JP2019118891A - Pure water producing apparatus and pure water producing method - Google Patents

Pure water producing apparatus and pure water producing method Download PDF

Info

Publication number
JP2019118891A
JP2019118891A JP2018001301A JP2018001301A JP2019118891A JP 2019118891 A JP2019118891 A JP 2019118891A JP 2018001301 A JP2018001301 A JP 2018001301A JP 2018001301 A JP2018001301 A JP 2018001301A JP 2019118891 A JP2019118891 A JP 2019118891A
Authority
JP
Japan
Prior art keywords
exchange resin
water
anion exchange
pure water
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018001301A
Other languages
Japanese (ja)
Inventor
康晴 港
Yasuharu Minato
康晴 港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018001301A priority Critical patent/JP2019118891A/en
Publication of JP2019118891A publication Critical patent/JP2019118891A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

To provide a pure water producing apparatus and a pure water producing method capable of reducing the TOC load on a strongly basic anion exchange resin by efficiently utilizing a weakly basic anion exchange resin which is easy to regenerate.SOLUTION: A pure water producing apparatus for producing pure water from raw water (but excluding electronic part production process drainage), comprises a weakly basic anion exchange resin layer, a strongly basic anion exchange resin layer, a strongly acidic cation exchange resin layer and water-flowing means for water-flowing in the above-mentioned order in the ion exchange resin layers. A pure water producing apparatus for producing pure water from raw water (but excluding electronic part production process drainage), comprises a weakly basic anion exchange resin layer, a strongly basic cation exchange resin layer, a strongly acidic anion exchange resin layer and water-flowing means for water-flowing in the above-mentioned order in the ion exchange resin layers.SELECTED DRAWING: Figure 1

Description

本発明は、原水(ただし電子部品製造工程排水を除く)を処理して純水を製造する純水製造装置に係り、特にイオン交換装置を用いた純水製造装置及び純水製造方法に関する。   The present invention relates to a pure water producing apparatus for producing pure water by treating raw water (but excluding electronic component production process drainage) and, more particularly, to a pure water producing apparatus and a pure water producing method using an ion exchange apparatus.

電子部品製造工程排水から純水を製造する方法として、特許文献1に、弱塩基性アニオン交換樹脂→強塩基性アニオン交換樹脂→強酸性カチオン交換樹脂の順に通水して脱イオンする方法が記載されている。また、特許文献2の0003段落には、弱塩基性アニオン交換樹脂→強酸性カチオン交換樹脂→強塩基性アニオン交換樹脂の順に通水して脱イオンする方法が記載されている。   As a method of producing pure water from waste water in the electronic component manufacturing process, Patent Document 1 describes a method of deionizing by passing water in the order of weakly basic anion exchange resin → strongly basic anion exchange resin → strongly acidic cation exchange resin. It is done. In addition, in the 0003 stage of Patent Document 2, there is described a method of passing water for deionization in the order of weakly basic anion exchange resin → strongly acidic cation exchange resin → strongly basic anion exchange resin.

電子部品製造工程排水以外の水(例えば工業用水、河川水、井水など)から純水を製造する場合は、通常、図3の通り、強酸性カチオン交換樹脂(SC)塔3→弱塩基性アニオン交換樹脂(WA)塔1→強塩基性アニオン交換樹脂(SA)塔2の順に通水して脱イオン処理を行う。   When producing pure water from water other than electronic component manufacturing process drainage (for example, industrial water, river water, well water, etc.), as shown in FIG. 3, generally, strongly acidic cation exchange resin (SC) tower 3 → weakly basicity Anion exchange resin (WA) tower 1 → strong base anion exchange resin (SA) tower 2 water flows in the order to perform deionization treatment.

特開2008−73644号公報JP, 2008-73644, A 特開平6−91263号公報Japanese Patent Application Laid-Open No. 6-91263

イオン交換樹脂を用いて脱イオン処理して純水を製造する場合、被処理水中のTOC成分もイオン交換樹脂により除去される。TOC成分は弱酸性であるため、被処理水のpHが中性ないしはアルカリ性であると、TOC成分は解離し、アニオン交換樹脂に吸着される。   When deionized water is produced using an ion exchange resin to produce pure water, TOC components in the water to be treated are also removed by the ion exchange resin. Since the TOC component is weakly acidic, when the pH of the water to be treated is neutral or alkaline, the TOC component dissociates and is adsorbed to the anion exchange resin.

