JP5194783B2 - Biological treatment method and apparatus for water containing organic matter - Google Patents

Biological treatment method and apparatus for water containing organic matter Download PDF

Info

Publication number
JP5194783B2
JP5194783B2 JP2007336181A JP2007336181A JP5194783B2 JP 5194783 B2 JP5194783 B2 JP 5194783B2 JP 2007336181 A JP2007336181 A JP 2007336181A JP 2007336181 A JP2007336181 A JP 2007336181A JP 5194783 B2 JP5194783 B2 JP 5194783B2
Authority
JP
Japan
Prior art keywords
water
biological treatment
organic matter
membrane
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007336181A
Other languages
Japanese (ja)
Other versions
JP2009154114A (en
Inventor
英斉 安井
勝彦 百崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007336181A priority Critical patent/JP5194783B2/en
Priority to TW97146987A priority patent/TWI411584B/en
Priority to KR1020080126405A priority patent/KR101575345B1/en
Priority to CN200810186508XA priority patent/CN101462811B/en
Publication of JP2009154114A publication Critical patent/JP2009154114A/en
Application granted granted Critical
Publication of JP5194783B2 publication Critical patent/JP5194783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、有機物含有水を嫌気的に処理する生物処理方法および装置に関し、特に、排水を生物処理して純水製造用の原料として利用する生物処理方法および装置に関する。   The present invention relates to a biological treatment method and apparatus for anaerobically treating organic-containing water, and more particularly to a biological treatment method and apparatus for biologically treating wastewater as a raw material for producing pure water.

近年、半導体製造工場のように純水を使用しその排水を排出する設備等で、有機物を含む排水を生物処理し、その処理液を純水製造の原料として用いる水回収が進んでいる。有機物含有水に窒素成分が含まれる場合にこのような水回収を行う生物処理工程では、従来、好気性条件で窒素化合物を酸化して硝酸または亜硝酸を生成させ、無酸素条件で脱窒を行っている。このような生物脱窒により窒素が除去された処理液は固液分離され、さらに逆浸透膜(RO膜)装置により脱塩され、純水製造の原料とされている(例えば特許文献1)。
特開2007−175582号公報
In recent years, water recovery has been progressing in which wastewater containing organic matter is biologically treated in facilities such as semiconductor manufacturing plants that use pure water to discharge the wastewater, and the treated liquid is used as a raw material for the production of pure water. In the biological treatment process in which such water recovery is performed when the organic component-containing water contains a nitrogen component, conventionally, nitrogen compounds are oxidized under aerobic conditions to produce nitric acid or nitrous acid, and denitrification is performed under anoxic conditions. Is going. The treatment liquid from which nitrogen has been removed by such biological denitrification is subjected to solid-liquid separation, and further desalted by a reverse osmosis membrane (RO membrane) device to be used as a raw material for producing pure water (for example, Patent Document 1).
JP 2007-175582 A

窒素成分を除去する生物処理では、有機態窒素を微生物によって無機化してアンモニアを生成し、このアンモニアを好気性の硝化細菌により亜硝酸または硝酸に酸化する。この過程では、酸化が進行するため槽内液のpHが低下するので、中和用のアルカリ添加を要する。次に、硝酸または亜硝酸は無酸素性の脱窒細菌により窒素ガスまで還元され、その過程でアルカリが生成されpHが上がる。このため、脱窒工程では、中和用に酸の添加が必要となる。このように窒素成分を除去する際、中和用に添加された酸またはアルカリは、後段のRO膜の負荷となる。   In biological treatment to remove nitrogen components, organic nitrogen is mineralized by microorganisms to produce ammonia, and this ammonia is oxidized to nitrous acid or nitric acid by aerobic nitrifying bacteria. In this process, since the oxidation proceeds, the pH of the solution in the tank is lowered, so that an alkali for neutralization is required. Next, nitric acid or nitrous acid is reduced to nitrogen gas by anaerobic denitrifying bacteria, and in the process, alkali is generated and the pH is raised. For this reason, in a denitrification process, addition of an acid is needed for neutralization. In this way, when removing the nitrogen component, the acid or alkali added for neutralization becomes a load on the subsequent RO membrane.

このように、亜硝酸や硝酸生成まで反応を進め、これを脱窒させる場合は、強酸である亜硝酸や硝酸、および強アルカリであるOHが生成されるため、強酸や強アルカリを中和させる必要がある。一方、窒素化合物を酸化する工程において、アンモニアを生成させた時点で生物反応を停止させれば弱アルカリ性のアンモニアを中和すれば済み、強酸や強アルカリを中和させる必要がなくなる。窒素化合物の生物脱窒を、アンモニア生成の段階で停止させるためには、増殖速度の遅い硝化細菌が生物反応槽内で増殖しないようにすればよい。具体的には、生物反応槽の汚泥の滞留時間を短くすれば、硝化細菌は生物反応槽から流出(ウォッシュアウト)し、槽内に保持されないためアンモニア生成で反応を停止させられる。 Thus, the reaction proceeded to nitrous acid or nitric acid generation, the case of denitrifying this, nitrous acid and nitric acid is a strong acid, and strong alkali OH - because is generated, neutralizing the strong acid and strong alkali It is necessary to let On the other hand, in the step of oxidizing the nitrogen compound, if the biological reaction is stopped at the time when ammonia is generated, it is sufficient to neutralize weakly alkaline ammonia, and there is no need to neutralize strong acid or strong alkali. In order to stop the biological denitrification of nitrogen compounds at the stage of ammonia production, nitrifying bacteria having a slow growth rate may be prevented from growing in the biological reaction tank. Specifically, if the sludge residence time in the biological reaction tank is shortened, the nitrifying bacteria will flow out (wash out) from the biological reaction tank and are not retained in the tank, so the reaction can be stopped by ammonia production.

しかし、硝化細菌をウォッシュアウトさせるためには、生物反応槽の汚泥の滞留時間を4日以下にする必要がある。汚泥の滞留時間を4日以下程度に下げると、被処理水中に含まれる有機物が十分に分解されない。このため、生物処理した処理液には残存有機物が多く含まれ、RO膜装置で残存有機物を基質として微生物が増殖しやすくなる。増殖した微生物は、RO膜を目詰まりさせる原因となり、RO膜の脱塩性能を低下させる。   However, in order to wash out nitrifying bacteria, the sludge residence time in the biological reaction tank needs to be 4 days or less. When the sludge residence time is lowered to about 4 days or less, organic substances contained in the water to be treated are not sufficiently decomposed. For this reason, the biologically treated treatment liquid contains a large amount of residual organic matter, and microorganisms are likely to grow using the residual organic matter as a substrate in the RO membrane device. Proliferated microorganisms cause the RO membrane to be clogged and reduce the desalting performance of the RO membrane.

すなわち、有機物含有水を好気的条件で生物処理して硝化が進むと中和用薬剤の添加によるRO膜装置の負荷増大を招く一方、硝化の進行を抑えるために汚泥滞留時間を短くすると残存有機物によるRO膜の汚染を招く。本発明は、かかる課題に対して有機物含有水を生物処理し、その処理液を純水製造用水として再利用する際に、RO膜に対する負荷の増大を回避しつつ、RO膜の汚染も防止することを目的とする。   In other words, biological treatment of organic substance-containing water under aerobic conditions and nitrification advances, increasing the load on the RO membrane device due to the addition of a neutralizing agent, while remaining if sludge residence time is shortened to suppress the progress of nitrification. Contamination of RO membrane with organic matter is caused. In the present invention, when organic matter-containing water is biologically treated for such a problem and the treated liquid is reused as pure water production water, contamination of the RO membrane is prevented while avoiding an increase in load on the RO membrane. For the purpose.

本発明は上記課題を解決するため、有機物含有水を嫌気的条件で生物処理することにより硝化反応を進ませずに被処理水中の有機物を除去し、生物処理後の処理液に残存するアンモニウム塩をRO膜装置で濃縮して別途、処理する。具体的には、本発明は以下を提供する。   In order to solve the above-mentioned problems, the present invention removes organic substances in water to be treated without proceeding nitrification reaction by biologically treating organic substance-containing water under anaerobic conditions, and remaining ammonium salt in the treatment liquid after biological treatment. Is concentrated with a RO membrane device and processed separately. Specifically, the present invention provides the following.

