KR100327095B1 - Method for nitrate removal in ground water - Google Patents

Method for nitrate removal in ground water Download PDF

Info

Publication number
KR100327095B1
KR100327095B1 KR1019990013478A KR19990013478A KR100327095B1 KR 100327095 B1 KR100327095 B1 KR 100327095B1 KR 1019990013478 A KR1019990013478 A KR 1019990013478A KR 19990013478 A KR19990013478 A KR 19990013478A KR 100327095 B1 KR100327095 B1 KR 100327095B1
Authority
KR
South Korea
Prior art keywords
microorganisms
source
nitrate nitrogen
effluent
nitrogen ions
Prior art date
Application number
KR1019990013478A
Other languages
Korean (ko)
Other versions
KR20000066395A (en
Inventor
오재일
박종문
Original Assignee
정명식
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정명식, 학교법인 포항공과대학교 filed Critical 정명식
Priority to KR1019990013478A priority Critical patent/KR100327095B1/en
Publication of KR20000066395A publication Critical patent/KR20000066395A/en
Application granted granted Critical
Publication of KR100327095B1 publication Critical patent/KR100327095B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

본 발명은 지하수원으로부터 질산성 질소 이온을 완전히 제거하여 안전하게 음용할 수 있는 상태의 식수원으로 처리하는 방법에 관한 것으로, 탈질 미생물 및 탄소원을 사용하여 지하수원을 처리하는 단계; 상기 단계를 거친 유출수를 1차 여과시켜 잔류 탄소원을 제거하는 단계; 상기 단계를 거친 유출수를 2차 여과시켜 잔류 현탁물질 및 미생물을 제거하는 단계; 및 상기 단계를 거친 유출수를 염소 소독(chlorination)하는 단계로 이루어진 본 발명의 지하수원의 처리방법에 따르면, 질산성 질소 이온이 95% 이상 제거되고, 탄소원 및 잔재 미생물이 모두 제거됨으로써 2차 오염 및 미생물 자체 병원균의 감염 가능성이 배제되어 안전하게 음용할 수 있는 식수원을 얻을 수 있다.The present invention relates to a method of completely removing nitrate nitrogen ions from a groundwater source and treating it with a drinking water source in a safe drinking state, comprising: treating the groundwater source using denitrifying microorganisms and a carbon source; Primary filtration of the effluent from said step to remove residual carbon sources; Filtration of the effluent from the above step to remove residual suspension and microorganisms; And according to the treatment method of the ground water source of the present invention consisting of the step of chlorination of the effluent after the above step, 95% or more of the nitrate nitrogen ions are removed, the carbon source and the residual microorganisms are all removed, secondary pollution and The possibility of infecting the microorganism's own pathogens is eliminated, and a drinking water source can be obtained safely.

Description

지하수원으로부터 질산성 질소 이온의 제거방법{Method for nitrate removal in ground water}Method for nitrate removal in ground water

본 발명은 지하수원으로부터 질산성 질소 이온을 완전히 제거함으로써 안전하게 음용할 수 있는 상태의 식수원을 수득하기 위한 것이다.The present invention is to obtain a drinking water source that can be safely drinking by completely removing the nitrate nitrogen ions from the ground water source.

일반적으로 지하수원은 질소 이온으로 상당부분 오염되어 있다(R. F. Spalding and M. E. Exner, Occurrence of nitrate in groundwater - A review,J. Environ. Qual., 22, 392-402(1993)). 이러한 질산성 질소 이온에 오염된 물을 신생아가 음복할 경우 혈액 중의 산소가 부족하게 되어 치명적인 결과를 초래할 수 있어, 질산성 질소 이온의 규제치(전세계적인 규제치: 10 ppm 이하)는 법으로 정해져 있다. 그러나, 상수도망이 접근 할 수 없는 지역사회에서는 지하수원을 식수원으로 이용하는 것이 불가피하다.In general, groundwater sources are largely contaminated with nitrogen ions (RF Spalding and ME Exner, Occurrence of nitrate in groundwater-A review, J. Environ. Qual. , 22, 392-402 (1993)). When newborns overtake water contaminated with such nitrate nitrogen ions, the oxygen in the blood may be insufficient, which may cause fatal consequences. The regulation of nitrate nitrogen ions (global regulation: 10 ppm or less) is prescribed by law. However, it is inevitable to use groundwater sources as drinking water in communities where the water supply network is inaccessible.

