 34 .
 そして、スケール防止剤は、流路100bを流れる被処理水に含有される。被処理水に含有されたスケール防止剤は、主流路100を流れて第一逆浸透膜装置38に到達する。第一逆浸透膜装置38に到達したスケール防止剤は、第一逆浸透膜装置38の逆浸透膜を透過することなく濃縮水に含有し、分岐流路102を流れる。ここで、第一逆浸透膜装置38の逆浸透膜を透過することなく濃縮水に含有するスケール防止剤の濃度は、第一逆浸透膜装置38に到達する前の状態のスケール防止剤の濃度と比して高くなる。 The scale inhibitor is contained in the water to be treated flowing through the flow path 100b. The scale inhibitor contained in the water to be treated flows through the main flow path 100 and reaches the first reverse osmosis membrane device 38 . The anti-scaling agent that reaches the first reverse osmosis membrane device 38 is contained in the concentrated water without permeating the reverse osmosis membrane of the first reverse osmosis membrane device 38 and flows through the branch channel 102 . Here, the concentration of the scale inhibitor contained in the concentrated water without passing through the reverse osmosis membrane of the first reverse osmosis membrane device 38 is the concentration of the scale inhibitor in the state before reaching the first reverse osmosis membrane device 38. higher compared to
 さらに、高濃度となったスケール防止剤を含有する濃縮水は、分岐流路102を流れて第二逆浸透膜装置48に到達する。第二逆浸透膜装置48に到達したスケール防止剤は、第二逆浸透膜装置48の逆浸透膜を透過することなく排水に含有し、排水ピット52に排出される。 Further, the concentrated water containing the highly concentrated scale inhibitor flows through the branch channel 102 and reaches the second reverse osmosis membrane device 48 . The anti-scaling agent that has reached the second reverse osmosis membrane device 48 is contained in the wastewater without permeating the reverse osmosis membrane of the second reverse osmosis membrane device 48 and is discharged to the wastewater pit 52 .
 (二次純水装置112)
 二次純水装置112は、図1に示されるように、水流れ方向において、純水タンク46の下流側に配置されている。
(Secondary pure water device 112)
The secondary pure water device 112 is arranged downstream of the pure water tank 46 in the direction of water flow, as shown in FIG.
 この構成において、二次純水装置112は、一次純水からさらに不純物を取り除く。そして、二次純水装置112によって得られた超純水は、使用場所であるユースポイント120へ送られる。ユースポイント120へ送られた超純水のうち、使用されなかった超純水はそのまま純水タンク46へ戻され、一次純水と一緒に純水タンク46に貯留される。 In this configuration, the secondary pure water device 112 further removes impurities from the primary pure water. The ultrapure water obtained by the secondary pure water device 112 is sent to the point of use 120 where it is used. Of the ultrapure water sent to the point of use 120, the ultrapure water that has not been used is directly returned to the pure water tank 46 and stored in the pure water tank 46 together with the primary pure water.
 (実施例1、比較例1、比較例2)
 次に、本願を実施例1、及び実施例1に対する比較例1、比較例2によって、さらに詳細に説明する。ただし、本願は、以下の実施例の内容に限定されるものでない。
(Example 1, Comparative Example 1, Comparative Example 2)
Next, the present application will be described in more detail by way of Example 1 and Comparative Examples 1 and 2 for Example 1. FIG. However, the present application is not limited to the contents of the following examples.
 〔比較例1〕
 比較例1では、水流れ方向においてろ過装置30の下流側に、スケール防止剤及びスライムコントール剤を注入する。具体的には、図1に示す流路100bにスケール防止剤及びスライムコントール剤を注入する。
[Comparative Example 1]
In Comparative Example 1, a scale inhibitor and a slime control agent are injected downstream of the filtering device 30 in the direction of water flow. Specifically, a scale inhibitor and a slime control agent are injected into the channel 100b shown in FIG.