(1) 有機物含有水が導入されメタン生成菌群によりメタン生成を行う嫌気性生物処理槽と、 前記嫌気性生物処理槽と接続され前記嫌気性生物処理槽から排出された処理液を膜分離する膜分離装置と、 前記膜分離装置の分離水を処理する逆浸透膜装置と、 前記逆浸透膜装置の濃縮水を処理する濃縮水処理装置と、を備える有機物含有水の生物処理装置。
(2) 前記濃縮水処理装置は、前記嫌気生物処理槽とは異なる生物処理槽を含む(1)に記載の有機物含有水の生物処理装置。
(3) 前記濃縮水処理装置は、前記濃縮水を導入し蒸発させ蒸留水を取り出すエバポレータを含む(1)または(2)に記載の有機物含有水の生物処理装置。
(4) 前記濃縮水処理装置は、前記濃縮水中の不純物を不溶化させる薬品を前記濃縮水に添加して固形物を分離する反応カラムを含む(1)から(3)のいずれかに記載の有機物含有水の生物処理装置。
(5) メタン生成菌群を含む嫌気性生物処理槽に有機物含有水を導入し嫌気性生物処理し、 前記嫌気性生物処理により得られた処理液を好気性生物処理せずに膜分離し、 前記膜分離により得られた分離水を逆浸透膜で処理し、 前記逆浸透膜処理により得られた濃縮水を処理する有機物含有水の生物処理方法。
(6) 前記有機物含有水は窒素化合物を含む(5)に記載の有機物含有水の生物処理方法。
(7) 前記濃縮水を、前記嫌気性生物処理とは別に生物処理する、エバポレータを用いて蒸留処理する、および/または薬品により不純物を不溶化させて処理する(5)または(6)に記載の有機物含有水の生物処理方法。
(1) An anaerobic biological treatment tank in which organic substance-containing water is introduced and methane is produced by a methanogen group, and a treatment liquid connected to the anaerobic biological treatment tank and discharged from the anaerobic biological treatment tank is subjected to membrane separation. The biological treatment apparatus of organic substance containing water provided with a membrane separator, the reverse osmosis membrane apparatus which processes the separation water of the said membrane separator, and the concentrated water treatment apparatus which processes the concentrated water of the said reverse osmosis membrane apparatus.
(2) The biological treatment apparatus for organic matter-containing water according to (1), wherein the concentrated water treatment apparatus includes a biological treatment tank different from the anaerobic biological treatment tank.
(3) The biological treatment apparatus for organic substance-containing water according to (1) or (2), wherein the concentrated water treatment apparatus includes an evaporator that introduces the concentrated water, evaporates, and extracts distilled water.
(4) The organic substance according to any one of (1) to (3), wherein the concentrated water treatment apparatus includes a reaction column that adds a chemical that insolubilizes impurities in the concentrated water to the concentrated water to separate solids. Biological treatment equipment for contained water.
(5) Organic matter-containing water is introduced into the anaerobic biological treatment tank containing the methanogenic bacteria group, and the anaerobic biological treatment is performed, and the treatment liquid obtained by the anaerobic biological treatment is subjected to membrane separation without the aerobic biological treatment, The biological treatment method of the organic substance containing water which processes the separated water obtained by the said membrane separation with a reverse osmosis membrane, and processes the concentrated water obtained by the said reverse osmosis membrane process.
(6) The biological treatment method for organic matter-containing water according to (5), wherein the organic matter-containing water contains a nitrogen compound.
(7) The concentrated water according to (5) or (6), wherein the concentrated water is biologically treated separately from the anaerobic biological treatment, is distilled using an evaporator, and / or is made insoluble by chemicals. Biological treatment method of water containing organic matter.

被処理水である有機物含有水の性状は特に限定されるものではなく、有機態炭素として不揮発性有機物や揮発性有機物を含む種々の有機物を含み、有機態炭素化合物のみならず窒素化合物を含んでよい。有機態炭素化合物としては、微生物が直接吸収できる程度の低分子の有機物(以下、「モノマー有機物」と称する)の割合が多い(例えば全有機物炭素に対して70%以上)ことが好ましい。モノマー有機物は、メタン生成菌群により分解されるため、モノマー有機物が主体の有機物含有水であれば嫌気性生物処理の工程で酸生成菌群が増殖しにくい。本発明者らの知見によれば、酸生成菌群の増殖を抑えればこれら微生物が生成する高分子の代謝物の生成を抑制でき、代謝物によるRO膜汚染を防止できる。モノマー有機物の具体例としては、メタン生成菌群の基質として利用される低分子有機物(例えば蟻酸、酢酸、メタノール、メチルアミン等)やテトラメチルアンモニウムヒドロキシド、モノエタノールアミン、ジエチレングリコールモノブチルエーテル、イソプロピルアルコール、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドが挙げられる。   The nature of the organic substance-containing water that is the treated water is not particularly limited, and includes various organic substances including non-volatile organic substances and volatile organic substances as organic carbon, including not only organic carbon compounds but also nitrogen compounds. Good. The organic carbon compound preferably has a high proportion of low-molecular organic substances (hereinafter referred to as “monomer organic substances”) that can be directly absorbed by microorganisms (for example, 70% or more based on the total organic carbon). Since the monomer organic matter is decomposed by the methanogenic bacteria group, the acid producing bacteria group is unlikely to grow in the anaerobic biological treatment process if the monomer organic substance is mainly organic substance-containing water. According to the knowledge of the present inventors, if the growth of the acid-producing bacteria group is suppressed, the production of macromolecular metabolites produced by these microorganisms can be suppressed, and RO membrane contamination by the metabolites can be prevented. Specific examples of monomeric organic substances include low molecular weight organic substances (eg, formic acid, acetic acid, methanol, methylamine, etc.), tetramethylammonium hydroxide, monoethanolamine, diethylene glycol monobutyl ether, isopropyl alcohol, which are used as substrates for methanogens. , Dimethylacetamide, dimethylformamide, and dimethylsulfoxide.

被処理水は、嫌気性生物処理槽内でメタン生成菌群を主体とする嫌気性生物処理により有機物を除去する。嫌気性生物処理は、槽内液の温度が15℃以上40℃以下となるような条件で行えば、微生物が高分子有機物を生成した場合でもその90%程度が分解されるため、好ましい。また、槽内液のpHを6以上9以下とすることにより、微生物が生成した高分子有機物の90%程度が分解されるため、好ましい。   To-be-treated water removes organic substances by anaerobic biological treatment mainly composed of methanogens in an anaerobic biological treatment tank. When the anaerobic biological treatment is performed under such a condition that the temperature of the liquid in the tank is 15 ° C. or higher and 40 ° C. or lower, about 90% of the microorganism is decomposed even if the microorganism produces a high molecular organic substance. Further, it is preferable to adjust the pH of the liquid in the tank to 6 or more and 9 or less because about 90% of the high-molecular organic matter produced by the microorganism is decomposed.

嫌気性生物処理槽の槽内液には、被処理水中に含まれていたアンモニウム塩または/および被処理水に含まれていた有機態窒素化合物が分解されて生じたアンモニウム塩が含まれうる。このようなアンモニウム塩は嫌気性生物処理槽内で有機物分解に伴い生じた二酸化炭素と反応し、重炭酸アンモニウムが生成される。よって、被処理水に窒素化合物が含まれる場合でも嫌気性生物処理槽の槽内液のpHは、中和薬品を添加することなく中性付近に維持できる。   The liquid in the anaerobic biological treatment tank may contain an ammonium salt contained in the for-treatment water and / or an ammonium salt generated by decomposing an organic nitrogen compound contained in the for-treatment water. Such an ammonium salt reacts with carbon dioxide generated by the decomposition of organic matter in an anaerobic biological treatment tank to produce ammonium bicarbonate. Therefore, even when a nitrogen compound is contained in the water to be treated, the pH of the liquid in the anaerobic biological treatment tank can be maintained near neutral without adding a neutralizing chemical.

嫌気性生物処理槽から流出した処理液には微生物が含まれるため、固液分離した後、固形分が除去された水(分離水)をRO膜装置で脱塩処理して純水製造の原料とする。固液分離は、濾過膜を備える膜分離装置を用いればよい。分離膜としては限外濾過膜(UF膜)または精密濾過膜(MF膜)を用いればよく、一般的なメタン生成菌群の直径より小さい孔径(例えば100nm以下)の膜を用いることが好ましい。   Since the microorganisms are contained in the treatment liquid flowing out from the anaerobic biological treatment tank, after solid-liquid separation, the water from which the solid content has been removed (separated water) is desalted by the RO membrane device, and the raw material for producing pure water And For the solid-liquid separation, a membrane separation device including a filtration membrane may be used. As the separation membrane, an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane) may be used, and it is preferable to use a membrane having a pore diameter (for example, 100 nm or less) smaller than the diameter of a general methanogen group.

