JPS6331592A - Method for making ultrapure water - Google Patents
Method for making ultrapure waterInfo
- Publication number
- JPS6331592A JPS6331592A JP61173084A JP17308486A JPS6331592A JP S6331592 A JPS6331592 A JP S6331592A JP 61173084 A JP61173084 A JP 61173084A JP 17308486 A JP17308486 A JP 17308486A JP S6331592 A JPS6331592 A JP S6331592A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ultrapure water
- hydrazine
- biological treatment
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021642 ultra pure water Inorganic materials 0.000 title claims abstract description 43
- 239000012498 ultrapure water Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 101
- 229910001868 water Inorganic materials 0.000 claims abstract description 99
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000012528 membrane Substances 0.000 claims abstract description 37
- 238000000926 separation method Methods 0.000 claims abstract description 17
- 238000011084 recovery Methods 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims description 40
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052698 phosphorus Inorganic materials 0.000 claims description 26
- 239000011574 phosphorus Substances 0.000 claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 244000005700 microbiome Species 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 238000005342 ion exchange Methods 0.000 claims description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000003456 ion exchange resin Substances 0.000 claims description 3
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 3
- 239000002351 wastewater Substances 0.000 claims description 3
- 241001478882 oligotrophic bacterium Species 0.000 claims 1
- 230000001580 bacterial effect Effects 0.000 abstract description 19
- 241000894006 Bacteria Species 0.000 abstract description 8
- 230000004907 flux Effects 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は超純水製造方法に係り、特に生物処理手段を組
み入れて、水中の微生物の増殖を抑制するようにした超
純水製造方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing ultrapure water, and particularly relates to a method for producing ultrapure water that incorporates biological treatment means to suppress the growth of microorganisms in water. .
[従来の技術及び先行技術]
LSIや超LSIの製造においては、多量の純水や超純
水が用いられている。超純水は理論純水(H2Oのみか
らなる水)の比抵抗18.24MΩ・cmに極めて近く
、17〜18MΩ・cmの比抵抗を有する純水である。[Background Art and Prior Art] In the manufacture of LSIs and VLSIs, large amounts of pure water and ultrapure water are used. Ultrapure water is pure water having a specific resistance of 17 to 18 MΩ·cm, which is extremely close to the specific resistance of theoretically pure water (water consisting only of H2O), which is 18.24 MΩ·cm.
−殻に、超純水製造プロセスは、活性炭、イオン交換樹
脂、紫外線(UV)酸化、逆浸透膜(R○)、限外濾過
膜(UF)等で構成されている。- In the shell, the ultrapure water production process is composed of activated carbon, ion exchange resin, ultraviolet (UV) oxidation, reverse osmosis membrane (R○), ultrafiltration membrane (UF), etc.
例えば、超純水を用いた半導体ウェーハ洗浄システムか
らの洗浄廃液回収工程における超純水製造プロセスは第
2図に示す通りである。第2図に示す装置においては、
半導体洗浄工程1からの廃水を、まず回収システムAの
活性炭吸着塔2において活性炭吸着処理し、イオン交換
塔3で処理して脱塩した後、更に必要なときには逆浸透
膜装置(図示せず)を介して紫外線酸化装置4で処理し
ている。紫外線酸化装置4においては、有機物をほぼ完
全に酸化分解させるために、一般に、酸化剤として過酸
化水素を添加し、過酸化水素存在下で紫外線を照射して
処理が行なわれる。For example, the ultrapure water production process in the process of recovering cleaning waste liquid from a semiconductor wafer cleaning system using ultrapure water is as shown in FIG. In the device shown in Figure 2,
The wastewater from the semiconductor cleaning process 1 is first subjected to activated carbon adsorption treatment in the activated carbon adsorption tower 2 of the recovery system A, and then treated and desalted in the ion exchange tower 3, and then further treated with a reverse osmosis membrane device (not shown) when necessary. The ultraviolet oxidation device 4 is used to process the ultraviolet light. In the ultraviolet oxidation device 4, in order to almost completely oxidize and decompose organic substances, hydrogen peroxide is generally added as an oxidizing agent, and the treatment is performed by irradiating ultraviolet rays in the presence of hydrogen peroxide.
このような活性炭吸着塔2、イオン交換塔3及び紫外線
酸化装置4からなる回収システムAからの処理水は、純
水製造システム已に戻される。この純水製造システムB
は、前処理システムC(lI集槽5及び二4a濾過器6
からなる。)、1次純水システムD(逆浸透膜装置7、
脱気塔8及びイオン交換装置9からなる。)及びサブシ
ステムE(紫外線殺菌装置10、混床式イオン交換装置
11及び限外濾過膜装置12からなる。)から構成され
ている。The treated water from the recovery system A consisting of the activated carbon adsorption tower 2, ion exchange tower 3, and ultraviolet oxidation device 4 is returned to the pure water production system. This pure water production system B
is pre-treatment system C (I collection tank 5 and 24a filter 6
Consisting of ), primary pure water system D (reverse osmosis membrane device 7,
It consists of a deaerator 8 and an ion exchanger 9. ) and subsystem E (consisting of an ultraviolet sterilizer 10, a mixed bed ion exchange device 11, and an ultrafiltration membrane device 12).