현재까지 알려진 상수처리 공정에서 질산성 질소 이온의 처리방법은 다음과 같이 크게 두 가지로 나뉜다.In the currently known water treatment process, the treatment of nitrate nitrogen ions is divided into two types as follows.

첫째, 역삼투(reverse osmosis)법으로서 지하수를 높은 압력(150-800 psi)의 펌프를 이용하여 특별히 제작된 막(membrane)을 통과시킴으로써 질산성 질소 이온을 분리하는 방법이다(A. Kapoor and T. Viraraghavan, Nitrate removal from drinking water-review,Journal of Environmental Engineering, 123 (4), 371-380(1997)). 그러나 이 방법에서 사용되는 막은 이온 선택적이지 않기 때문에 무해한 이온들까지 제거시켜 박막의 막힘(fouling)으로 인한 처리 효율이 저하되고, 높은 압력의 펌프를 작동시키기 위해 많은 에너지가 소비되며, 처리 장치가 비교적 고가일 뿐만 아니라 숙련된 기술자가 상주해야 한다는 단점이 있다. 또한, 지하수 중 약 75%만이 사용가능하고 나머지 25%의 지하수에서는 고농도 질산성 질소 이온으로 오염된 부산물이 재발생한다는 문제점이 있다.First, reverse osmosis is a method of separating nitrate nitrogen ions by passing groundwater through a specially prepared membrane using a pump of high pressure (150-800 psi) (A. Kapoor and T). Viraraghavan, Nitrate removal from drinking water-review, Journal of Environmental Engineering , 123 (4), 371-380 (1997)). However, the membranes used in this method are not ion selective, thus removing harmless ions, resulting in poor treatment efficiency due to fouling of the membranes, and high energy consumption to operate high pressure pumps. Not only is it expensive, but it also has the disadvantage of having a skilled technician reside. In addition, only about 75% of the groundwater can be used, and the remaining 25% of the groundwater has a problem in that by-products contaminated with high concentrations of nitrate nitrogen ions are regenerated.

둘째로, 이온 교환(ion exchange)법으로서 음이온 수지(resin)에 붙어 있는염소 이온을 질산성 질소 이온으로 교환시켜 처리하는 방법이다(D. Clifford and X. Liu, Ion exchange for nitrate removal,Journal AWWA, 85, 135-143(1993)). 그러나 일반적으로 지하수 중에는 2가 이온인 SO4 2- 많이 함유(8-10배)되어 있는데, 이 방법에서는 SO4 2-가 1가 이온인 질산성 질소 이온(NO3 -및 NO2 -)보다 쉽게 수지에 흡착되어 질산성 질소 이온의 처리효율을 저하시킨다는 문제점이 있으며, 또한 이러한 현상을 검색(monitoring)하기 위한 고가의 질산성 질소 이온 분석장치가 필요할 뿐만 아니라 포화된 수지를 교환하는 시점을 판별하기가 용이하지 않다는 단점이 있다. 또한 사용된 수지를 세척하는 과정에서 질산성 질소 이온으로 오염된 농축 부산물에 의해 재오염될 소지가 크고, 이에 따라 또 다른 별도의 수단이 강구되어야 한다는 번거로움이 있다.Secondly, as an ion exchange method, chlorine ions attached to an anion resin are treated with nitrate nitrogen ions (D. Clifford and X. Liu, Ion exchange for nitrate removal,Journal AWWA, 85, 135-143 (1993). In general, however, SO is a divalent ion in groundwater.4 2-end Contains a lot (8-10 times).4 2-Nitrate nitrogen ions where NO is a monovalent ion (NO3 -And NO2 -It is more easily adsorbed to the resin and lowers the processing efficiency of nitrate nitrogen ions. Also, an expensive nitrate nitrogen ion analyzer is needed to monitor this phenomenon. The disadvantage is that it is not easy to determine. In addition, there is a high possibility of recontamination by the concentrated by-products contaminated with nitrate nitrogen ions in the process of washing the used resin, and thus there is a need to take another separate means.