また、嫌気性生物処理槽からの処理液には、嫌気性生物処理槽で生成された重炭酸アンモニウムや生物処理されなかった有機物等が含まれる。これら残存物質の一部は膜分離装置で除去されるものの、他部は膜分離装置では除去されずRO膜装置に持ち込まれ濃縮される。よって、RO膜装置から排出される濃縮水(ブライン)には、重炭酸アンモニウム等が概ね10倍程度に濃縮されて含まれる。そこで、ブラインは、被処理水とは別に生物、化学、または/および物理的方法により処理する。   In addition, the treatment liquid from the anaerobic biological treatment tank includes ammonium bicarbonate generated in the anaerobic biological treatment tank, organic matter that has not been biologically treated, and the like. Although some of these residual substances are removed by the membrane separator, other parts are not removed by the membrane separator but brought into the RO membrane device and concentrated. Therefore, the concentrated water (brine) discharged from the RO membrane device contains ammonium bicarbonate or the like approximately 10 times concentrated. Therefore, the brine is treated by biological, chemical, and / or physical methods separately from the water to be treated.

ブラインの処理方法はその性状に応じて選択すればよく、例えば生物処理としては、好気的または無酸素的に生物脱窒する処理が挙げられる。生物脱窒には、従属栄養性または独立栄養性のどちらの脱窒微生物を用いてもよい。   The treatment method of the brine may be selected according to the property thereof. For example, the biological treatment includes a treatment for biodenitrification aerobically or anaerobically. For biodenitrification, either heterotrophic or autotrophic denitrifying microorganisms may be used.

化学的処理としては、pHを変化させてブラインに含まれる不純物を不溶化させる方法、ブライン中の不純物と化合物を形成する薬品を添加する方法等が挙げられる。化学的処理で用いる薬品としては、pHを変化させる酸またはアルカリ、凝集剤、およびブライン中の不純物を析出させる種晶等が挙げられる。より具体的には、アンモニウム塩と反応して硫酸アンモニウムを生成する硫酸、タンパク質を凝固させる各種酸等が挙げられる。   Examples of the chemical treatment include a method of changing the pH to insolubilize impurities contained in the brine, and a method of adding chemicals that form compounds with the impurities in the brine. Examples of chemicals used in the chemical treatment include acids or alkalis that change pH, flocculants, and seed crystals that precipitate impurities in brine. More specifically, sulfuric acid that reacts with an ammonium salt to produce ammonium sulfate, various acids that coagulate proteins, and the like can be mentioned.

物理的処理としては、蒸留が挙げられ、曝気によりアンモニアを揮発させてもよい。蒸留は、アンモニアがガスとして揮散することを防止するため、酸性条件下で行うことが好ましく減圧下で加温するとよい。一方、曝気によりアンモニアを揮散させる場合は、アルカリ条件として大量の空気で曝気すればよい。   The physical treatment includes distillation, and ammonia may be volatilized by aeration. Distillation is preferably performed under acidic conditions in order to prevent ammonia from being volatilized as a gas, and may be heated under reduced pressure. On the other hand, when ammonia is volatilized by aeration, a large amount of air may be aerated as an alkaline condition.

ブラインは、上記の処理法を組み合わせて処理してもよい。例えば、ブラインに酸を添加してアンモニア(アミン)を不溶化させた後、エバポレータを用いて蒸留処理し、水を回収する方法が挙げられる。この方法では、アンモニアを含む廃棄物の発生量を低減するとともに水回収ができる利点がある。   The brine may be processed by combining the above processing methods. For example, after adding an acid to a brine to insolubilize ammonia (amine), the water is recovered by distillation using an evaporator. This method has an advantage that the amount of waste containing ammonia can be reduced and water can be recovered.

本発明では、有機物含有水を嫌気的条件で生物処理することで、硝化反応を抑制し、pH調整用の薬品添加による塩類濃度の上昇を抑え、高分子有機物の生成を抑制することで分離膜の汚染を防止できる。また、嫌気性処理で除去されなかった物質を逆浸透膜装置で濃縮し、別途処理することで、水回収率を上げることができる。   In the present invention, the organic matter-containing water is biologically treated under anaerobic conditions, thereby suppressing the nitrification reaction, suppressing the increase in salt concentration due to the addition of chemicals for pH adjustment, and suppressing the formation of high molecular organic substances. Can prevent contamination. Moreover, the water recovery rate can be raised by concentrating the substance which was not removed by the anaerobic process with a reverse osmosis membrane apparatus, and processing separately.

以下、本発明について図面を用いて詳細に説明する。以下、同一部材については同一符号を付し、説明を省略または簡略化する。   Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明の第1実施形態に係る有機物含有水の生物処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、嫌気性生物処理槽(以下、「リアクタ」)10、膜分離装置12、逆浸透膜装置14、濃縮水処理装置としてのAnammox槽41を含む。リアクタ10の入口には、原水管30が接続されている。リアクタ10は、処理液管32を介して膜分離装置12と接続され、膜分離装置12は分離水管34を介して逆浸透膜装置14と接続されている。逆浸透膜装置14の出口には、透過水管36が接続されている。   FIG. 1 is a schematic diagram of a biological treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 for organic substance-containing water according to a first embodiment of the present invention. The treatment apparatus 1 includes an anaerobic biological treatment tank (hereinafter referred to as “reactor”) 10, a membrane separation apparatus 12, a reverse osmosis membrane apparatus 14, and an Anammox tank 41 as a concentrated water treatment apparatus. A raw water pipe 30 is connected to the inlet of the reactor 10. The reactor 10 is connected to the membrane separation device 12 via a treatment liquid pipe 32, and the membrane separation device 12 is connected to the reverse osmosis membrane device 14 via a separation water pipe 34. A permeate pipe 36 is connected to the outlet of the reverse osmosis membrane device 14.

原水管30の途中には第1熱交換器21が設けられ、透過水管36の途中には第2熱交換器22が設けられている。第1熱交換器21と第2熱交換器22とは流体管39で接続され、熱交換に用いられる流体を第1熱交換器21と第2熱交換器22との間で循環させる。第1熱交換器21、第2熱交換器22、および流体管39は熱回収加熱装置を構成している。   A first heat exchanger 21 is provided in the middle of the raw water pipe 30, and a second heat exchanger 22 is provided in the middle of the permeated water pipe 36. The first heat exchanger 21 and the second heat exchanger 22 are connected by a fluid pipe 39, and a fluid used for heat exchange is circulated between the first heat exchanger 21 and the second heat exchanger 22. The first heat exchanger 21, the second heat exchanger 22, and the fluid pipe 39 constitute a heat recovery heating device.

リアクタ10には、排泥管35とガス排管31が接続されている。排泥管35からは、リアクタ10内の余剰汚泥が取り出され、リアクタ10内で発生したガスはガス排管31から取り出される。ガス排管31は膜分離装置12に接続され、膜分離装置12内に設けられた分離膜(図示せず)を曝気洗浄するように構成され、洗浄装置として機能する。また、膜分離装置12には出口端がリアクタ10に接続された返送管33も接続されている。逆浸透膜装置14には、濃縮側にブライン管37が接続されている。ブライン管37はAnammox槽41に接続されている。   A sludge pipe 35 and a gas exhaust pipe 31 are connected to the reactor 10. Excess sludge in the reactor 10 is taken out from the waste mud pipe 35, and gas generated in the reactor 10 is taken out from the gas exhaust pipe 31. The gas exhaust pipe 31 is connected to the membrane separation device 12 and is configured to aeration-clean a separation membrane (not shown) provided in the membrane separation device 12 and functions as a cleaning device. Further, a return pipe 33 whose outlet end is connected to the reactor 10 is also connected to the membrane separation device 12. A brine tube 37 is connected to the reverse osmosis membrane device 14 on the concentration side. The brine pipe 37 is connected to the Anammox tank 41.

本発明では、原水管30を介して、被処理水として窒素化合物を含む有機物含有水をリアクタ10に供給する。リアクタ10の好適な運転条件は、上述した通り、pH6〜9、温度15〜40℃特に30〜40℃である。このような条件であれば、メタン生成菌群の基質とならない高分子の有機物が含まれる有機物含有水を処理する場合においても、酸生成菌群代謝物による膜汚染を防止できる。   In the present invention, organic substance-containing water containing a nitrogen compound is supplied to the reactor 10 as raw water through the raw water pipe 30. Suitable operating conditions for the reactor 10 are, as described above, pH 6-9, temperature 15-40 ° C, especially 30-40 ° C. Under such conditions, membrane contamination by acid-producing bacteria group metabolites can be prevented even when treating organic-containing water containing high-molecular organic substances that do not serve as a substrate for the methanogen group.

