JP2011173040A - Waste water treatment method and apparatus - Google Patents

Waste water treatment method and apparatus Download PDF

Info

Publication number
JP2011173040A
JP2011173040A JP2010037436A JP2010037436A JP2011173040A JP 2011173040 A JP2011173040 A JP 2011173040A JP 2010037436 A JP2010037436 A JP 2010037436A JP 2010037436 A JP2010037436 A JP 2010037436A JP 2011173040 A JP2011173040 A JP 2011173040A
Authority
JP
Japan
Prior art keywords
osmosis membrane
anaerobic
forward osmosis
membrane separation
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010037436A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
和也 小松
Hideyuki Komori
英之 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010037436A priority Critical patent/JP2011173040A/en
Publication of JP2011173040A publication Critical patent/JP2011173040A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment method and apparatus by which treated water made low in organic concentration and dissolved ion concentration is easily obtained. <P>SOLUTION: The waste water treatment method includes: an anaerobic treatment step of treating waste water containing the organic material in an anaerobic biological reaction tank 1; an osmosis membrane separation step of separating an anaerobically treated liquid in the anaerobic treatment step into a permeated liquid and a concentrated liquid by an osmosis membrane 2a; a reverse osmosis membrane separation step of introducing the permeated liquid in the osmosis treatment step into a reverse osmosis membrane separation device 5 and separating the permeated liquid into treated water and concentrated water by a reverse osmosis membrane 5a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機物を含む排水を嫌気的に処理した後、膜分離処理する生物処理方法及び装置に関し、特に、排水を生物処理して純水製造用の原水として利用する場合に好適な排水処理方法及び装置に関する。   The present invention relates to a biological treatment method and apparatus for performing membrane separation treatment after anaerobically treating wastewater containing organic matter, and particularly suitable for wastewater treatment when the wastewater is biologically treated and used as raw water for producing pure water. The present invention relates to a method and an apparatus.

半導体製造、液晶製造等の電子産業工場のように純水を使用しその排水を排出する設備では、モノエタノールアミン、テトラメチルアンモニウムヒドロキシドなどプロセス工程で洗浄剤、剥離剤などとして使用される有機物を含む排水を生物処理し、その処理水を純水製造の原料として用いる水回収が進んでいる。生物処理水を純水製造に再利用する場合、処理水を固液分離装置で処理して微生物体を分離した後、RO(逆浸透)膜で脱塩処理する(例えば、特開2007−175582号公報)。   In equipment that uses pure water and discharges its waste water, such as semiconductor manufacturing and liquid crystal manufacturing, such as electronics industry factories, organic substances such as monoethanolamine and tetramethylammonium hydroxide that are used as cleaning agents and release agents in process steps Water recovery is progressing, in which wastewater containing water is biologically treated and the treated water is used as a raw material for producing pure water. When biologically treated water is reused for producing pure water, the treated water is treated with a solid-liquid separator to separate microorganisms, and then desalted with an RO (reverse osmosis) membrane (for example, Japanese Patent Application Laid-Open No. 2007-175582). Issue gazette).

生物処理を好気処理で行い、MF膜又はUF膜で固液分離を行うと、好気処理で生成する生物代謝産物によりMF膜又はUF膜が汚染され、頻繁に薬品洗浄を行う必要がある。そこで、生物処理を代謝産物の生成量の少ない嫌気処理で行うことが特開2009−148714号公報にて提案されている。この技術は、MF膜又はUF膜の汚染が少なくなるだけでなく、嫌気処理であるため、好気処理に比べ、酸素供給のための曝気が不要で省動力、汚泥発生量が少ないといったメリットがある。   When biological treatment is performed with aerobic treatment and solid-liquid separation is performed with an MF membrane or UF membrane, the biological metabolite produced by the aerobic treatment contaminates the MF membrane or UF membrane, and chemical cleaning must be performed frequently. . Therefore, Japanese Unexamined Patent Application Publication No. 2009-148714 proposes that biological treatment is performed by anaerobic treatment with a small amount of metabolite produced. This technology not only reduces the contamination of the MF membrane or UF membrane, but also anaerobic treatment. Therefore, compared to the aerobic treatment, there is a merit that aeration for supplying oxygen is unnecessary, power saving, and sludge generation amount is small. is there.

