JP2006021119A - Fluid treatment method and fluid treatment system - Google Patents

Fluid treatment method and fluid treatment system Download PDF

Info

Publication number
JP2006021119A
JP2006021119A JP2004201301A JP2004201301A JP2006021119A JP 2006021119 A JP2006021119 A JP 2006021119A JP 2004201301 A JP2004201301 A JP 2004201301A JP 2004201301 A JP2004201301 A JP 2004201301A JP 2006021119 A JP2006021119 A JP 2006021119A
Authority
JP
Japan
Prior art keywords
fluid
toc
desulfurization
index value
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004201301A
Other languages
Japanese (ja)
Inventor
Atsushi Bonshihara
温 盆子原
Masashi Shimooka
政司 下岡
Shinya Maki
慎也 牧
Takashi Yamaguchi
隆司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuden Kankyo Technos Co Ltd
Original Assignee
Chuden Kankyo Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuden Kankyo Technos Co Ltd filed Critical Chuden Kankyo Technos Co Ltd
Priority to JP2004201301A priority Critical patent/JP2006021119A/en
Publication of JP2006021119A publication Critical patent/JP2006021119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid treatment method capable of eliminating the problem of sludge, a malodor, or the like, caused by microorganisms in a fluid to be treated and the clogging of a separation membrane due to the sludge, and a fluid treatment system. <P>SOLUTION: High salt type wastewater the pollution degree, of which is less than that of desulfurization wastewater discharged from the absorbing column (1) of a coal steam power plant, is added to the desulfurization wastewater to dilute the same so that an index value showing the pollution degree of the desulfurization wastewater becomes a value for suppressing the growth of microorganisms. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体を再利用又は放流等するために処理する流体処理方法及び流体処理システムに関する。   The present invention relates to a fluid processing method and a fluid processing system for processing fluid for reuse or discharge.

火力発電所において燃料として用いられる石炭や石油には、硫黄分や窒素分が含まれているため、これらの含有量が多ければ、燃焼時に出る排煙には硫黄酸化物や窒素酸化物が多量に含まれることになる。従って、火力発電所では、機器の腐食や環境保全を十分考慮した設備設計が要求される。例えば、石炭燃焼時に出る排煙は、排煙脱硝装置、電気式集塵装置及び排煙脱硫装置によって、窒素酸化物、煤塵及び硫黄酸化物をそれぞれ取り除いた後、煙突から排出されている。   Coal and petroleum used as fuels in thermal power plants contain sulfur and nitrogen, so if these contents are high, there is a large amount of sulfur oxides and nitrogen oxides in the flue gas emitted during combustion. Will be included. Therefore, thermal power plants require equipment design that fully considers equipment corrosion and environmental protection. For example, flue gas generated during coal combustion is discharged from a chimney after removing nitrogen oxide, soot and sulfur oxide by a flue gas denitration device, an electric dust collector and a flue gas desulfurization device, respectively.

硫黄酸化物を取り除く脱硫方法としては、湿式石灰石膏法と呼ばれる方法が広く用いられており、これは、排煙から煤塵を取り除いた後、排煙中の硫黄酸化物と石灰石混合液とを反応させる吸収塔にて硫黄酸化物を石膏として取り出すスーツ分離型と、除塵・脱硫を吸収塔にて同時に行うスーツ混合型の2つの方式に分類される。いずれの脱硫方法においても、吸収塔にて排煙中の硫黄酸化物と石灰石混合液とを反応させた後は、石灰石混合液の廃液である脱硫排水を放流可能な状態に処理する必要がある。脱硫排水の処理対象成分は、懸濁物質、重金属、フッ素、シリカ、カルシウム、マグネシウム、酸化性物質、及び化学的酸素要求量(COD)と呼ばれる水質指標値の対象となる還元性物質(例えば、亜硫酸イオンやマンガンイオン)などである。CODは、脱硫排水中の有機物を酸化剤によって酸化するときに消費される酸素量で表される。   As a desulfurization method for removing sulfur oxides, a method called wet lime gypsum method is widely used. This method removes soot and dust from the flue gas and then reacts the sulfur oxide in the flue gas with the limestone mixture. It is classified into two types: a suit separation type in which sulfur oxide is extracted as gypsum in the absorption tower and a suit mixing type in which dust removal and desulfurization are performed simultaneously in the absorption tower. In any desulfurization method, after the sulfur oxide in the flue gas and the limestone mixed liquid are reacted in the absorption tower, it is necessary to treat the desulfurized effluent, which is the waste liquid of the limestone mixed liquid, to a state in which it can be discharged. . Components to be treated in desulfurization effluent include suspended substances, heavy metals, fluorine, silica, calcium, magnesium, oxidizing substances, and reducing substances that are subject to water quality index values called chemical oxygen demand (COD) (for example, Sulfite ion or manganese ion). COD is represented by the amount of oxygen consumed when the organic matter in the desulfurization waste water is oxidized by an oxidizing agent.

従来の脱硫排水処理では、凝集沈殿、ろ過、及びCOD対象物質の吸着という流れで処理を行っているが、凝集沈殿及びろ過の過程では、脱硫排水中に分散している固体粒子を凝集剤によって集め、より大きい集合体(フロック)を形成させた後、これを静置状態にして自然沈降させ、底面に敷き詰めた砂などによってろ過するため、非常に大きな設備スペースを要するという問題点があった。   In conventional desulfurization wastewater treatment, treatment is performed in the flow of coagulation sedimentation, filtration, and adsorption of COD target substances. In the process of coagulation sedimentation and filtration, solid particles dispersed in the desulfurization wastewater are treated with a flocculant. After collecting and forming a larger aggregate (floc), it was allowed to stand still, allowed to settle naturally, and filtered through sand spread on the bottom, which required a very large facility space. .

そこで近年、省スペース化、省設備化、処理水の水質向上、及び薬品使用量の大幅な削減を可能とする固液分離膜を用いた処理システムの普及が進んでいる。この分離膜としては、数ミクロン以上の粒子及び懸濁物質等を捕捉可能な精密ろ過膜(MF膜)が広く用いられている。また、分離膜を用いた処理システムでは、脱硫排水に凝集剤や中和剤を加えて十分反応させた後、これを分離膜にて直接ろ過することができるため、固液分離に要する処理時間の短縮及び設備スペースの大幅な削減を可能にするとともに、凝集剤や中和剤等の薬品使用量を従来の約30%にまで削減することができる。   Accordingly, in recent years, treatment systems using solid-liquid separation membranes that can save space, save equipment, improve the quality of treated water, and significantly reduce the amount of chemicals used have become widespread. As this separation membrane, a microfiltration membrane (MF membrane) capable of capturing particles of several microns or more, suspended substances, and the like is widely used. Moreover, in a treatment system using a separation membrane, a flocculant or neutralizing agent is added to the desulfurization effluent and allowed to react sufficiently, and then this can be directly filtered through the separation membrane, so the treatment time required for solid-liquid separation The amount of chemicals used such as a flocculant and a neutralizing agent can be reduced to about 30% of the conventional amount.

しかしながら、分離膜を用いた処理システムには、運転時間の経過に伴って分離膜の膜目が目詰まりを起こすという問題がある。分離膜の目詰まりは、脱硫排水の処理能力を低下させるため、処理し切れなくなった脱硫排水を多目的タンク等に一時的に貯留せざるを得ない事態に至らしめることもあり、発電所にとっては重大な問題である。   However, a processing system using a separation membrane has a problem that the membrane of the separation membrane becomes clogged as the operation time elapses. The clogging of the separation membrane reduces the capacity of the desulfurization wastewater, which may lead to a situation where the desulfurization wastewater that cannot be treated has to be temporarily stored in a multipurpose tank, etc. It is a serious problem.

従来、分離膜の目詰まりを解消するためには、定期的に脱硫排水又は工業用水を逆流させ、目詰まりの原因である分離膜に付着した汚泥を洗浄する、いわゆる逆洗が行われている。逆洗によっても目詰まりが解消しない場合には、化学薬品を用いた逆洗(以下「薬洗」という。)が行われる。一般的な薬洗では、薬品としてアルカリ液や酸液が用いられたり、これらの液を併用することもある。具体的には、ポリ塩化アルミ(PAC)、硫酸礬土(ばんど)、水酸化マグネシウム、塩化第二鉄、又は消石灰等を凝集剤又は中和剤として用いた場合、脱硫排水の濃縮時に発生する懸濁物質は、アルカリ又は酸によって溶解することができるため、水酸化ナトリウム等のアルカリや、塩酸等の酸を用いて薬洗を行うことが多い。また、水酸化ナトリウムは、シリカを溶解するのに必要な温度(例えば、40〜60℃)にまで温め、酸は、その他の金属類を溶解するために常温で又は適度に加温して用いられる。薬洗実施後に生ずる洗浄廃液は、別途処理された後に放流されるが、放流水に薬品が混入するおそれもあるため、環境保全を考慮すると、できるだけ薬洗頻度を低く抑える必要がある。   Conventionally, in order to eliminate clogging of separation membranes, so-called backwashing has been performed in which desulfurization waste water or industrial water is periodically flowed back to wash the sludge adhering to the separation membranes causing clogging. . If clogging is not resolved even by backwashing, backwashing using chemicals (hereinafter referred to as “medicine washing”) is performed. In general chemical washing, an alkaline solution or an acid solution may be used as a chemical, or these solutions may be used in combination. Specifically, when polyaluminum chloride (PAC), sulfated clay (band), magnesium hydroxide, ferric chloride, or slaked lime is used as a flocculant or neutralizer, it is generated when desulfurization wastewater is concentrated Since the suspended substance to be dissolved can be dissolved by an alkali or an acid, it is often washed with an alkali such as sodium hydroxide or an acid such as hydrochloric acid. In addition, sodium hydroxide is heated to a temperature necessary for dissolving silica (for example, 40 to 60 ° C.), and an acid is used at room temperature or appropriately heated to dissolve other metals. It is done. The washing waste liquid generated after the chemical washing is discharged after being treated separately. However, since chemicals may be mixed into the discharged water, it is necessary to keep the chemical washing frequency as low as possible in consideration of environmental conservation.