アニオン交換樹脂には、弱塩基性アニオン交換樹脂と強塩基性アニオン交換樹脂とがある。弱塩基性アニオン交換樹脂は、再生が容易であり、また安価であるが、官能基が弱塩基性であるため、被処理水がアルカリ性であるとイオン交換能が乏しく、中性ないし酸性の被処理水のみを処理対象とする。強塩基性アニオン交換樹脂は、全pH域でアニオン交換するが、再生に強塩基性の再生液が必要となる。そのため、TOC成分を多く含む原水を処理して純水を製造する場合、弱塩基性アニオン交換樹脂と強塩基性アニオン交換樹脂とを組み合わせて用い、TOC成分由来のアニオンはなるべく弱塩基性アニオン交換樹脂で除去し、強塩基性アニオン交換樹脂への負荷を小さくすることが望まれる。   Anion exchange resins include weak base anion exchange resins and strong base anion exchange resins. The weak base anion exchange resin is easy to regenerate and is inexpensive, but since the functional group is weakly basic, if the water to be treated is alkaline, the ion exchange capacity is poor, and the neutral to acidic cover is poor. Treat only treated water. The strongly basic anion exchange resin performs anion exchange in the entire pH range, but a strongly basic regeneration solution is required for regeneration. Therefore, when pure water is produced by treating raw water containing a large amount of TOC components, weakly basic anion exchange resins and strongly basic anion exchange resins are used in combination, and anions derived from TOC components are preferably weakly basic anion exchange It is desirable that the resin be removed to reduce the load on the strongly basic anion exchange resin.

本発明は再生が容易である弱塩基性アニオン交換樹脂を効率的に活用して強塩基性アニオン交換樹脂へのTOC負荷を低減することができる純水製造装置及び純水製造方法を提供することを目的とする。   The present invention provides a pure water producing apparatus and a pure water producing method capable of reducing TOC load on a strongly basic anion exchange resin by efficiently utilizing a weakly basic anion exchange resin which is easy to regenerate. With the goal.

本発明の一態様の純水製造装置は、原水(ただし電子部品製造工程排水を除く)より純水を製造する純水製造装置であって、弱塩基性陰イオン(アニオン)交換樹脂層、強塩基性陰イオン交換樹脂層、及び強酸性陽イオン(カチオン)交換樹脂層と、これらのイオン交換樹脂層に上記の順番に通水する通水手段とを有する。   The pure water production apparatus according to one aspect of the present invention is a pure water production apparatus for producing pure water from raw water (but excluding electronic component production process drainage), which comprises a weakly basic anion (anion) exchange resin layer, a strong It has a basic anion exchange resin layer, a strongly acidic cation (cation) exchange resin layer, and a water passing means for passing water through these ion exchange resin layers in the above order.

本発明の別の一態様の純水製造装置は、原水(ただし電子部品製造工程排水を除く)より純水を製造する純水製造装置であって、弱塩基性陰イオン交換樹脂層、強酸性陽イオン交換樹脂層、及び強塩基性陰イオン交換樹脂層と、これらのイオン交換樹脂層に上記の順番に通水する通水手段とを有する。   The pure water production apparatus according to another aspect of the present invention is a pure water production apparatus for producing pure water from raw water (but excluding electronic component production process drainage), comprising a weakly basic anion exchange resin layer, strongly acidic It has a cation exchange resin layer, a strongly basic anion exchange resin layer, and a water passing means for passing water through these ion exchange resin layers in the above order.

本発明の純水製造方法は、かかる純水製造装置を用いて純水を製造する。   The pure water production method of the present invention produces pure water using such a pure water production apparatus.

本発明では、原水(弱塩基性アニオン交換樹脂層への給水)のpHは4〜8であることが望ましい。   In the present invention, the pH of the raw water (water supply to the weak base anion exchange resin layer) is preferably 4 to 8.