特開2007−175582号公報JP 2007-175582 A 特開2009−148714号公報JP 2009-148714 A

一方で、嫌気性処理は、好気性処理に比べ、無機塩(Na、K、Ca、Mg、Fe、Co、Niなど)や硫黄の必要量が多いことが知られており、例えば、電子産業工場排水のような純水ベースでこれらの無機成分が少ない排水の処理を安定して行うには、充分量を添加する必要がある。そのため、嫌気処理水の無機塩類濃度は好気処理に比べ高くなることが多い。さらに、嫌気処理では排水中又は別途添加した硫黄分の多くは、硫化水素まで還元されて処理水に残留する。この無機塩類や硫化物の多い処理水をRO膜で脱塩処理すると、濃縮液側で無機塩類や硫化物が析出してRO膜を汚染しやすいという問題がある。特にFeSなどの金属の硫化物は溶解度が低く析出しやすい。   On the other hand, it is known that the anaerobic treatment requires a larger amount of inorganic salt (Na, K, Ca, Mg, Fe, Co, Ni, etc.) and sulfur than the aerobic treatment. In order to stably treat wastewater containing a small amount of these inorganic components based on pure water such as industrial wastewater, it is necessary to add a sufficient amount. Therefore, the inorganic salt concentration of anaerobic treated water is often higher than that of aerobic treatment. Furthermore, in the anaerobic treatment, most of the sulfur content added to the waste water or separately is reduced to hydrogen sulfide and remains in the treated water. When desalting the treated water containing a large amount of inorganic salts and sulfides with the RO membrane, there is a problem that the RO membranes are easily contaminated by the precipitation of inorganic salts and sulfides on the concentrated liquid side. In particular, metal sulfides such as FeS have low solubility and are likely to precipitate.

本発明は、有機物を含む排水を嫌気性微生物で処理した後、膜分離処理する方法において、有機物濃度及び溶存イオン濃度が低い処理水を安定して得ることができるようにすることを目的とする。   It is an object of the present invention to stably obtain treated water having a low concentration of organic matter and dissolved ions in a method of membrane separation treatment after treating wastewater containing organic matter with anaerobic microorganisms. .

本発明(請求項1)の排水処理方法は、有機物を含む排水を嫌気性微生物で処理する嫌気性処理工程と、該嫌気性処理工程の嫌気性処理液を正浸透膜で透過液と濃縮液とに分離する正浸透膜分離工程と、該正浸透分離工程の透過液を逆浸透膜で処理水と濃縮水とに分離する逆浸透膜分離工程とを備えたものである。   The waste water treatment method of the present invention (Claim 1) includes an anaerobic treatment step of treating waste water containing organic substances with an anaerobic microorganism, and an anaerobic treatment solution of the anaerobic treatment step using a forward osmosis membrane and a permeate and a concentrate. And a reverse osmosis membrane separation step of separating the permeate from the forward osmosis separation step into treated water and concentrated water by a reverse osmosis membrane.

本発明(請求項2)の排水処理装置は、有機物を含む排水を嫌気性微生物で処理する嫌気性処理槽と、該嫌気性処理槽の嫌気性処理液を正浸透膜で透過液と濃縮液とに分離する正浸透膜分離装置と、該正浸透分離装置の透過液を逆浸透膜で処理水と濃縮水とに分離する逆浸透膜分離装置とを備えたものである。   The wastewater treatment apparatus of the present invention (Claim 2) includes an anaerobic treatment tank for treating wastewater containing organic substances with anaerobic microorganisms, and an anaerobic treatment liquid in the anaerobic treatment tank using a forward osmosis membrane and a permeate and a concentrated liquid. And a reverse osmosis membrane separation device that separates the permeate of the forward osmosis separation device into treated water and concentrated water using a reverse osmosis membrane.

請求項3の排水処理装置は、該正浸透膜分離装置は、その正浸透膜が該嫌気性処理槽内の嫌気性処理液と接するように配置されていることを特徴とするものである。   The wastewater treatment apparatus according to claim 3 is characterized in that the forward osmosis membrane separation device is arranged so that the forward osmosis membrane is in contact with the anaerobic treatment liquid in the anaerobic treatment tank.

請求項4の排水処理装置は、請求項2又は3において、前記逆浸透膜分離装置からの濃縮水を正浸透膜分離装置内に返送する手段を備えたことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a wastewater treatment apparatus according to the second or third aspect, further comprising means for returning the concentrated water from the reverse osmosis membrane separation device into the forward osmosis membrane separation device.

本発明では、有機物を含む排水を嫌気処理し、この嫌気性処理液をまず正浸透膜分離する。すなわち、嫌気性処理液を半透膜を介して高濃度の電解質水溶液(例えば食塩溶液)と接触させ、両者の浸透圧差により嫌気性処理液中の水を半透膜の二次側に移動させる。これにより、嫌気性処理液の固液分離と同時に溶存硫化物を始めとする無機塩類が除去される。このように溶存硫化物を始めとする無機塩類が処理された正浸透膜透過液を、逆浸透膜分離することにより脱塩処理する。これにより、有機物濃度及び溶存イオン濃度が低い処理水を安定して得ることができる。   In the present invention, wastewater containing organic matter is subjected to anaerobic treatment, and this anaerobic treatment liquid is first subjected to forward osmosis membrane separation. That is, the anaerobic treatment solution is brought into contact with a high concentration aqueous electrolyte solution (for example, a salt solution) through the semipermeable membrane, and the water in the anaerobic treatment solution is moved to the secondary side of the semipermeable membrane by the difference in osmotic pressure between the two. . Thereby, inorganic salts including dissolved sulfide are removed simultaneously with solid-liquid separation of the anaerobic treatment liquid. The forward osmosis membrane permeate treated with inorganic salts such as dissolved sulfide in this way is desalted by reverse osmosis membrane separation. Thereby, the treated water with low organic substance density | concentration and dissolved ion density | concentration can be obtained stably.