また、発電所における分離膜の薬洗には、大きなコストが掛かるため、コスト削減の面からも薬洗頻度の低減が望まれている。1つの発電プラントにおいて、薬洗に要するコストは、洗浄作業代、薬品代及び薬品を流すの用いる工業用水代などである。更に、薬洗後の洗浄廃液を処理するための設備費や薬剤費にも別途大きなコストが掛かっている。   Moreover, since the chemical washing of the separation membrane in a power plant requires a large cost, it is desired to reduce the frequency of chemical washing from the viewpoint of cost reduction. In one power plant, the cost required for chemical washing is a cleaning work fee, a chemical fee, and an industrial water fee used for flowing chemicals. Furthermore, the equipment cost and the chemical cost for processing the washing waste liquid after the chemical washing also have a large cost.

上記のように、分離膜の薬洗には種々の問題があるが、従来、分離膜の目詰まりを解消することができる薬洗以外の方法がなかったため、分離膜が目詰まりを起こし、逆洗によっても解消されない場合には、薬洗を実施せざるを得ないという状況である。   As described above, there are various problems with chemical washing of the separation membrane. However, since there has been no method other than chemical washing that can eliminate clogging of the separation membrane, the separation membrane is clogged, and the reverse If the problem cannot be solved by washing, it is necessary to carry out chemical washing.

下記非特許文献1には、定期的な逆洗と月一回程度の薬洗によって、分離膜の長寿命化を図ることができる技術が記載されている。図5は、この技術において分離膜として用いられているチューブ状の精密ろ過膜(MF膜)の断面図であり、(a)は脱硫排水をろ過するときの状態、(b)は逆洗時の状態を示す。   Non-Patent Document 1 below describes a technique that can extend the life of a separation membrane by periodic backwashing and chemical washing once a month. FIG. 5 is a cross-sectional view of a tubular microfiltration membrane (MF membrane) used as a separation membrane in this technology. (A) is a state when filtering desulfurization wastewater, and (b) is during backwashing. Shows the state.

この技術では、脱硫排水は、図5(a)に示すように、チューブ状のMF膜51内を一定流速で流れており、MF膜51内を流れる脱硫排水の一部がろ過されて膜外部へ放出されることにより、MF膜の内面には汚泥52が捕捉され、残りの排水は系統内を循環して再びMF膜51内に流れ込むようになっている。このチューブ状のMF膜51は、時間の経過とともに膜内面に蓄積した汚泥52を脱硫排水によって押し流すことにより、汚泥蓄積の進行を抑制できるという利点を有している。   In this technique, as shown in FIG. 5 (a), the desulfurization waste water flows through the tube-like MF membrane 51 at a constant flow rate, and a part of the desulfurization waste water flowing in the MF membrane 51 is filtered to remove the outside of the membrane. As a result, the sludge 52 is captured on the inner surface of the MF membrane, and the remaining waste water circulates in the system and flows into the MF membrane 51 again. This tubular MF membrane 51 has an advantage that the progress of sludge accumulation can be suppressed by flushing the sludge 52 accumulated on the inner surface of the membrane with desulfurization drainage with the passage of time.

この技術では、MF膜51の逆洗は、15〜60分間隔で行われ、具体的には、図5(b)に示すように、膜の外側から内側に向って脱硫排水又は工業用水を送り込み、膜内面に蓄積した汚泥52を剥離させる。一方、逆洗によって目詰まりが解消しない場合には、原則として月一回の頻度で薬洗を行っている。   In this technique, backwashing of the MF membrane 51 is performed at intervals of 15 to 60 minutes. Specifically, as shown in FIG. 5B, desulfurization waste water or industrial water is supplied from the outside to the inside of the membrane. Then, the sludge 52 accumulated on the inner surface of the membrane is peeled off. On the other hand, if clogging is not resolved by backwashing, as a rule, chemical washing is performed once a month.

また、この文献は、MF膜51の目詰まりの進行を遅らせるには、脱硫排水に消石灰を添加することで生成される石膏の粒径の適正化と汚泥生成防止のための懸濁物質濃度の管理が重要であると述べるとともに、定期的な逆洗及び薬洗を繰り返すことによって、MF膜51の長寿命化を図っている。   In addition, in this document, in order to delay the progress of the clogging of the MF membrane 51, the suspended solids concentration for optimizing the particle size of the gypsum produced by adding slaked lime to the desulfurization wastewater and preventing the generation of sludge. In addition to stating that management is important, the life of the MF film 51 is extended by repeating regular backwashing and chemical washing.

社団法人火力原子力発電技術協会発行,会誌「火力原子力発電,1998年12月号」,排水処理設備における膜の長寿命化(藤田裕之、佐々木湧、近沢清仁、広田守之、高土居忠、佐藤武)Published by The Thermal Nuclear Power Technology Association, Journal “Thermal Nuclear Power Generation, December 1998”, Extending membrane life in wastewater treatment facilities (Hiroyuki Fujita, Yu Sasaki, Kiyohito Chikazawa, Moriyuki Hirota, Tadashi Takai, Takeshi Sato )

しかしながら、上記の技術によれば、MF膜の長寿命化を図るためには、月一回程度の頻度で薬洗を繰り返すことが必須であり、環境保全の面及びコストの面を考慮すると、好ましい方法とはいえない。   However, according to the above technology, in order to extend the life of the MF membrane, it is essential to repeat the chemical washing at a frequency of about once a month. Considering the aspects of environmental conservation and cost, It is not a preferred method.

一方、分離膜の目詰まりの原因を解明するために各種の実験や分析を行った結果、分離膜の目詰まりは、硫黄分の少ない低硫黄炭を燃焼したときに生ずる脱硫排水を処理した場合に急速に進行することがわかった。この結果を受けて更に分析を進めた結果、硫黄分の多い高硫黄炭を燃焼したときに生ずる脱硫排水の汚染の度合を表す全有機性炭素量(TOC)、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、全炭素量(TC)、全窒素量(TN)、及びアンモニア性窒素などの指標値は、微生物の生育を抑制する値(例えば、TOCでは10ppm、BODでは20ppm、CODでは21ppm、TNでは38mgN/L、アンモニア性窒素では38mgN/L)であるのに対し、低硫黄炭燃焼時の脱硫排水におけるこれらの値は、微生物が増殖するのに十分な値(例えば、TOC=20ppm)を示していることがわかった。   On the other hand, as a result of various experiments and analyzes to clarify the cause of clogging of separation membranes, clogging of separation membranes occurs when desulfurization wastewater generated when burning low sulfur coal with low sulfur content It turns out to progress rapidly. As a result of further analysis based on this result, total organic carbon (TOC) and biochemical oxygen demand (BOD) representing the degree of pollution of desulfurization effluent generated when high sulfur coal with a high sulfur content is burned. ), Chemical oxygen demand (COD), total carbon content (TC), total nitrogen content (TN), and ammonia nitrogen are index values that inhibit the growth of microorganisms (for example, 10 ppm for TOC, BOD 20ppm for COD, 21ppm for COD, 38mgN / L for TN, and 38mgN / L for ammonia nitrogen), these values in the desulfurization effluent during low-sulfur coal combustion are values sufficient for the growth of microorganisms. (For example, TOC = 20 ppm).

TOCは、試料に含まれる有機物中の炭素量、
BODは、試料を20℃に維持して密閉状態で5日間放置した場合における微生物による酸素消費量、
TCは、試料に含まれる全有機性炭素量(TOC)と無機性炭素量(IC)の和、
TNは、試料に含まれる有機及び無機(例えば、アンモニア態、亜硝酸態、及び硝酸態)の窒素化合物の総量、
及び、アンモニア性窒素は、上記アンモニア態の無機性窒素化合物の量
で表される。
TOC is the amount of carbon in the organic matter contained in the sample,
BOD is the oxygen consumption by microorganisms when the sample is kept at 20 ° C. and left in a sealed state for 5 days,
TC is the sum of total organic carbon content (TOC) and inorganic carbon content (IC) contained in the sample,
TN is the total amount of organic and inorganic (for example, ammonia, nitrite, and nitrate) nitrogen compounds contained in the sample,
And ammonia nitrogen is represented by the quantity of the said inorganic nitrogen compound of an ammonia state.

また、低硫黄炭と高硫黄炭は、発電所毎に定義は異なるが、例えば、燃焼時に出る排煙のSO濃度が300ppmとなる石炭に含まれる硫黄分の0.4%に相当する量を基準にして分類することができる。 The amount low sulfur coal and high sulfur coal is defined is different for each plant, for example, equivalent to 0.4% of the sulfur content is SO 2 concentration in the flue gas exiting during combustion contained in coal to be 300ppm Can be classified on the basis of.

上記のような結果が得られたことから、高硫黄炭燃焼時及び低硫黄炭燃焼時の脱硫排水をそれぞれ化学分析したところ、高硫黄炭燃焼時の脱硫排水には、微生物の存在は殆ど認められなかった(例えば、硫黄酸化細菌が約50Cells/mm)が、低硫黄炭燃焼時の脱硫排水では、微生物の爆発的な増殖(例えば、硫黄酸化細菌が30,000Cells/mm)が認められた。尚、“Cells”は、細胞数を表している。脱硫排水に含まれる微生物の種類は、硫黄酸化細菌のほか、亜硝酸酸化細菌その他一般細菌であった。更に、低硫黄炭燃焼時の脱硫排水を顕微鏡で観察したところ、上記硫黄酸化細菌(死骸含む)などが多糖類を作り出し、分離膜の膜目に蓄積される汚泥と同様のヘドロ状の物質を形成していることがわかった。 Since the above results were obtained, chemical analysis of the desulfurization effluent during high-sulfur coal combustion and low-sulfur coal combustion showed almost no microorganisms in the desulfurization effluent during high-sulfur coal combustion. However, explosive growth of microorganisms (for example, 30,000 cells / mm 3 for sulfur-oxidizing bacteria) was observed in the desulfurization effluent during low-sulfur coal combustion, for example (approximately 50 Cells / mm 3 for sulfur-oxidizing bacteria). It was. “Cells” represents the number of cells. The types of microorganisms contained in the desulfurization effluent were sulfur-oxidizing bacteria, nitrite-oxidizing bacteria and other general bacteria. Furthermore, when the desulfurization effluent during low-sulfur coal combustion was observed with a microscope, the above sulfur-oxidizing bacteria (including dead bodies) produced polysaccharides, and sludge-like substances similar to sludge accumulated in the membranes of the separation membrane were found. It was found that it was formed.

以上より、分離膜の目詰まりは、脱硫排水中で増殖する微生物に起因している可能性が高いという見地が得られたため、脱硫排水中での微生物の増殖を抑制する、即ち脱硫排水のTOCその他の指標値を微生物の生育を抑制する値に維持できれば、分離膜の目詰まりを防止することができると考えられる。更に、これにより、逆洗による処理業務の停止、薬洗に関わるコストや環境保全の問題も解消することができる。   From the above, since it was highly possible that clogging of the separation membrane was caused by microorganisms growing in the desulfurization effluent, the growth of microorganisms in the desulfurization effluent was suppressed, that is, the TOC of the desulfurization effluent. If other index values can be maintained at values that suppress the growth of microorganisms, it is considered that clogging of the separation membrane can be prevented. Furthermore, this makes it possible to solve problems related to the suspension of processing operations due to backwashing, costs related to chemical washing, and environmental conservation.

更に、上記のような固液分離膜は、化学、医療、食品などの各種分野にて排水処理等に用いられており、上記脱硫排水処理システムにおける分離膜と同様に目詰まりの問題が生じている。   Furthermore, the solid-liquid separation membrane as described above is used for wastewater treatment in various fields such as chemistry, medicine, food, etc., and clogging problems occur as in the case of the separation membrane in the desulfurization wastewater treatment system. Yes.

これらのほかにも、処理対象流体中で微生物が増殖すると、悪臭の原因になるといった問題もある。   In addition to these, when microorganisms grow in the fluid to be treated, there is also a problem that a bad odor is caused.

本発明は、以上の状況に鑑みてなされたものであり、処理対象流体中の微生物に起因する汚泥や悪臭などの問題、更にはその汚泥に因る分離膜の目詰まりを解消することができる流体処理方法及び流体処理システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and can solve problems such as sludge and bad odor caused by microorganisms in the fluid to be treated, as well as clogging of the separation membrane caused by the sludge. An object is to provide a fluid treatment method and a fluid treatment system.

本発明の流体処理方法は、微生物を生育させる成分を含む処理対象流体に該流体より汚染度の小さい別の流体を加えて、該処理対象流体の汚染の度合を表す指標値が微生物の生育を抑制する値になるように希釈することを特徴とする。   In the fluid treatment method of the present invention, another fluid having a lower pollution level than the fluid to be treated is added to the fluid to be treated containing a component for growing the microorganism, and the index value indicating the degree of contamination of the fluid to be treated is used to increase the growth of the microorganism. It dilutes so that it may become the value which suppresses, It is characterized by the above-mentioned.

本発明の具体的態様では、前記処理対象流体を希釈した後、固液分離膜でろ過する。   In a specific aspect of the present invention, the process target fluid is diluted and then filtered through a solid-liquid separation membrane.

前記指標値の具体例は、全有機性炭素量(TOC)、化学的酸素要求量(COD)、全酸素要求量(TOD)、全炭素量(TC)、生物化学的酸素要求量(BOD)、全窒素量(TN)、又はアンモニア性窒素である。   Specific examples of the index values include total organic carbon (TOC), chemical oxygen demand (COD), total oxygen demand (TOD), total carbon (TC), and biochemical oxygen demand (BOD). , Total nitrogen (TN), or ammoniacal nitrogen.

また、前記処理対象流体の具体例は、脱硫排水である。   Moreover, the specific example of the said process target fluid is desulfurization waste_water | drain.

更に、前記別の流体の具体例は、火力発電所等のプラントから出る排水である。   Furthermore, a specific example of the another fluid is waste water from a plant such as a thermal power plant.

本発明の流体処理システムは、微生物を生育させる成分を含む処理対象流体の汚染の度合を表す指標値を測定する水質指標値測定手段と、該水質指標値測定手段が測定した指標値及び前記処理対象流体の流量に基づいて、該指標値が微生物の生育を抑制する値になるように、該処理対象流体に別の流体を供給する流量制御手段とを備えたことを特徴とする。   The fluid treatment system of the present invention includes a water quality index value measuring means for measuring an index value representing the degree of contamination of a treatment target fluid containing a component for growing microorganisms, the index value measured by the water quality index value measuring means, and the treatment And a flow rate control means for supplying another fluid to the processing target fluid so that the index value becomes a value that suppresses the growth of microorganisms based on the flow rate of the target fluid.

本発明の具体的態様では、前記別の流体で希釈された処理対象流体をろ過する固液分離膜を備えている。   In a specific aspect of the present invention, a solid-liquid separation membrane for filtering the processing target fluid diluted with the other fluid is provided.

前記指標値の具体例は、全有機性炭素量(TOC)、化学的酸素要求量(COD)、全酸素要求量(TOD)、全炭素量(TC)、生物化学的酸素要求量(BOD)、全窒素量(TN)、又はアンモニア性窒素である。   Specific examples of the index values include total organic carbon (TOC), chemical oxygen demand (COD), total oxygen demand (TOD), total carbon (TC), and biochemical oxygen demand (BOD). , Total nitrogen (TN), or ammoniacal nitrogen.

また、前記処理対象流体の具体例は、脱硫排水である。   Moreover, the specific example of the said process target fluid is desulfurization waste_water | drain.

更に、前記別の流体の具体例は、火力発電所等のプラントから出る排水である。   Furthermore, a specific example of the another fluid is waste water from a plant such as a thermal power plant.

本発明の流体処理方法によれば、処理対象流体を希釈することにより、汚染の度合が小さくなり、処理対象流体中での微生物の生育・増殖を抑制することができる。これにより、微生物に起因する汚泥や悪臭の発生を防ぐことができる。   According to the fluid processing method of the present invention, the degree of contamination is reduced by diluting the processing target fluid, and the growth and proliferation of microorganisms in the processing target fluid can be suppressed. Thereby, generation | occurrence | production of the sludge and malodor resulting from microorganisms can be prevented.

或いは、処理対象流体を希釈した後にろ過することにより、微生物に起因する汚泥が分離膜の膜目に蓄積するのを防止することができるため、分離膜の目詰まりを簡単且つ低コストで解消することができる。更に、従来の固液分離膜を用いた流体処理方法(例えば、脱硫排水処理方法)においては、逆洗中は処理を一時停止しなければないことから、処理水量はできる限り少ない方が望ましい点、及び分離膜の目詰まりは処理対象流体中の微生物に因ることが解明されていなかった点から、上記のように、処理対象流体に別の流体を加えて希釈するという方法には到底想像し得なかったが、本方法を適用することにより逆洗を行う必要がなくなったため、処理対象流体に別の流体を加えるという簡単な工程を行うだけで、分離膜の目詰まりを防止することが可能になる。   Alternatively, it is possible to prevent clogging of the separation membrane easily and at low cost because it is possible to prevent sludge caused by microorganisms from accumulating in the membrane of the separation membrane by filtering after diluting the fluid to be treated. be able to. Furthermore, in a conventional fluid treatment method using a solid-liquid separation membrane (for example, a desulfurization wastewater treatment method), since the treatment must be temporarily stopped during backwashing, it is desirable that the amount of treated water is as small as possible. Since the clogging of the separation membrane was not clarified due to the microorganisms in the fluid to be treated, as described above, the method of adding another fluid to the fluid to be treated and diluting it is completely imagined. However, by applying this method, it is no longer necessary to perform backwashing, so clogging of the separation membrane can be prevented only by performing a simple process of adding another fluid to the fluid to be treated. It becomes possible.

また、処理対象流体の汚染の度合を表す指標値としては、全有機性炭素量(TOC)、化学的酸素要求量(COD)、全酸素要求量(TOD)、全炭素量(TC)、生物化学的酸素要求量(BOD)、全窒素量(TN)、又はアンモニア性窒素を用いることができ、このような微生物の育成に関わる指標値を管理することにより、処理対象流体中での微生物の育成・増殖を確実に抑制することができる。   In addition, as index values indicating the degree of contamination of the fluid to be treated, total organic carbon (TOC), chemical oxygen demand (COD), total oxygen demand (TOD), total carbon quantity (TC), biological Chemical oxygen demand (BOD), total nitrogen content (TN), or ammonia nitrogen can be used, and by managing the index values related to the growth of such microorganisms, Breeding and proliferation can be reliably suppressed.