이와 같이 전통적인 상수처리 공정에서 이용되고 있는 방법(J. M. Montgomery,Water Treatment Principles and Design, Wiley, New York, (1985))만으로는 지하수 중에 다량 함유되어 있는 질산성 질소 이온을 제거할 수 없으므로 지하수로부터 이를 완전히 제거할 수 있는 공정의 개발이 요구되고 있는 실정이다.The methods used in conventional water treatment processes (JM Montgomery, Water Treatment Principles and Design , Wiley, New York, (1985)) alone cannot remove nitrate nitrogen ions contained in groundwater in large quantities. The development of a process that can be removed is required.

한편, 미생물을 이용하여 질산성 질소 이온을 제거하는 공정에서는 수처리 이후에도 미생물이 수중에 잔류하여 미생물 자체의 병원균이 감염될 우려가 있다. 따라서, 처리수를 식수원으로 이용하기 위한 상수처리 공정에 미생물을 이용하는 방법을 적용하는 것은 부적합하여 이 방법은 하수처리 분야에서만 중점적으로 이루어지고 있는 실정이다(대한민국 특허공개 제 90-11673 호 및 제 97-65445 호).On the other hand, in the process of removing nitrate nitrogen ions using microorganisms, there is a fear that the microorganisms remain in water even after the water treatment and infect pathogens of the microorganisms themselves. Therefore, it is inappropriate to apply the method of using microorganisms in the water treatment process for using the treated water as a drinking water source, and this method is focused only on the sewage treatment field (Korean Patent Publication Nos. 90-11673 and 97). -65445).

이에 본 발명자들은 상기 문제점들을 해결하고, 수중의 질산성 질소 이온을 완전히 제거시킬 수 있는 방법을 개발하기 위해 계속 연구를 진행하던 중, 미생물이 고착된 생물막(biofilter) 및 탄소원을 사용하여 수중의 질산성 질소 이온을 고효율로 제거한 다음, 두 단계의 여과 과정을 통하여 잔류 탄소원 및 미생물을 완전히 제거시킴으로써 2차 오염의 소지 및 미생물 자체 병원균의 감염 가능성이 배제된, 본 발명의 지하수원 처리 방법을 완성하였다.Therefore, the present inventors continue to research to solve the above problems and develop a method capable of completely removing nitrate nitrogen ions in the water, using the biofilter and carbon source to which the microorganisms are fixed. After removing acidic nitrogen ions with high efficiency, two steps of filtration completely remove residual carbon source and microorganism, thereby completing the method of treating the groundwater source of the present invention, which eliminates the possibility of secondary contamination and infection of microorganism itself. .

본 발명의 목적은 지하수원 중에 함유된 질산성 질소 이온을 완전히 제거하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for completely removing nitrate nitrogen ions contained in groundwater sources.

도 1은 본 발명의 수처리 공정의 한 예를 도시한 흐름도이고,1 is a flow chart showing an example of the water treatment process of the present invention,

도 2는 본 발명의 생물막 반응조를 거친 유출수의 시간에 따른 질산성 질소 이온의 농도변화를 나타낸 그래프이다.Figure 2 is a graph showing the concentration change of nitrate nitrogen ions over time of the effluent through the biofilm reactor of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 생물막 반응조 2 : 1차 여과기1: biofilm reactor 2: primary filter

3 : 2차 여과기 4 : 염소소독 장치3: secondary filter 4: chlorine disinfection device

5 : 펌프5: pump

상기 목적을 달성하기 위해 본 발명에서는, 탈질 미생물 및 탄소원을 사용하여 지하수원을 처리하는 단계; 상기 단계를 거친 유출수를 1차 여과시켜 잔류 탄소원을 제거하는 단계; 상기 단계를 거친 유출수를 2차 여과시켜 잔류 현탁물질 및 미생물을 제거하는 단계; 및 상기 단계를 거친 유출수를 염소 소독(chlorination)하는 단계로 이루어진, 지하수원으로부터 질산성 질소 이온을 제거하는 방법을 제공한다.In the present invention to achieve the above object, the step of treating the groundwater source using the denitrification microorganism and carbon source; Primary filtration of the effluent from said step to remove residual carbon sources; Filtration of the effluent from the above step to remove residual suspension and microorganisms; And chlorination of the effluent from the above step, thereby providing a method for removing nitrate nitrogen ions from the groundwater source.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