リアクタ10内のメタン生成菌群はグラニュール状または浮遊性のどちらの状態であってもよいが、メタン生成菌群は、酸生成菌群に比べて粘質物を生成しにくいためグラニュール汚泥を形成しにくい。このため、リアクタ10から排出される処理液にはリアクタ10内の汚泥が含まれやすい。   The methanogen group in the reactor 10 may be in either a granular state or a floating state. However, since the methanogen group is less prone to produce sticky matter than the acid-producing group, granule sludge is used. Hard to form. For this reason, the treatment liquid discharged from the reactor 10 is likely to contain sludge in the reactor 10.

本発明ではリアクタ10後段に膜分離装置12を設けるため、処理液に含まれる微生物体を良好に固液分離できる。膜分離装置12は、本実施形態のようにリアクタ10とは別に設けられていることが好ましい。膜は、限外濾過膜(UF膜)または精密濾過膜(MF膜)を用いればよく、一般的なメタン生成菌の直径より孔径が小さいことが好ましく、具体的には孔径が100nm以下程度であることが好ましい。   In the present invention, since the membrane separation device 12 is provided at the rear stage of the reactor 10, the microorganisms contained in the treatment liquid can be solid-liquid separated satisfactorily. The membrane separation device 12 is preferably provided separately from the reactor 10 as in this embodiment. The membrane may be an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane), and preferably has a pore size smaller than the diameter of a general methanogen, specifically, a pore size of about 100 nm or less. Preferably there is.

膜分離装置12のモジュール形式は特に限定されないが、リアクタ10から送液される汚泥が膜分離装置12の内部で閉塞または滞留しにくいように構成されていることが好ましく、例えばチューブラ形式や平膜形式を好適に使用できる。また、処理液中の液分と固形分とを分離する分離膜は、本実施形態のようにリアクタ10外に設ける、いわゆる槽外型とすれば膜面流速のコントロールが容易であるため、膜面の汚れ防止の観点から好ましい。   The module type of the membrane separation device 12 is not particularly limited, but is preferably configured so that the sludge sent from the reactor 10 is less likely to block or stay inside the membrane separation device 12, such as a tubular type or a flat membrane. The format can be suitably used. Further, if the separation membrane for separating the liquid and solid content in the processing liquid is provided outside the reactor 10 as in this embodiment, so-called outside-tank type makes it easy to control the membrane surface flow rate. It is preferable from the viewpoint of preventing surface contamination.

本実施態様では、膜分離装置12にはガス排管31が接続されており、リアクタ10からは処理液が生成ガスとともに膜分離装置12に送られる。ガスは、膜分離装置12内の被処理水流路に沿って移動しながら分離膜を曝気洗浄する。膜分離装置12に供給された処理液は装置内を通過する間に固液分離され、透過側から固形分が除去された分離水が装置外へ取り出される。一方、固形分が濃縮された濃縮汚泥液はガスとともに膜分離装置12の被処理液流路内を移動し、返送管33からリアクタ10に返送される。   In the present embodiment, a gas exhaust pipe 31 is connected to the membrane separation device 12, and the treatment liquid is sent from the reactor 10 to the membrane separation device 12 together with the generated gas. The gas aeration-cleans the separation membrane while moving along the water channel to be treated in the membrane separation device 12. The processing liquid supplied to the membrane separation device 12 is separated into solid and liquid while passing through the inside of the device, and separated water from which the solid content has been removed is taken out from the permeation side. On the other hand, the concentrated sludge liquid in which the solid content is concentrated moves in the liquid flow path of the membrane separation device 12 together with the gas, and is returned to the reactor 10 from the return pipe 33.

メタン生成菌群は好気性微生物に比べて増殖速度が遅いが、このような汚泥返送を行ってリアクタ10内の汚泥濃度を4,000〜10,000mg/L程度に維持すれば、好気性の活性汚泥による好気性生物処理を行う場合と同程度の分解速度を得ることができる。よって、汚泥濃度を上記範囲とすれば、リアクタ10の水理学的滞留時間を0.5〜2日程度にできる。リアクタ10からは排泥管35を介して適宜、余剰汚泥を引き抜き、リアクタ10内の汚泥濃度を調整する。   The methanogenic group has a slower growth rate than aerobic microorganisms. However, if such sludge is returned to maintain the sludge concentration in the reactor 10 at about 4,000 to 10,000 mg / L, aerobic microorganisms can be obtained. A decomposition rate comparable to that in the case of performing aerobic biological treatment with activated sludge can be obtained. Therefore, if the sludge concentration is within the above range, the hydraulic residence time of the reactor 10 can be set to about 0.5 to 2 days. The excess sludge is appropriately extracted from the reactor 10 through the sludge pipe 35, and the sludge concentration in the reactor 10 is adjusted.

膜分離装置12で固形分が分離された分離水は、膜分離装置12の後段に設けられた逆浸透膜装置14で脱塩して純水製造の原水として利用する。本実施形態ではリアクタ10は30〜40℃で運転され、処理液の温度も30〜40℃である。本発明ではリアクタ10から排出された処理液を好気性処理せず、人為的に温度降下もさせず、膜分離装置12および逆浸透膜装置14に送る。30℃前後の液は逆浸透膜分離が容易なので、リアクタ10からの処理液を温かい状態で逆浸透膜装置14に送ることで、逆浸透膜装置14のフラックスを高くできる。   The separated water from which the solid content has been separated by the membrane separation device 12 is desalted by the reverse osmosis membrane device 14 provided at the subsequent stage of the membrane separation device 12 and used as raw water for pure water production. In this embodiment, the reactor 10 is operated at 30 to 40 ° C., and the temperature of the treatment liquid is also 30 to 40 ° C. In the present invention, the treatment liquid discharged from the reactor 10 is sent to the membrane separation device 12 and the reverse osmosis membrane device 14 without being subjected to an aerobic treatment and without causing a temperature drop artificially. Since the liquid at around 30 ° C. is easily separated by reverse osmosis membrane, the flux of the reverse osmosis membrane device 14 can be increased by sending the treatment liquid from the reactor 10 to the reverse osmosis membrane device 14 in a warm state.

逆浸透膜装置14から取り出された液は、依然として温かい。そこで、本実施態様では透過水を取り出す透過水管36の途中に設けた第2熱交換器22で透過水を熱交換して熱回収を行う。第2熱交換器22での熱交換により温められた熱交換媒体は流体管39を介して第1熱交換器21に送る。第1熱交換器21では、温められた熱交換媒体で原水管30から送られる原水を加温してリアクタ10に送る。   The liquid removed from the reverse osmosis membrane device 14 is still warm. Therefore, in this embodiment, heat is recovered by exchanging the permeated water with the second heat exchanger 22 provided in the middle of the permeated water pipe 36 for extracting the permeated water. The heat exchange medium warmed by the heat exchange in the second heat exchanger 22 is sent to the first heat exchanger 21 via the fluid pipe 39. In the 1st heat exchanger 21, the raw | natural water sent from the raw | natural water pipe 30 is heated with the warmed heat exchange medium, and it sends to the reactor 10. FIG.

逆浸透膜装置14で処理され、塩類が除去された透過水は、純水製造用の原水として利用できる。具体的には、逆浸透膜装置14の後段に脱炭酸装置やイオン交換装置、紫外線殺菌装置等の純水製造装置を構成する機器類を配置し、これら機器類を用いて逆浸透膜装置14から取り出した透過水を処理することで純水が製造できる。逆浸透膜装置14から排出される、塩類が濃縮された濃縮水はブライン管37から排出する。   The permeated water that has been treated by the reverse osmosis membrane device 14 and from which salts have been removed can be used as raw water for producing pure water. Specifically, devices constituting a pure water production apparatus such as a decarboxylation device, an ion exchange device, and an ultraviolet sterilization device are arranged after the reverse osmosis membrane device 14, and the reverse osmosis membrane device 14 is used by using these devices. Pure water can be produced by treating the permeated water taken out from the water. Concentrated water enriched with salts discharged from the reverse osmosis membrane device 14 is discharged from the brine pipe 37.

第1実施形態の処理装置1は、濃縮水処理装置として独立栄養性脱窒微生物(Anammox微生物)を保持する生物処理槽を有する。Anammox槽41では、ブライン管37から供給された濃縮水中のアンモニアの一部が微好気条件で亜硝酸に酸化され、無酸素条件でAnammox微生物の生物反応によりアンモニアと亜硝酸とから窒素ガスが生成され、窒素が除去される。   The processing apparatus 1 of 1st Embodiment has the biological treatment tank holding an autotrophic denitrification microorganisms (Anammox microorganism) as a concentrated water processing apparatus. In the Anammox tank 41, a part of the ammonia in the concentrated water supplied from the brine pipe 37 is oxidized to nitrous acid under microaerobic conditions, and nitrogen gas is released from ammonia and nitrous acid by the biological reaction of Anammox microorganisms under anaerobic conditions. Is produced and nitrogen is removed.

Anammox槽41からの流出液は配管42から取り出し、必要に応じてさらに処理し、純水製造の原水として再利用できる。あるいは、必要に応じて流出液を固液分離装置(図示せず)で固液分離し、固形分は返送汚泥として返送し、液分を放流または回収してもよい。   The effluent from the Anammox tank 41 can be taken out from the pipe 42, further processed as necessary, and reused as raw water for pure water production. Alternatively, if necessary, the effluent may be solid-liquid separated by a solid-liquid separator (not shown), the solid content may be returned as return sludge, and the liquid content discharged or recovered.

逆浸透膜装置14から排出される濃縮水は、生物処理以外の方法で処理してもよい。図2は、本発明の第2実施形態に係る処理装置2の模式図である。処理装置2は、濃縮水処理装置としてAnammox槽41に代えて反応カラム43を有する点で、処理装置1と異なる。反応カラム43に濃縮水を供給するブライン管37の途中には図示しない薬注装置が接続され、濃縮水中のアンモニアと反応して固形物を生じる薬品が添加される。濃縮水には例えば、薬品としてリン酸およびマグネシウム塩が添加され、反応カラム43中でリン酸アンモニウムマグネシウムが生成されストラバイト結晶が生じる。ストラバイト結晶は反応カラム43から取り出し肥料等として利用でき、結晶と分離されアンモニアが除去された脱アンモニア水は純水製造の原水として回収利用できる。   The concentrated water discharged from the reverse osmosis membrane device 14 may be treated by a method other than biological treatment. FIG. 2 is a schematic diagram of the processing apparatus 2 according to the second embodiment of the present invention. The treatment apparatus 2 is different from the treatment apparatus 1 in that it has a reaction column 43 instead of the Anammox tank 41 as a concentrated water treatment apparatus. A chemical injection device (not shown) is connected in the middle of the brine pipe 37 for supplying concentrated water to the reaction column 43, and a chemical that reacts with ammonia in the concentrated water to produce a solid is added. For example, phosphoric acid and a magnesium salt are added as chemicals to the concentrated water, and ammonium magnesium phosphate is generated in the reaction column 43 to produce struvite crystals. The struvite crystals are taken out from the reaction column 43 and can be used as fertilizer or the like, and the deammonia water separated from the crystals and from which ammonia has been removed can be recovered and used as raw water for producing pure water.

図3は、本発明の第3実施形態に係る処理装置3の模式図である。処理装置3は、濃縮水処理装置としてエバポレータ45を備える。処理装置3では、濃縮水をエバポレータ45に導入して減圧蒸留し、蒸留水を蒸留水管46から取り出して純水製造用の原水として利用する。図には示していないが、蒸留処理に先立ち、濃縮水に硫酸を添加するように構成し、濃縮水のpHを4〜6程度にしてアンモニアを硫酸アンモニウムとしてアンモニアを回収してもよい。   FIG. 3 is a schematic diagram of the processing apparatus 3 according to the third embodiment of the present invention. The treatment device 3 includes an evaporator 45 as a concentrated water treatment device. In the processing apparatus 3, the concentrated water is introduced into the evaporator 45 and distilled under reduced pressure, and the distilled water is taken out from the distilled water pipe 46 and used as raw water for producing pure water. Although not shown in the figure, prior to the distillation treatment, it may be configured to add sulfuric acid to the concentrated water, and the pH of the concentrated water may be about 4 to 6, and ammonia may be recovered using ammonium sulfate.

図4は、生物処理、化学処理、および物理処理を2以上、組み合わせた方法で濃縮水を処理する別の方法を示す。図4の処理装置4では、濃縮水処理装置を生物処理槽(Anammox槽41)とエバポレータ45とを組み合わせて構成としている。この処理装置4では、濃縮水をまず生物処理することでエバポレータ45に供給する被処理水のpH調整に要する酸の添加量を少なくできる。   FIG. 4 shows another method for treating concentrated water by combining two or more of biological treatment, chemical treatment, and physical treatment. In the treatment apparatus 4 of FIG. 4, the concentrated water treatment apparatus is configured by combining a biological treatment tank (Anammox tank 41) and an evaporator 45. In this processing apparatus 4, the amount of acid added to adjust the pH of the water to be treated supplied to the evaporator 45 can be reduced by first biologically treating the concentrated water.

[実施例1]
実施例1として、図1に示す処理装置1を模した実験装置による実験を行った。実験装置のリアクタ10は有効容積1m、水理学的滞留時間は0.5日で運転した。リアクタ10内には、メタノールを処理する嫌気性リアクタから取り出したグラニュール汚泥を後述する被処理液で馴養し浮遊性汚泥を保持させた。リアクタ10内の浮遊性汚泥の濃度は4,000mg/Lで、現存量(湿重量比較)の40%がメタン生成菌群、60%がメタン生成細菌群の自己消化残渣であった。
[Example 1]
As Example 1, an experiment using an experimental apparatus simulating the processing apparatus 1 shown in FIG. The reactor 10 of the experimental apparatus was operated with an effective volume of 1 m 3 and a hydraulic residence time of 0.5 days. In the reactor 10, granular sludge taken out from an anaerobic reactor for treating methanol was conditioned with a liquid to be treated, which will be described later, to hold floating sludge. The concentration of airborne sludge in the reactor 10 was 4,000 mg / L, and 40% of the existing amount (wet weight comparison) was a self-digesting residue of the methanogenic bacteria group and 60% of the methanogenic bacteria group.

被処理水としては全有機態炭素(TOC)濃度500mg/L、窒素濃度152mg/L、無機塩濃度1,180mg/Lの有機物含有水を用いた。炭素および窒素のほとんどはテトラメチルアンモニウムヒドロキシル由来で、その濃度はTOCとして480mg/L、Nとして140mg/Lであった。   As the water to be treated, organic substance-containing water having a total organic carbon (TOC) concentration of 500 mg / L, a nitrogen concentration of 152 mg / L, and an inorganic salt concentration of 1,180 mg / L was used. Most of the carbon and nitrogen were derived from tetramethylammonium hydroxyl, and the concentrations were 480 mg / L as TOC and 140 mg / L as N.

被処理水は加温して、リアクタ10内の槽内液の温度が35℃となるようにした。膜分離装置12内には、直径0.52cmのチューブ状UF膜(孔径30nm)を104本、配置し、チューブ内にリアクタ10から排出された生物処理液をガスとともに流入させ、濃縮液とガスはリアクタ10に戻した。膜分離装置12の透過水量(フラックス)は1.0m/dayとした。膜分離装置12から得られた分離水は0.75MPaで逆浸透膜装置14(逆浸透膜として全芳香族ポリアミド系の超低圧膜を備えたスパイラル式のもの)により10倍濃縮した。   The water to be treated was heated so that the temperature of the liquid in the tank in the reactor 10 was 35 ° C. 104 membrane-shaped UF membranes (pore diameter: 30 nm) having a diameter of 0.52 cm are arranged in the membrane separation device 12, and the biological treatment liquid discharged from the reactor 10 is caused to flow into the tube together with the gas. Was returned to the reactor 10. The amount of permeated water (flux) of the membrane separator 12 was 1.0 m / day. Separation water obtained from the membrane separator 12 was concentrated at a rate of 0.75 MPa by a reverse osmosis membrane device 14 (spiral type equipped with a wholly aromatic polyamide ultra-low pressure membrane as a reverse osmosis membrane).

上記条件で実験を開始して30日後には、テトラメチルアンモニウムヒドロキシドが分解され、膜分離装置12からの分離水のTOC濃度は5mg/Lとなり、トリメチルアミンとアンモニアが生成された。分離水のTOCのほとんどは、トリメチルアミンでその濃度は4mg/L、残り1mg/Lは微生物により生成された高分子有機物であった。また、分離水のアンモニア濃度は135〜140mg−N/Lの範囲であった。このアンモニアは、リアクタ10内でのメタン発酵によって発生した二酸化炭素(濃度は120mg−C/L程度)と反応し、重炭酸アンモニウムが生成された。このため、リアクタ10の槽内液のpHは中和用薬剤を添加せずpH7.0〜7.5に維持できた。   Thirty days after the experiment was started under the above conditions, tetramethylammonium hydroxide was decomposed, the TOC concentration of the separated water from the membrane separator 12 was 5 mg / L, and trimethylamine and ammonia were produced. Most of the TOC of the separated water was trimethylamine, the concentration of which was 4 mg / L, and the remaining 1 mg / L was a macromolecular organic matter produced by microorganisms. Moreover, the ammonia concentration of the separated water was in the range of 135 to 140 mg-N / L. This ammonia reacted with carbon dioxide (concentration of about 120 mg-C / L) generated by methane fermentation in the reactor 10 to produce ammonium bicarbonate. For this reason, the pH of the liquid in the tank of the reactor 10 could be maintained at pH 7.0 to 7.5 without adding a neutralizing agent.

分離水を脱塩処理した逆浸透膜装置14は実験開始から60日間、0.75MPaで、0.95m/dayのフラックスで運転できた。逆浸透膜装置14から得られた濃縮水は、pHが概ね8.5、トリメチルアミン濃度40mg−C/L、重炭酸アンモニウム濃度1,400mg−N/L、高分子有機物濃度10mg−C/Lで、塩類(アンモニウム塩)および有機物についてほぼ100%の回収率であった。   The reverse osmosis membrane device 14 obtained by desalting the separated water could be operated for 60 days from the start of the experiment at 0.75 MPa and a flux of 0.95 m / day. The concentrated water obtained from the reverse osmosis membrane device 14 has a pH of approximately 8.5, a trimethylamine concentration of 40 mg-C / L, an ammonium bicarbonate concentration of 1,400 mg-N / L, and a polymer organic matter concentration of 10 mg-C / L. The recovery rate was almost 100% for salts (ammonium salts) and organic substances.

濃縮水は、Anammox槽41で微好気/無酸素条件で生物処理した。Anammox槽41に対する負荷は、3kg−N/m/dayとした。Anammox槽41での処理により、濃縮水中のトリメチルアミンおよびアンモニアの99%が生物分解され、Anammox槽41から流出した処理液のBOD濃度は10mg/L以下、SS濃度も10mg/L以下、窒素濃度は10mg−N/Lであった。 The concentrated water was biologically treated in the Anammox tank 41 under microaerobic / anoxic conditions. The load on the Anammox tank 41 was 3 kg-N / m 3 / day. By the treatment in the Anammox tank 41, 99% of trimethylamine and ammonia in the concentrated water are biodegraded, and the BOD concentration of the treatment liquid flowing out from the Anammox tank 41 is 10 mg / L or less, the SS concentration is 10 mg / L or less, and the nitrogen concentration is It was 10 mg-N / L.

[実施例2]
実施例2では、図2の処理装置2を模した実験装置を用いた以外は実施例1と同様の条件の実験を行った。実施例2では、ブライン管37の途中にマグネシウム塩として2%の塩化マグネシウムの水溶液を800mg/Lの添加量で添加し、リン酸カリウム溶液を添加した。また、水酸化ナトリウムを添加してpHを11として重炭酸アンモニウムを解離させアンモニウムイオンを遊離させた。反応カラム43は、容量20Lで、前記薬品を添加した濃縮水を200L/dayの条件で通水したところ、アンモニウムイオンがリンおよびマグネシウムと反応し、直径2〜3mm程度のストラバイト結晶が生成された。配管45を介して反応カラム43から取り出した処理水は、TOC濃度50mg/L、窒素濃度140mg/Lであり、濃縮水に含まれていたアンモニアの90%が除去できた。また、反応カラム43からストラバイト結晶を取り出し、分析したところ、その主成分は、アンモニア、リン、マグネシウムであり重金属はほとんど含まず、肥料として利用可能であった。
[Example 2]
In Example 2, an experiment was performed under the same conditions as in Example 1 except that an experimental apparatus simulating the processing apparatus 2 of FIG. 2 was used. In Example 2, an aqueous solution of 2% magnesium chloride as a magnesium salt was added in the middle of the brine tube 37 at an addition amount of 800 mg / L, and a potassium phosphate solution was added. Further, sodium hydroxide was added to adjust the pH to 11, and ammonium bicarbonate was dissociated to release ammonium ions. The reaction column 43 has a capacity of 20 L, and when concentrated water added with the above chemicals is passed through under the condition of 200 L / day, ammonium ions react with phosphorus and magnesium to produce struvite crystals with a diameter of about 2 to 3 mm. It was. The treated water taken out from the reaction column 43 via the pipe 45 had a TOC concentration of 50 mg / L and a nitrogen concentration of 140 mg / L, and 90% of the ammonia contained in the concentrated water could be removed. Further, when the struvite crystal was taken out from the reaction column 43 and analyzed, its main components were ammonia, phosphorus and magnesium, which contained almost no heavy metals and could be used as a fertilizer.

[実施例3]
実施例3では、図3の処理装置3を模した実験装置を用いた以外は実施例1と同様の条件の実験を行った。実施例3では、図示しない薬注装置からブライン管37の途中に硫酸を添加し、エバポレータ45に供給する濃縮水のアルカリ度を0(pH4.8)にした。エバポレータ45は減圧して濃縮水を40℃に加温することで蒸留し、蒸留水管46から蒸留水を取り出した。蒸留水のTOC濃度は0.01mg−C/L、窒素濃度は0.2mg−N/Lであった。また、エバポレータ45内に残留した硫酸アンモニウムのスラリーを回収したところ、濃縮水中のアンモニウムの98%を硫酸アンモニウムスラリーとして回収できた。
[Example 3]
In Example 3, an experiment was performed under the same conditions as in Example 1 except that an experimental apparatus simulating the processing apparatus 3 of FIG. 3 was used. In Example 3, sulfuric acid was added in the middle of the brine pipe 37 from a chemical injection device (not shown), and the alkalinity of the concentrated water supplied to the evaporator 45 was set to 0 (pH 4.8). The evaporator 45 was distilled by reducing the pressure and heating the concentrated water to 40 ° C., and the distilled water was taken out from the distilled water pipe 46. The TOC concentration of distilled water was 0.01 mg-C / L, and the nitrogen concentration was 0.2 mg-N / L. Further, when the slurry of ammonium sulfate remaining in the evaporator 45 was recovered, 98% of the ammonium in the concentrated water could be recovered as the ammonium sulfate slurry.

[実施例4]
実施例4では、図4の処理装置4を模した実験装置を用い、実施例1のAnammox槽41での生物処理により得られた処理液をさらにエバポレータ45で蒸留した。実施例4では、エバポレータ45に供給される液のアンモニア濃度は70mg−N/Lで、実施例3に比べて低かったため、pHを低下させるために必要な酸の添加量は、実施例3の1/20どなった。また、エバポレータ45から取り出した蒸留水の水質はTOC濃度0mg−C/L、窒素濃度0mg−N/Lであった。
[Example 4]
In Example 4, the processing apparatus obtained by the biological treatment in the Anammox tank 41 of Example 1 was further distilled by the evaporator 45 using the experimental apparatus simulating the processing apparatus 4 of FIG. In Example 4, since the ammonia concentration of the liquid supplied to the evaporator 45 was 70 mg-N / L, which was lower than that in Example 3, the amount of acid added to lower the pH was the same as in Example 3. 1/20. Moreover, the water quality of the distilled water taken out from the evaporator 45 was a TOC concentration of 0 mg-C / L and a nitrogen concentration of 0 mg-N / L.

[比較例1]
比較例1として、リアクタ内部に空気を吹き込む散気装置を設けることで、リアクタを好気性生物処理槽とした。リアクタを好気性に代えた以外は実施例1と同様の条件で実験を行ったところ、好気性生物処理槽のpH調整を行わなかったため、実験開始から1週間後には硝化反応が認められ、槽内液のpHが5.0〜5.5程度に低下した。この結果、好気性生物処理槽から流出する処理液のTOC濃度は100〜120mg/L程度となり、膜分離装置から得られた分離水を脱塩処理する逆浸透膜装置のフラックスは実施例1の半分となった。
[Comparative Example 1]
As Comparative Example 1, the reactor was an aerobic biological treatment tank by providing a diffuser for blowing air into the reactor. The experiment was conducted under the same conditions as in Example 1 except that the reactor was changed to aerobic. However, since the pH of the aerobic biological treatment tank was not adjusted, a nitrification reaction was observed one week after the start of the experiment. The pH of the internal solution decreased to about 5.0 to 5.5. As a result, the TOC concentration of the treatment liquid flowing out from the aerobic biological treatment tank is about 100 to 120 mg / L, and the flux of the reverse osmosis membrane device for desalting the separated water obtained from the membrane separation device is that of Example 1. It became half.