また、排煙脱硫装置等から出る脱硫排水を処理対象流体とすることができるため、これにより、脱硫装置を備えた火力発電所等のプラントでは、逆洗等のメンテナンスを行わずに長期間安定して分離膜を使用することが可能になる。   In addition, desulfurization effluent discharged from flue gas desulfurization equipment, etc. can be used as a treatment target fluid, which makes it possible for plants such as thermal power plants equipped with desulfurization equipment to be stable for a long time without maintenance such as backwashing. Thus, it becomes possible to use a separation membrane.

更に、処理対象流体に加える別の流体として、火力発電所等のプラントから出る排水を採用することにより、上記プラントにおける日々の多量の排水処理に必要な設備スペースやコストを大幅に低減できるとともに、別の流体として工業用水等を別途購入する必要がないため、一層低コストで流体処理を行うことができる。   Furthermore, by adopting wastewater from a plant such as a thermal power plant as another fluid to be added to the fluid to be treated, the equipment space and cost required for daily large-scale wastewater treatment in the plant can be greatly reduced, Since it is not necessary to purchase industrial water separately as a separate fluid, fluid treatment can be performed at a lower cost.

本発明の流体処理システムによれば、処理対象流体を希釈することにより、汚染の度合が小さくなり、処理対象流体中での微生物の生育・増殖を抑制することができる。これにより、微生物に起因する汚泥や悪臭の発生を防ぐことができる。   According to the fluid processing system of the present invention, the degree of contamination is reduced by diluting the processing target fluid, and the growth and proliferation of microorganisms in the processing target fluid can be suppressed. Thereby, generation | occurrence | production of the sludge and malodor resulting from microorganisms can be prevented.

また、別の流体で希釈された処理対象流体をろ過する固液分離膜を備えたことにより、微生物に起因する汚泥が分離膜の膜目に蓄積するのを防止し、分離膜の目詰まりを簡単且つ低コストで解消することができる。   In addition, by providing a solid-liquid separation membrane that filters the fluid to be treated diluted with another fluid, sludge caused by microorganisms is prevented from accumulating on the membrane of the separation membrane, and clogging of the separation membrane is prevented. It can be solved easily and at low cost.

更に、処理対象流体の汚染の度合を表す指標値としては、全有機性炭素量(TOC)、化学的酸素要求量(COD)、全酸素要求量(TOD)、全炭素量(TC)、生物化学的酸素要求量(BOD)、全窒素量(TN)、又はアンモニア性窒素を用いることができ、このような微生物の育成に関わる指標値を管理することにより、処理対象流体中での微生物の育成・増殖を確実に抑制することができる。   Furthermore, the index values indicating the degree of contamination of the fluid to be treated include total organic carbon (TOC), chemical oxygen demand (COD), total oxygen demand (TOD), total carbon quantity (TC), biological Chemical oxygen demand (BOD), total nitrogen content (TN), or ammonia nitrogen can be used, and by managing the index values related to the growth of such microorganisms, Breeding and proliferation can be reliably suppressed.

また、排煙脱硫装置等から出る脱硫排水を処理対象流体とすることができる。   Moreover, the desulfurization drainage discharged | emitted from a flue gas desulfurization apparatus etc. can be made into a process target fluid.

更に、処理対象流体に加える別の流体として、排煙脱硫装置を備えた火力発電所等のプラントから出る排水を採用することにより、上記プラントにおける日々の多量の排水処理に必要な設備スペースやコストを大幅に低減できるとともに、別の流体として工業用水等を別途購入する必要がないため、一層低コストで流体処理を行うことができる。   Furthermore, by adopting wastewater from a plant such as a thermal power plant equipped with flue gas desulfurization equipment as another fluid to be added to the fluid to be treated, the facility space and cost required for daily large-scale wastewater treatment in the above plant In addition, it is not necessary to separately purchase industrial water or the like as a separate fluid, so that fluid treatment can be performed at a lower cost.

図1は、実施例の脱硫排水処理方法を実施するための脱硫排水処理システムを示す。   FIG. 1 shows a desulfurization wastewater treatment system for carrying out the desulfurization wastewater treatment method of the embodiment.

この脱硫排水処理システムは、石炭を燃料とする火力発電所に設けられたシステムの一例であり、脱硫排水を放流可能な状態に処理するため、次のように構成されている。   This desulfurization waste water treatment system is an example of a system provided in a thermal power plant using coal as fuel, and is configured as follows in order to treat the desulfurization waste water into a state in which it can be discharged.

本システムは、
排煙から煤塵を取り除いた後、排煙中の硫黄酸化物と石灰石混合液とを反応させる吸収塔1と、
吸収塔1から出る廃液である脱硫排水を脱水し、硫黄酸化物を石膏として取り出す脱水機2と、
脱硫排水に含まれているマンガンイオンを酸化して不溶性の二酸化マンガンを形成させる酸化槽3と、
上記酸化工程を終えた脱硫排水を貯留する貯槽4と、
貯槽から送られる脱硫排水に凝集剤やpH調整剤等を添加し、脱硫排水中の懸濁物質、重金属、フッ素、シリカ、カルシウム、マグネシウム、酸化性物質、及びCODの対象となる還元性物質などの一部を凝集させる反応槽5と、
反応槽5で凝集した物質の一部を引き抜いて、汚泥を取り出す濃縮槽(図示せず)に送るとともに、後述の固液分離膜でろ過された脱硫排水を受け入れて、再び固液分離膜側へ送る循環槽6と、
脱硫排水をろ過する固液分離膜としてのチューブ状のMF膜を内蔵した複数(例えば、4本)の分離膜ユニット8と、
CODの対象となる還元性物質を活性炭吸着処理する吸着塔9と、
活性炭吸着処理後の脱硫排水を放流可能なpHに調整するpH調整槽10と、
脱硫排水の放流の制御等を行う監視槽11と
を備えている。このシステムでは、吸収塔1から出た脱硫排水は、図の矢印の方向に処理工程を順次進み、放流可能な状態に処理された後、河川や海などに放流される。
This system
After removing the dust from the flue gas, the absorption tower 1 for reacting the sulfur oxide in the flue gas with the limestone mixture,
A dehydrator 2 for dehydrating desulfurization waste water, which is a waste liquid from the absorption tower 1, and taking out sulfur oxide as gypsum;
An oxidation tank 3 that oxidizes manganese ions contained in the desulfurization effluent to form insoluble manganese dioxide;
A storage tank 4 for storing desulfurization effluent after the oxidation step;
Add flocculants, pH adjusters, etc. to desulfurization wastewater sent from storage tanks, suspended substances in desulfurization wastewater, heavy metals, fluorine, silica, calcium, magnesium, oxidizing substances, reducing substances subject to COD, etc. A reaction vessel 5 for agglomerating a part of
A part of the substance aggregated in the reaction tank 5 is drawn out and sent to a concentration tank (not shown) for removing sludge, and desulfurization effluent filtered by a solid-liquid separation membrane described later is received and again on the solid-liquid separation membrane side A circulation tank 6 to be sent to,
A plurality of (for example, four) separation membrane units 8 including a tubular MF membrane as a solid-liquid separation membrane for filtering desulfurization waste water;
An adsorption tower 9 for performing an activated carbon adsorption treatment of a reducing substance to be subjected to COD;
A pH adjusting tank 10 for adjusting the pH of the desulfurized waste water after the activated carbon adsorption treatment to a dischargeable pH;
And a monitoring tank 11 for controlling the desulfurization drainage discharge. In this system, the desulfurization effluent discharged from the absorption tower 1 sequentially proceeds through the treatment process in the direction of the arrow in the figure, is treated in a dischargeable state, and is then discharged into a river or the sea.

また、上記分離膜ユニット8は、例えば、1ユニット当たり178本のチューブ状のMF膜(例えば、内径5〜9mmのもの)を備えた管状体であり、処理対象流体の流入口と流出口は中央部よりも小径(例えば、中央部の内径が約200mmに対して90mm)になっている。そして、MF膜を通過した流体は、各分離膜ユニット8の周面に設けられた排出口(図示せず)から排出され、吸着塔9側へ送られる。   The separation membrane unit 8 is a tubular body having, for example, 178 tubular MF membranes (for example, those having an inner diameter of 5 to 9 mm) per unit, and the inlet and outlet of the processing target fluid are The diameter is smaller than the central portion (for example, the inner diameter of the central portion is 90 mm with respect to about 200 mm). And the fluid which passed MF membrane is discharged | emitted from the discharge port (not shown) provided in the surrounding surface of each separation membrane unit 8, and is sent to the adsorption tower 9 side.

また、このシステムは、系統内を流れる脱硫排水に別の流体を加えて希釈するための具体的手段として、
脱硫排水の汚染の度合を表す指標値としてTOCを測定するTOC測定装置13と、
脱硫排水に加える別の流体として当該発電所の任意の工程から出る高塩系排水を貯留する排水タンク14と、
排水タンク14内の排水の汚染の度合を表す指標値としてTOCを測定するTOC測定装置15と、
各TOC測定装置13,15による測定値及び貯槽4に流入する脱硫排水の流量に基づいて、脱硫排水のTOCが微生物の生育を抑制する値(例えば、TOC=10ppm)になるように、排水タンク14内の高塩系排水を脱硫排水に加える流量制御装置17と
を備えている。
In addition, this system is a specific means for diluting by adding another fluid to the desulfurization effluent flowing in the system,
A TOC measuring device 13 that measures TOC as an index value indicating the degree of contamination of desulfurization waste water;
A drainage tank 14 for storing high-salt drainage from any process of the power plant as another fluid to be added to the desulfurization drainage;
A TOC measuring device 15 that measures TOC as an index value indicating the degree of contamination of drainage in the drainage tank 14;
Based on the measured values by the TOC measuring devices 13 and 15 and the flow rate of the desulfurization drainage flowing into the storage tank 4, the drainage tank so that the TOC of the desulfurization drainage becomes a value that suppresses the growth of microorganisms (for example, TOC = 10 ppm). 14 is provided with a flow rate control device 17 for adding the high-salt drainage in 14 to the desulfurization wastewater.