このような純水製造装置で得られる超純水や純水のよう
な貧栄養の水中においても、微生物は極めて微量ではあ
るが存在し、純水中にppbオーダーでも有機物質が存
在すると、微生物は増殖して、RO装置等の純水製造装
置にトラブルが生じる原因となる。Microorganisms are present even in oligotrophic water such as ultrapure water or pure water obtained by such pure water production equipment, although in very small amounts. Proliferates and causes trouble in pure water production equipment such as RO equipment.
このような従来の純水製造装置における微生物の増殖に
よる問題を解決するものとして、本出願人は、膜処理装
置及びイオン交換塔を有する超純水製造装置において、
更に、@量のエネルギー源及び/又は栄養源を除去する
ために、第3図に示す如く、微生物のエネルギー源及び
栄養源の存在のもとに生物処理する生物反応槽13と、
この生物反応槽で増殖した菌体を分離・除去するための
菌体分離器14とからなる生物処理手段Fを第2図に示
すような装置に付加してなる超純水製造装置を見出し、
先に特許出願した(特願昭59−231738゜以下、
「先願」という。)即ち、先願は、次のような知見のも
とになされたものである。In order to solve the problems caused by the growth of microorganisms in conventional pure water production equipment, the applicant has developed an ultrapure water production equipment that includes a membrane treatment device and an ion exchange tower.
Furthermore, in order to remove the energy source and/or nutrient source of @ amount, as shown in FIG.
We have discovered an ultrapure water production device in which a biological treatment means F consisting of a bacterial cell separator 14 for separating and removing bacterial cells grown in this biological reaction tank is added to the device as shown in FIG.
I applied for a patent earlier (Patent application 1985-231738゜ and below)
It is called "first-to-file." ) That is, the earlier application was filed based on the following knowledge.
下水や産業廃水等、有機物を比較的多く含む水を生物処
理することは慣用技術に属する。Biological treatment of water containing relatively large amounts of organic matter, such as sewage and industrial wastewater, belongs to conventional technology.
しかし、超純水のように極めて貧栄養下の水を生物処理
することは従来全く行なわれていなかった。また、そも
そも生物処理は不可能と考えられていた。However, biological treatment of extremely oligotrophic water such as ultrapure water has never been carried out in the past. Furthermore, biological treatment was originally thought to be impossible.
それは、超純水のような貧栄養下での生物増殖機構は全
く解明されていなかったことに加え、このような水を生
物処理することは、微生物を加えることになるので、逆
に水を汚染するものと考えられていたからである。In addition to the fact that the mechanism of biological growth under oligotrophic conditions such as ultrapure water has not been fully elucidated, biological treatment of such water means adding microorganisms; This was because it was thought to be a contaminant.
そこで、先願の研究においては、従来の純水製造プロセ
スにおける微生物の挙動を研究した結果、このプロセス
では、有機性炭素は大部分除去されるものの、処理水中
にはT OCa度で50PPb程度の有機物質がなおも
残存し、そして、微生物は、水中のTOCがI PPb
存在すれば、これを資化することによりバイオアッセイ
値で4〜5x 103N/mλに増殖し、TOCが50
Ppb残存する場合には約2xlO5N/mfLとなり
、R○、UF膜等の目詰りの原因となり、純水製造に悪
影響を及ぼすことが分った。実際、測定の結果、超純水
中では微生物が菌数として103〜10’N/mλにま
で増殖するに十分な有機物が残存しており、これに更に
、配管、樹脂等の設備からのリンあるいは窒素の溶出又
は洗浄薬品等により、リン等が付加された場合には、微
生物は更に容易に増殖し、105N/mλ以上にも達す
ることが確認された。Therefore, in the research of the previous application, as a result of studying the behavior of microorganisms in the conventional pure water production process, it was found that although most of the organic carbon is removed in this process, about 50 PPb (TOCa degree) is present in the treated water. Organic matter still remains, and microorganisms are responsible for the TOC in the water.
If it exists, by assimilating it, it will grow to 4-5x 103N/mλ in bioassay value, and the TOC will be 50
It has been found that when Ppb remains, it becomes about 2xlO5N/mfL, which causes clogging of R○, UF membranes, etc., and has an adverse effect on pure water production. In fact, measurements have shown that there is enough organic matter remaining in ultrapure water for microorganisms to grow to a bacterial count of 103 to 10'N/mλ, and in addition, phosphorus from equipment such as piping and resin remains. Alternatively, when phosphorus or the like is added due to nitrogen elution or cleaning chemicals, it has been confirmed that microorganisms proliferate even more easily and reach a rate of 105 N/mλ or more.
なお、従来の純水製造装置において、紫外線殺菌処理が
行なわれているが(第2図の装置ではサブシステムEの
10)、紫外線照射処理は一過性のものであり、微量の
微生物がその後再び増殖することが分った。In addition, in conventional pure water production equipment, ultraviolet sterilization treatment is performed (10 of subsystem E in the equipment shown in Figure 2), but the ultraviolet irradiation treatment is temporary, and a small amount of microorganisms are removed afterwards. It was found that it was growing again.