지하수 원수는 취수공과 더불어 간단한 펌프 장치를 이용하여 지속적으로 취득할 수 있다. 취득한 지하수원을 생물막 반응조(biofilter)에 유입시켜 50 내지 60 분 동안 체류시킨 다음 유출시킨다. 반응조 내부에는 탈질 미생물이 부착할 수 있는 담체(pall ring)가 장착되어 있고, 이들은 반응조 내부 유효용적의 약 70 내지 80 %를 차지하는 것이 바람직하다. 상기 담체로는 주로 폴리프로필렌 계열의 플라스틱 담체를 사용한다.Groundwater raw water can be obtained continuously using a simple pumping device along with the water intake. The obtained groundwater source is introduced into a biofilm biofilter and allowed to stay for 50 to 60 minutes and then discharged. The reaction vessel is equipped with a carrier (pall ring) that can be attached to the denitrification microorganisms, these preferably occupy about 70 to 80% of the effective volume inside the reactor. As the carrier, a polypropylene-based plastic carrier is mainly used.

탈질 미생물들은 상기 담체에 부착되어 성장하면서 하기 반응식 1과 같이 유입수 중의 질산성 질소 이온을 탄소원과 함께 질소가스(N2), 이산화탄소 및 물로 분해시킨다.Denitrifying microorganisms are attached to the carrier and grow to decompose nitrate nitrogen ions in the influent into nitrogen gas (N 2 ), carbon dioxide and water as shown in Scheme 1 below.

NO3 -+ 촉매(탄소원) + 탈질 미생물 → N2(가스) + CO2(가스) + H2ONO 3 - + catalyst (carbon) + denitrifying microorganisms → N 2 (gas) + CO 2 (gas) + H 2 O

이때 사용가능한 탈질 미생물로는, 당분야에 공지된 슈도모나스(Pseudomonas), 파라코커스(Paracoccus), 알칼리젠스(Alcaligenses) 등이 있고, 이들은 지역 토양으로부터 쉽게 수득할 수 있으며 여러 종을 혼합(mixed culture)하여 사용할 수도 있다. 상기 담체에 부착되지 못한 과다 미생물 및 부산물들은 반응기 밑으로 가라앉아서 배출구를 통해 외부로 배출되며, 또한 담체에 부착되어 과다 성장된 미생물은 2 내지 3 주마다 3 내지 5분 간격으로 20 내지 25psi 압력하의 압축 공기를 이용하여 배출(2-3 g/L의 생체량(biomass)) 제거시키는 것이 바람직하다. 만약 과다 미생물의 제거과정을 수행하지 않을 경우, 반응기 중심부가 막혀 채널링(channeling) 현상이 야기될 수 있다.The denitrifying microorganisms that can be used at this time include Pseudomonas , Paracoccus and Alcaligenses , which are known in the art, which can be easily obtained from local soils and mixed cultures. It can also be used. Excess microorganisms and by-products that do not adhere to the carrier sink under the reactor and are discharged to the outside through the outlet, and the microorganisms attached to the carrier are overgrown at 20 to 25 psi pressure every 3 to 5 minutes every 2 to 3 weeks. It is desirable to remove the exhaust (biomass of 2-3 g / L) using compressed air. If the removal of excess microorganisms is not performed, the center of the reactor may be blocked and channeling may occur.