 〔比較例2〕
 比較例2では、水流れ方向においてろ過装置30の上流側に、スケール防止剤及びスライムコントール剤を注入する。具体的には、図1に示す流路100aにスケール防止剤及
びスライムコントール剤を注入する。
[Comparative Example 2]
In Comparative Example 2, a scale inhibitor and a slime control agent are injected upstream of the filtering device 30 in the direction of water flow. Specifically, a scale inhibitor and a slime control agent are injected into the channel 100a shown in FIG.
 〔比較例3〕
 比較例3では、水流れ方向においてろ過装置30の上流側にスケール防止剤を注入し、ろ過装置30の下流側にスライムコントール剤を注入する。具体的には、図1に示す流路100aにスケール防止剤を注入し、流路100bにスライムコントール剤を注入する。
[Comparative Example 3]
In Comparative Example 3, the scale inhibitor is injected upstream of the filtering device 30 in the water flow direction, and the slime control agent is injected downstream of the filtering device 30 . Specifically, a scale inhibitor is injected into the flow path 100a shown in FIG. 1, and a slime control agent is injected into the flow path 100b.
 〔実施例1〕
 実施例1では、水流れ方向においてろ過装置30の上流側にスライムコントール剤を注入し、ろ過装置30の下流側にスケール防止剤を注入する。具体的には、図1に示す流路100aにスライムコントール剤を注入し、流路100bにスケール防止剤を注入する。
[Example 1]
In Example 1, the slime control agent is injected upstream of the filtering device 30 in the direction of water flow, and the anti-scaling agent is injected downstream of the filtering device 30 . Specifically, the slime control agent is injected into the channel 100a shown in FIG. 1, and the scale inhibitor is injected into the channel 100b.
 〔評価条件〕
 フラックス 20m/h、ろ過精度(公称) 1μm、フィルター型式 バグタイプ。
 なお、薬剤の注入位置以外の他の評価条件についても、比較例1、比較例2、実施例1において全て同様とする。
[Evaluation conditions]
Flux 20m/h, filtration accuracy (nominal) 1μm, filter type bag type.
In Comparative Example 1, Comparative Example 2, and Example 1, the evaluation conditions other than the drug injection position are all the same.
 〔評価結果〕
 図2には、比較例1及び実施例1の評価結果がグラフで示されている。グラフの縦軸は、ろ過装置30の上流側の水圧と下流側の水圧との差(通水差圧)であって、横軸は、ろ過装置30に被処理水を透過させた時間(通水時間)である。
〔Evaluation results〕
FIG. 2 graphically shows the evaluation results of Comparative Example 1 and Example 1. As shown in FIG. The vertical axis of the graph is the difference between the water pressure on the upstream side and the water pressure on the downstream side of the filtration device 30 (water flow differential pressure), and the horizontal axis is the time for the water to be treated to permeate the filtration device 30 (general water time).
 比較例1については、図2のグラフに示されるように、概ね7日間の運転継続で、通水差圧の変化が大きくなる。これは、機能的に問題が生じるレベルであり、運転停止又はフィルターの交換となる。 As for Comparative Example 1, as shown in the graph of FIG. 2, the change in the water flow differential pressure increases after about seven days of continuous operation. This is the level at which functional problems arise, resulting in shutdown or replacement of the filter.
 比較例2については、比較例1と同様に、概ね7日間の運転継続で、通水差圧の変化が大きくなる。これは、機能的に問題が生じるレベルであり、運転停止又はフィルターの交換となる。 As for Comparative Example 2, similar to Comparative Example 1, the change in the water flow differential pressure increases after approximately seven days of continuous operation. This is the level at which functional problems arise, resulting in shutdown or replacement of the filter.
 比較例3については、比較例1と同様に、概ね7日間の運転継続で、通水差圧の変化が大きくなる。これは、機能的に問題が生じるレベルであり、運転停止又はフィルターの交換となる。 As for Comparative Example 3, similar to Comparative Example 1, the change in the water flow differential pressure increases after approximately seven days of continuous operation. This is the level at which functional problems arise, resulting in shutdown or replacement of the filter.