具体的には、脱硫排水のTOCを測定するTOC測定装置13は、循環槽6と分離膜ユニット8との間に設けることができ、流量制御装置17は、排水タンク14内の高塩系排水を貯槽4へ送るように構成することができる。また、高塩系排水としては、純水装置排水(高塩のもの)、復水脱塩装置排水(高塩)、及び分析室排水などの定常排水や、各種機器(例えば、空気予熱器、クリンカホッパ、ガスガスヒータ、及び煙突など)の洗浄排水、及びボイラの化学洗浄排水などの非定常排水を用いることができる。   Specifically, the TOC measuring device 13 for measuring the TOC of the desulfurized waste water can be provided between the circulation tank 6 and the separation membrane unit 8, and the flow rate control device 17 is a high salt waste water in the drain tank 14. Can be configured to be sent to the storage tank 4. In addition, as high-salt drainage, steady-state drainage such as pure water drainage (high salt), condensate desalination drainage (high salt), and laboratory drainage, and various devices (for example, air preheaters, Unsteady drainage such as cleaning drainage of clinker hopper, gas gas heater, and chimney) and chemical cleaning drain of boiler can be used.

図2は、自動測定式のTOC測定装置13,15の構成を示す。   FIG. 2 shows the configuration of the automatic measurement type TOC measuring devices 13 and 15.

まず、TOCの測定原理について説明する。TOCは、試料(ここでは、脱硫排水又は高塩系排水)を一定酸素濃度のキャリアガスとともに、高温、触媒存在下で燃焼させ、燃焼ガス中の炭酸ガス(CO)濃度を非分散型赤外線分析計(NDIR)で測定し、試料中の有機体炭素濃度を求めることによって得ることができる。有機物の燃焼は、次式で表される。 First, the measurement principle of TOC will be described. The TOC burns a sample (here, desulfurized effluent or high-salt effluent) together with a carrier gas with a constant oxygen concentration in the presence of a catalyst at a high temperature, and the carbon dioxide (CO 2 ) concentration in the combustion gas is non-dispersed infrared It can be obtained by measuring with an analyzer (NDIR) and determining the organic carbon concentration in the sample. The combustion of organic matter is expressed by the following formula.

Figure 2006021119
Figure 2006021119

また、試料中の溶存炭酸ガス、炭酸塩、及び炭酸水素塩などが有する無機炭素(IC)は、次式のように熱分解して炭酸ガスを発生し、TOC測定の妨げになるため、TOC測定装置13,15は、その影響を考慮した構成にするのがよい。炭酸塩の熱分解は、次式で表される。   In addition, the inorganic carbon (IC) contained in the dissolved carbon dioxide, carbonate, bicarbonate, etc. in the sample is pyrolyzed as shown below to generate carbon dioxide, which hinders TOC measurement. The measuring devices 13 and 15 are preferably configured in consideration of the influence. The thermal decomposition of carbonate is expressed by the following formula.

Figure 2006021119
Figure 2006021119

また、重炭酸水素塩の熱分解は、次式で表される。   The thermal decomposition of bicarbonate is represented by the following formula.

Figure 2006021119
Figure 2006021119

次に、TOC測定装置13の具体的構成について説明する。TOC測定装置13は、試料としての脱硫排水のTOCを自動的にモニタリングするための具体的手段として、
キャリアガス中の不純物を取り除くキャリアガス精製部21と、
パージガス中の不純物を取り除くパージガス精製部22と、
キャリアガスを所定の圧力及び流量に設定する流量制御部23と、
パージガスを所定の圧力及び流量に設定する流量制御部24と、
脱硫排水に塩酸又は硝酸などの酸溶液を添加してpH2〜3に調整し、パージガスを通気して無機炭素(IC)を除去するIC除去部25と、
無機炭素(IC)除去のために用いる塩酸又は硝酸などの酸溶液を貯留する酸溶液貯留部26と、
脱硫排水処理システム(図1)の系統内に設けられ、該系統内を流れる脱硫排水をIC除去部25に適量(例えば、30ml/min)送り込む電磁弁27と、
IC除去部25で無機炭素(IC)を除去した脱硫排水を一定量採取し、後述の燃焼部29へ滴下する試料注入部28と、
滴下された脱硫排水を燃焼させ、有機体炭素を酸化してCOを生成させる燃焼部29と、
燃焼ガス中の水分及び粉塵の除去等を行う除湿除塵部30と、
燃焼ガス中のCO濃度を測定するCO検出部(NDIR)31と、
CO検出部31で測定したCO濃度に基づいて、脱硫排水中の有機体炭素濃度を求めるTOC算出部32と、
TOC算出部32で求めたTOCを表す信号を流量制御装置17(図1)へ送る通信部33と
を具備する。
Next, a specific configuration of the TOC measuring device 13 will be described. The TOC measuring device 13 is a specific means for automatically monitoring the TOC of the desulfurization effluent as a sample.
A carrier gas purification unit 21 for removing impurities in the carrier gas;
A purge gas purification unit 22 for removing impurities in the purge gas;
A flow rate controller 23 for setting the carrier gas to a predetermined pressure and flow rate;
A flow rate control unit 24 for setting the purge gas to a predetermined pressure and flow rate;
An IC removal unit 25 for adding an acid solution such as hydrochloric acid or nitric acid to the desulfurization waste water to adjust to pH 2 to 3 and venting purge gas to remove inorganic carbon (IC);
An acid solution storage unit 26 for storing an acid solution such as hydrochloric acid or nitric acid used for removing inorganic carbon (IC);
An electromagnetic valve 27 provided in the system of the desulfurization waste water treatment system (FIG. 1), and sends an appropriate amount (for example, 30 ml / min) of the desulfurization waste water flowing in the system to the IC removal unit;
A sample injection unit 28 that collects a certain amount of desulfurization effluent from which inorganic carbon (IC) has been removed by the IC removal unit 25 and drops it to the combustion unit 29 described later
A combustion unit 29 that burns the dropped desulfurized wastewater and oxidizes organic carbon to generate CO 2 ;
A dehumidifying and dust removing unit 30 for removing moisture and dust in the combustion gas;
A CO 2 detector (NDIR) 31 for measuring the CO 2 concentration in the combustion gas;
Based on the CO 2 concentration measured by the CO 2 detection unit 31, a TOC calculation unit 32 for obtaining the organic carbon concentration in the desulfurization waste water;
And a communication unit 33 that sends a signal representing the TOC obtained by the TOC calculation unit 32 to the flow control device 17 (FIG. 1).

上記燃焼部29は、電気炉、温度調節器、及び電気炉内に設置された触媒充填管で構成されている。   The combustion unit 29 is composed of an electric furnace, a temperature regulator, and a catalyst filling tube installed in the electric furnace.

また、電磁弁27は、制御部(図示せず)によって制御され、操作員からの要求に応じて又は所定の時間間隔(例えば、1時間間隔)で開閉して脱硫排水をIC除去部25へ送るように構成することができる。これにより、脱硫排水のTOCを自動的に測定することができる。排水タンク14内の高塩系排水のTOCを測定するTOC測定装置15の構成も上記と同様である。   The electromagnetic valve 27 is controlled by a control unit (not shown), and opens and closes at a predetermined time interval (for example, 1 hour interval) in response to a request from an operator, and the desulfurized wastewater is sent to the IC removing unit 25. Can be configured to send. Thereby, the TOC of desulfurization waste water can be measured automatically. The configuration of the TOC measuring device 15 that measures the TOC of the high-salt drainage in the drainage tank 14 is also the same as described above.

図3は、脱硫排水のTOCが微生物の生育を抑制する値(例えば、TOC=10ppm)になるように、脱硫排水に加える高塩系排水の流量を制御する流量制御装置17の構成を示す。   FIG. 3 shows a configuration of a flow rate control device 17 that controls the flow rate of high-salt wastewater added to the desulfurization waste water so that the TOC of the desulfurization waste water becomes a value that suppresses the growth of microorganisms (for example, TOC = 10 ppm).

この流量制御装置17は、上記の機能を実現するための具体的手段として、
脱硫排水処理システム(図1)に備えられた2つのTOC測定装置13,15からの信号を受信する通信部41と、
貯槽4に流入する脱硫排水の流量(例えば、ポンプ容量)など、高塩系排水の供給量を求めるのに必要な各種データを入力する入力部(例えば、キーボードやタッチパネルなど)42と、
各TOC測定装置13,15からの信号及び入力部より入力されたデータを格納する格納部としてのメモリ43と、
各TOC測定装置13,15からの信号及び貯槽4に流入する脱硫排水の流量に基づいて、脱硫排水のTOCを微生物の生育を抑制する値(例えば、TOC=10ppm)にするために該脱硫排水に加えるべき高塩系排水の流量を求める制御部44と、
排水タンク14内の高塩系排水を貯槽4へ供給するモータ駆動式のポンプ45と、
制御部44で求めた流量に基づいて、当該流量の高塩系排水を貯槽4へ供給するため、ポンプ45を駆動するモータの回転数を制御するモータドライバ46と
を備えている。
The flow rate control device 17 is a specific means for realizing the above function,
A communication unit 41 for receiving signals from the two TOC measuring devices 13 and 15 provided in the desulfurization waste water treatment system (FIG. 1);
An input unit (for example, a keyboard, a touch panel, etc.) 42 for inputting various data necessary for obtaining the supply amount of high-salt drainage, such as the flow rate (for example, pump capacity) of the desulfurization wastewater flowing into the storage tank 4;
A memory 43 as a storage unit for storing signals from the TOC measuring devices 13 and 15 and data input from the input unit;
Based on the signals from the respective TOC measuring devices 13 and 15 and the flow rate of the desulfurization wastewater flowing into the storage tank 4, the desulfurization wastewater is set to a value that suppresses the growth of microorganisms (for example, TOC = 10 ppm). A control unit 44 for determining the flow rate of high-salt drainage to be added to
A motor-driven pump 45 for supplying high-salt drainage in the drainage tank 14 to the storage tank 4;
A motor driver 46 that controls the number of revolutions of the motor that drives the pump 45 is provided in order to supply the high-salt drainage at the flow rate to the storage tank 4 based on the flow rate obtained by the control unit 44.