本発明の純水製造装置及び方法によると、原水(ただし電子部品製造工程排水を除く)を弱塩基性アニオン交換樹脂で処理した後、強塩基性アニオン交換樹脂で処理するので、前段側の弱塩基性アニオン交換樹脂処理によりTOC成分の多くが除去され、後段の強塩基性アニオン交換樹脂に対する負荷が減少する。このため、強塩基性アニオン交換樹脂の再生頻度を少なくし、効率よく低コストにて純水を製造することが可能となる。   According to the pure water production apparatus and method of the present invention, the raw water (but excluding the electronic component production process drainage) is treated with the weak basic anion exchange resin and then treated with the strong basic anion exchange resin, so the former weak side is weak The basic anion exchange resin treatment removes many of the TOC components and reduces the loading on the subsequent strong base anion exchange resin. Therefore, it is possible to reduce the frequency of regeneration of the strongly basic anion exchange resin and efficiently produce pure water at low cost.

なお、弱塩基性イオン交換樹脂は、強酸>弱酸の順でアニオンイオンをイオン交換で除去する。塩基性アニオン交換樹脂で捕捉されるTOC成分は弱酸であるため、給水中にHClのような強酸が含まれる場合には、TOC成分の捕捉優先順位が低下する。強酸の少ない条件下においては、弱酸であるTOC成分が弱塩基性イオン交換樹脂により十分に除去される。   The weak base ion exchange resin removes anions by ion exchange in the order of strong acid> weak acid. Since the TOC component captured by the basic anion exchange resin is a weak acid, when the feed water contains a strong acid such as HCl, the capture priority of the TOC component is lowered. Under conditions of low strong acid, the TOC component which is a weak acid is sufficiently removed by a weak base ion exchange resin.

実施の形態に係る純水製造装置のフロー図である。It is a flowchart of the pure water manufacturing apparatus which concerns on embodiment. 別の実施の形態に係る純水製造装置のフロー図である。It is a flowchart of the pure water manufacturing apparatus which concerns on another embodiment. 従来例の純水製造装置のフロー図である。It is a flowchart of the pure water manufacturing apparatus of a prior art example. TOC除去率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of TOC removal rate. TOC除去率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of TOC removal rate. 処理水中の有機物の分析結果を示すグラフである。It is a graph which shows the analysis result of the organic substance in a treated water.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の一態様の純水製造装置は、図1の通り、原水(ただし電子部品製造工程排水を除く)を弱塩基性アニオン交換樹脂(WA)塔1、強塩基性アニオン交換樹脂(SA)塔2、強酸性カチオン交換樹脂(SC)塔3の順に通水して純水を製造する。弱塩基性アニオン交換樹脂塔1、強塩基性アニオン交換樹脂塔2、強酸性カチオン交換樹脂塔3内には、それぞれ、弱塩基性アニオン交換樹脂層、強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層が設けられている。   In the pure water production apparatus according to one embodiment of the present invention, as shown in FIG. 1, raw water (but excluding electronic parts manufacturing process drainage) is weakly basic anion exchange resin (WA) tower 1, strong basic anion exchange resin (SA) Water is passed through the tower 2 and the strongly acidic cation exchange resin (SC) tower 3 in this order to produce pure water. In the weak base anion exchange resin tower 1, the strong base anion exchange resin tower 2, and the strong acid cation exchange resin tower 3, a weak base anion exchange resin layer, a strong base anion exchange resin layer, a strong acid cation, respectively A replacement resin layer is provided.

各塔同士は通水手段を構成する配管によって連通されている。原水は、通水手段を構成する原水配管及び原水ポンプによって弱塩基性アニオン交換樹脂塔1に供給される。   The respective towers are communicated with each other by piping which constitutes a water flow means. Raw water is supplied to the weakly basic anion exchange resin tower 1 by raw water piping and raw water pumps that constitute water flow means.

本発明の別の一態様の純水製造装置は、図2の通り、原水(ただし電子部品製造工程排水を除く)を弱塩基性アニオン交換樹脂塔1、強酸性カチオン交換樹脂塔3及び強塩基性アニオン交換樹脂塔2の順に通水して純水を製造する。   The pure water production apparatus according to another aspect of the present invention, as shown in FIG. 2, comprises raw water (but excluding electronic component manufacturing process drainage), weak basic anion exchange resin tower 1, strong acid cation exchange resin tower 3 and strong base Water is passed through in the order of the basic anion exchange resin tower 2 to produce pure water.

この図1,2のフローによると、弱塩基性アニオン交換樹脂塔1によりTOC成分の多くが除去されるので、強塩基性アニオン交換樹脂塔2の負荷が低減され、強塩基性アニオン交換樹脂の再生頻度が少なくなり、効率よく低コストにて純水を製造することができる。なお、図2のフローの方が図1のフローよりも、強塩基性アニオン交換樹脂塔2でのTOC成分の除去率が増加する。これは、強酸性カチオン交換樹脂塔で処理することで、pHが酸性となり、強塩基性アニオン交換樹脂塔での除去効率が向上するためである。   According to the flows of FIGS. 1 and 2, since much of the TOC component is removed by the weak base anion exchange resin tower 1, the load on the strongly basic anion exchange resin tower 2 is reduced, and the strongly basic anion exchange resin is obtained. The frequency of regeneration is reduced, and pure water can be efficiently produced at low cost. In addition, the removal rate of the TOC component in the strongly basic anion exchange resin tower 2 in the flow of FIG. 2 is higher than the flow of FIG. This is because the pH becomes acidic and the removal efficiency in the strongly basic anion exchange resin tower is improved by treating in the strongly acidic cation exchange resin tower.

上記原水としては、工業用水、河川水、湖沼水、井水等のほか、電子部品製造工程排水以外の排水(例えば鉄鋼、食品系排水)などが例示される。弱塩基性イオン交換樹脂への給水のTOCは3mg/L以下、特に1mg/L以下であることが好ましい。   Examples of the raw water include industrial water, river water, lake water, well water, etc., and drainage other than the electronic component manufacturing process drainage (for example, steel, food-based drainage) and the like. It is preferable that TOC of water supply to the weak base ion exchange resin is 3 mg / L or less, particularly 1 mg / L or less.

原水は、弱塩基性アニオン交換樹脂に供給される前に、凝集沈殿、凝集加圧浮上、濾過装置等の除濁装置や活性炭装置などの前処理装置によって処理されて上記給水とされてもよい。なお、弱塩基性アニオン交換樹脂塔1の前段に、脱イオン装置(イオン交換樹脂装置、逆浸透膜装置、電気再生式脱イオン装置など)を設ける必要はない。   Raw water may be treated by flocculation, flocculation and pressure flotation, or a pretreatment device such as a flocculating device such as a filtration device or an activated carbon device before being supplied to the weakly basic anion exchange resin to be the above water supply . In addition, it is not necessary to provide a deionization device (an ion exchange resin device, a reverse osmosis membrane device, an electroregeneration type deionization device, etc.) in the front stage of the weak base anion exchange resin tower 1.

弱塩基性アニオン交換樹脂塔1に供給される水のpHは2〜12特に4〜8であることが好ましく、必要であれば、この範囲となるように酸又はアルカリを添加してpH調整を行う。   The pH of water supplied to the weakly basic anion exchange resin column 1 is preferably 2 to 12, particularly 4 to 8, and if necessary, an acid or an alkali is added to adjust the pH to fall within this range. Do.

弱塩基性アニオン交換樹脂は、弱塩基性アニオン交換基を有するイオン交換樹脂であり、市販品が使用できる。弱塩基性アニオン交換基としては、1〜3級アミノ基が一般的であるが、他の基でもよい。   The weak base anion exchange resin is an ion exchange resin having a weak base anion exchange group, and commercially available products can be used. As weakly basic anion exchange groups, primary to tertiary amino groups are common, but other groups may be used.

強塩基性アニオン交換樹脂は、強塩基性アニオン交換基を有するイオン交換樹脂であり、市販品が使用できる。強塩基性アニオン交換基としては、4級アンモニウム基が一般的であるが、他の基でもよい。強塩基性アニオン交換樹脂のうち、トリメチルアンモニウム基を交換基とするI型強塩基性アニオン交換樹脂が塩基度が高く、中性塩分解能が高いので好ましい。ジメチルエタノールアンモニウム基を交換基とするII型強塩基性アニオン交換樹脂は、フッ化物イオンの除去性が悪いので、その目的のためには好ましくない。   The strongly basic anion exchange resin is an ion exchange resin having a strongly basic anion exchange group, and commercially available products can be used. As a strongly basic anion exchange group, a quaternary ammonium group is generally used, but other groups may be used. Among the strongly basic anion exchange resins, Type I strongly basic anion exchange resins having a trimethyl ammonium group as the exchange group are preferable because they have high basicity and high neutral salt decomposability. Type II strongly basic anion exchange resins having a dimethylethanol ammonium group as the exchange group are not preferable for that purpose because they have poor removability of fluoride ions.

強酸性カチオン交換樹脂は、強酸性カチオン交換基を有するイオン交換樹脂であり、市販品が使用できる。強酸性カチオン交換基としては、スルフォン基が一般的であるが、他の基でもよい。   The strongly acidic cation exchange resin is an ion exchange resin having a strongly acidic cation exchange group, and commercially available products can be used. As a strongly acidic cation exchange group, although a sulfone group is common, other groups may be sufficient.

各イオン交換樹脂塔1,2,3には、下向流にて通水することが好ましい。また、各イオン交換樹脂塔1,2,3への通水SVは10〜40hr−1特に20〜30hr−1程度が好ましい。 It is preferable to flow water to each ion exchange resin tower 1, 2, 3 in a downward flow. Further, water passing SV to each ion exchange resin tower 1,2,3 10~40Hr -1 particularly 20~30hr about -1 are preferred.

本発明装置は、各イオン交換樹脂層をそれぞれを一つに塔に設けるようにした多塔形式でもよいし、一つ或いは二つの塔に設けてもよい。各塔の間に、脱炭酸塔などの他の水処理装置を設けてもよい。   The apparatus of the present invention may be a multi-column type in which each ion exchange resin layer is provided in one column, or may be provided in one or two columns. Other water treatment devices such as a decarbonated tower may be provided between each tower.

以下の実施例、比較例及び参考例では、以下の原水、アニオン交換樹脂及びカチオン交換樹脂を用いた。なお、アニオン交換樹脂は、再生及び洗浄した後に使用した。
原水:野木町水(TOC:1.1〜1.2mg/L、pH6〜7、常温)
弱塩基性アニオン交換樹脂:三菱化学株式会社WA30C
強塩基性アニオン交換樹脂:三菱化学株式会社SA10AL
強酸性カチオン交換樹脂:三菱化学株式会社SK1BL
In the following examples, comparative examples and reference examples, the following raw water, anion exchange resin and cation exchange resin were used. The anion exchange resin was used after regeneration and washing.
Raw water: Nogi town water (TOC: 1.1 to 1.2 mg / L, pH 6 to 7, normal temperature)
Weakly basic anion exchange resin: Mitsubishi Chemical Corporation WA30C
Strongly basic anion exchange resin: Mitsubishi Chemical Corporation SA10AL
Strongly acidic cation exchange resin: Mitsubishi Chemical Corporation SK1BL

[参考例1]
上記原水を図5(a)の通り、強酸性カチオン交換樹脂塔(LV=40m/hr)→強塩基性アニオン交換樹脂塔(LV=40m/hr)の順に通水した。また、上記原水を図5(b)の通り、強酸性カチオン交換樹脂塔(LV=40m/hr)→弱酸性カチオン交換樹脂塔(LV=40m/hr)→強塩基性アニオン交換樹脂塔(LV=40m/hr)の順に通水した。処理水のTOC除去率をそれぞれ図5に示す。
[Reference Example 1]
The said raw water was water-flowed in order of strongly acidic cation exchange resin tower (LV = 40 m / hr)-> strongly basic anion exchange resin tower (LV = 40 m / hr) as FIG. 5 (a). Also, as shown in FIG. 5 (b), the above raw water is strongly acidic cation exchange resin tower (LV = 40 m / hr) → weakly acidic cation exchange resin tower (LV = 40 m / hr) → strong basic anion exchange resin tower (LV) Water was supplied in the order of = 40 m / hr). The TOC removal rates of treated water are shown in FIG.

図5の通り、原水を強酸性カチオン交換樹脂に通水した後、(a)のように強塩基性アニオン交換樹脂に通水した方が、(b)のように弱塩基性アニオン交換樹脂に通水した場合よりも、TOC除去率が高い。図5のΔLは、原水を強酸性カチオン交換樹脂→強塩基性アニオン交換樹脂通水処理した場合と、強酸性カチオン交換樹脂→弱塩基性アニオン交換樹脂通水処理した場合との、強塩基性アニオン交換樹脂負荷の差である。   As shown in FIG. 5, after the raw water is passed through the strongly acidic cation exchange resin, one which is passed through the strongly basic anion exchange resin as in (a) is a weakly basic anion exchange resin as in (b). The TOC removal rate is higher than when water flows. In FIG. 5, ΔL indicates that the raw water is strongly basic cation exchange resin → strong base anion exchange resin through water treatment and strong acid cation exchange resin → weak base anion exchange resin through water treatment It is the difference in anion exchange resin loading.

本発明では、原水を弱塩基性アニオン交換樹脂に通水してから強塩基性アニオン交換樹脂に通水するので、図5のΔLに相当する分だけ強塩基性アニオン交換樹脂への負荷が小さいものとなる。その結果、強塩基性アニオン交換樹脂の再生頻度が減少し、純水製造効率が向上し、純水製造コストが低下する。   In the present invention, since the raw water is passed through the weak base anion exchange resin and then passed through the strong base anion exchange resin, the load on the strong base anion exchange resin is small by the amount corresponding to ΔL in FIG. It becomes a thing. As a result, the frequency of regeneration of the strongly basic anion exchange resin is reduced, the pure water production efficiency is improved, and the pure water production cost is lowered.

[実施例1]
上記原水を図2の通り、弱塩基性アニオン交換樹脂塔1(LV=40m/hr)→強酸性カチオン交換樹脂塔3(LV=40m/hr)→強塩基性アニオン交換樹脂塔2(LV=40m/hr)の順に通水して純水を製造した。弱塩基性アニオン交換樹脂塔1の流出水及び強酸性カチオン交換樹脂塔3の流出水中のTOC濃度を測定し、原水TOC濃度に対するTOC除去率を求めた。結果を図4に示す。
Example 1
As shown in FIG. 2, the above raw water is weakly basic anion exchange resin tower 1 (LV = 40 m / hr) → strongly acidic cation exchange resin tower 3 (LV = 40 m / hr) → strongly basic anion exchange resin tower 2 (LV = Water was passed in the order of 40 m / hr to produce pure water. The TOC concentration in the effluent water of the weakly basic anion exchange resin tower 1 and the effluent water of the strongly acidic cation exchange resin tower 3 was measured to determine the TOC removal rate relative to the raw water TOC concentration. The results are shown in FIG.

図4の通り、実施例1では、弱塩基性アニオン交換樹脂塔1流出水のTOC除去率が通水開始100min以降でも約60%であり、上記参考例1の(b)のように強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂とを用いた場合のTOC除去率約45%(図5(b)の通水開始100min以降の値)よりも大幅に上昇していることが認められた。   As shown in FIG. 4, in Example 1, the TOC removal rate of the weakly basic anion exchange resin tower 1 effluent water is about 60% even after 100 minutes after the start of water passage, and as shown in (b) of the above Reference Example 1, strongly acidic. It was observed that the removal rate of TOC when using cation exchange resin and weak base anion exchange resin was significantly higher than about 45% (value after 100 min of water flow start in FIG. 5 (b)) .

なお、実施例1において、弱塩基性アニオン交換樹脂塔1からの流出水中のTOC成分について、LC−OCDによる分画を行い、その分子量の大きさにより、生物由来有機物(高分子)、有機酸、低分子有機物に分類し、それぞれの濃度の経時変化を測定した。結果を図6に示す。   In Example 1, the TOC component in the effluent water from the weak basic anion exchange resin tower 1 is fractionated by LC-OCD, and depending on the size of its molecular weight, biological organic matter (polymer), organic acid, It classified into low molecular weight organic substance, and measured the time-dependent change of each concentration. The results are shown in FIG.