 実施例1については、図2のグラフに示されるように、50日間の運転継続で、通水差圧の変化が小さい。つまり、比較例1、比較例2及び比較例3と比して、長期連続運転において、フィルターの透過水量の低下が抑制されている。これは、機能的に問題が生じるレベルではなく、運転継続が可能となる。 As for Example 1, as shown in the graph of FIG. 2, the change in the water flow differential pressure is small after 50 days of continuous operation. That is, as compared with Comparative Examples 1, 2 and 3, the decrease in the amount of water permeated through the filter is suppressed in long-term continuous operation. This is not a level at which functional problems occur, and operation can be continued.
 (まとめ)
 以上説明したように、第一注入部62は、紫外線酸化装置26とろ過装置30との間の部分の流路100aにスライムコントール剤を注入する。そして、被処理水に含有されたスライムコントール剤は、主流路100を流れてろ過装置30のフィルターを透過する。これにより、フィルターに付着する菌が増殖するのが抑制される。
(summary)
As described above, the first injection unit 62 injects the slime control agent into the channel 100a between the ultraviolet oxidation device 26 and the filtering device 30. As shown in FIG. The slime control agent contained in the water to be treated flows through the main flow path 100 and permeates the filter of the filtering device 30 . This suppresses the growth of bacteria adhering to the filter.
 なお、一般的に、純水装置に薬剤を注入する場合には、薬剤を均一に混合することが求められる。このため、例えば、薬剤は、ポンプに対して上流側で注入される。しかし、本発明の方法の場合、注入されたスライムコントロール剤は、均一に混合されることなくフィルターに到達することで、より高いスライム発生の抑制効果が得られる。これは高濃度のスライムコントロール剤と接触したフィルターメディアでスライムの発生を抑制する高
い効果が得られると推測される。なお、高濃度のスライムコントロール剤は、フィルターメディアに順次接触するため、最終的にフィルター全体でスライムの発生を抑制できる。
In addition, in general, when injecting a chemical into a water purifier, it is required to uniformly mix the chemical. Thus, for example, medication is injected upstream with respect to the pump. However, in the case of the method of the present invention, the injected slime control agent reaches the filter without being uniformly mixed, so that a higher effect of suppressing slime generation can be obtained. It is presumed that the filter media in contact with the slime control agent of high concentration is highly effective in suppressing the generation of slime. In addition, since the high-concentration slime control agent comes into contact with the filter media in sequence, the generation of slime can finally be suppressed in the entire filter.
 上記効果を発揮させるために、薬剤の注入位置の下流側とろ過装置30と間には、インラインミキサー等の薬剤の混合を促進させる装置やポンプを設置しないことがより好ましい。 In order to achieve the above effect, it is more preferable not to install a device such as an in-line mixer or a pump that promotes mixing of the drug between the downstream side of the injection position of the drug and the filtering device 30 .
 一方、第二注入部82は、ろ過装置30と第二ポンプ34と間の部分の流路100bにスケール防止剤を注入する。これにより、スケール防止剤が、ろ過装置のフィルターを透過することがない。つまり、スケール防止剤が、菌の養分となり、菌が増殖してフィルターに付着する恐れがない。 On the other hand, the second injection part 82 injects the scale inhibitor into the channel 100b between the filtering device 30 and the second pump 34 . As a result, the anti-scaling agent does not permeate the filter of the filtration device. In other words, the anti-scaling agent serves as a nutrient for bacteria, and there is no fear that the bacteria will multiply and adhere to the filter.
 以上より、超純水製造システム10及び超純水製造方法においては、ろ過装置30の上流側にスライムコントロール剤及びスケール防止剤を注入する場合と比して、長期連続運転において、フィルターの透過水量の低下を抑制することができる。 As described above, in the ultrapure water production system 10 and the ultrapure water production method, compared to the case where the slime control agent and the scale inhibitor are injected upstream of the filtration device 30, the amount of water permeated through the filter during long-term continuous operation can be suppressed.