請求項3の排水処理装置は、正浸透膜分離装置が嫌気性処理槽内に配置されるようになり、排水処理装置がコンパクトなものとなる。   In the wastewater treatment apparatus according to the third aspect, the forward osmosis membrane separation device is arranged in the anaerobic treatment tank, and the wastewater treatment apparatus becomes compact.

請求項4の排水処理装置にあっては、このように、正浸透膜分離装置内に、逆浸透膜分離装置からの濃縮水が導入されるので、正浸透膜分離装置内の塩類濃度が、嫌気性生物反応槽内の嫌気性処理液中の塩類濃度よりも高いものとなる。この濃度差によって、嫌気性生物反応槽内の液が正浸透膜を透過して正浸透膜分離装置内に流入する。   In the wastewater treatment device according to claim 4, since the concentrated water from the reverse osmosis membrane separation device is introduced into the forward osmosis membrane separation device in this way, the salt concentration in the forward osmosis membrane separation device is It becomes a thing higher than the salt concentration in the anaerobic processing liquid in an anaerobic biological reaction tank. Due to this concentration difference, the liquid in the anaerobic biological reaction tank permeates through the forward osmosis membrane and flows into the forward osmosis membrane separation device.

実施の形態に係る分離の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of isolation | separation which concerns on embodiment. 実施例1のフロー図とFO装置の模式図である。It is the flowchart of Example 1, and the schematic diagram of FO apparatus. 実施例1及び比較例1の結果を示すグラフである。3 is a graph showing the results of Example 1 and Comparative Example 1.

以下、図1を参照して本発明の実施の形態に係る排水処理方法及び装置について詳細に説明する。   Hereinafter, a wastewater treatment method and apparatus according to an embodiment of the present invention will be described in detail with reference to FIG.

有機物を含有する排水は、嫌気性生物反応槽1内に導入され、嫌気性微生物の作用によって嫌気的に分解処理される。排水中の分子量の大きい有機物は、高級脂肪酸、酢酸を経て、最終的にメタン、COまで分解される。また、メタノール、メチルアミン、TMAHなどは、直接、メタン、COに分解される。この際、有機物に含まれる硫黄分や、排水中の硫酸イオンは、HSに分解される。これらのガス成分は、嫌気性生物反応槽1内において気相の濃度と平衡となる濃度で液中に溶解して処理水と共に排出され、それを超える分が液中から気相中に放出される。この気相中に放出されたガスは、配管10を介して嫌気性生物反応槽1外に取り出されるが、その一部は、ブロワ11及びガス返送配管12を介して散気管13に供給される。この散気管13は正浸透膜分離装置(FO装置)2の下方に配置されている。散気管13から散気されたガスが上昇して正浸透膜(FO膜)2aに当たることにより、膜洗浄作用が奏される。 Wastewater containing organic matter is introduced into the anaerobic biological reaction tank 1 and is anaerobically decomposed by the action of anaerobic microorganisms. Organic matter having a large molecular weight in the wastewater is decomposed into higher methane and CO 2 through higher fatty acids and acetic acid. In addition, methanol, methylamine, TMAH and the like are directly decomposed into methane and CO 2 . At this time, the sulfur content contained in the organic matter and the sulfate ions in the wastewater are decomposed into H 2 S. These gas components are dissolved in the liquid at a concentration that is in equilibrium with the concentration of the gas phase in the anaerobic biological reactor 1 and discharged together with the treated water, and the excess is released from the liquid into the gas phase. The The gas released into the gas phase is taken out of the anaerobic biological reaction tank 1 through the pipe 10, and a part of the gas is supplied to the diffuser pipe 13 through the blower 11 and the gas return pipe 12. . The air diffuser 13 is disposed below the forward osmosis membrane separation device (FO device) 2. When the gas diffused from the air diffuser 13 rises and hits the forward osmosis membrane (FO membrane) 2a, a membrane cleaning action is exhibited.

正浸透膜分離装置2は、槽体と、該槽体の少なくとも底部に設けられた正浸透膜2aとを備え、この正浸透膜2aが嫌気性生物反応槽1内の嫌気性処理液中に浸漬されるように配管されている。   The forward osmosis membrane separation device 2 includes a tank body and a forward osmosis membrane 2a provided at least at the bottom of the tank body, and the forward osmosis membrane 2a is contained in the anaerobic treatment liquid in the anaerobic biological reaction tank 1. It is piped to be immersed.