본 발명에서는 질산성 질소 이온의 분해를 촉진시키고, 반응기내 미생물 농도를 적절하게(0.10 내지 0.25 g/ring) 유지시키기 위해 탄소원을 탈질 반응의 촉매로서 사용하는데, 이로는 아세트산(CH3COOH), 콘-시럽(corn-syrup)(주성분: 과당, C6H12O6), 에탄올(C2H5OH) 등과 같이 식용으로 사용되는 것을 선택 사용할 수 있으며, 특히 아세트산이 바람직하다(오재일 및 박종문, 탈질반응에서 상대적으로 안전한 생물량 배양, 토목공학회지-환경분과, (1999)). 일반적으로, 질산성 질소 이온 농도에 비례하여 탄소원을 최적 또는 다소 과량으로 공급하게 되면 질산성 질소 이온의 제거효율이 최대로 증가될 수 있으나, 이 때 반응 이후에도 처리수 중에 탄소원이 계속 잔류하게 되어 음용자에게 거부감을 주게 되는 문제점이 있다.In the present invention, a carbon source is used as a catalyst for the denitrification reaction to promote decomposition of nitrate nitrogen ions and maintain an appropriate microbial concentration in the reactor (0.10 to 0.25 g / ring), such as acetic acid (CH 3 COOH), Corn-syrup (main ingredient: fructose, C 6 H 12 O 6 ), ethanol (C 2 H 5 OH) and the like can be selected for use, and especially acetic acid is preferred (Oh Jae-il and Park Jong-moon) , Relatively safe biomass cultivation in denitrification, Journal of Civil Engineering-Environment, (1999). In general, if the carbon source is supplied in an optimal or somewhat excessive amount in proportion to the nitrate nitrogen ion concentration, the removal efficiency of the nitrate nitrogen ion may be increased to the maximum, but the carbon source remains in the treated water even after the reaction. There is a problem that gives the user a sense of rejection.

이에 본 발명에서는 상기 미생물 반응 단계 이후 1차 거친 여과 단계를 도입함으로써, 최대의 질산성 질소 제거 효율 유지하면서 잔류 탄소원 문제를 해결하는 방식을 도입하였다. 예를 들어, 아세트산을 탄소원으로 사용하는 경우 탄소원을 유입 질소 농도에 비례하도록 C : N=1.5 - 2.0 : 1의 비율로 공급하여 질산성 질소 이온의 처리효율을 95% 이상 유지하면서도, 반응하지 않은 잔류 탄소원은 1차 여과 단계에서 완벽히 해결할 수 있다.In the present invention, by introducing the first coarse filtration step after the microbial reaction step, a method of solving the problem of the residual carbon source while maintaining the maximum nitrate nitrogen removal efficiency. For example, when acetic acid is used as the carbon source, the carbon source is supplied at a ratio of C: N = 1.5-2.0: 1 so as to be proportional to the inflow nitrogen concentration to maintain 95% or more of the treatment efficiency of nitrate nitrogen ions while not reacting. The residual carbon source can be completely solved in the first filtration step.

본 발명의 1차 여과 단계에서는 상기 생물막 반응조의 1/3 내지 1/2 크기를갖는 여과기(roughing filter)를 통하여 유입수를 20분 내지 30분 동안 처리시킨다. 상기 1차 여과기 내에는 미생물 반응 과정을 거친 처리수와 함께 배출되는 미생물들이 부착될 수 있는 담체들이 채워져 있고, 부착된 미생물의 성장에 필요한 산소가 계속적으로 공급된다. 이 때 유입수 중에 잔류하는 탄소원은 담체에 부착된 미생물의 성장을 위한 영양소원으로 소비됨으로써 완전히 제거된다. 즉, 본 발명의 1차 여과 단계에서는 잔류 탄소원이 최종적으로 제거되고 작은 세포나 생물막 부스러기 등이 추가적으로 제거될 수 있다.In the first filtration step of the present invention, the influent is treated for 20 to 30 minutes through a roughing filter having a size of 1/3 to 1/2 of the biofilm reactor. The primary filter is filled with carriers to which the microorganisms discharged together with the treated water which has undergone the microbial reaction process can be attached, and oxygen necessary for the growth of the attached microorganism is continuously supplied. At this time, the carbon source remaining in the influent is completely removed by being consumed as a nutrient source for the growth of microorganisms attached to the carrier. That is, in the first filtration step of the present invention, the residual carbon source may be finally removed and small cells or biofilm debris may be additionally removed.