また、微生物の生育に必要なTOCの値は、入力部42によって予め入力しておくことができるし、制御部44又はメモリ43にモニタを接続すれば、制御部44による演算結果、即ち貯槽4へ供給中の高塩系排水の流量を監視することもできる。   Further, the TOC value necessary for the growth of microorganisms can be input in advance by the input unit 42. If a monitor is connected to the control unit 44 or the memory 43, the calculation result by the control unit 44, that is, the storage tank 4 It is also possible to monitor the flow rate of high-salt wastewater being supplied to

図4は、流量制御装置17による高塩系排水の供給制御フローを示す。   FIG. 4 shows a supply control flow of high-salt drainage by the flow rate control device 17.

まず、排水タンク14内の高塩系排水のTOCを、TOC測定装置15で測定する(ステップ[以下、STと表記する]1)。   First, the TOC of the high-salt drainage in the drainage tank 14 is measured by the TOC measuring device 15 (step [hereinafter referred to as ST] 1).

次に、循環槽6から送られる脱硫排水のTOCを、TOC測定装置13で測定する(ST2)。TOC測定装置13によるTOCの測定は、操作員による所定の操作(例えば、制御開始ボタンの押下など)又は予め定めておいた時間間隔で行うようにすることができる。   Next, the TOC of the desulfurization wastewater sent from the circulation tank 6 is measured by the TOC measuring device 13 (ST2). The TOC measurement by the TOC measuring device 13 can be performed at a predetermined operation (for example, pressing of a control start button) by an operator or at a predetermined time interval.

この後、各TOC測定装置13,15は、測定したTOCの値を表す信号を流量制御装置17へ送信する。これを受けた流量制御装置17(図3)では、制御部44が、脱硫排水のTOCは10以下である否かを判別する(ST3)。   Thereafter, each TOC measuring device 13, 15 transmits a signal representing the measured TOC value to the flow control device 17. In response to this, in the flow control device 17 (FIG. 3), the control unit 44 determines whether or not the TOC of the desulfurized waste water is 10 or less (ST3).

ST3の判別が“YES”、即ち脱硫排水のTOCは既に10以下の場合には、脱硫排水を希釈する必要がないので、ST1へ移り、上記工程を繰り返す。   If the determination in ST3 is “YES”, that is, if the TOC of the desulfurized wastewater is already 10 or less, it is not necessary to dilute the desulfurized wastewater, so the process proceeds to ST1 and the above steps are repeated.

一方、ST3の判別が“NO”、即ち脱硫排水のTOCが10より大きい値を示している場合には、高塩系排水を脱硫排水に加えることにより、脱硫排水のTOCを10以下の所定の値に調整する(ST4)。具体的には、操作員等によって、脱硫排水のTOCの目標値(TOC≦10の値)を定めておき、これに基づいて、流量制御装置17が、当該目標値を達成してこれを維持するのに必要な流量の高塩系排水を加えるように制御を行う。脱硫排水に加えるべき高塩系排水の流量は、例えば、次式により求めることができる。   On the other hand, when the determination of ST3 is “NO”, that is, when the TOC of the desulfurization wastewater is greater than 10, the high salt-based wastewater is added to the desulfurization wastewater, so that the TOC of the desulfurization wastewater is 10 or less. The value is adjusted (ST4). Specifically, the target value (TOC ≦ 10 value) of desulfurized wastewater is determined by an operator or the like, and based on this, the flow control device 17 achieves the target value and maintains it. Control to add high-salt drainage at the flow rate required to do this. The flow rate of the high-salt wastewater to be added to the desulfurization wastewater can be obtained by the following equation, for example.

Figure 2006021119
Figure 2006021119

この式(1)において、kは、高塩系排水のTOCの値(ppm)
mは、脱硫排水のTOCの値(ppm)
は、加えるべき高塩系排水の流量(m/h)
Qは、貯槽4へ流入する脱硫排水の流量(m/h)
TOCsetは、高塩系排水混合後における脱硫排水のTOCの目標値(ppm,10以下とする)
であり、上記式(1)から、脱硫排水に加えるべき高塩系排水の流量Wは、次式で表される。
In this formula (1), k is the TOC value (ppm) of high-salt drainage.
m is the TOC value of desulfurized wastewater (ppm)
W 1 is the flow rate of high salt wastewater to be added (m 3 / h)
Q is the flow rate of desulfurization wastewater flowing into the storage tank 4 (m 3 / h)
TOC set is the target value of TOC of desulfurized wastewater after mixing with high salt wastewater (ppm, 10 or less)
From the above formula (1), the flow rate W 1 of the high-salt drainage to be added to the desulfurization drainage is expressed by the following formula.

Figure 2006021119
Figure 2006021119

従って、例えば、
(1)高塩系排水のTOCの値を“k=1(ppm)”、
(2)脱硫排水のTOCの値を“m=20(ppm)”、
(3)貯槽4へ流入する脱硫排水の流量を“Q=300(m/h)”、
(4)脱硫排水のTOCの目標値を“TOCset≦10(ppm)”
とすると、脱硫排水に加えるべき高塩系排水の流量W(m/h)は、上記式(2)より、“W≒333(m/h)以上”になる。この場合、流量制御装置17が、当該流量以上の流量の高塩系排水を貯槽4へ供給し続けることにより、脱硫排水は希釈され、脱硫排水中における微生物の生育・増殖が抑止される。
So, for example,
(1) The TOC value of high-salt drainage is “k = 1 (ppm)”,
(2) The TOC value of desulfurized waste water is “m = 20 (ppm)”,
(3) The flow rate of the desulfurization waste water flowing into the storage tank 4 is “Q = 300 (m 3 / h)”,
(4) The target value of TOC of desulfurized wastewater is “TOC set ≦ 10 (ppm)”
Then, the flow rate W 1 (m 3 / h) of the high-salt drainage to be added to the desulfurization waste water becomes “W 1 ≈333 (m 3 / h) or more” from the above formula (2). In this case, the desulfurization effluent is diluted by the flow control device 17 continuing to supply the high-salt drainage having a flow rate equal to or higher than the flow rate to the storage tank 4, and the growth and proliferation of microorganisms in the desulfurization effluent is suppressed.

或いは、流量制御手段17(図3)の入力部42から、実際に供給すべき高塩系排水の流量として、制御部44の演算結果(上記例の場合にはW≧333m/h)に1以上の係数“n”を乗じた流量を指定することもできる。例えば、係数“n=1.3”とすると、実際に供給する高塩系排水の流量Wは、
“W=333×1.3=432.9(m/h)”となる。流量制御装置17は、この流量に基づいて高塩系排水を貯槽4へ供給することにより、脱硫排水のTOCを10以下の値に確実に低減させることができる。
Alternatively, the calculation result of the control unit 44 (W 1 ≧ 333 m 3 / h in the above example) is obtained as the flow rate of the high-salt drainage to be actually supplied from the input unit 42 of the flow rate control means 17 (FIG. 3). A flow rate obtained by multiplying 1 by a coefficient “n” or more can be designated. For example, if the coefficient “n = 1.3”, the flow rate W 2 of the high-salt drainage that is actually supplied is
“W 2 = 333 × 1.3 = 432.9 (m 3 / h)”. The flow rate control device 17 can reliably reduce the TOC of the desulfurized waste water to a value of 10 or less by supplying the high salt waste water to the storage tank 4 based on this flow rate.

このように、発電所にある脱硫排水処理システムに用いられている分離膜ユニット8(図1)でろ過する脱硫排水のTOCその他の水質指標値を調整し、微生物の生育を抑制する値に維持することにより、分離膜ユニット8を構成するMF膜の膜目は目詰まりを起こすことなく、当初の性能を維持したまま使用し続けることが可能になる。   In this way, the TOC and other water quality index values of the desulfurization wastewater filtered by the separation membrane unit 8 (FIG. 1) used in the desulfurization wastewater treatment system in the power plant are adjusted and maintained at a value that suppresses the growth of microorganisms. By doing so, the membrane of the MF membrane constituting the separation membrane unit 8 can be used while maintaining the original performance without causing clogging.