[比較例2]
比較例1において、好気性生物処理槽に水酸化ナトリウムを添加して槽内液のpHを6.5〜7.5の範囲にした。この結果、好気性生物処理槽から流出する処理液のTOC濃度は10mg/Lまで低下させることができた。しかし、処理液には硝酸が130〜140mg/L程度の濃度で含まれ、また、pH調整用に添加した水酸化ナトリウムにより塩濃度が高くなった。このため、膜分離装置から得られた分離水を脱塩処理する逆浸透膜装置のフラックスは実施例1の60%に留まった。
[Comparative Example 2]
In Comparative Example 1, sodium hydroxide was added to the aerobic biological treatment tank so that the pH of the liquid in the tank was in the range of 6.5 to 7.5. As a result, the TOC concentration of the treatment liquid flowing out from the aerobic biological treatment tank could be reduced to 10 mg / L. However, the treatment liquid contained nitric acid at a concentration of about 130 to 140 mg / L, and the salt concentration was increased by sodium hydroxide added for pH adjustment. For this reason, the flux of the reverse osmosis membrane device for desalting the separated water obtained from the membrane separation device remained at 60% of Example 1.

[比較例3]
比較例2において、好気性生物処理槽の後段に脱窒槽を設け、図5に示す構成の処理装置5とした。処理装置5は、実施例で用いた嫌気性の生物処理装置(リアクタ10)に代えて好気性生物処理槽(好気性リアクタ10´)を有し、好気性リアクタ10´の後段に脱窒菌を保持する脱窒槽13および再曝気槽11を備える。好気性リアクタ10´から流出する処理液には、メタノールを添加し、脱窒槽13に硫酸を添加してpHを6.5〜7.5に維持して脱窒処理をした。脱窒槽13からの流出液は、配管32Bを介して再曝気槽11に送り、再曝気槽11で再曝気した後、配管32Cを介して膜分離装置12に送った。この結果、実験開始から2週間は、膜分離装置12から得られた分離水を脱塩処理する逆浸透膜装置14のフラックスは実施例1の80%となった。しかし、実験開始から1ヶ月後には逆浸透膜装置14のフラックスは実施例1の50%に低下した。
[Comparative Example 3]
In Comparative Example 2, a denitrification tank was provided at the subsequent stage of the aerobic biological treatment tank to obtain the treatment apparatus 5 having the configuration shown in FIG. The treatment apparatus 5 has an aerobic biological treatment tank (aerobic reactor 10 ') instead of the anaerobic biological treatment apparatus (reactor 10) used in the examples, and denitrifying bacteria are placed in the subsequent stage of the aerobic reactor 10'. A holding denitrification tank 13 and a re-aeration tank 11 are provided. Methanol was added to the treatment liquid flowing out from the aerobic reactor 10 ′, and sulfuric acid was added to the denitrification tank 13 to maintain the pH at 6.5 to 7.5 for denitrification treatment. The effluent from the denitrification tank 13 was sent to the re-aeration tank 11 via the pipe 32B, re-aerated in the re-aeration tank 11, and then sent to the membrane separation device 12 via the pipe 32C. As a result, for two weeks after the start of the experiment, the flux of the reverse osmosis membrane device 14 for desalting the separated water obtained from the membrane separation device 12 was 80% of that in Example 1. However, one month after the start of the experiment, the flux of the reverse osmosis membrane device 14 decreased to 50% of Example 1.

そこで、逆浸透膜を取り外し、顕微鏡観察したところ、多量のバイオフィルムが表面に付着していた。実施例1で用いた逆浸透膜装置の逆浸透膜には、バイオフィルムはほとんど付着していなかったことから、比較例3ではバイオフィルムの付着によりフラックスが低下したものと推察された。実施例では逆浸透膜にバイオフィルムが付着しなかった理由としては、次の2つが考えられる。逆浸透膜装置では塩類が濃縮されブラインのpHが8.5まで上昇したため、重炭酸アンモニウムからアンモニアが解離して、アンモニアの毒性により微生物の増殖が抑制された。また別の理由としては、メタン生成菌群は好気性微生物に比して増殖速度が遅く、バイオフィルムを形成しがたいことが挙げられる。   Therefore, when the reverse osmosis membrane was removed and observed with a microscope, a large amount of biofilm was adhered to the surface. Since almost no biofilm adhered to the reverse osmosis membrane of the reverse osmosis membrane device used in Example 1, it was presumed that in Comparative Example 3, the flux decreased due to the biofilm adhesion. In the examples, there are two possible reasons why the biofilm did not adhere to the reverse osmosis membrane. In the reverse osmosis membrane device, the salt was concentrated and the pH of the brine rose to 8.5, so that ammonia was dissociated from ammonium bicarbonate, and the growth of microorganisms was suppressed due to the toxicity of ammonia. Another reason is that the methanogen group has a slower growth rate than aerobic microorganisms and it is difficult to form a biofilm.

以上より、有機物含有水をメタン生成菌群により嫌気性処理することでpH調整剤を添加することなく有機物を生物分解し、分離膜を汚染する高分子有機物の生成量を抑制できることが示された。   From the above, it was shown that organic matter-containing water can be anaerobically treated with methanogens to biodegrade the organic matter without adding a pH adjuster and suppress the amount of macromolecular organic matter that contaminates the separation membrane. .

また、メタン生成菌群による嫌気性処理工程でアンモニアと二酸化炭素とから重炭酸アンモニウムを生成させ、これを好気性処理することなく逆浸透膜装置で濃縮することで逆浸透膜装置でのバイオフィルムの形成が抑制できることが示された。すなわち、嫌気性処理工程で除去できなかった物質を逆浸透膜装置で濃縮する場合の逆浸透膜の汚染を防止できることが示された。   Also, biofilms in reverse osmosis membrane devices are produced by producing ammonium bicarbonate from ammonia and carbon dioxide in an anaerobic treatment process by a group of methanogens and concentrating them in a reverse osmosis membrane device without aerobic treatment. It was shown that the formation of can be suppressed. That is, it was shown that contamination of the reverse osmosis membrane can be prevented when a substance that could not be removed in the anaerobic treatment step is concentrated by the reverse osmosis membrane device.

本発明は、有機物含有水を生物処理して純水製造に再利用するために用いることができる。   The present invention can be used for biologically treating organic substance-containing water and reusing it for the production of pure water.

本発明の第1実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 4th Embodiment of this invention. 比較例で用いた実験装置の模式図。The schematic diagram of the experimental apparatus used by the comparative example.

符号の説明Explanation of symbols

1 生物処理装置
10 嫌気性生物処理槽(リアクタ)
12 膜分離装置
14 逆浸透膜装置
21 第1熱交換器
22 第2熱交換器
41 Anammox槽(濃縮水処理装置)
43 反応カラム
45 エバポレータ
1 Biological treatment device 10 Anaerobic biological treatment tank (reactor)
DESCRIPTION OF SYMBOLS 12 Membrane separator 14 Reverse osmosis membrane device 21 1st heat exchanger 22 2nd heat exchanger 41 Anammox tank (concentrated water processing apparatus)
43 Reaction column 45 Evaporator

Claims (7)