이어서, 본 발명에서는 상기 1차 여과 처리되어 유출되는 처리수 중에 잔존하는 현탁물질(suspended solids, ss) 및 미생물을 제거하기 위해 2차 여과 단계인 모래 여과 필터(sand filter)를 통과시킴으로써 미생물 자체 병원균의 감염 가능성을 배제시킬 수 있다. 이 과정에서는 실제로 수중에 잔류하는 모든 고체(total dissolved solids)와 미생물이 제거되어 처리수의 탁도를 현저하게 저하시킬 수 있다(0.1 - 0.3 NTU(number of transfer unit)). 상기 2차 여과 시스템의 유지 관리는 2 내지 3 달에 한번씩 상단 일정 부분을 제거(scraping)하여 상층부에 모래가 막히는 현상을 방지하는 것 이외에 특별히 요구되지 않는다.Subsequently, in the present invention, the microbial pathogens are passed through a sand filtration filter (sand filter), which is a secondary filtration step to remove suspended solids (ss) and microorganisms remaining in the treated water flowing out through the primary filtration. Can eliminate the possibility of infection. In this process, all dissolved solids and microorganisms are actually removed, which can significantly reduce the turbidity of the treated water (0.1-0.3 NTU (number of transfer unit)). Maintenance of the secondary filtration system is not particularly required other than to prevent the clogging of the upper portion by scraping the upper portion every two to three months.

마지막으로, 본 발명에서는 통상의 상수 처리 공정에서 사용되는 염소 소독 과정을 수행함으로써 안전한 상태의 식수원을 얻을 수 있다. 상기 염소 소독 과정을 통해서는 처리수내 잔존 가능성이 있는 미생물이 완전히 제거하고, 적당한 농도의 염소를 함유시킴으로써 처리수의 배달 과정이나 저장 과정에서 병원균의 2차 오염을 방지할 수 있다.Finally, in the present invention, a safe drinking water source can be obtained by performing a chlorine disinfection process used in a conventional water treatment process. Through the chlorine disinfection process, the microorganisms that may remain in the treated water are completely removed, and by containing chlorine in an appropriate concentration, secondary contamination of pathogens can be prevented during the delivery or storage of the treated water.

이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1Example 1

질산성 질소 이온이 다량 함유된 지하수원을 도 1에 도시된 반응공정에 따라 다음과 같이 25일 동안 처리하였다.A groundwater source containing a large amount of nitrate nitrogen ions was treated for 25 days as follows according to the reaction process shown in FIG. 1.

(단계 1)(Step 1)

50 mg/ℓ 농도의 질산성 질소 이온이 함유된 지하수를 총용량이 7.7ℓ(유효용량 4.58ℓ)인 생물막 반응조의 하단으로 지속적으로 공급시켰다(질산성 질소 이온: 2.74 kg/일). 이 때 반응조내 유효용량의 70%(v/v)에 해당되는 공간에는 토양에서 추출된 혼합미생물(주요 탈질 미생물: 파라코커스 데니트리피칸스-Paracoccus Denitrificans)이 부착된 링(ring) 모양의 플라스틱 담체(Koch Flexirings, 다공성 = 0.93, 표면적 = 340 m2/m3, 지름 = 1.3 cm, length = 1.3 cm)가 장착되어 있다. 여기에 아세트산을 C:N 비율이 2:1로 유지되도록 공급하면서(5.48 kg/일) 반응조내 유입수의 체류시간을 1 시간으로 하고, 반응조의 상단으로 처리수를 유출시켰다. 유출되는 처리수 중의 질산성 질소 이온 농도를 시간에 따라 측정하여 그 결과를 도 2에 나타내었다.Groundwater containing nitrate nitrogen ions at a concentration of 50 mg / l was continuously supplied to the bottom of the biofilm reactor with a total capacity of 7.7 l (effective capacity 4.58 l) (nitrate nitrogen ions: 2.74 kg / day). In this case, a ring-shaped plastic with mixed microorganisms (main denitrifying microorganism: Paracoccus Denitrificans ) extracted from soil is placed in the space corresponding to 70% (v / v) of the effective capacity in the reactor. Carriers (Koch Flexirings, porosity = 0.93, surface area = 340 m 2 / m 3 , diameter = 1.3 cm, length = 1.3 cm) are mounted. Here, while acetic acid was supplied so that the C: N ratio was maintained at 2: 1 (5.48 kg / day), the residence time of the influent water in the reaction tank was 1 hour, and the treated water was discharged to the top of the reactor. The concentration of nitrate nitrogen ions in the treated water flowing out was measured with time, and the results are shown in FIG. 2.

도 2는 본 발명의 생물막 반응조를 거친 유출수의 시간에 따른 질산성 질소 이온의 농도 변화를 나타낸 그래프로서, 여기에서 보듯이 97% 이상의 처리 효율을 나타냄을 알 수 있다.Figure 2 is a graph showing the concentration change of nitrate nitrogen ions over time of the effluent through the biofilm reaction tank of the present invention, it can be seen that exhibits more than 97% treatment efficiency.