[比較例1]
上記原水を図3の通り、強酸性カチオン交換樹脂塔3(LV=40m/hr)→弱塩基性アニオン交換樹脂塔1(LV=40m/hr)→強塩基性アニオン交換樹脂塔2(LV=40m/hr)の順に通水した。この際の弱塩基性アニオン交換樹脂塔1からの流出水中のTOC成分について、LC−OCDによる分画を行い、その分子量の大きさにより、生物由来有機物(高分子)、有機酸、低分子有機物に分類し、それぞれの濃度の経時変化を測定した。結果を図6に示す。
Comparative Example 1
As shown in FIG. 3, the above raw water is strongly acid cation exchange resin tower 3 (LV = 40 m / hr) → weak basic anion exchange resin tower 1 (LV = 40 m / hr) → strong basic anion exchange resin tower 2 (LV = Water flowed in the order of 40 m / hr). The TOC component in the effluent water from the weak base anion exchange resin column 1 at this time is fractionated by LC-OCD, and depending on the size of its molecular weight, biological organic matter (polymer), organic acid, low molecular organic matter And the time course of each concentration was measured. The results are shown in FIG.

図6の通り、実施例1は、比較例1に比べて、生物由来有機物、有機酸の削減効果が高い。強塩基性イオン交換樹脂を汚染する成分は、生物由来有機物、有機酸等のイオン性有機物が主体であるので、実施例1によると後段の強塩基性イオン交換樹脂の負荷が低減されることが認められた。   As shown in FIG. 6, Example 1 is more effective in reducing organic matter-derived organic matter and organic acid than Comparative Example 1. The component that contaminates the strongly basic ion exchange resin is mainly an ionic organic matter such as a biological organic matter or an organic acid, so that according to Example 1, the load of the strongly basic ion exchange resin in the latter stage can be reduced. Admitted.

1 弱塩基性アニオン交換樹脂塔
2 強塩基性アニオン交換樹脂塔
3 強酸性カチオン交換樹脂塔
1 weakly basic anion exchange resin tower 2 strongly basic anion exchange resin tower 3 strongly acidic cation exchange resin tower

Claims (4)

原水(ただし電子部品製造工程排水を除く)より純水を製造する純水製造装置であって、
弱塩基性陰イオン交換樹脂層、強塩基性陰イオン交換樹脂層、及び強酸性陽イオン交換樹脂層と、
これらのイオン交換樹脂層に上記の順番に通水する通水手段と
を有する純水製造装置。
A pure water production system that produces pure water from raw water (but excluding drainage from electronic component production processes),
A weak base anion exchange resin layer, a strong base anion exchange resin layer, and a strong acid cation exchange resin layer,
And a water passing means for passing water in the above order in the ion exchange resin layer.
原水(ただし電子部品製造工程排水を除く)より純水を製造する純水製造装置であって、
弱塩基性陰イオン交換樹脂層、強酸性陽イオン交換樹脂層、及び強塩基性陰イオン交換樹脂層と、
これらのイオン交換樹脂層に上記の順番に通水する通水手段と
を有する純水製造装置。
A pure water production system that produces pure water from raw water (but excluding drainage from electronic component production processes),
A weak base anion exchange resin layer, a strongly acidic cation exchange resin layer, and a strongly basic anion exchange resin layer,
And a water passing means for passing water in the above order in the ion exchange resin layer.
前記弱塩基性アニオン交換樹脂に供給される原水のpHが4〜8であることを特徴とする純水製造装置。   PH of the raw water supplied to the said weak base anion exchange resin is 4-8, The pure water manufacturing apparatus characterized by the above-mentioned. 請求項1〜3のいずれか1項の純水製造装置を用いた純水製造方法。   The pure water manufacturing method using the pure water manufacturing apparatus of any one of Claims 1-3.
JP2018001301A 2018-01-09 2018-01-09 Pure water producing apparatus and pure water producing method Pending JP2019118891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018001301A JP2019118891A (en) 2018-01-09 2018-01-09 Pure water producing apparatus and pure water producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018001301A JP2019118891A (en) 2018-01-09 2018-01-09 Pure water producing apparatus and pure water producing method