生物処理槽と、前記生物処理槽の後段に設けられた逆浸透膜装置と、を備え、純水製造用の原水として利用する有機物含有水の生物処理装置であって、
全有機物炭素に対するモノマー有機物の割合が70%以上である有機物含有水が導入されメタン生成菌群によりメタン生成を行う嫌気性生物処理槽と、
前記嫌気性生物処理槽と接続され前記嫌気性生物処理槽から排出された処理液を膜分離する膜分離装置と、
前記膜分離装置の分離水を処理する逆浸透膜装置と、
前記逆浸透膜装置の濃縮水を処理する濃縮水処理装置と、を備える有機物含有水の生物処理装置。
A biological treatment apparatus comprising: a biological treatment tank; and a reverse osmosis membrane device provided at a subsequent stage of the biological treatment tank, and used as raw water for producing pure water,
An anaerobic biological treatment tank in which organic matter-containing water having a ratio of monomeric organic matter to total organic matter carbon of 70% or more is introduced and methane is produced by a methanogen group;
A membrane separation device that is connected to the anaerobic biological treatment tank and membrane-separates the treatment liquid discharged from the anaerobic biological treatment tank;
A reverse osmosis membrane device for treating the separated water of the membrane separation device;
A biological treatment apparatus for organic matter-containing water, comprising: a concentrated water treatment apparatus for treating the concentrated water of the reverse osmosis membrane apparatus.
前記濃縮水処理装置は、前記嫌気生物処理槽とは異なる生物処理槽を含む請求項1に記載の有機物含有水の生物処理装置。   The biological treatment apparatus for organic matter-containing water according to claim 1, wherein the concentrated water treatment apparatus includes a biological treatment tank different from the anaerobic biological treatment tank. 前記濃縮水処理装置は、前記濃縮水を導入し蒸発させ蒸留水を取り出すエバポレータを含む請求項1または2に記載の有機物含有水の生物処理装置。   The biological treatment apparatus for organic matter-containing water according to claim 1 or 2, wherein the concentrated water treatment apparatus includes an evaporator that introduces the concentrated water and evaporates it to take out distilled water. 前記濃縮水処理装置は、前記濃縮水中の不純物を不溶化させる薬品を前記濃縮水に添加して固形物を分離する反応カラムを含む請求項1から3のいずれかに記載の有機物含有水の生物処理装置。   The biological treatment of organic substance-containing water according to any one of claims 1 to 3, wherein the concentrated water treatment apparatus includes a reaction column that separates solids by adding a chemical that insolubilizes impurities in the concentrated water to the concentrated water. apparatus. 有機物含有水を生物処理し、逆浸透膜で脱塩処理して純水製造用の原水として利用する有機物含有水の生物処理方法であって、
メタン生成菌群を含む嫌気性生物処理槽に全有機物炭素に対するモノマー有機物の割合が70%以上である有機物含有水を導入し嫌気性生物処理し、
前記嫌気性生物処理により得られた処理液を好気性生物処理せずに膜分離し、
前記膜分離により得られた分離水を逆浸透膜で処理し、
前記逆浸透膜処理により得られた濃縮水を処理する有機物含有水の生物処理方法。
A biological treatment method of organic matter-containing water that is biologically treated with organic matter-containing water, desalted with a reverse osmosis membrane and used as raw water for producing pure water,
An anaerobic biological treatment tank containing the methanogenic bacteria group is introduced with organic matter-containing water in which the ratio of the monomeric organic matter to the total organic carbon is 70% or more, and the anaerobic biological treatment is performed.
Membrane separation without aerobic biological treatment treatment liquid obtained by the anaerobic biological treatment,
Treating the separated water obtained by the membrane separation with a reverse osmosis membrane,
The biological treatment method of the organic substance containing water which processes the concentrated water obtained by the said reverse osmosis membrane process.
前記有機物含有水は窒素化合物を含む請求項5に記載の有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to claim 5, wherein the organic matter-containing water contains a nitrogen compound. 前記濃縮水を、前記嫌気性生物処理とは別に生物処理する、エバポレータを用いて蒸留処理する、および/または薬品により不純物を不溶化させて処理する請求項5または6に記載の有機物含有水の生物処理方法。   The organism of organic substance-containing water according to claim 5 or 6, wherein the concentrated water is biologically treated separately from the anaerobic biological treatment, distilled using an evaporator, and / or treated by insolubilizing impurities with a chemical. Processing method.
JP2007336181A 2007-12-21 2007-12-27 Biological treatment method and apparatus for water containing organic matter Active JP5194783B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007336181A JP5194783B2 (en) 2007-12-27 2007-12-27 Biological treatment method and apparatus for water containing organic matter
TW97146987A TWI411584B (en) 2007-12-21 2008-12-03 Method and apparatus for biologically treating organic matter-containing water
KR1020080126405A KR101575345B1 (en) 2007-12-21 2008-12-12 Biological Treatment Apparatus and Biological Treatment Process of Aqueous Organic Wastes
CN200810186508XA CN101462811B (en) 2007-12-21 2008-12-22 Biological treatment method and apparatus for organic containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336181A JP5194783B2 (en) 2007-12-27 2007-12-27 Biological treatment method and apparatus for water containing organic matter

Publications (2)

Publication Number Publication Date
JP2009154114A JP2009154114A (en) 2009-07-16
JP5194783B2 true JP5194783B2 (en) 2013-05-08

Family

ID=40958712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336181A Active JP5194783B2 (en) 2007-12-21 2007-12-27 Biological treatment method and apparatus for water containing organic matter

Country Status (1)

Country Link
JP (1) JP5194783B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205990A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
KR101237408B1 (en) * 2013-01-15 2013-02-26 (주)티에스케이워터 Appartus for reducing nitrogen of sewage and wastewater having stayover device of active sludge and method for reducing nitrogen using it
WO2015164744A1 (en) * 2014-04-24 2015-10-29 Nutrient Recovery & Upcycling, Llc Electrodialysis stacks, systems, and methods for recovering ammonia and monovalent salts from anaerobic digestate
CN105776743B (en) * 2016-03-25 2018-05-25 中国人民大学 A kind of method and system of the ultra-deep denitrogenation dephosphorizing of sanitary sewage
KR101840548B1 (en) * 2016-05-31 2018-05-08 주식회사 일신에코솔루션 Wastewater treatment system
JP6614175B2 (en) * 2017-02-09 2019-12-04 栗田工業株式会社 Organic wastewater treatment method
JP7111300B2 (en) * 2017-07-31 2022-08-02 三菱化工機株式会社 Organic wastewater treatment device and organic wastewater treatment method
JP2019177333A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Method for methane fermentation of organic waste
CN113582447A (en) * 2021-07-28 2021-11-02 江苏泷涛环境技术有限公司 High-concentration degradation-resistant organic wastewater treatment system
CN113981011A (en) * 2021-10-14 2022-01-28 江南大学 Method for synchronously realizing mineralization of azo dye and methanation of straw by ECMO-like device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204081A (en) * 1985-03-07 1986-09-10 Kurita Water Ind Ltd Treatment of night soil sewage
JPH0683836B2 (en) * 1986-04-17 1994-10-26 株式会社クボタ Human waste treatment method
JPS6369598A (en) * 1986-09-11 1988-03-29 Ebara Infilco Co Ltd Treatment of organic sewage containing phosphorus
JP3085966B2 (en) * 1990-07-31 2000-09-11 忠愛 土井 Wastewater treatment method
JPH05309391A (en) * 1992-05-12 1993-11-22 Kubota Corp Water treatment method
KR0142723B1 (en) * 1995-02-17 1998-07-01 유석원 High concentration wastewater treatment method using membrane separation
DE19517473A1 (en) * 1995-05-12 1996-11-14 Henkel Ecolab Gmbh & Co Ohg Process for wastewater treatment with recovery of drinking water in high product yields
JP2001340854A (en) * 2000-05-31 2001-12-11 Kubota Corp Method for decoloring biologically treated water
JP2003002775A (en) * 2001-06-21 2003-01-08 Nikki-Bioscan Co Ltd Fertilizer response accelerator and method for manufacturing the same, fertilizer containing fertilizer response accelerator and method for cultivating plant
JP4834993B2 (en) * 2004-12-27 2011-12-14 栗田工業株式会社 Waste water treatment apparatus and treatment method

Also Published As

Publication number Publication date
JP2009154114A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
US20150353397A1 (en) Water reuse system and method
WO2007077776A1 (en) Apparatus and method for treating organic-containing wastewater
JP4632356B2 (en) Biological nitrogen removal method and system
JP4644107B2 (en) Method for treating wastewater containing ammonia
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
KR101352247B1 (en) Apparatus for treating waste water
JP2011173040A (en) Waste water treatment method and apparatus
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
JP2010017615A (en) Method and apparatus for treating dmso-containing wastewater
CN103466902A (en) High-concentration ammonia nitrogen wastewater treatment method
JP3721871B2 (en) Production method of ultra pure water
JP2008510619A (en) Anoxic biological reduction systems and methods
JP3265456B2 (en) Treatment method and treatment equipment for methane fermentation treatment liquid
TWI411584B (en) Method and apparatus for biologically treating organic matter-containing water
CN109775903B (en) Advanced treatment method of acrylic fiber wastewater
JPH03270800A (en) Treatment of organic sewage
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
JP2011212585A (en) Method and apparatus for treating organic matter-containing wastewater
JP3433601B2 (en) Wastewater recovery and purification equipment
JPH0651199B2 (en) Organic wastewater treatment method
JPS6331592A (en) Method for making ultrapure water
JP2003126888A (en) Method and device for treating wastewater containing nitrogen and phosphorus
JP2554687B2 (en) Biological nitrogen removal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250