(단계 2)(Step 2)

상기 단계 1을 거친 처리수를 유효용량이 2.73ℓ인 1차 여과기의 하단에서 상단으로 공급하고 체류시간을 30분으로 하여 여과기의 상단으로 유출시켰다. 이 때 여과기 하단에는 산소공급 장치(산기석)가 설치되어 있고, 상기 단계 1의 생물막 반응조에 사용된 플라스틱 담체가 포함되어 있다. 본 과정을 거침으로써 수중의 잔류 탄소원은 99% 이상으로 제거되었다.The treated water that passed through the step 1 was supplied from the lower end of the primary filter having an effective capacity of 2.73 L to the upper end, and flowed out to the upper end of the filter with a residence time of 30 minutes. At this time, an oxygen supply device (acid stone) is installed at the bottom of the filter, and the plastic carrier used in the biofilm reaction tank of step 1 is included. Through this process, residual carbon sources in water were removed by more than 99%.

(단계 3)(Step 3)

상기 단계 2를 거친 처리수를 입경이 0.3-0.4 mm인 모래를 함유하는 여과기(slow sand filter)의 상단으로 공급하고 4 m/day의 여과속도로 여과기의 하단으로 유출시켰다. 수득된 유출수의 탁도는 0.1-0.2 NTU를 유지하였으며, 대장균(E. coli)유무를 W200(IDEXX사 제품)을 사용하여 측정한 결과 양성 반응이 나타나지 않았다.The treated water passed through step 2 was fed to the top of a slow sand filter containing a particle size of 0.3-0.4 mm and flowed to the bottom of the filter at a filtration rate of 4 m / day. Turbidity of the obtained effluent was maintained at 0.1-0.2 NTU, and the presence of E. col i was measured using W200 (manufactured by IDEXX) to show no positive reaction.

(단계 4)(Step 4)

상기 단계 3을 거친 처리수에 NaOCl을 투입 처리하여 처리수내 잔류염소 농도가 0.2 mg/ℓ로 유지되도록 하였다.NaOCl was added to the treated water after step 3 to maintain the residual chlorine concentration in the treated water at 0.2 mg / l.

이와 같이 본 발명에 따라 지하수원을 처리할 경우, 질산성 질소 이온이 97% 이상 제거되고, 잔류 탄소원 및 미생물이 모두 제거되어 2차 오염 및 미생물 자체 병원균의 감염 가능성이 배제됨으로써 안전하게 음용할 수 있는 상태의 식수원을 얻을 수 있다.As such, when treating the groundwater source according to the present invention, more than 97% of nitrate nitrogen ions are removed, and all residual carbon sources and microorganisms are removed, thereby eliminating the possibility of secondary contamination and infection of the microorganisms itself. A drinking water source can be obtained.

Claims (3)

1) 슈도모나스(Pseudomonas), 파라코커스(Paracoccus) 및 알칼리젠스(Alcaligenses)로 이루어진 그룹에서 선택된 하나 이상의 탈질 미생물, 및 아세트산(CH3COOH), 콘-시럽(corn-syrup) 및 에탄올(C2H5OH)로 이루어진 그룹에서 선택된 하나 이상의 탄소원을 사용하여 지하수원을 처리하는 단계;1) one or more denitrifying microorganisms selected from the group consisting of Pseudomonas , Paracoccus and Alcaligenses , and acetic acid (CH 3 COOH), corn-syrup and ethanol (C 2 H). Treating the groundwater source using at least one carbon source selected from the group consisting of 5 OH); 2) 상기 1)단계를 거친 유출수를, 유출수 중에 잔존하는 미생물이 부착될 수 있는 플라스틱 담체가 포함된 여과기에서 산소를 공급하면서 여과시켜 잔류 탄소원을 제거하는 단계;2) filtering the effluent from step 1) while supplying oxygen in a filter including a plastic carrier to which microorganisms remaining in the effluent are attached; 3) 상기 2)단계를 거친 유출수를, 모래필터를 통과시켜 잔류 현탁물질 및 미생물을 제거하는 단계; 및3) removing the residual suspended matter and microorganisms by passing the effluent water passed through step 2) through a sand filter; And 4) 상기 3)단계를 거친 유출수를 염소 소독(chlorination)하는 단계4) chlorination of the effluent from step 3) 로 이루어진 지하수원으로부터 질산성 질소이온을 제거하는 방법.Method of removing nitrate nitrogen ions from groundwater source consisting of. 삭제delete 삭제delete
KR1019990013478A 1999-04-16 1999-04-16 Method for nitrate removal in ground water KR100327095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990013478A KR100327095B1 (en) 1999-04-16 1999-04-16 Method for nitrate removal in ground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990013478A KR100327095B1 (en) 1999-04-16 1999-04-16 Method for nitrate removal in ground water