而して、純水中の微生物の増殖機構について上述したよ
うな研究の結果、微生物はリンが極めて低濃度例えば1
opptとなるまで速い除去速度でTOC,リンその
他の栄養塩を除去して増殖し、TOC、リン又は窒素が
欠乏した時点で、増殖が急激に抑制されるという事実が
判明した。As a result of the above-mentioned research on the growth mechanism of microorganisms in pure water, it has been found that microorganisms with very low concentrations of phosphorus, such as 1
It has been found that the plant grows by removing TOC, phosphorus, and other nutrients at a high removal rate until it becomes oppt, and when TOC, phosphorus, or nitrogen becomes deficient, the growth is rapidly suppressed.
先願はこのような知見を発明完成の背景として有するも
のであり、先願の装置によれば、その生物処理手段にお
いて、エネルギー源及び栄養源の存在下で好気的に生物
処理が行なわれ、純水に含まれていた微量のTOC成分
及び/又はリン成分がほぼ完全に除去されるため、微生
物の増殖のおそれのない、極めて優れた水質の超純水が
得られるようになる。The earlier application has such knowledge as the background for completing the invention, and according to the apparatus of the earlier application, biological treatment is carried out aerobically in the presence of an energy source and a nutrient source in the biological treatment means. Since trace amounts of TOC components and/or phosphorus components contained in pure water are almost completely removed, ultrapure water of extremely high quality without the fear of microbial growth can be obtained.
[発明が解決しようとする問題点]
しかしながら、上記先願においては、生物処理を導入す
ることから、生物処理後の工程に菌体分離器を必要とす
るため、装置設備、処理工程が多く、設備費やメンテナ
ンス、装置スペース等の面から工業的に不利であった。[Problems to be Solved by the Invention] However, in the above-mentioned prior application, since biological treatment is introduced, a bacterial cell separator is required in the process after biological treatment, so there are many equipment, equipment, and treatment steps. It was industrially disadvantageous in terms of equipment costs, maintenance, equipment space, etc.
一方、菌体分芝器を省略し、菌体を含有する生物IA埋
水を直接RO装置に流入させた場合には、菌体によりR
O膜等の分離膜面にゲル層が形成され、膜の目詰りが著
しく、膜劣化や膜のフラックス低下により連続運転期間
が非常に短くなるという問題が生起する。On the other hand, if the bacterial cell divider is omitted and the biological IA water containing the bacterial cells is directly flowed into the RO device, the bacterial cells will cause the R
A gel layer is formed on the surface of a separation membrane such as an O membrane, causing significant clogging of the membrane, resulting in a problem that the continuous operation period becomes extremely short due to membrane deterioration and decrease in membrane flux.
[問題点を解決するための手段コ
本発明は、生物処理を組み入れた上記先願の装置におい
て、菌体分離器を省略することを可能とし、この場合に
おいても、膜分離装置のフラックスの低下等を抑制する
方法を堤併するものであって、
膜分離装置を備えた超純水製造システムで超純水を製造
し、該超純水が使用箇所で使用されて排出される排水を
回収し、該回収水を再び超純水処理システムの原水とす
る回収システムを有する超純水製造方法において、回収
水を生物処理し、得られた生物処理水にヒドラジンを注
入した後、膜分離装置に供給することを特徴とする超純
水製造方法
を要旨とするものである。[Means for Solving the Problems] The present invention makes it possible to omit the bacterial cell separator in the device of the above-mentioned prior application that incorporates biological treatment, and even in this case, the decrease in flux of the membrane separation device can be avoided. This method combines a method of suppressing water pollution, etc., by producing ultrapure water using an ultrapure water production system equipped with a membrane separation device, and collecting the wastewater discharged when the ultrapure water is used at the point of use. In an ultrapure water production method having a recovery system in which the recovered water is used again as raw water for the ultrapure water treatment system, the recovered water is subjected to biological treatment, hydrazine is injected into the obtained biologically treated water, and then a membrane separation device is used. The gist of this paper is a method for producing ultrapure water, which is characterized by supplying ultrapure water to water.
本発明の好ましい一態様においては、純水製造システム
からの純水を、生物処理手段にて処理し、該水中に含ま
れるTOC成分を除去する。この際、好ましくは栄養源
を添加して生物処理する。前述のように、通常、純水中
にはイオン交換樹脂等から溶出してくる窒素が溶解して
いるので、添加する栄養源としてはリンを添加するのが
好ましい。リンの添加量は、純水中のTOCが殆ど除去
された時点でリンが殆ど全て消費されるような量とする
のが最も好ましいが、この量よりも若干、増減しても良
い。In a preferred embodiment of the present invention, pure water from a pure water production system is treated with biological treatment means to remove TOC components contained in the water. At this time, preferably a nutrient source is added for biological treatment. As mentioned above, since nitrogen eluted from an ion exchange resin or the like is usually dissolved in pure water, it is preferable to add phosphorus as a nutrient source. The amount of phosphorus added is most preferably such that almost all of the phosphorus is consumed when most of the TOC in the pure water is removed, but it may be slightly more or less than this amount.
このようにしてTOC成分が十分に除去されれば、その
後、微生物が増殖することはない。If the TOC component is sufficiently removed in this way, microorganisms will not proliferate thereafter.