再び、供給制御フロー(図4)に戻り、流量制御装置17の制御部44が、脱硫排水に加えるべき高塩系排水の流量を求めた後、ST1へ戻り、上記ST1〜ST4を繰り返す。或いは、発電所稼動中における脱硫排水のTOCその他の水質指標値は、一般に、急激に変動することはないので、ST4で求めた流量の高塩系排水を供給し続けるだけでも、脱硫排水のTOCその他の水質指標値は、微生物の生育を抑制する値の水準を維持できると考えられる。即ち、ST1〜ST4の処理は、連続的に行うことも可能であるが、例えば、1日1回だけ上記ST4による高塩系排水の流量を求め、この供給量を維持し続けることによって、分離膜ユニット8を好適な状態に保つことも可能である。   Returning to the supply control flow (FIG. 4) again, the control unit 44 of the flow rate control device 17 obtains the flow rate of the high-salt drainage to be added to the desulfurization wastewater, and then returns to ST1 and repeats the above ST1 to ST4. Alternatively, the TOC of desulfurization wastewater and other water quality index values during operation of the power plant generally do not fluctuate rapidly, so even if the high-salt drainage at the flow rate obtained in ST4 is continuously supplied, the TOC of the desulfurization wastewater It is considered that other water quality index values can maintain the level of values that suppress the growth of microorganisms. That is, the processing of ST1 to ST4 can be performed continuously. For example, the flow rate of the high-salt drainage by ST4 is obtained only once a day, and the separation is continued by maintaining this supply amount. It is also possible to keep the membrane unit 8 in a suitable state.

以上、実施例の脱硫排水処理方法及びこれを実現するための脱硫排水処理システムについて説明したが、上記実施例では、脱硫排水に加える別の流体として高塩系排水を用いたが、溶解塩類濃度が低く、ボイラ等にて再利用可能な低塩系排水又は工業用水など、いわゆる排水処理の対象外の流体を加えることも可能である。このような液体を用いた場合において、該液体が排水処理対象成分を含んでいないことが明らかなときは、実施例における排水タンク14内の流体のTOCを測定するTOC測定装置15を設けず、脱硫排水のTOC及び流量に基づいて脱硫排水に加えるべき別の流体の流量を制御することができる。   As described above, the desulfurization wastewater treatment method of the example and the desulfurization wastewater treatment system for realizing the same have been described. In the above example, the high salt-based wastewater is used as another fluid to be added to the desulfurization wastewater. It is also possible to add a fluid that is not subject to so-called wastewater treatment, such as low-salt wastewater or industrial water that is low and can be reused in a boiler or the like. In the case where such a liquid is used, when it is clear that the liquid does not contain the wastewater treatment target component, the TOC measuring device 15 for measuring the TOC of the fluid in the drainage tank 14 in the embodiment is not provided, The flow rate of another fluid to be added to the desulfurization waste water can be controlled based on the TOC and the flow rate of the desulfurization waste water.

また、実施例では、脱硫排水及びこれに加える高塩系排水の汚泥の度合を表す指標値として各々のTOCを測定し、脱硫排水のTOCを、微生物の生育を抑制する値に維持するように制御を行ったが、制御の基準となる指標値は、TOCのほかにも、COD、TOD、TC、BOD、TN、又はアンモニア性窒素等の水質指標値を採用することも可能である。この場合、基準となる水質指標値は、できるだけ短時間で測定可能な装置を用いるのが好ましい。また、TOC以外の指標値を制御の基準にする場合、実施例の脱硫排水処理システム(図1)にてTOC測定装置13を設けた箇所に当該指標値の測定装置を設けることができ、脱硫排水に加えるべき別の流体の流量の制御方法についても実施例と同様の考え方で行うことが可能である。   Further, in the examples, each TOC is measured as an index value representing the degree of sludge of desulfurization wastewater and high salt wastewater added thereto, and the TOC of desulfurization wastewater is maintained at a value that suppresses the growth of microorganisms. Although the control is performed, an index value serving as a reference for control may be a water quality index value such as COD, TOD, TC, BOD, TN, or ammonia nitrogen, in addition to the TOC. In this case, it is preferable to use a device that can measure the reference water quality index value in as short a time as possible. In addition, when an index value other than the TOC is used as a control reference, the index value measuring device can be provided at a location where the TOC measuring device 13 is provided in the desulfurization waste water treatment system (FIG. 1) of the embodiment. The method for controlling the flow rate of another fluid to be added to the drainage can be performed in the same way as in the embodiment.

或いは、実施例では、脱硫排水のTOCを測定するTOC測定装置13は、循環槽6と分離膜ユニット8の間の経路上に設けたが、この位置には限られず、脱硫排水の経路上で分離膜ユニット8の上流側であれば、任意の箇所に設けることができる。   Alternatively, in the embodiment, the TOC measuring device 13 for measuring the TOC of the desulfurization wastewater is provided on the path between the circulation tank 6 and the separation membrane unit 8, but is not limited to this position. Any upstream side of the separation membrane unit 8 can be provided.

更に、実施例では脱硫排水及び高塩系排水のTOCを測定して、脱硫排水の希釈を厳密に行ったが、こうした手段を備えていないシステムにおいては、各種の実験結果から、低硫黄炭燃焼時には、脱硫排水を、該脱硫排水の流量の75%に相当する流量以上の高塩系排水を加えて希釈すれば、TOCその他の水質指標値を、微生物の生育を抑制する値(例えば、TOC≦10)に維持することも可能である。ここでいう低硫黄炭は、燃焼時に出る排煙のSO濃度が300ppmとなる石炭に含まれる硫黄分の0.4%に相当する量を基準にして、該0.4%に相当する量より含有硫黄分の少ない石炭のことである。 Furthermore, in the examples, the TOC of desulfurization wastewater and high-salt wastewater was measured and dilution of the desulfurization wastewater was strictly performed. However, in a system not equipped with such means, low sulfur coal combustion was observed from various experimental results. Sometimes, if desulfurization wastewater is diluted by adding high salt-based wastewater at a flow rate equal to or higher than 75% of the flow rate of the desulfurization wastewater, TOC and other water quality index values are set to values that inhibit the growth of microorganisms (for example, TOC It is also possible to maintain ≦ 10). The low sulfur coal here is an amount corresponding to 0.4% based on an amount corresponding to 0.4% of sulfur contained in coal with an SO 2 concentration of flue gas emitted during combustion of 300 ppm. Coal with less sulfur content.

また、実施例では、脱硫排水処理方法及びシステムについて説明したが、本発明の流体ろ過方法及び流体ろ過システムはこれに限られず、化学、医療、食品などの各種分野における固液分離膜を用いた流体処理に適用することが可能である。   Moreover, although the Example demonstrated the desulfurization waste water treatment method and system, the fluid filtration method and fluid filtration system of this invention are not restricted to this, The solid-liquid separation membrane in various fields, such as a chemistry, a medical treatment, and a foodstuff, was used. It can be applied to fluid processing.

本発明の実施例の脱硫排水処理方法を実施するための脱硫排水処理システムを示す図。The figure which shows the desulfurization waste water treatment system for enforcing the desulfurization waste water treatment method of the Example of this invention. 自動測定式のTOC測定装置の構成を示す図。The figure which shows the structure of the automatic measurement type TOC measuring apparatus. 脱硫排水に加える高塩系排水の流量を制御する流量制御装置の構成を示す図。The figure which shows the structure of the flow control apparatus which controls the flow volume of the high salt system wastewater added to desulfurization wastewater. 流量制御装置による高塩系排水の供給制御フロー。Supply control flow of high-salt drainage by flow control device. (a)は、チューブ状の精密ろ過膜(MF膜)で脱硫排水をろ過するときの状態を示す図、及び(b)は逆洗時の状態を示す図。(A) is a figure which shows a state when filtering desulfurization waste_water | drain with a tubular microfiltration membrane (MF membrane), and (b) is a figure which shows the state at the time of backwashing.

符号の説明Explanation of symbols

1…吸収塔、2…脱水機、3…酸化槽、4…貯槽、5…反応槽、6…循環槽、8…分離膜ユニット、9…吸着塔、10…pH調整槽、11…監視槽、13,15…TOC測定装置、14…排水タンク、17…流量制御装置、21…キャリアガス精製部、22…パージガス精製部、23…流量制御部、24…流量制御部、25…IC除去部、26…酸溶液貯留部、27…電磁弁、28…試料注入部、29…燃焼部、30…除湿除塵部、31…CO検出部、32…TOC算出部、33…通信部、41…通信部、42…入力部、43…メモリ、44…制御部、45…ポンプ、46…モータドライバ、51…MF膜、52…汚泥。 DESCRIPTION OF SYMBOLS 1 ... Absorption tower, 2 ... Dehydrator, 3 ... Oxidation tank, 4 ... Storage tank, 5 ... Reaction tank, 6 ... Circulation tank, 8 ... Separation membrane unit, 9 ... Adsorption tower, 10 ... pH adjustment tank, 11 ... Monitoring tank , 13, 15 ... TOC measuring device, 14 ... drainage tank, 17 ... flow rate control device, 21 ... carrier gas purification unit, 22 ... purge gas purification unit, 23 ... flow rate control unit, 24 ... flow rate control unit, 25 ... IC removal unit , 26 ... acid solution storage part, 27 ... electromagnetic valve, 28 ... sample injection unit, 29 ... combustion unit, 30 ... dehumidifying dust portion, 31 ... CO 2 detector, 32 ... TOC calculation unit, 33 ... communication unit, 41 ... Communication unit 42 ... input unit 43 ... memory 44 ... control unit 45 ... pump 46 ... motor driver 51 ... MF membrane 52 ... sludge.

Claims (10)

微生物を生育させる成分を含む処理対象流体に該流体より汚染度の小さい別の流体を加えて、該処理対象流体の汚染の度合を表す指標値が微生物の生育を抑制する値になるように希釈することを特徴とする流体処理方法。   Add another fluid having a lower contamination level to the fluid to be treated containing the component for growing microorganisms, and dilute the index value indicating the degree of contamination of the fluid to be treated to a value that suppresses the growth of microorganisms. And a fluid processing method. 請求項1記載の流体処理方法において、前記処理対象流体を希釈した後、固液分離膜でろ過することを特徴とする流体処理方法。   The fluid processing method according to claim 1, wherein the fluid to be processed is diluted and then filtered through a solid-liquid separation membrane. 請求項1又は2記載の流体処理方法において、前記指標値は、全有機性炭素量(TOC)、化学的酸素要求量(COD)、全酸素要求量(TOD)、全炭素量(TC)、生物化学的酸素要求量(BOD)、全窒素量(TN)、又はアンモニア性窒素であることを特徴とする流体処理方法。   The fluid treatment method according to claim 1 or 2, wherein the index value includes total organic carbon (TOC), chemical oxygen demand (COD), total oxygen demand (TOD), total carbon quantity (TC), A fluid treatment method characterized in that it is biochemical oxygen demand (BOD), total nitrogen (TN), or ammoniacal nitrogen. 請求項1乃至3のいずれか記載の流体処理方法において、前記処理対象流体は、脱硫排水であることを特徴とする流体処理方法。   4. The fluid processing method according to claim 1, wherein the processing target fluid is desulfurization waste water. 請求項1乃至4のいずれか記載の流体処理方法において、前記別の流体は、火力発電所等のプラントから出る排水であることを特徴とする流体ろ過方法。   5. The fluid filtration method according to claim 1, wherein the another fluid is drainage discharged from a plant such as a thermal power plant. 微生物を生育させる成分を含む処理対象流体の汚染の度合を表す指標値を測定する水質指標値測定手段と、
該水質指標値測定手段が測定した指標値及び前記処理対象流体の流量に基づいて、該指標値が微生物の生育を抑制する値になるように、該処理対象流体に別の流体を供給する流量制御手段と
を備えたことを特徴とする流体処理システム。
A water quality index value measuring means for measuring an index value indicating the degree of contamination of a fluid to be treated containing a component for growing microorganisms;
Based on the index value measured by the water quality index value measuring means and the flow rate of the treatment target fluid, the flow rate of supplying another fluid to the treatment target fluid so that the index value becomes a value that suppresses the growth of microorganisms And a fluid processing system.
請求項6記載の流体処理システムにおいて、前記別の流体で希釈された処理対象流体をろ過する固液分離膜を備えたことを特徴とする流体処理システム。   The fluid processing system according to claim 6, further comprising a solid-liquid separation membrane that filters the fluid to be processed diluted with the other fluid. 請求項6又は7記載の流体処理システムにおいて、前記指標値は、全有機性炭素量(TOC)、化学的酸素要求量(COD)、全酸素要求量(TOD)、全炭素量(TC)、生物化学的酸素要求量(BOD)、全窒素量(TN)、又はアンモニア性窒素であることを特徴とする流体処理システム。   The fluid treatment system according to claim 6 or 7, wherein the index value includes total organic carbon content (TOC), chemical oxygen demand (COD), total oxygen demand (TOD), total carbon content (TC), A fluid treatment system characterized in that it is biochemical oxygen demand (BOD), total nitrogen (TN), or ammoniacal nitrogen. 請求項6乃至8のいずれか記載の流体処理システムにおいて、前記処理対象流体は、脱硫排水であることを特徴とする流体処理システム。   9. The fluid processing system according to claim 6, wherein the processing target fluid is desulfurization waste water. 請求項6乃至9のいずれか記載の流体処理システムにおいて、前記別の流体は、火力発電所等のプラントから出る排水であることを特徴とする流体処理システム。
The fluid treatment system according to any one of claims 6 to 9, wherein the another fluid is drainage discharged from a plant such as a thermal power plant.
JP2004201301A 2004-07-08 2004-07-08 Fluid treatment method and fluid treatment system Pending JP2006021119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201301A JP2006021119A (en) 2004-07-08 2004-07-08 Fluid treatment method and fluid treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201301A JP2006021119A (en) 2004-07-08 2004-07-08 Fluid treatment method and fluid treatment system

Publications (1)

Publication Number Publication Date
JP2006021119A true JP2006021119A (en) 2006-01-26

Family

ID=35794776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201301A Pending JP2006021119A (en) 2004-07-08 2004-07-08 Fluid treatment method and fluid treatment system

Country Status (1)

Country Link
JP (1) JP2006021119A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144899B1 (en) * 2010-08-03 2012-05-15 한국남부발전 주식회사 Water supplying apparatus for thermal power generation
JP2013188705A (en) * 2012-03-14 2013-09-26 Chugoku Electric Power Co Inc:The Dilution water amount control apparatus and dilution water amount control method
CN105130084A (en) * 2015-09-28 2015-12-09 张博 Recycling treatment device for desulfurized waste water and method thereof
CN110436669A (en) * 2019-08-22 2019-11-12 新疆天富能源股份有限公司 A kind of processing method of thermoelectricity factory production waste water
CN113406034A (en) * 2021-05-25 2021-09-17 南京信息工程大学 Device with constant-temperature and constant-humidity carbon dioxide sensor and detection method thereof
JP2021183313A (en) * 2020-05-22 2021-12-02 水ing株式会社 Dilution treatment method and dilution treatment apparatus for diluted material containing ammonia nitrogen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331592A (en) * 1986-07-23 1988-02-10 Kurita Water Ind Ltd Method for making ultrapure water
JP2000225393A (en) * 1999-02-03 2000-08-15 Nkk Corp Method and apparatus for treating wastewater
JP2000254644A (en) * 1999-01-07 2000-09-19 Nippon Shokubai Co Ltd Treatment of waste water
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2002166273A (en) * 2000-11-30 2002-06-11 Nippon Jisui Kk Membrane-separated water controlling equipment and method for controlling water in membrane separating equipment
JP2003251395A (en) * 2002-03-06 2003-09-09 Fuji Photo Film Co Ltd Wastewater control system, terminal, program and charging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331592A (en) * 1986-07-23 1988-02-10 Kurita Water Ind Ltd Method for making ultrapure water
JP2000254644A (en) * 1999-01-07 2000-09-19 Nippon Shokubai Co Ltd Treatment of waste water
JP2000225393A (en) * 1999-02-03 2000-08-15 Nkk Corp Method and apparatus for treating wastewater
JP2001259376A (en) * 2000-03-16 2001-09-25 Japan Organo Co Ltd Deionized water making apparatus
JP2002166273A (en) * 2000-11-30 2002-06-11 Nippon Jisui Kk Membrane-separated water controlling equipment and method for controlling water in membrane separating equipment
JP2003251395A (en) * 2002-03-06 2003-09-09 Fuji Photo Film Co Ltd Wastewater control system, terminal, program and charging method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144899B1 (en) * 2010-08-03 2012-05-15 한국남부발전 주식회사 Water supplying apparatus for thermal power generation
JP2013188705A (en) * 2012-03-14 2013-09-26 Chugoku Electric Power Co Inc:The Dilution water amount control apparatus and dilution water amount control method
CN105130084A (en) * 2015-09-28 2015-12-09 张博 Recycling treatment device for desulfurized waste water and method thereof
CN105130084B (en) * 2015-09-28 2017-05-24 张博 Recycling treatment device for desulfurized waste water and method thereof
CN110436669A (en) * 2019-08-22 2019-11-12 新疆天富能源股份有限公司 A kind of processing method of thermoelectricity factory production waste water
JP2021183313A (en) * 2020-05-22 2021-12-02 水ing株式会社 Dilution treatment method and dilution treatment apparatus for diluted material containing ammonia nitrogen
CN113406034A (en) * 2021-05-25 2021-09-17 南京信息工程大学 Device with constant-temperature and constant-humidity carbon dioxide sensor and detection method thereof

Similar Documents

Publication Publication Date Title
WO2017022113A1 (en) Water treatment system, power generation plant, and method for controlling water treatment system
JP3790383B2 (en) Treatment method of flue gas desulfurization waste water
WO2000069545A1 (en) Method for flue gas desulfurization and flue gas desulfurization system
JP2007181756A (en) Wastewater treatment method for flue gas desulfurization equipment
JP5257591B2 (en) Water treatment method
WO2015056588A1 (en) Wastewater treatment method and wastewater treatment device
WO2017201484A1 (en) Sulfate reduction in flue gas desulfurization system by barium precipitation
CN112479233A (en) Deep impurity removal and purification system and method for waste incineration fly ash washing liquid
JP3653422B2 (en) Waste water treatment method and waste water treatment equipment
US20190143266A1 (en) Biological treatment of flue gas desulfurization blowdown water with upstream sulfite control
RU2480423C1 (en) Combined method of treating waste water containing organic contaminants
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
CN106007272A (en) Biochemical treatment method and apparatus for high calcium and high magnesium waste water
JP2006021119A (en) Fluid treatment method and fluid treatment system
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JP2015221424A (en) Organic wastewater treatment method and apparatus
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
KR100573186B1 (en) Wastewater Disposal Method in Flue Gas Desulfurization System by Using Scale Preventer
RU2481273C1 (en) Method of treating household waste water containing organic contaminants
US11389767B2 (en) Reducing mercury air and water emissions from a coal fired power plant within a FGD system using a biocide
JP5084130B2 (en) Waste liquid treatment method and waste liquid treatment system
JP4799570B2 (en) Wastewater management method in wastewater treatment facilities
CN110510781A (en) It is a kind of that cigarette waste water recycling processing unit and method are washed using DTRO device
JP2005046697A (en) Activated sludge treatment method
CN220078876U (en) Zero release processing apparatus of dangerous waste incineration flue gas deacidification waste water

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802