 また、第一注入部62は、水流れ方向において活性炭装置24の下流側の流路100aにスライムコントロール剤を注入する。このため、スライムコントロール剤が、活性炭装置24を通過することがない。つまり、活性炭装置24の吸着処理によって、スライムコントロール剤が活性炭に吸着されることがない。このため、少量の薬剤によって、菌がフィルターで増殖するのが抑制される。 Also, the first injection part 62 injects the slime control agent into the channel 100a on the downstream side of the activated carbon device 24 in the water flow direction. Therefore, the slime control agent does not pass through the activated carbon device 24 . That is, the adsorption treatment of the activated carbon device 24 does not cause the slime control agent to be adsorbed to the activated carbon. Therefore, a small amount of the chemical suppresses the growth of bacteria on the filter.
 同様に、紫外線酸化装置26が設置されている場合には、紫外線酸化装置26におけるスライムコントロール剤の紫外線分解を避けるため、紫外線酸化装置26に対して下流側にスライムコントロール剤を注入することが好ましい。なお、本開示の方法を用いると、フィルターでの菌の増殖がスライムコントロール剤によって抑制されるため、紫外線酸化装置26を設置しなくても良い。 Similarly, when the ultraviolet oxidation device 26 is installed, it is preferable to inject the slime control agent downstream of the ultraviolet oxidation device 26 in order to avoid ultraviolet decomposition of the slime control agent in the ultraviolet oxidation device 26 . . It should be noted that when the method of the present disclosure is used, the growth of bacteria on the filter is suppressed by the slime control agent, so the ultraviolet oxidation device 26 does not have to be installed.
 以上より、超純水製造システム10及び超純水製造方法においては、被処理水の流れ方向において、活性炭装置24の上流側にスライムコントロール剤を注入する場合と比して、少量の薬剤によって、菌が増殖してフィルターに付着するのを著しく抑制することができる。 As described above, in the ultrapure water production system 10 and the ultrapure water production method, compared with the case where the slime control agent is injected upstream of the activated carbon device 24 in the flow direction of the water to be treated, a small amount of the agent It can remarkably suppress bacteria from growing and adhering to the filter.
 また、第三ポンプ50は、一端が脱イオン水ピット40に接続された分岐流路104aに配置されている。さらに、第三ポンプ50は、脱イオン水ピット40に貯留された被処理水の一部を、第一固有流路104b及び第二固有流路104cへ流す。そして、スライムコントロール剤は、第一注入流路106を流れて第一エジェクタ64を通って第一固有流路104bに合流する。また、スケール防止剤が、第二注入流路108を流れて第二エジェクタ84を通って第二固有流路104cに合流する。 Also, the third pump 50 is arranged in a branched flow path 104 a having one end connected to the deionized water pit 40 . Furthermore, the third pump 50 causes part of the water to be treated stored in the deionized water pit 40 to flow through the first unique channel 104b and the second unique channel 104c. Then, the slime control agent flows through the first injection channel 106, passes through the first ejector 64, and joins the first unique channel 104b. Also, the anti-scaling agent flows through the second injection channel 108, passes through the second ejector 84, and joins the second unique channel 104c.
 このように、共通の第三ポンプ50によって、被処理水は、第一固有流路104b及び第二固有流路104cを流れる。
 以上より、第一注入部62の第一タンク70のからスライムコントロール剤を吸い出すポンプ、及び第二注入部82の第二タンク90のからスケール防止剤を吸い出すポンプの両方を有する場合と比して、ポンプの数を少なくすることができる。
Thus, the common third pump 50 causes the water to be treated to flow through the first unique channel 104b and the second unique channel 104c.
From the above, compared to the case of having both a pump for sucking the slime control agent from the first tank 70 of the first injection part 62 and a pump for sucking the scale inhibitor from the second tank 90 of the second injection part 82 , the number of pumps can be reduced.
 また、被処理水に含有されたスライムコントール剤は、主流路100を流れてろ過装置30のフィルターを透過し、第一逆浸透膜装置38に到達する。さらに、被処理水に含有されたスケール防止剤は、主流路100を流れて第一逆浸透膜装置38に到達する。 Also, the slime control agent contained in the water to be treated flows through the main flow path 100 and permeates the filter of the filtration device 30 to reach the first reverse osmosis membrane device 38 . Furthermore, the scale inhibitor contained in the water to be treated flows through the main flow path 100 and reaches the first reverse osmosis membrane device 38 .
 以上より、超純水製造システム10及び超純水製造方法においては、第一逆浸透膜装置38に設けられた逆浸透膜に対するスライムの付着が抑制される。さらに、第一逆浸透膜装置38に設けられた逆浸透膜に対するスケールの付着が抑制される。これにより、長期連続運転において、第一逆浸透膜装置38に設けられた逆浸透膜の透過水量の低下を抑制することができる。 As described above, in the ultrapure water production system 10 and the ultrapure water production method, adhesion of slime to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 is suppressed. Furthermore, adhesion of scale to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 is suppressed. As a result, in long-term continuous operation, it is possible to suppress a decrease in the amount of water permeated through the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 .
 また、高濃度となったスライムコントール剤を含有する濃縮水が、第二逆浸透膜装置48に到達する。さらに、高濃度となったスケール防止剤を含有する濃縮水が、第二逆浸透膜装置48に到達する。 Also, the concentrated water containing the highly concentrated slime control agent reaches the second reverse osmosis membrane device 48 . Further, the concentrated water containing the highly concentrated scale inhibitor reaches the second reverse osmosis membrane device 48 .
 以上より、超純水製造システム10及び超純水製造方法においては、第二逆浸透膜装置48に設けられた逆浸透膜に対するスライムの付着が抑制される。さらに、第二逆浸透膜装置38に設けられた逆浸透膜に対するスケールの付着が抑制される。これにより、長期連続運転において、第二逆浸透膜装置48に設けられた逆浸透膜の透過水量の低下を抑制することができる。 As described above, in the ultrapure water production system 10 and the ultrapure water production method, adhesion of slime to the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 is suppressed. Furthermore, adhesion of scale to the reverse osmosis membrane provided in the second reverse osmosis membrane device 38 is suppressed. Thereby, in long-term continuous operation, it is possible to suppress a decrease in the amount of water permeated through the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 .
 また、第一注入部62は、主流路100を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下となるように、スライムコントロール剤を注入する。このため、ろ過装置30に設けられたフィルターに対するスライムの付着、第一逆浸透膜装置38に設けられた逆浸透膜に対するスライムの付着、及び第二逆浸透膜装置48に設けられた逆浸透膜に対するスライムの付着を、効果的に抑制することができる。なお、本開示の効果を十分に発揮するためには、スライムコントロール剤の濃度は、2~20ppmがより好ましい。4~10ppmがさらに好ましい。 Also, the first injection unit 62 injects the slime control agent so that the concentration of the slime control agent in the water to be treated flowing through the main flow path 100 is 1 ppm or more and 100 ppm or less. For this reason, slime adheres to the filter provided in the filtration device 30, slime adheres to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38, and the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 Adhesion of slime to can be effectively suppressed. In order to fully exhibit the effect of the present disclosure, the concentration of the slime control agent is more preferably 2-20 ppm. 4 to 10 ppm is more preferred.
 また、第二注入部82は、主流路100を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下となるように、スケール防止剤を注入する。このため、第一逆浸透膜装置38に設けられた逆浸透膜に対するスケールの付着、及び第二逆浸透膜装置48に設けられた逆浸透膜に対するスケールの付着を、効果的に抑制することができる。なお、本開示の効果を十分に発揮するためには、スケール防止剤の濃度は、2~20ppmがより好ましい。4~10ppmがさらに好ましい。 In addition, the second injection unit 82 injects the anti-scaling agent so that the concentration of the anti-scaling agent in the water to be treated flowing through the main flow path 100 is 1 ppm or more and 100 ppm or less. Therefore, the adhesion of scale to the reverse osmosis membrane provided in the first reverse osmosis membrane device 38 and the adhesion of scale to the reverse osmosis membrane provided in the second reverse osmosis membrane device 48 can be effectively suppressed. can. In order to fully exhibit the effects of the present disclosure, the concentration of the scale inhibitor is more preferably 2 to 20 ppm. 4 to 10 ppm is more preferred.
 なお、上記では、活性炭装置24の下流側の流路100aにスライムコントロール剤を注入したが、活性炭装置24の上流側にスライムコントロール剤を注入してもよい。この場合には、活性炭装置24の下流側の流路100aにスライムコントロール剤を注入することで奏する作用は奏しない。 In the above description, the slime control agent is injected into the channel 100a on the downstream side of the activated carbon device 24, but the slime control agent may be injected on the upstream side of the activated carbon device 24. In this case, the effect achieved by injecting the slime control agent into the channel 100a on the downstream side of the activated carbon device 24 is not exhibited.
 また、上記では、第三ポンプ50は、一端が脱イオン水ピット40に接続された分岐流路104aに配置された。また、第一固有流路104b及び第二固有流路104cは、分岐流路104aに接続された。しかし、第一固有流路が脱イオン水ピット40に接続され、かつ、第二固有流路が脱イオン水ピット40に接続されている場合には、第一固有流路及び第二固有流路の夫々にポンプを配置してもよい。この場合には、第三ポンプ50が分岐流路104aに配置されることで奏する作用は奏しない。 Also, in the above description, the third pump 50 is arranged in the branch channel 104a with one end connected to the deionized water pit 40 . Also, the first unique channel 104b and the second unique channel 104c are connected to the branch channel 104a. However, if the first intrinsic flow path is connected to the deionized water pit 40 and the second intrinsic flow path is connected to the deionized water pit 40, the first intrinsic flow path and the second intrinsic flow path You may arrange|position a pump to each. In this case, the effect of the arrangement of the third pump 50 in the branch flow path 104a is not achieved.

Claims (9)

  1.  主流路を流れる被処理水が透過するフィルターが設けられたろ過装置と、
     被処理水の流れ方向において前記ろ過装置の下流側に配置され、逆浸透膜が設けられた逆浸透膜装置と、
     被処理水の流れ方向において前記ろ過装置の上流側にスライムコントロール剤を注入する第一注入部と、
     被処理水の流れ方向において前記ろ過装置の下流側で、かつ、前記逆浸透膜装置の上流側にスケール防止剤を注入する第二注入部と、
     を備える超純水製造システム。
    a filtration device provided with a filter through which the water to be treated flowing through the main flow path passes;
    a reverse osmosis membrane device disposed downstream of the filtering device in the flow direction of the water to be treated and provided with a reverse osmosis membrane;
    a first injection part for injecting a slime control agent upstream of the filtration device in the flow direction of the water to be treated;
    a second injection section for injecting a scale inhibitor downstream of the filtration device and upstream of the reverse osmosis membrane device in the flow direction of the water to be treated;
    An ultrapure water production system.
  2.  被処理水の流れ方向において前記ろ過装置の上流側に配置された活性炭装置を、備え、
     前記第一注入部は、被処理水の流れ方向において前記ろ過装置の上流側で、かつ、前記活性炭装置の下流側にスライムコントロール剤を注入する、
     請求項1に記載の超純水製造システム。
    an activated carbon device arranged upstream of the filtration device in the flow direction of the water to be treated,
    The first injection part injects the slime control agent upstream of the filtration device and downstream of the activated carbon device in the flow direction of the water to be treated.
    The ultrapure water production system according to claim 1.
  3.  前記第一注入部及び第二注入部は、それぞれのエジェクタによりタンク中の薬剤を吸い出して前記主流路の注入する構成であり、
     被処理水の流れ方向において前記逆浸透膜装置の下流側から分岐する分岐流路から前記第一注入部及び第二注入部のそれぞれのエジェクタに駆動水を供給する共通のポンプを備え、
     前記第一注入部のエジェクタは、一端が前記分岐流路に接続されると共に他端が前記ろ過装置の上流側に接続される第一固有流路に配置され、前記第二注入部のエジェクタは、一端が前記分岐流路に接続されると共に他端が前記ろ過装置の下流側で、かつ、前記逆浸透膜装置の上流側に接続される第二固有流路に配置されている、
     請求項1に記載の超純水製造システム。
    The first injection part and the second injection part are configured to suck out the medicine in the tank by each ejector and inject it into the main flow path,
    a common pump that supplies drive water to the respective ejectors of the first injection section and the second injection section from a branch flow path branching from the downstream side of the reverse osmosis membrane device in the flow direction of the water to be treated;
    The ejector of the first injection section is arranged in a first unique flow path having one end connected to the branch flow path and the other end connected to the upstream side of the filtering device, and the ejector of the second injection section is , one end is connected to the branch channel and the other end is arranged in a second unique channel connected to the downstream side of the filtration device and the upstream side of the reverse osmosis membrane device;
    The ultrapure water production system according to claim 1.
  4.  前記第一注入部は、前記主流路を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下となるように、スライムコントロール剤を注入する、
     請求項1に記載の超純水製造システム。
    The first injection part injects the slime control agent so that the concentration of the slime control agent in the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm or less.
    The ultrapure water production system according to claim 1.
  5.  前記第二注入部は、前記主流路を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下となるように、スケール防止剤を注入する、
     請求項1~4の何れか1項に記載の超純水製造システム。
    The second injection unit injects the anti-scaling agent so that the concentration of the anti-scaling agent in the water to be treated flowing through the main flow path is 1 ppm or more and 100 ppm or less.
    The ultrapure water production system according to any one of claims 1 to 4.
  6.  主流路を流れる被処理水に対するろ過処理によって懸濁物質を除去し、
     前記ろ過処理で生じた被処理水に対する逆浸透膜処理によって塩類を除去し、
     被処理水の流れ方向において、前記ろ過処理の上流側にスライムコントロール剤を注入し、
     被処理水の流れ方向において、前記ろ過処理の下流側で、かつ、前記逆浸透膜処理の上流側にスケール防止剤を注入する超純水製造方法。
    removing suspended solids by filtering the water to be treated flowing through the main flow channel;
    Salts are removed by reverse osmosis membrane treatment of the water to be treated generated in the filtration treatment,
    Injecting a slime control agent upstream of the filtration treatment in the flow direction of the water to be treated,
    A method for producing ultrapure water, in which a scale inhibitor is injected downstream of the filtration process and upstream of the reverse osmosis membrane process in the flow direction of the water to be treated.
  7.  被処理水の流れ方向において前記ろ過処理の上流側で、被処理水に対する吸着処理によって天然有機物を除去し、
     被処理水の流れ方向において、前記吸着処理の下流側にスライムコントロール剤を注入する、
     請求項6に記載の超純水製造方法。
    removing natural organic matter by adsorption treatment on the water to be treated on the upstream side of the filtration treatment in the flow direction of the water to be treated;
    injecting a slime control agent downstream of the adsorption treatment in the direction of flow of the water to be treated;
    The method for producing ultrapure water according to claim 6.
  8.  前記主流路を流れる被処理水に対するスライムコントロール剤の濃度が1ppm以上100ppm以下となるように、スライムコントロール剤を注入する、
     請求項6に記載の超純水製造方法。
    Injecting the slime control agent so that the concentration of the slime control agent with respect to the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm or less.
    The method for producing ultrapure water according to claim 6.
  9.  前記主流路を流れる被処理水に対するスケール防止剤の濃度が1ppm以上100ppm以下となるように、スケール防止剤を注入する、
     請求項6~8の何れか1項に記載の超純水製造方法。
    Injecting the anti-scaling agent so that the concentration of the anti-scaling agent with respect to the water to be treated flowing through the main flow channel is 1 ppm or more and 100 ppm or less.