TOCの除去の程度としては、純水中のTOCが10p
pb以下好ましくはI PPb以下となるようにするの
が好ましい。The degree of TOC removal is as follows: TOC in pure water is 10p.
It is preferable that the amount is less than pb, preferably less than Ippb.
本発明の好ましい他の態様においては、純水製造システ
ムからの処理水を、生物処理手段にて処理し、該純水中
に含まねるリンを10ppt以下まで除去する。このよ
うにリンを除去すれば、その後リンが該純水に付加され
ない限り、微生物が増夕直することはなり)。In another preferred embodiment of the present invention, treated water from a pure water production system is treated by biological treatment means to remove phosphorus contained in the purified water to 10 ppt or less. If phosphorus is removed in this way, microorganisms will not grow again unless phosphorus is subsequently added to the purified water).
本発明の更に他の態様においては、純水製造システムか
らの処理水を生物処理手段にて処理し、該純水中に含ま
れる窒素を除去する。In yet another embodiment of the present invention, treated water from a pure water production system is treated with biological treatment means to remove nitrogen contained in the pure water.
本発明において、このような貧栄養下における生物処理
に用いられる菌種としては、オリゴトロフィックバクテ
リア(Origotrophic bacteria)
等が好適である。オリゴトロフィックバクテリアは超純
水のような極度にTOC濃度の低い水中において生育す
る微生物であって、これを用いることにより、処理水中
のTOC濃度を50ppb以下、例えば10〜1ppb
以下程度に、リン又は窒素濃度であれば10ppt以下
程度まで低減することが可能となる。In the present invention, the bacterial species used for biological treatment under such oligotrophic conditions include oligotrophic bacteria.
etc. are suitable. Oligotrophic bacteria are microorganisms that grow in water with extremely low TOC concentrations, such as ultrapure water, and by using them, the TOC concentration in treated water can be reduced to 50 ppb or less, for example 10 to 1 ppb.
It is possible to reduce the phosphorus or nitrogen concentration to about 10 ppt or less.
第4図は超純水中のTOC濃度(横軸)とオリゴトロフ
ィックバクテリアの増殖速度(縦軸)との関係の一例を
示すグラフである。この例は酢酸を基質とし、その添加
量を変えることにより水中のT OC94度をO〜35
ppbの間で変えている。図示の如く、この例ではTO
C濃度の減少に伴って増殖速度μ(hr−’)も次第に
減少し、TOC濃度が5ppb以下になると増殖速度μ
は直線的に小さくなる。一方、TOC濃度が増加しても
μの増加率は次第に減少し、増殖速度の最大値μmax
は0.24h、r−’であった。この例から、酢酸を基
質とした場合は、0.12〜0.24hr−’の増殖速
度でオリゴトロフィックバクテリアが増殖し、純水中の
TOC濃度を5ppb以下にまで、かなり速い速度で低
下され得ることが認められる。FIG. 4 is a graph showing an example of the relationship between the TOC concentration in ultrapure water (horizontal axis) and the growth rate of oligotrophic bacteria (vertical axis). In this example, acetic acid is used as a substrate, and by changing the amount added, the TOC in water can be adjusted from 0 to 35 degrees.
It changes between ppb. As shown, in this example, TO
As the C concentration decreases, the growth rate μ (hr-') also gradually decreases, and when the TOC concentration becomes 5 ppb or less, the growth rate μ decreases.
decreases linearly. On the other hand, even if the TOC concentration increases, the rate of increase in μ gradually decreases, and the maximum growth rate μmax
was 0.24h, r-'. From this example, when acetic acid is used as a substrate, oligotrophic bacteria proliferate at a growth rate of 0.12 to 0.24 hr-', and the TOC concentration in pure water decreases at a fairly rapid rate to below 5 ppb. It is acknowledged that this can be done.
以下に図面を参照して本発明を更に詳細に説明する。The present invention will be explained in more detail below with reference to the drawings.
第1図は本発明の実施に好適な純水製造装置を示す系統
図である。なお、第1図において、AlC,D、Eのシ
ステムの構成は第2図のものと同様であるので、同一部
材に同一符号を付し、その構成の説明を省略する。FIG. 1 is a system diagram showing a pure water production apparatus suitable for carrying out the present invention. In FIG. 1, the configurations of the systems AlC, D, and E are the same as those in FIG. 2, so the same members are given the same reference numerals and the explanation of the configurations will be omitted.