Publications (1)

Publication Number Publication Date
JP2019118891A true JP2019118891A (en) 2019-07-22

Family

ID=67306731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001301A Pending JP2019118891A (en) 2018-01-09 2018-01-09 Pure water producing apparatus and pure water producing method

Country Status (1)

Country Link
JP (1) JP2019118891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657560A (en) * 2020-12-11 2021-04-16 安徽三星树脂科技有限公司 Efficient and environment-friendly polishing cation resin production system and production process
CN115054947A (en) * 2022-06-29 2022-09-16 成都长力元生物科技有限公司 Method for purifying low mannose filtrate and regenerating ion exchange column

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275053A (en) * 1975-12-17 1977-06-23 Kubota Ltd Process for treating waste water containing heavy metal
JPS53128149A (en) * 1977-04-13 1978-11-08 Sumitomo Chem Co Ltd Method of processing waste water from chromium plating
JPS62191096A (en) * 1986-02-17 1987-08-21 Hitachi Plant Eng & Constr Co Ltd Waste water treatment method
JPH10180252A (en) * 1996-12-26 1998-07-07 Japan Organo Co Ltd Production of pure water and ion-exchange tower
JP2000061321A (en) * 1998-08-21 2000-02-29 Kurita Water Ind Ltd Method for regenerating cation exchange resin
JP2014100706A (en) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl Water treatment for particularly producing ultrapure water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275053A (en) * 1975-12-17 1977-06-23 Kubota Ltd Process for treating waste water containing heavy metal
JPS53128149A (en) * 1977-04-13 1978-11-08 Sumitomo Chem Co Ltd Method of processing waste water from chromium plating
JPS62191096A (en) * 1986-02-17 1987-08-21 Hitachi Plant Eng & Constr Co Ltd Waste water treatment method
JPH10180252A (en) * 1996-12-26 1998-07-07 Japan Organo Co Ltd Production of pure water and ion-exchange tower
JP2000061321A (en) * 1998-08-21 2000-02-29 Kurita Water Ind Ltd Method for regenerating cation exchange resin
JP2014100706A (en) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl Water treatment for particularly producing ultrapure water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657560A (en) * 2020-12-11 2021-04-16 安徽三星树脂科技有限公司 Efficient and environment-friendly polishing cation resin production system and production process
CN112657560B (en) * 2020-12-11 2021-12-28 安徽三星树脂科技有限公司 Efficient and environment-friendly polishing cation resin production system and production process
CN115054947A (en) * 2022-06-29 2022-09-16 成都长力元生物科技有限公司 Method for purifying low mannose filtrate and regenerating ion exchange column

Similar Documents

Publication Publication Date Title
Al Abdulgader et al. Hybrid ion exchange–Pressure driven membrane processes in water treatment: A review
TWI616404B (en) Method and device for processing boron-containing water
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
US8119008B2 (en) Fluid purification methods and devices
CN110451704B (en) Method for treating fluorine-containing reuse water
KR20130115785A (en) Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater
KR20040106478A (en) Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
TW201806875A (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
JP5609174B2 (en) Water treatment system
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP2019118891A (en) Pure water producing apparatus and pure water producing method
TWI756249B (en) Regenerative ion exchange device and method of operating the same
Abusultan et al. A hybrid process combining ion exchange resin and bipolar membrane electrodialysis for reverse osmosis remineralization
JP2013193004A (en) Pure water production method
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP2009160500A (en) Ultrapure water production method and apparatus
JP4848641B2 (en) Pure water production method and apparatus
JP2007098270A (en) Method and apparatus for producing pure water
TW202041471A (en) Method for removing chlorine-containing salt from industrial wastewater and apparatus thereof
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
RU62923U1 (en) WATER TREATMENT PLANT
TW202313486A (en) Method for treating raw water for producing purified water
JP2019107591A (en) Method for producing treatment water, water treatment device and method for operating water treatment device
RU68501U1 (en) WATER TREATMENT PLANT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215