    The method for producing ultrapure water according to any one of claims 6 to 8.
PCT/JP2022/028123 2021-09-30 2022-07-19 Ultrapure water production system and ultrapure water production method WO2023053678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162092 2021-09-30
JP2021162092A JP2023051430A (en) 2021-09-30 2021-09-30 Ultrapure water production system and ultrapure water production method

Publications (1)

Publication Number Publication Date
WO2023053678A1 true WO2023053678A1 (en) 2023-04-06

Family

ID=85782275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028123 WO2023053678A1 (en) 2021-09-30 2022-07-19 Ultrapure water production system and ultrapure water production method

Country Status (3)

Country Link
JP (1) JP2023051430A (en)
TW (1) TW202330087A (en)
WO (1) WO2023053678A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202524A (en) * 2009-02-27 2010-09-16 Kurita Water Ind Ltd Slime-control agent for activated carbon, method of passing water through activated carbon device, and method and apparatus for treating organic-containing water
CN103663771A (en) * 2012-09-21 2014-03-26 中国石油化工股份有限公司 Medication method and medication system of water treatment device
JP2020028865A (en) * 2018-08-23 2020-02-27 栗田工業株式会社 Slime control method for reverse osmosis membrane device
JP2021007927A (en) * 2019-07-02 2021-01-28 栗田工業株式会社 Regeneration process of water softener, and manufacturing apparatus of desalted water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202524A (en) * 2009-02-27 2010-09-16 Kurita Water Ind Ltd Slime-control agent for activated carbon, method of passing water through activated carbon device, and method and apparatus for treating organic-containing water
CN103663771A (en) * 2012-09-21 2014-03-26 中国石油化工股份有限公司 Medication method and medication system of water treatment device
JP2020028865A (en) * 2018-08-23 2020-02-27 栗田工業株式会社 Slime control method for reverse osmosis membrane device
JP2021007927A (en) * 2019-07-02 2021-01-28 栗田工業株式会社 Regeneration process of water softener, and manufacturing apparatus of desalted water

Also Published As

Publication number Publication date
JP2023051430A (en) 2023-04-11
TW202330087A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US8206592B2 (en) Treating acidic water
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
WO2011125599A1 (en) Filtration device and water treatment device
JP2008518758A (en) Concentration recycle loop with filtration module
KR101530571B1 (en) A desalination of cooling tower make-up water and effluent recycling system
KR20070112818A (en) A device and a method for purifying a liquid with ozone and recirculation
JP2011088053A (en) Equipment and method for desalination treatment
JP2013111559A (en) Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
CN105347539A (en) Integrated and automatic device for recycling water in industrial wastewater
US20060096920A1 (en) System and method for conditioning water
RU106613U1 (en) INSTALLATION FOR CLEANING AND SOFTENING WATER
KR100356343B1 (en) Sewage and wastewater recycling metacarpus-treatment system using reverse osmosis membrane
CN214571340U (en) Deionized water treatment system
WO2023053678A1 (en) Ultrapure water production system and ultrapure water production method
WO2007130053A1 (en) System and method for conditioning water
US9776899B2 (en) Full contact UV water purification system
Solutions Filmtec™ reverse osmosis membranes
CN202671334U (en) Double-film method heavy metal waste water purification treatment reuse device
JP2011218267A (en) Water processing method and water processing device
Kucera Reverse osmosis: Fundamental causes of membrane deposition and approaches to mitigation
JP2017104787A (en) Method of using concentrated water as circulating cooling water
CN205575789U (en) Integrated automatic industrial waste water reuse of reclaimed water device
CN112537869A (en) Pure water preparation equipment
WO2023062970A1 (en) Drug injection system, pure water production system, and water production method
CN216918887U (en) Centralized direct drinking water equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875556

Country of ref document: EP

Kind code of ref document: A1