第1図において、回収システムAの紫外線酸化装置4を
通過した水は、生物反応槽13に導入され好気的に生物
処理される。即ち、生物反応槽13は、生物固定手段、
例えば材質がセラミックからなるハニカムチューブ等の
固定床、又はセラミックの粒状等の流動床を内蔵してい
る。従って、これら充填材からは、無機あるいは有機物
の溶出は無視できる。そして、微生物のエネルギー源及
び栄養源の存在下に微生物が十分に繁殖(増殖)するに
必要な時間以上反応が行なわれる。なお、通常、純水中
には溶存酸素が数ppm存在するので、この反応は好気
的に進行するが、溶存酸素が少ないときには、純酸素等
で曝気し、好気的条件を与えることが必要である。この
反応により、微生物は活性化し、水中のTOC成分を資
化する。而して、例えば、生物反応槽13内の水に含ま
れるTOC成分が殆ど完全に無くなるまで、この生物反
応が継続する。In FIG. 1, water that has passed through the ultraviolet oxidizer 4 of the recovery system A is introduced into a biological reaction tank 13 and subjected to aerobic biological treatment. That is, the biological reaction tank 13 contains biological fixing means,
For example, it contains a fixed bed such as a honeycomb tube made of ceramic material, or a fluidized bed such as ceramic granular material. Therefore, elution of inorganic or organic substances from these fillers can be ignored. Then, the reaction is carried out for a period longer than necessary for the microorganisms to sufficiently propagate (multiply) in the presence of the energy source and nutrient source for the microorganisms. Note that since there is usually several ppm of dissolved oxygen in pure water, this reaction proceeds aerobically, but when dissolved oxygen is low, it is necessary to aerate with pure oxygen to provide aerobic conditions. is necessary. This reaction activates the microorganisms and assimilates the TOC components in the water. Thus, for example, this biological reaction continues until the TOC component contained in the water in the biological reaction tank 13 is almost completely eliminated.
なお、第1図に示す装置において、紫外線酸化装置4か
らの水のリン又は窒素濃度がToC?IA度に対して著
しく低い場合には、生物反応槽13における生物処理速
度が非常に遅くなる。このような場合には、生物が増殖
し、有機性炭素を資化できるように、生物反応槽人口部
において微量のリン又は窒素を添加しても良い。この場
合、リンは水中のBOD成分量に対し、重量比でBOD
/リン# 100/1程度、窒素は10015程度とな
るように添加するのが好ましい。In addition, in the apparatus shown in FIG. 1, the phosphorus or nitrogen concentration of the water from the ultraviolet oxidizer 4 is ToC? If the degree of IA is significantly lower than the IA degree, the rate of biological treatment in the biological reaction tank 13 will be extremely slow. In such a case, a small amount of phosphorus or nitrogen may be added to the artificial part of the biological reaction tank so that living organisms can proliferate and assimilate organic carbon. In this case, phosphorus is BOD in weight ratio to the amount of BOD components in water.
It is preferable to add so that the ratio of /phosphorus # is about 100/1 and the ratio of nitrogen is about 10015.
また、本発明においては、リン又は窒素が残留しなくな
るように生物反応させても良い。この場合は、純水製造
装置全体を、リンや窒素の溶出のおそれのない材質で構
成するのが好ましい。Further, in the present invention, a biological reaction may be performed so that no phosphorus or nitrogen remains. In this case, it is preferable that the entire pure water production device be made of a material that does not pose a risk of leaching phosphorus or nitrogen.
更に本発明においては、生物処理を行なうに際し、リン
とTOC成分とが共に殆ど全て微生物に消化されるよう
リン及び/又はTOC成分の調整を行なうようにしても
良い。Furthermore, in the present invention, when performing biological treatment, the phosphorus and/or TOC components may be adjusted so that almost all of the phosphorus and TOC components are digested by microorganisms.
生物反応槽13における反応により、有機炭素はCO2
あるいは菌体となる。しかして、本発明においては、こ
の菌体を含有する生物反応処理水中にヒドラジンを注入
する。即ち、第1図に示す如く、生物反応槽13からの
処理水を超純水製造システムBのRO膜分離装置7に供
給する配管系において、系内にヒドラジンを供給するた
めのヒドラジン禮15及び薬注ポンプ16を設け、ヒド
ラジンを連続的又は間欠的に注入する。Due to the reaction in the biological reaction tank 13, organic carbon becomes CO2
Or it becomes a fungal body. Therefore, in the present invention, hydrazine is injected into the biological reaction treated water containing the bacterial cells. That is, as shown in FIG. 1, in the piping system that supplies treated water from the biological reaction tank 13 to the RO membrane separation device 7 of the ultrapure water production system B, there are a hydrazine pipe 15 for supplying hydrazine into the system, and A drug injection pump 16 is provided to inject hydrazine continuously or intermittently.
この場合、ヒドラジンの注入量は処理水水質や処理目的
等に応じて適宜決定されるが、通常は、RO膜分離装置
7の入口部におけるヒドラジン濃度がippm以上とな
るように注入するのが好ましい。また、系内のpHはヒ
ドラジンの作用を良好に保つために、6.5以上とする
のが好ましく、必要に応じて、適宜pH調整を行なうの
が好ましい。In this case, the amount of hydrazine to be injected is determined as appropriate depending on the quality of the treated water, the purpose of treatment, etc., but it is usually preferable to inject the hydrazine so that the concentration of hydrazine at the inlet of the RO membrane separation device 7 is equal to or higher than ippm. . Further, the pH in the system is preferably 6.5 or higher in order to maintain the effect of hydrazine well, and it is preferable to adjust the pH appropriately as necessary.
ヒドラジンは菌の増殖抑制効果を有するため、ヒドラジ
ンを注入することにより、後段のRO膜分離装置7のR
O膜に菌が付着してゲル層が形成されるのを防止するこ
とができ、膜劣化やフラックスの低下の問題が解消され
る。Since hydrazine has the effect of inhibiting the growth of bacteria, by injecting hydrazine, the R
It is possible to prevent bacteria from adhering to the O membrane and forming a gel layer, and the problems of membrane deterioration and flux reduction are resolved.
従って、このようにヒドラジンを注入した生物処理水は
、次いでRO膜分離装置に供給されると、効率的に膜分
離処理され、高水質の超純水を製造することが可能とさ
れる。Therefore, when the biologically treated water into which hydrazine has been injected in this way is then supplied to the RO membrane separation device, it is efficiently subjected to membrane separation treatment, making it possible to produce high-quality ultrapure water.
上記の説明では半導体洗浄工程からの排出水を処理して
超純水に再生するよう構成した例について説明したが、
本発明は、当然ながら、他のプロセスからの回収水処理
設備、あるイハ・王水・井水等から純水を製造するプロ
セス等、その他の各種の設備に適用し得る。In the above explanation, an example was explained in which the water discharged from the semiconductor cleaning process was treated and regenerated into ultrapure water.
Naturally, the present invention can be applied to various other types of equipment, such as equipment for treating water recovered from other processes, and processes for producing pure water from certain aqua regia, well water, etc.
[作用]
純水処理手段から得られる水は、TOC成分や塩順の含
有量が少ないものであり、半導体の洗浄工程等に使用し
得る。しかるに、以上の如く、このままでは微生物が増
殖し易い。そこで、この処理水を更に生物処理槽にて処
理する。[Function] The water obtained from the pure water treatment means has a low content of TOC components and salts, and can be used in semiconductor cleaning steps and the like. However, as mentioned above, microorganisms tend to multiply if left as is. Therefore, this treated water is further treated in a biological treatment tank.
この生物処理槽においては、エネルギー源及び栄養源の
存在下で好気的に生物処理が行なわれ、純水に含まれて
いた微量のTOC成分及び/又はリン成分がほぼ完全に
除去される。In this biological treatment tank, biological treatment is performed aerobically in the presence of an energy source and a nutrient source, and trace amounts of TOC components and/or phosphorus components contained in pure water are almost completely removed.
ところで、先願においては、生物処理槽からの処理水中
に含まれる菌体を分離除去するための菌体分離器を必要
としていたが、本発明においては、生物処理水にヒドラ
ジンを注入することにより、ヒドラジンの菌体増殖抑制
作用のもとに、菌体分離機能を後段の膜分離装置に持た
せる。By the way, the previous application required a bacterial cell separator to separate and remove the bacterial cells contained in the treated water from the biological treatment tank, but in the present invention, by injecting hydrazine into the biological treated water, , the subsequent membrane separation device is provided with a bacterial cell separation function based on the bacterial growth inhibiting effect of hydrazine.
これにより、本発明においては菌体分離器が不要となり
、しかも得られる純水は、微生物の増殖のおそれのない
、極めて(量れた水質のものとなる。As a result, the present invention does not require a microbial cell separator, and the pure water obtained is of extremely high quality with no fear of microbial growth.
[実施例] 以下、実施例について説明する。[Example] Examples will be described below.
実施例1
第1図に示す純水製造装置により、本発明に従ってヒド
ラジンを注入して純水の製造を行なった。Example 1 Using the pure water production apparatus shown in FIG. 1, hydrazine was injected according to the present invention to produce pure water.
なお、RO膜分離装置に供給される原水の水質及び装置
の運転圧は下記の通りとした。The quality of the raw water supplied to the RO membrane separation device and the operating pressure of the device were as follows.
原水水質
菌濃度: 1011cells/miヒドラジン濃度
: 1〜2ppm
pH: a、。Raw water quality Bacteria concentration: 1011 cells/mi Hydrazine concentration: 1-2 ppm pH: a.
運転圧=10kg/crn’
この場合において、R○膜透過水量の経過変化を調べ、
結果を第5図に示した。Operating pressure = 10 kg/crn' In this case, examine the change in the amount of water permeated through the R○ membrane over time.
The results are shown in Figure 5.
また、比較のため、ヒドラジンを注入しなかった場合に
ついても、同様にしてRO膜透過水量の変化を調べ、結
果を第5図に示した。For comparison, the change in the amount of water permeated through the RO membrane was similarly investigated in the case where hydrazine was not injected, and the results are shown in FIG.
第5図から明らかなように、ヒドラジン添加の場合と無
添加の場合とでは、通水500時間後の透過水量比は2
:1となっており、ヒドラジンによるフラックス低下の
抑制効果が顕著である。As is clear from Figure 5, the ratio of permeated water amount after 500 hours of water flow is 2 in the case of adding hydrazine and the case of no addition.
:1, and the effect of suppressing flux reduction by hydrazine is remarkable.
[発明の効果コ
以上詳述した通り、本発明の純水製造方法は、生物処理
手段を組み入れ、微生物の増殖反応を利用してTOCi
び/又はリン成分を除去するものであり、TOC及び/
又はリン成分を、低コストで極めて低濃度にまで除去す
ることができる。しかも、生物処理により生産される菌
体の増殖をヒドラジンにより効率的に抑制し、菌体によ
る膜面のゲル層形成、膜劣化を防止することができるた
め、菌体分離器が不要となる。[Effects of the Invention] As detailed above, the method for producing pure water of the present invention incorporates biological treatment means and utilizes the growth reaction of microorganisms to produce TOCi.
It removes TOC and/or phosphorus components.
Alternatively, the phosphorus component can be removed to an extremely low concentration at low cost. Moreover, since the growth of bacterial cells produced by biological treatment can be effectively suppressed by hydrazine, and the formation of a gel layer on the membrane surface by bacterial cells and membrane deterioration can be prevented, a bacterial cell separator is not required.
このため、本発明により製造された純水は、微生物増殖
の要因であるTOC及び/又はリン成分の濃度が極めて
低いことから、微生物の増殖は確実に抑制される。しか
も、設備、設置の軽減が図れ、設備費、保守管理、装置
スペースの面で極めて有利である。Therefore, since the pure water produced according to the present invention has an extremely low concentration of TOC and/or phosphorus components, which are factors for microbial growth, microbial growth is reliably suppressed. Furthermore, the amount of equipment and installation can be reduced, which is extremely advantageous in terms of equipment costs, maintenance management, and equipment space.
従って、本発明によれば、微生物増殖に起因するスライ
ムの発生が抑制され、ROあるいはUF膜面等のスライ
ム付着等の各種の機器トラブルが防止される。そして、
RO又はUFの洗浄回数も低減され、装置の運転を円滑
に行ない、効率的な純水製造を実施することができる。Therefore, according to the present invention, the generation of slime due to microbial growth is suppressed, and various equipment troubles such as slime adhesion to the RO or UF membrane surface are prevented. and,
The number of times the RO or UF is cleaned is also reduced, allowing smooth operation of the device and efficient production of pure water.
第1図は本発明の実施に好適な純水製造装置を採用した
純水製造・回収システムを示す系統図、第2図は一般的
な純水製造・回収システムを示す系統図、第3図は先願
に係る生物処理システムを示す系統図、第4図は超純水
のTOC濃度と微生物の増殖速度との関係を示すグラフ
、第5図は実施例1で得られたRO膜透過水量の経時変
化を示すグラフである。
A・・・回収システム、
B・・・純水製造システム、
C・・・前処理システム、
D・・・1次純水システム、
E・・・サブシステム、
F・・・生物処理システム、
4・・・紫外線酸化装置、
7・・・逆浸透膜装置、
9・・・イオン交換装置、
12・・・限外濾過膜装置、
13・・・生物反応槽、
14・・・菌体分離器、
15・・・ヒドラジン槽、
16・・・薬注ポンプ。
代理人 弁理士 重 野 剛第3図
1次純水シヌテムDへ
第4図
−TOC濃度(ppb)
第5図
RO通水時間(h「)Figure 1 is a system diagram showing a pure water production/recovery system employing a pure water production device suitable for carrying out the present invention, Figure 2 is a system diagram showing a general pure water production/recovery system, and Figure 3 is a system diagram showing a general pure water production/recovery system. is a system diagram showing the biological treatment system according to the earlier application, Fig. 4 is a graph showing the relationship between the TOC concentration of ultrapure water and the growth rate of microorganisms, and Fig. 5 is the amount of water permeated through the RO membrane obtained in Example 1. It is a graph showing the change over time. A... Recovery system, B... Pure water production system, C... Pretreatment system, D... Primary pure water system, E... Subsystem, F... Biological treatment system, 4 ... Ultraviolet oxidation device, 7... Reverse osmosis membrane device, 9... Ion exchange device, 12... Ultrafiltration membrane device, 13... Biological reaction tank, 14... Bacterial cell separator , 15... Hydrazine tank, 16... Chemical injection pump. Agent Patent Attorney Tsuyoshi Shigeno Fig. 3 Primary pure water to synutem D Fig. 4 - TOC concentration (ppb) Fig. 5 RO water flow time (h'')
Claims (6)
を製造し、該超純水が使用箇所で使用されて排出される
排水を回収し、該回収水を再び超純水処理システムの原
水とする回収システムを有する超純水製造方法において
、回収水を生物処理し、得られた生物処理水にヒドラジ
ンを注入した後、膜分離装置に供給することを特徴とす
る超純水製造方法。(1) Ultrapure water is produced using an ultrapure water production system equipped with a membrane separation device, the ultrapure water is used at the point of use, the wastewater discharged is collected, and the recovered water is treated as ultrapure water again. In an ultrapure water production method having a recovery system that is used as raw water for the system, the ultrapure water is characterized in that the recovered water is subjected to biological treatment, hydrazine is injected into the obtained biologically treated water, and then the ultrapure water is supplied to a membrane separation device. Production method.
交換樹脂を内蔵したイオン交換塔を備えていることを特
徴とする特許請求の範囲第1項に記載の超純水製造方法
。(2) The method for producing ultrapure water according to claim 1, wherein the ultrapure water treatment system includes a membrane separation device and an ion exchange column containing an ion exchange resin.
あることを特徴とする特許請求の範囲第1項又は第2項
に記載の超純水製造方法。(3) The method for producing ultrapure water according to claim 1 or 2, wherein the biological treatment is a treatment for removing TOC components from water.
とを特徴とする特許請求の範囲第1項又は第2項に記載
の超純水製造方法。(4) The method for producing ultrapure water according to claim 1 or 2, wherein the biological treatment is a treatment for removing phosphorus from water.
とを特徴とする特許請求の範囲第1項又は第2項に記載
の超純水製造方法。(5) The method for producing ultrapure water according to claim 1 or 2, wherein the biological treatment is a treatment for removing nitrogen from water.
クテリアであることを特徴とする特許請求の範囲第1項
ないし第5項のいずれか1項に記載の超純水製造方法。(6) The method for producing ultrapure water according to any one of claims 1 to 5, wherein the microorganism used for biological treatment is an oligotrophic bacterium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61173084A JPS6331592A (en) | 1986-07-23 | 1986-07-23 | Method for making ultrapure water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61173084A JPS6331592A (en) | 1986-07-23 | 1986-07-23 | Method for making ultrapure water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6331592A true JPS6331592A (en) | 1988-02-10 |
Family
ID=15953910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61173084A Pending JPS6331592A (en) | 1986-07-23 | 1986-07-23 | Method for making ultrapure water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6331592A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585036A1 (en) * | 1992-08-25 | 1994-03-02 | Kurita Water Industries Ltd. | Apparatus for producing ultra-pure water |
US5722442A (en) * | 1994-01-07 | 1998-03-03 | Startec Ventures, Inc. | On-site generation of ultra-high-purity buffered-HF for semiconductor processing |
JP2006021119A (en) * | 2004-07-08 | 2006-01-26 | Chuden Kankyo Technos Co Ltd | Fluid treatment method and fluid treatment system |
JP2012096187A (en) * | 2010-11-04 | 2012-05-24 | Sumitomo Metal Mining Co Ltd | Ultrapure water production system, method for washing the same, and method for producing ultrapure water using the same |
JP2016172207A (en) * | 2015-03-16 | 2016-09-29 | 栗田工業株式会社 | Membrane treatment method and membrane treatment device of organic substance-containing water |
WO2019181254A1 (en) * | 2018-03-23 | 2019-09-26 | 栗田工業株式会社 | Pure water producing device |
-
1986
- 1986-07-23 JP JP61173084A patent/JPS6331592A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585036A1 (en) * | 1992-08-25 | 1994-03-02 | Kurita Water Industries Ltd. | Apparatus for producing ultra-pure water |
US5385664A (en) * | 1992-08-25 | 1995-01-31 | Kurita Water Industries Ltd. | Apparatus for producing ultrapure water |
US5722442A (en) * | 1994-01-07 | 1998-03-03 | Startec Ventures, Inc. | On-site generation of ultra-high-purity buffered-HF for semiconductor processing |
JP2006021119A (en) * | 2004-07-08 | 2006-01-26 | Chuden Kankyo Technos Co Ltd | Fluid treatment method and fluid treatment system |
JP2012096187A (en) * | 2010-11-04 | 2012-05-24 | Sumitomo Metal Mining Co Ltd | Ultrapure water production system, method for washing the same, and method for producing ultrapure water using the same |
JP2016172207A (en) * | 2015-03-16 | 2016-09-29 | 栗田工業株式会社 | Membrane treatment method and membrane treatment device of organic substance-containing water |
WO2019181254A1 (en) * | 2018-03-23 | 2019-09-26 | 栗田工業株式会社 | Pure water producing device |
JP2019166473A (en) * | 2018-03-23 | 2019-10-03 | 栗田工業株式会社 | Pure water production apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1274925A (en) | Removing selenium from water | |
Urbain et al. | Membrane bioreactor: a new treatment tool | |
JP3468784B2 (en) | Ultrapure water production equipment | |
JP5194771B2 (en) | Biological treatment method and apparatus for water containing organic matter | |
CN101219842A (en) | Technique and equipment for recycling leachate of garbage | |
JP5194783B2 (en) | Biological treatment method and apparatus for water containing organic matter | |
Enzminger et al. | Treatment of landfill leachates | |
JP3227863B2 (en) | Ultrapure water production method | |
EP1346956A1 (en) | Process for sludge treatment using sludge pretreatment and membrane bioreactor | |
JPH11114596A (en) | Production of ultrapure water and ultrapure water producing device | |
Wisniewski et al. | Use of a membrane bioreactor for denitrification of brine from an electrodialysis process | |
EP1807361B1 (en) | Anoxic biological reduction system and method | |
JP3721871B2 (en) | Production method of ultra pure water | |
JPS61111198A (en) | Apparatus for producing ultra-pure water | |
JP2004501739A (en) | Wastewater treatment method with additional sludge treatment by ozone treatment and plant thereof | |
JPS6331592A (en) | Method for making ultrapure water | |
JPS6336890A (en) | Apparatus for producing high-purity water | |
JP2887284B2 (en) | Ultrapure water production method | |
JP3433601B2 (en) | Wastewater recovery and purification equipment | |
KR101054613B1 (en) | Apparatus for waste water single reactor composed of biological and membrane process | |
JPS61111192A (en) | Method for suppressing propagation of microorganism in water | |
KR100327095B1 (en) | Method for nitrate removal in ground water | |
TWI411584B (en) | Method and apparatus for biologically treating organic matter-containing water | |
JPH0634996B2 (en) | Biological treatment method of water containing trace organic matter | |
JP2554687B2 (en) | Biological nitrogen removal method |