なお、正浸透膜分離装置2の槽体のうち嫌気性生物反応槽1内の液と接する部分のさらに多くの部分、例えば、全体を正浸透膜にて構成してもよい。   In addition, you may comprise more parts, for example, the whole of the part which contact | connects the liquid in the anaerobic biological reaction tank 1 among the tank bodies of the forward osmosis membrane separation apparatus 2 with a forward osmosis membrane.

正浸透膜分離装置2の一端側に取出配管3が接続され、正浸透膜分離装置2内の正浸透膜液が該配管3及びポンプ4を介して逆浸透膜分離装置(RO装置)5内に供給される。逆浸透膜分離装置5の逆浸透膜(RO膜)5aを透過した透過水は、処理水として配管7から系外に取り出される。逆浸透膜5aを透過しなかった濃縮水は、配管6を介して正浸透膜分離装置2内の他端側に返送される。   An extraction pipe 3 is connected to one end of the forward osmosis membrane separation device 2, and the forward osmosis membrane liquid in the forward osmosis membrane separation device 2 passes through the pipe 3 and the pump 4 in the reverse osmosis membrane separation device (RO device) 5. To be supplied. The permeated water that has permeated through the reverse osmosis membrane (RO membrane) 5a of the reverse osmosis membrane separation device 5 is taken out of the system from the pipe 7 as treated water. The concentrated water that has not permeated through the reverse osmosis membrane 5 a is returned to the other end side in the forward osmosis membrane separation device 2 through the pipe 6.

このように、正浸透膜分離装置2内には、逆浸透膜分離装置5からの濃縮液が導入されるので、正浸透膜分離装置2内の塩類濃度は嫌気性生物反応槽1内の嫌気性処理液中の塩類濃度よりも高いものとなっている。この濃度差によって、嫌気性生物反応槽1内の液が正浸透膜2aを透過して正浸透膜分離装置2内に流入する。   Thus, since the concentrated liquid from the reverse osmosis membrane separation device 5 is introduced into the forward osmosis membrane separation device 2, the salt concentration in the forward osmosis membrane separation device 2 is anaerobic in the anaerobic biological reaction tank 1. It is higher than the salt concentration in the chemical treatment solution. Due to this concentration difference, the liquid in the anaerobic biological reaction tank 1 permeates through the forward osmosis membrane 2 a and flows into the forward osmosis membrane separation device 2.

嫌気性生物反応槽1内の嫌気性処理液中の溶存硫化物を始めとする無機塩類は、この正浸透膜2aを透過し得ず、嫌気性生物反応槽1内に残留する。溶存硫化物を始めとする無機塩類が除去された液が正浸透膜分離装置2から逆浸透膜分離装置5に導入されるので、逆浸透膜5aが硫化物その他無機塩類の析出により汚染されることがなく、安定して逆浸透膜分離処理水(透過水)が得られる。   Inorganic salts such as dissolved sulfide in the anaerobic treatment liquid in the anaerobic biological reaction tank 1 cannot permeate the forward osmosis membrane 2a and remain in the anaerobic biological reaction tank 1. Since the liquid from which inorganic salts such as dissolved sulfides are removed is introduced from the forward osmosis membrane separation device 2 to the reverse osmosis membrane separation device 5, the reverse osmosis membrane 5a is contaminated by the precipitation of sulfides and other inorganic salts. And reverse osmosis membrane separation treated water (permeated water) can be obtained stably.

なお、上記の正浸透膜2aとしては、半浸透性を有する膜であれば特に限定されることなく使用可能である。逆浸透膜であれば、一般的に正浸透膜として用いることができる。   The forward osmosis membrane 2a is not particularly limited as long as it is a semi-permeable membrane. If it is a reverse osmosis membrane, it can generally be used as a forward osmosis membrane.

本発明において、処理対象となる有機物含有排水は、通常生物処理される有機物含有排水であれば良く、特に限定されるものではないが、例えば、電子産業排水、化学工場排水、食品工場排水などが挙げられる。例えば、電子部品製造プロセスでは、現像工程、剥離工程、エッチング工程、洗浄工程などから各種の有機性排水が多量に発生し、しかも排水を回収して純水レベルに浄化して再使用することが望まれているので、これらの排水は本発明の処理対象排水として適している。   In the present invention, the organic matter-containing wastewater to be treated is not particularly limited as long as it is an organic matter-containing wastewater that is normally biologically treated. Examples thereof include electronic industrial wastewater, chemical factory wastewater, and food factory wastewater. Can be mentioned. For example, in the electronic component manufacturing process, a large amount of various organic wastewater is generated from the development process, peeling process, etching process, cleaning process, etc., and the wastewater can be collected and purified to a pure water level for reuse. As desired, these wastewaters are suitable as the wastewater to be treated of the present invention.

このような有機性排水としては例えば、イソプロピルアルコール、メタノール、ジエチレングリコールモノブチルエーテルなどを含有する有機性排水、モノエタノールアミン(MEA)、テトラメチルアンモニウムハイドロオキサイド(TMAH)などの有機態窒素、アンモニア態窒素を含有する有機性排水、ジメチルスルホキシド(DMSO)などの有機硫黄化合物を含有する有機性排水が挙げられる。   Examples of such organic wastewater include organic wastewater containing isopropyl alcohol, methanol, diethylene glycol monobutyl ether, organic nitrogen such as monoethanolamine (MEA) and tetramethylammonium hydroxide (TMAH), and ammonia nitrogen. And organic wastewater containing organic sulfur compounds such as dimethyl sulfoxide (DMSO).

排水を嫌気的に生物処理するための嫌気性生物処理手段としては、有機物の分解効率に優れるものであれば良く、各種の嫌気性生物処理方式の生物反応槽が使用できる。   Any anaerobic biological treatment means for anaerobically biologically treating the wastewater may be used as long as it is excellent in the decomposition efficiency of organic matter, and various anaerobic biological treatment type biological reaction tanks can be used.

嫌気性生物反応槽は、浮遊方式(撹拌方式)、汚泥床方式(スラッジブランケット方式)など任意の方式でよく、また、担体添加型、造粒汚泥型であってもよい。   The anaerobic biological reaction tank may be of any method such as a floating method (stirring method) or a sludge bed method (sludge blanket method), or may be a carrier addition type or a granulated sludge type.

上記実施の形態では、正浸透膜分離装置2を嫌気性生物反応槽1内に配置しているが、後述の実施例1のように、嫌気性生物反応槽と正浸透膜分離装置とを別個に配置し、嫌気性生物反応槽からの生物処理液をポンプによって正浸透膜分離装置の1次側に供給しても良い。ただし、第1図のように正浸透膜分離装置2を嫌気性生物反応槽1内に浸漬配置すると、かかるポンプが不要である。   In the above embodiment, the forward osmosis membrane separation device 2 is disposed in the anaerobic biological reaction tank 1, but the anaerobic biological reaction tank and the forward osmosis membrane separation device are separately provided as in Example 1 described later. The biological treatment liquid from the anaerobic biological reaction tank may be supplied to the primary side of the forward osmosis membrane separation device by a pump. However, when the forward osmosis membrane separation device 2 is immersed in the anaerobic biological reaction tank 1 as shown in FIG. 1, such a pump is unnecessary.

以下、実施例及び比較例について説明する。
[実施例1]
下記の排水を第2図(a)の通り、嫌気性生物反応槽18で処理した後、FO装置20及びRO装置30で処理した。即ち、嫌気性生物反応槽18からの生物処理液をFO装置20の1次室21に供給し、FO膜23の透過液を2次室22からRO装置30に供給した。FO膜23を透過しなかった液は、嫌気性生物反応槽18に返送した。RO装置30の濃縮水は、FO装置20の2次室22に返送し、RO膜31の透過水を処理水として取り出した。実施例に用いた排水、嫌気性生物反応槽、FO装置、RO装置は、以下の通りである。
Hereinafter, examples and comparative examples will be described.
[Example 1]
As shown in FIG. 2 (a), the following waste water was treated in the anaerobic biological reaction tank 18 and then treated in the FO device 20 and the RO device 30. That is, the biological treatment liquid from the anaerobic biological reaction tank 18 was supplied to the primary chamber 21 of the FO apparatus 20, and the permeated liquid of the FO membrane 23 was supplied from the secondary chamber 22 to the RO apparatus 30. The liquid that did not pass through the FO film 23 was returned to the anaerobic biological reaction tank 18. The concentrated water of the RO device 30 was returned to the secondary chamber 22 of the FO device 20, and the permeated water of the RO membrane 31 was taken out as treated water. The waste water, the anaerobic biological reaction tank, the FO device, and the RO device used in the examples are as follows.

<排水>
液晶工場の排水に対して、栄養剤としてP、Na、K、Ca、Mg、Fe、及びその他の金属を適宜添加したものを排水として用いた。この排水の特性は以下の通りである。
<Drainage>
What added P, Na, K, Ca, Mg, Fe, and another metal suitably as a nutrient with respect to the waste_water | drain of a liquid crystal factory was used as waste water. The characteristics of this drainage are as follows.

モノエタノールアミン : 300mg/L
テトラメチルアンモニウムヒドロキシド : 300mg/L
ジメチルスルホキシド : 300mg/L
TOC : 360mg/L
ThOD : 1,280mg/L
T−N : 110mg/L
T−S : 120mg/L
Monoethanolamine: 300 mg / L
Tetramethylammonium hydroxide: 300 mg / L
Dimethyl sulfoxide: 300 mg / L
TOC: 360 mg / L
ThOD: 1,280 mg / L
TN: 110 mg / L
TS: 120 mg / L

<嫌気性生物反応槽>
500Lの撹拌機19付きの反応槽に前記排水を平均して85L/Hrにて導入した。この排水を120rpmで撹拌し、温度を35℃に維持した。
<Anaerobic biological reaction tank>
The waste water was averaged and introduced into a 500 L reactor equipped with a stirrer 19 at 85 L / Hr. The waste water was stirred at 120 rpm and the temperature was maintained at 35 ° C.

<FO装置>
FO装置として、第2図(b)に示す装置を作製して用いた。このFO装置20は、1次室21と2次室22とをFO膜23で隔てたものである。なお、1次室21及び2次室22は、いずれもFO膜23に対面する面が開放している。1次室21の容積は○○L、2次室22の容積は、2.5L、FO膜の面積は5,000cmである。FO膜23としては、RO平膜(日東電工(株)製:ES−20)を用いた。この1次室21に嫌気性生物反応槽から生物処理液をポンプによって、膜表面流速が0.5m/secとなるように4.5m/hrの流量で導入した。2次室22には、運転当初は2%NaCl水溶液を満たしておき、運転開始後は、RO装置30からの濃縮水を導入した。2次室22からの流出水をRO装置30に供給した。
<FO equipment>
As the FO apparatus, the apparatus shown in FIG. 2 (b) was produced and used. The FO device 20 is configured such that a primary chamber 21 and a secondary chamber 22 are separated by an FO film 23. Note that both the primary chamber 21 and the secondary chamber 22 are open on the surface facing the FO film 23. The volume of the primary chamber 21 is ◯ L, the volume of the secondary chamber 22 is 2.5 L, and the area of the FO membrane is 5,000 cm 2 . As the FO film 23, an RO flat film (manufactured by Nitto Denko Corporation: ES-20) was used. The biological treatment liquid was introduced into the primary chamber 21 from the anaerobic biological reaction tank by a pump at a flow rate of 4.5 m 3 / hr so that the membrane surface flow rate was 0.5 m / sec. The secondary chamber 22 was filled with a 2% NaCl aqueous solution at the beginning of operation, and concentrated water from the RO device 30 was introduced after the operation started. The effluent water from the secondary chamber 22 was supplied to the RO device 30.

<RO装置>
RO装置30として、2インチROモジュール(日東電工(株)製:ES−20スパイラル型)を用いた。このRO装置に対して、FO装置からの透過液を供給圧が1.5MPaとなるようにポンプによって供給した。このRO装置30への流入水に対しpHが5.5となるように10%塩酸水溶液を添加すると共に、回収率が50%となるように運転した。
<RO equipment>
As the RO device 30, a 2-inch RO module (manufactured by Nitto Denko Corporation: ES-20 spiral type) was used. To this RO apparatus, the permeate from the FO apparatus was supplied by a pump so that the supply pressure was 1.5 MPa. A 10% hydrochloric acid aqueous solution was added to the inflowing water to the RO device 30 so that the pH was 5.5, and the recovery rate was 50%.

<運転>
下水消化汚泥(TS2%、VS/TS比0.65)を種汚泥として、3ヶ月間馴養した後、嫌気性生物反応槽のThOD負荷が5kg/m・d(HRT6hr)となるようにして、2ヶ月間運転を行い、その生物処理液を第2図(a)のようにFO装置20及びRO装置30の順に通水した。ROフラックスと経過日数との関係を図3に示す。
<Driving>
Sewage digested sludge (TS 2%, VS / TS ratio 0.65) is used as seed sludge, and after acclimatization for 3 months, the ThOD load of the anaerobic bioreactor is set to 5 kg / m 3 · d (HRT 6 hr). The operation was performed for 2 months, and the biological treatment liquid was passed through the FO device 20 and the RO device 30 in this order as shown in FIG. The relationship between the RO flux and the elapsed days is shown in FIG.

[比較例]
実施例1において、FO装置の代わりに、槽外型UFモジュール(日本ノリット(株)製:33PE)を用い、膜面流速を0.5m/secとして嫌気性生物反応槽18からの生物処理液をこの槽外型UFモジュールで濾過し、このUF透過水をRO装置に供給するようにしたこと以外は、実施例1と同じフロー及び条件で運転した。結果を図3に示す。
[Comparative example]
In Example 1, the biological treatment liquid from the anaerobic biological reaction tank 18 was used by using an outside-type UF module (manufactured by Norit Japan Ltd .: 33PE) in place of the FO apparatus, with a membrane surface flow rate of 0.5 m / sec. Was filtered with this outside UF module, and this UF permeated water was supplied to the RO device, and the operation was performed under the same flow and conditions as in Example 1. The results are shown in FIG.

[結果]
2ヶ月間のRO装置への流入水のTOC除去率は、実施例1及び比較例1のいずれも98%以上であり、RO装置流入水のTOCの平均値は、実施例1が1.1mg/L、比較例1が4.2mg/Lであった。また、RO透過水のTOC平均値は、実施例1が0.8mg/L、比較例1が0.9mg/Lで、両者の間にほとんど差はなかった。しかしながら、実施例1では、2ヶ月間でROフラックスの値が15%程度しか低下しなかったのに対して、比較例1は、通水開始直後から急速に低下し、1週間後には通水開始直後の値の1/2、2週間には1/3、2ヶ月後には1/10まで低下した。試験後、比較例1のRO膜の表面には、黒色の析出物が付着していた。これをSEM−EDXにより分析したところ硫化鉄であることが認められた。この実施例1及び比較例1より、本発明によると、有機物を含む排水を嫌気性微生物で処理した後、FO膜及びRO膜分離処理することにより、有機物濃度及び溶存イオン濃度が低い処理水を安定して得ることができることが認められた。
[result]
The TOC removal rate of the inflow water to the RO device for two months is 98% or more in both Example 1 and Comparative Example 1, and the average value of the TOC of the RO device inflow water is 1.1 mg in Example 1. / L, Comparative Example 1 was 4.2 mg / L. Moreover, the TOC average value of RO permeated water was 0.8 mg / L in Example 1 and 0.9 mg / L in Comparative Example 1, and there was almost no difference between the two. However, in Example 1, the value of the RO flux decreased only about 15% in two months, whereas in Comparative Example 1, the value rapidly decreased immediately after the start of water flow, and one week later. 1/2 of the value immediately after the start, 1/3 in 2 weeks, and 1/10 in 2 months. After the test, black deposits were adhered to the surface of the RO membrane of Comparative Example 1. This was analyzed by SEM-EDX and found to be iron sulfide. From Example 1 and Comparative Example 1, according to the present invention, wastewater containing organic matter is treated with anaerobic microorganisms, and then treated with FO membrane and RO membrane separation to obtain treated water with low organic matter concentration and dissolved ion concentration. It was found that it can be obtained stably.

1,18 嫌気性生物反応槽
2,20 正浸透膜分離装置(FO装置)
2a,23 正浸透膜
5,30 逆浸透膜分離装置(RO装置)
5a,31 逆浸透膜
13 散気管
1,18 Anaerobic biological reaction tank 2,20 Forward osmosis membrane separation device (FO device)
2a, 23 Forward osmosis membrane 5,30 Reverse osmosis membrane separation device (RO device)
5a, 31 Reverse osmosis membrane 13 Air diffuser

Claims (4)

有機物を含む排水を嫌気性微生物で処理する嫌気性処理工程と、
該嫌気性処理工程の嫌気性処理液を正浸透膜で透過液と濃縮液とに分離する正浸透膜分離工程と、
該正浸透分離工程の透過液を逆浸透膜で処理水と濃縮水とに分離する逆浸透膜分離工程とを備えた排水処理方法。
An anaerobic treatment process in which wastewater containing organic matter is treated with anaerobic microorganisms;
A forward osmosis membrane separation step of separating the anaerobic treatment liquid of the anaerobic treatment step into a permeate and a concentrated liquid with a forward osmosis membrane;
A wastewater treatment method comprising a reverse osmosis membrane separation step of separating the permeate in the forward osmosis separation step into treated water and concentrated water using a reverse osmosis membrane.
有機物を含む排水を嫌気性微生物で処理する嫌気性処理槽と、
該嫌気性処理槽の嫌気性処理液を正浸透膜で透過液と濃縮液とに分離する正浸透膜分離装置と、
該正浸透分離装置の透過液を逆浸透膜で処理水と濃縮水とに分離する逆浸透膜分離装置とを
備えた排水処理装置。
An anaerobic treatment tank for treating wastewater containing organic matter with anaerobic microorganisms;
A forward osmosis membrane separation device for separating the anaerobic treatment liquid of the anaerobic treatment tank into a permeate and a concentrated liquid with a forward osmosis membrane;
A wastewater treatment device comprising a reverse osmosis membrane separation device that separates the permeate of the forward osmosis separation device into treated water and concentrated water using a reverse osmosis membrane.
請求項2において、該正浸透膜分離装置は、その正浸透膜が該嫌気性処理槽内の嫌気性処理液と接するように配置されていることを特徴とする排水処理装置。   3. The wastewater treatment apparatus according to claim 2, wherein the forward osmosis membrane separation device is disposed so that the forward osmosis membrane is in contact with the anaerobic treatment liquid in the anaerobic treatment tank. 請求項2又は3において、前記逆浸透膜分離装置からの濃縮水を正浸透膜分離装置内に返送する手段を備えたことを特徴とする排水処理装置。   4. The wastewater treatment apparatus according to claim 2, further comprising means for returning the concentrated water from the reverse osmosis membrane separation device into the forward osmosis membrane separation device.
JP2010037436A 2010-02-23 2010-02-23 Waste water treatment method and apparatus Pending JP2011173040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037436A JP2011173040A (en) 2010-02-23 2010-02-23 Waste water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037436A JP2011173040A (en) 2010-02-23 2010-02-23 Waste water treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2011173040A true JP2011173040A (en) 2011-09-08

Family

ID=44686432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037436A Pending JP2011173040A (en) 2010-02-23 2010-02-23 Waste water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2011173040A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344783B1 (en) 2012-06-14 2013-12-26 (주)대우건설 Hybrid seawater desalination apparatus and method for reclaiming concentrate in reverse osmosis
JP2014061486A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system
CN104529087A (en) * 2015-01-04 2015-04-22 威士邦(厦门)环境科技有限公司 Complete equipment and technology for reutilization and energy regeneration treatment of wastewater
CN104591423A (en) * 2013-11-01 2015-05-06 中国石油化工股份有限公司 High salinity and high ammonia nitrogen wastewater treatment method
WO2015104957A1 (en) * 2014-01-10 2015-07-16 株式会社神鋼環境ソリューション Water treatment method and water treatment device
JP5998254B1 (en) * 2015-06-19 2016-09-28 株式会社神鋼環境ソリューション Digestion processing apparatus and digestion processing method
KR101789879B1 (en) * 2015-10-06 2017-11-20 두산중공업 주식회사 Apparatus for processing anaerobic digested waste water and method for the same
JP2018143970A (en) * 2017-03-07 2018-09-20 東洋紡株式会社 Concentration system and concentration method
JP2019504763A (en) * 2016-02-02 2019-02-21 トレヴィ システムズ インコーポレイテッドTrevi Systems Inc. Osmotic pressure assisted reverse osmosis process and method of use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344783B1 (en) 2012-06-14 2013-12-26 (주)대우건설 Hybrid seawater desalination apparatus and method for reclaiming concentrate in reverse osmosis
JP2014061486A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system
CN104591423A (en) * 2013-11-01 2015-05-06 中国石油化工股份有限公司 High salinity and high ammonia nitrogen wastewater treatment method
CN104591423B (en) * 2013-11-01 2016-03-30 中国石油化工股份有限公司 A kind for the treatment of process of high salt high ammonia-nitrogen wastewater
WO2015104957A1 (en) * 2014-01-10 2015-07-16 株式会社神鋼環境ソリューション Water treatment method and water treatment device
JP2015131268A (en) * 2014-01-10 2015-07-23 株式会社神鋼環境ソリューション Water treatment method and water treatment device
CN104529087A (en) * 2015-01-04 2015-04-22 威士邦(厦门)环境科技有限公司 Complete equipment and technology for reutilization and energy regeneration treatment of wastewater
CN104529087B (en) * 2015-01-04 2016-05-25 威士邦(厦门)环境科技有限公司 A kind of sewage recycling, energy are processed into complete equipment and technique
JP5998254B1 (en) * 2015-06-19 2016-09-28 株式会社神鋼環境ソリューション Digestion processing apparatus and digestion processing method
KR101789879B1 (en) * 2015-10-06 2017-11-20 두산중공업 주식회사 Apparatus for processing anaerobic digested waste water and method for the same
JP2019504763A (en) * 2016-02-02 2019-02-21 トレヴィ システムズ インコーポレイテッドTrevi Systems Inc. Osmotic pressure assisted reverse osmosis process and method of use thereof
JP2018143970A (en) * 2017-03-07 2018-09-20 東洋紡株式会社 Concentration system and concentration method

Similar Documents

Publication Publication Date Title
JP2011173040A (en) Waste water treatment method and apparatus
JP5315587B2 (en) Apparatus and method for treating wastewater containing organic matter
KR101804555B1 (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
TWI494281B (en) Apparatus for treating organic waste water
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
CN106132518B (en) Water treatment method and water treatment device using membrane
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
TWI596063B (en) Method for treating organic waste water and treating waste containing organic matter
JP4997724B2 (en) Organic wastewater treatment method
KR101956383B1 (en) Method of treating organic waste water by membrane separator activated sludge device
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
JP2010017615A (en) Method and apparatus for treating dmso-containing wastewater
JP2014198290A (en) Treatment apparatus and treatment method of organic effluent
JP2011212585A (en) Method and apparatus for treating organic matter-containing wastewater
JP2009189943A (en) Water treatment method and apparatus
JP5106182B2 (en) Water treatment method and water treatment apparatus
JP3433601B2 (en) Wastewater recovery and purification equipment
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
US7198717B2 (en) Anoxic biological reduction system
KR101575345B1 (en) Biological Treatment Apparatus and Biological Treatment Process of Aqueous Organic Wastes
JP2006181397A (en) Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2012143672A (en) Method and device for treating dioxane-containing water
JP2012205991A (en) Treatment apparatus of organic wastewater