Publications (2)

Publication Number Publication Date
KR20000066395A KR20000066395A (en) 2000-11-15
KR100327095B1 true KR100327095B1 (en) 2002-03-06

Family

ID=19580359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990013478A KR100327095B1 (en) 1999-04-16 1999-04-16 Method for nitrate removal in ground water

Country Status (1)

Country Link
KR (1) KR100327095B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652934B1 (en) * 2004-05-31 2006-12-06 영성산업 주식회사 advanced water purifier get rid of the nitrate nitrogen
KR101149296B1 (en) * 2009-03-26 2012-05-24 현대제철 주식회사 Method for removing of perchlorate ion and nitrate ion in underground water
KR100922481B1 (en) * 2009-04-16 2009-10-21 한국농어촌공사 A denitrification system using indigenous heterotrophic microorgnism with a controlled release molasses barriers
CN101973666B (en) * 2010-09-29 2012-04-18 中国科学院沈阳应用生态研究所 Method for synchronously removing heavy metal and nitrate from drinking water and device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185093A (en) * 1992-01-10 1993-07-27 Ngk Insulators Ltd Method for purifying water by using membrane
JPH07222996A (en) * 1994-02-10 1995-08-22 N S C Tsusho Kk Water treatment system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185093A (en) * 1992-01-10 1993-07-27 Ngk Insulators Ltd Method for purifying water by using membrane
JPH07222996A (en) * 1994-02-10 1995-08-22 N S C Tsusho Kk Water treatment system

Also Published As

Publication number Publication date
KR20000066395A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
KR101371220B1 (en) Method for simultaneous removal of nitrogend and organic in the waste water using membrane bioreactor
KR20060090417A (en) System and method for advanced treatment of nitrogen and phosphorus using microorganism and separation membrane
KR102620469B1 (en) Systems and methods for handling contaminated fluids with low environmental impact
KR101444642B1 (en) Wastewater Treating Apparatus for Saving Energy Using Microalgae
WO2010041041A1 (en) Method, system and apparatus for reducing oxyanion content
CN105712575A (en) Method for treating waste water by replacing activated sludge mixed liquor suspended solids with immobilized microorganisms
WO2010076794A1 (en) Method of denitrifying brine and systems capable of same
KR20110000956A (en) Complexed water treatment method and the apparatus preparing for water-lack situation
CN108341556A (en) A kind of advanced treatment of wastewater and the system and method for acid-basic regenerated waste liquids in water reuse
Buhari et al. Future and challenges of co-biofilm treatment on ammonia and Bisphenol A removal from wastewater
KR100294075B1 (en) System for treating landfill leachate
KR100327095B1 (en) Method for nitrate removal in ground water
KR101710554B1 (en) Method and Apparatus for treating Effluent of Sewage Treatment Plant
CN212269808U (en) Reverse osmosis strong brine processing system
KR101149296B1 (en) Method for removing of perchlorate ion and nitrate ion in underground water
KR20040020325A (en) A method for treating the graywater by membrane
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
JPH10263594A (en) Removing method and device of nitrate ion in waste water
JP3433601B2 (en) Wastewater recovery and purification equipment
JPH0647399A (en) Water purifying treatment method
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JPS6331592A (en) Method for making ultrapure water
KR20010109804A (en) Treatment of concentrated organic wastewater with a reverse osmosis process
KR100652934B1 (en) advanced water purifier get rid of the nitrate nitrogen
JP3819457B2 (en) Biological denitrification of wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050204

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee